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User mobility profile prediction:
An adaptive fuzzy inference approach
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Predicting the probabilities that a mobile user will be active in other cells at future moments poses a significant technical challenge to
network resource management in multimedia wireless communications. The probability information can be used to assist base stations
to maintain a balance between guaranteeing quality of service (QoS) to mobile users and achieving maximum resource utilization. This
paper proposes a novel adaptive fuzzy logic inference system to estimate and predict the probability information for direct sequence code
division multiple access (DS/CDMA) wireless communications networks. The estimation is based on measured pilot signal strengths at
the mobile user from a number of nearby base stations, and the prediction is obtained using the recursive least square (RLS) algorithm.
Numerical results are presented to demonstrate the performance of the proposed technique under various path loss and channel shadowing
conditions.

1. Introduction

An interworked wireless/wireline network is a suitable
platform for providing multimedia services to mobile users
anywhere at anytime. However, widespread user mobility,
limited radio frequency spectrum, radio channel impair-
ments etc. in the wireless segment pose significant chal-
lenges in the management of resources in the integrated
network. Resource management, including flow control,
resource allocation, congestion control, and call admission
control, is critical to quality of service (QoS) provisioning.
Resource management functions should capture the effect
of user mobility in order to balance the tradeoff between
the satisfaction of QoS and the maximization of resource
utilization. Several techniques have been proposed to attain
the tradeoff. The shadow cluster [8] and virtual connection
tree (VCT) [1,19] approaches make use of statistical mul-
tiplexing of data traffic to and from mobile users so that
a higher resource utilization can be obtained without in-
creasing the call dropping probability. However, statistical
multiplexing requires a knowledge of the user movement
patterns and trends.

User mobility information can be used to assist user
mobility management (traffic routing) [1], to manage net-
work resources (resource allocation, call admission control,
congestion and flow control) [12], and to analyze hand-
off algorithms in integrated wired/wireless networks [20].
Previous research efforts on mobility information have fo-
cused on statistics such as mobility model [3,6], user loca-
tion tracking and trajectory prediction [9], channel holding
time [4], cell boundary crossing rate [11,15,18], mean han-
dover rate [6,13], and cell residence time [6,23]. Different
from the previous work, in this paper we are interested in
the probabilities that a mobile user will be active in a par-
ticular cell at future moments. The mobility information is
directly related to statistical multiplexing and plays an im-

portant role in efficient resource management of wireless
cellular systems.

In general, if a mobile user is closer to a base station
(BS), then the propagation path attenuation from the BS to
the mobile user is smaller, and vice versa. Hence, if the
BS transmits a pilot signal with constant transmitted power,
then the received power of the signal at the mobile user car-
ries the information of the distance between the mobile user
and the BS. Since the probability that the mobile user will
be active in a particular cell at a future moment is a func-
tion of the current distances between the mobile user and
its nearby BSs, the probability can be estimated based on
real-time measurements of the received pilot signal power
at the mobile user from the BSs. Furthermore, the probabil-
ity depends on the mobile user movement pattern (such as
movement trajectory). Although the movement patterns of
mobile users are random in nature to the wireless system,
the movement of each mobile user has a relatively smooth
trajectory most of the time. That is, the location of a mo-
bile user at a future moment depends on its locations at the
current moment and previous moments. As a result, it is
possible to predict the mobility information based on the
current and previous measurement data. If the predictions
of future mobility information can be obtained with rea-
sonable accuracy, then the network resource management
will become substantially efficient in terms of user QoS and
resource utilization [8,9].

The challenges in estimating and predicting the mobility
information based on the pilot signal power measurements
come from the following facts:

(a) Normally there is no one-to-one relation between the
distance and the probability. Even when such a relation
exists for some special environments, it is very difficult
(if not impossible) to describe the relation accurately,
e.g., using mathematical expressions.
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(b) There exists a relatively slow fluctuation of the received
signal level due to physical structure blocking the trans-
mission path between the BS and the mobile user. The
shadowing process randomizes the relation between the
received pilot signal power and the distance from the
mobile user to the BS. On the average, the larger the
power, the smaller the distance. However, the relation
may not hold for each measurement.

(c) The received signals are contaminated by the multiple
access interference (MAI) due to other users in the sys-
tem and unavoidable background noise. That is, the
measured data are not accurate.

As a result, it is impossible to accurately derive the proba-
bility information based on the measurements. To tackle the
difficulty, an adaptive fuzzy inference system is presented
in this paper. The system deals with

(a) the uncertainty inherent in the relation between the dis-
tance and the probability and

(b) the random shadowing effect by using training data
from real measurement or from statistical models of
practical propagation environments.

To handle the measurement error, the system incorporates
the degree of certainty (or accuracy) of the measurements
by giving a larger degree of importance to the data with
higher measurement accuracy.

A fuzzy inference system was proposed in [16] to esti-
mate the current mobility information based on the real-time
measurements. The main concern of this paper is to predict
the mobility information of future moments with an adap-
tive fuzzy inference approach. The remainder of the paper
is organized as follows. Section 2 describes the system
model which uses direct sequence code division multiple
access (DS/CDMA). By using the pilot signals in the for-
ward channel (down link), no extra signaling is needed for
obtaining user mobility information. Section 3 is devoted
to the design of the adaptive fuzzy inference system which
combines fuzzy inference logic with a recursive least square
(RLS) predictor. Numerical results and discussions on the
performance and applications of the proposed technique are
presented in section 4. Section 5 gives some concluding re-
marks of this work.

2. Mobility information model

We consider a wireless communication network oper-
ating in a frequency division duplex (FDD) mode. Mo-
bile users in each cell share the radio frequency spectrum
through the DS/CDMA protocol. The same total frequency
bandwidth is reused in every cell to increase the radio spec-
tral efficiency and to eliminate the need for frequency coor-
dination. Due to the universal frequency reuse and the use
of Rake receivers, soft handoff becomes possible. A mo-
bile can transmit to and receive from more than one BS

at any time. During transition from one cell to a neigh-
boring cell, the mobile user establishes a communications
link with the new BS while, at the same time, keeping
its communications link with the original BS. The original
communications link is terminated only after the mobile
user has firmly established itself in the new cell. In the for-
ward link, each base station transmits a distinct pilot signal
for pseudorandom noise (PN) code and carrier synchro-
nization at the receiver of the mobile user. Prior to any
transmission, the mobile user monitors the received pilot
signal power levels from nearby base stations. It chooses
its home BS according to the maximum pilot signal power
received. The network uses mobile user assisted soft hand-
off as in the CDMA2000 proposal [17]. While tracking the
signal from the home BS, the user searches for all the pos-
sible pilots and maintains a list of all pilots whose levels
are above a prescribed threshold. This list is transmitted
to a mobile switching center (MSC) periodically through
the home BS. The MSC uses the information to make de-
cision on when the soft handoff should start. In addition,
the MSC uses the information to estimate and predict the
probabilities that the mobile will locate in a particular cell
at the future moments.

Consider a uniform grid of hexagonal cells, as shown in
figure 1, where the mobile user under consideration is lo-
cated in the sub-region O1 of cell 0. For each mobile user,
we will focus on the mobility information related only to
its home BS (denoted by BS 0) and to the six first-tier
neighboring BSs (denoted by BS 1, BS 2, . . . , BS 6). The
index i will be used throughout this paper to denote vari-
ables related to the home BS (i = 0) and to the neighboring
BSs (i = 1, 2, . . . , 6). The time t will be discretized and
represented as tn (= n∆t), n = 1, 2, . . . , where ∆t is the

Figure 1. The hexagonal cell layout.
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Figure 2. The adaptive fuzzy inference system.

time interval over which the received pilot signals are mea-
sured once and then the estimation and prediction of the
probabilities are updated. Let di(tn) denote the distance at
time t between the mobile user and BS i. Given the cover-
age areas of the BSs, the probabilities that the mobile user
will be in cell i at the next moment tn+1 mainly depends
on the distances di(tn), the velocity and moving direction
of the user. The larger the distance di(tn), the smaller the
probability that the user will be in cell i. By measuring the
power of the pilot signal from BS i received at the mobile
user, the distance di(tn) can be estimated. At tn, the local
mean of the pilot signal amplitudes received at each mobile
user can be modeled by [14]

an,i = γi

[
di(tn)
D0

]−κ
10ξi(tn)/10, i = 0, 1, . . . , 6, (1)

where γi is a constant proportional to the amplitude of
the transmitted pilot signal, κ is the path loss exponent,
D0 is the close-in reference distance which is determined
from measurements close to the transmitter, and ξi(tn) is to
characterize the effect of shadowing and can be modeled by
a normal random variable (for any tn) with zero mean and
variance σ2. For i 6= j, ξi(tn) and ξj (tn) are independent.
If the transmitted pilot signals have the same power, then
γi = γ for i = 0, 1, . . . , 6.

Here we use the relation between the distance di(tn) and
the probability, under the assumption that the wireless prop-
agation condition is homogeneous over the service area of
the system. This is to compensate the effect of the shad-
owing (experienced by the pilot signals) on the probability
estimation. If the assumption does not hold, other criteria
may be used to estimate the probability, such as directly
using the received pilot signal powers.

3. Adaptive fuzzy inference system design

Figure 2 shows the block diagram of an adaptive fuzzy
inference prediction system. It consists of two subsystems:
a fuzzy inference system, and an RLS predictor. The fuzzy
inference system estimates the probability that a mobile user
will be active in cell i at time tn based on the measured
pilot signal strengths at time tn. Before measurements at
tn+1 are available, the RLS predictor predicts the probabil-
ity that the mobile user will be active in cell i at time tn+N

Figure 3. The structure of the RLS predictor for one component of the
probability vector: (a) training, (b) prediction.

for N = 1, 2, . . . based on the estimates from the fuzzy in-
ference system up to time tn, as depicted in figure 3(b).
The predicted probability information can be used in re-
source management to handle user mobility in advance of
the mobile user’s next move. The design of the subsystems
is given in sections 3.1 and 3.2.
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3.1. The fuzzy inference system

This subsystem is a special expert system. It employs
a knowledge base, expressed in terms of fuzzy inference
rules, and an appropriate inference engine to estimate the
probability of a mobile user being active in cell i at tn
based on the measurement data an,i. The knowledge base
can be designed to take into account

(a) the wireless propagation environment such as the one
described by equation (1),

(b) intuitive understanding of the general relation between
the distance and the probability, and

(c) measurement errors.

The system is capable of utilizing knowledge elicited from
human operators. The knowledge is expressed by using
natural language, a cardinal element of which is linguis-
tic variables [7,21]. Let the linguistic variable an,i be
the received signal level from BS i at time tn, then the
corresponding universe of discourse is the set of all pos-
sible received signal levels. We choose the term set of
an,i, denoted by Uan,i , to contain the following elements:
extremely small (ES), very small (VS), small (S), small-
to-medium (SM), medium-to-large (ML), large (L), very
large (VL), extremely large (EL). Let the linguistic variable
pn,i be the probability that the mobile user will be active
in cell i at epoch tn, with the universe of discourse being
the interval [0, 1]. We choose the term set of pn,i, denoted
by Upn,i , to be the set containing the following elements:
zero (ZE), extremely small (ES), very small (VS), small (S),
small-to-medium (SM), medium-to-large (ML), large (L),
very large (VL), extremely large (EL), and one (OE). The
number of terms in Uan,i and Upn,i , respectively, is selected
so as to achieve a compromise between the complexity and
the fuzzy inference system performance. The membership
functions of the input (the received signal levels) and the
output (the probabilities) depend on the BS coverage areas,
transmitted pilot signal power, the path loss exponent κ and
channel shadowing statistics.

The fuzzifier translates the measured data into linguistic
values of the fuzzy set in the input universe of discourse.
Each specific value of the measured signal level an,i is
mapped to the fuzzy set U 1

an,i
with degree µ1

xi(an,i) and to
the fuzzy set U 2

an,i
with degree µ2

xi(an,i), and so on, where
UJan,i

is the name of the J th term or fuzzy set value in
Uan,i .

The fuzzy rule base is the control policy knowledge base,
characterized by a set of linguistic statements in the form
of IF–THEN rules that describe the fuzzy logic relationship
between the measured data and the mobility information.
The kth rule has the following form:

Rk: if an,0 is A0k and an,1 is A1k and . . .

and an,6 is A6k,

then pn,0 is P0k and pn,1 is P1k and . . .

and pn,6 is P6k,

where k = 1, 2, . . . ,K, K is the total number of the fuzzy
rules, (an,0, an,1, . . . , an,6) ∈ Uan,0×Uan,1×· · ·×Uan,6 , Ua
and (pn,0, pn,1, . . . , pn,6) ∈ Upn,0 ×Upn,1 × · · ·×Upn,6 , Up
are linguistic variables, Aik and Pik are fuzzy sets in Uan,i

and Upn,i , respectively.
In the fuzzy inference engine, fuzzy logic principles are

used to combine the fuzzy IF–THEN rules in the fuzzy rule
base into a mapping from fuzzy sets in Ua to fuzzy sets in
Up:

Given Fact:

an,0 is Ã0 and an,1 is Ã1 and . . . and an,6 is Ã6,

Consequence:

pn,0 is P̃0 and pn,1 is P̃1 and . . . and pn,6 is P̃6,

where Ãi and P̃i (i = 0, 1, . . . , 6) are linguistic terms for
an,i and pn,i, respectively. The fuzzy rule base can be
created from training data sequence (e.g., measured input–
output pairs). To avoid tedious field trials, the training data
can be generated in computer simulation based on prop-
agation model and cell structure. Given a set of desired
input–output data pairs, a set of fuzzy IF–THEN rules can
be generated. In addition, a degree which reflects the ex-
pert’s belief of the importance of the rule can be assigned
to each rule. For example, the importance of a rule in-
creases if the corresponding input data has a higher mea-
surement accuracy. The measurement accuracy increases as
the received signal-to-interference-and-noise ratio (SINR)
increases. With the same interference-and-noise compo-
nent for all received pilot signals, the differences among
the SINR values are proportional to the differences among
the received power values of the pilot signals. If the mobile
is closer to BS i than to BS j, the average received signal
power from BS i is larger than that from BS j. Hence, the
measured data for BS i should be weighted more (i.e., have
a larger degree) than that for BS j. The degree assigned to
rule k is calculated by using product operations

Qk = µk

6∏
i=0

µIik (an,i)
6∏
i=0

µOik (pn,i), (2)

where Iik denotes the input region of rule k for an,i, Oik
the output region for pn,i, µIik (an,i) is the degree of an,i

in Iik obtained from the membership functions, µOik (pn,i)
the degree of pn,i in Oik , and µk is the degree of the
data vector (an,0, an,1, . . . , an,6) assigned by human oper-
ators. When there is more than one rule in one box of
the fuzzy rule base, the rule that has the largest degree is
chosen.

The defuzzifier performs a mapping from fuzzy sets
(pn,0, pn,1, . . . , pn,6) ∈ Up (the output of the inference en-
gine) to a crisp point (pn,0, pn,1, . . . , pn,6) ∈ Up. Among the
commonly used defuzzification strategies, the center aver-
age defuzzification method yields a superior result [2]. Let
p̃n,i denote the estimate (generated by the fuzzy inference
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system at time tn) of the true probability pn,i. The formula
for the estimate at the defuzzifier output is

p̃n,i =

∑K
k=1 Qk

∏6
j=0 µIjk (aj)p̄ik∑K

k=1 Qk
∏6
j=0 µIjk (aj)

, (3)

where p̄ik is the center value of the output region of rule k,
and Qk is the degree (normalized to 1) of rule k.

3.2. The RLS predictor

For each mobile user, there is a strong correlation among
its locations at adjacent time moments if the product of the
mobile user velocity and the time interval ∆t is small. As
a result, there may exist a strong correlation among the
(pn,0, pn,1, . . . , pn,6) values for some consecutive discrete
time moments. This makes it possible to predict the future
probability value based on its current and previous values.
The RLS algorithm is used for the prediction here because

(a) it is easily implemented using a tapped-delay line and

(b) a forgetting factor can be introduced to take into ac-
count the fact that the correlation between two locations
fades as the time interval separating the corresponding
time moments increases.

The RLS predictor takes the probability estimates up to
time tn from the fuzzy inference system and processes the
data to predict the probability that a mobile user will be
active in neighboring cells at a future moment tn+N , where
N = 1, 2, 3, . . . . Figure 3(a) shows the structure of the
RLS predictor for N = 1, which is basically a tapped-
delay-line filter with (m+ 1) taps. The tap coefficients are
obtained using the RLS algorithm [5,10]. In figure 3(a), the
values p̃n,i, p̃n−1,i, . . . , p̃n−m,i are available from the fuzzy
inference system. We use these and future values, shown
by p̃n+1,i, to train the linear least square filter. After the tap
coefficients have been trained, the system can be used as
an RLS predictor to perform the prediction. When p̂n+1,i

becomes available, p̂n+1,i, p̃n,i, . . . , p̃n−m+1,i are used to
refresh the contents of the tapped-delay line and perform
the next set of prediction steps.

At time tn, the input vector of the predictor is

Vn =
(
~pn, ~pn−1, . . . , ~pn−m

)T
,

where the superscript T denotes transposition, and ~pn−l =
(p̃n−l,0, p̃n−l,1, . . . , p̃n−l,6), l = 0, 1, . . . ,m, is the fuzzy in-
ference system output at tn−l. All the elements are set to
zero for the initial moments n 6 l. The corresponding tap
coefficient vector is

Cn =
(
~cn,0,~cn,1, . . . ,~cn,m

)T
,

where ~cn,l = (cn,l,0, cn,l,1, . . . , cn,l,6), corresponding to
~pn−l. Cn should be chosen (optimized) to minimize the
mobility information estimation error. Over a short time

duration, the RLS predictor can be described by the fol-
lowing system model equations:

Cn+1 = Cn, (4)

~pn+1 = V T
nCn + wn, (5)

where Cn is the optimal tap-coefficient vector under the
constraint of a finite tap number, ~pn+1 is the output of the
fuzzy inference system at time tn+1 and is used as the de-
sired output of the predictor, wn is the measurement error
with zero mean and finite variance to capture the effects
due to the stochastic nature of wireless propagation envi-
ronments, random movement of the mobile user, etc. Equa-
tion (4) is adequate over a short duration of time (a small
number of ∆t intervals) if ∆t is relatively small compared
with the average channel shadowing duration. However,
the model is inadequate over a long time interval, which is
to be compensated for by introducing an exponential for-
getting factor to the filtering algorithm. In figure 3(a), the
ith component (i = 0, 1, . . . , 6) of the predictor output is
given by

p̂n+1,i =
m∑
l=0

ĉn,l,ip̃n−l,i = V T
n,iĈn,i, (6)

where

Vn,i =
(
p̃n,i, p̃n−1,i, . . . , p̃n−m,i

)T

is the ith element of Vn and

Ĉn,i =
(
ĉn,0,i, ĉn,1,i, . . . , ĉn,m,i

)T

is an estimate of the ith tap-coefficient vector Cn,i at tn,
under the assumption thatCn,i is time-invariant over a small
number of ∆t intervals. The estimate Ĉn,i is computed
based on the fuzzy inference system output up to tn. The
ith estimation error component at tn+1 is defined as

εn+1,i , p̃n+1,i − p̂n+1,i = p̃n+1,i − V T
n,iĈn,i, (7)

where p̃n+1,i is the estimated probability from the fuzzy in-
ference system at time tn+1, and p̂n+1,i is a least square es-
timate of p̃n+1,i obtained based on p̃n−l,i, l = 0, 1, . . . ,m.

In the RLS algorithm, the estimation error vector se-
quence {~εn} = {(εn,0, εn,1, . . . , εn,6)} is considered to be a
deterministic process. The algorithm starts with an initial
estimate Ĉ0,i and uses the information contained in new
data samples to update the old estimates. Therefore, the
length of observable data is variable. The design criterion
is to adaptively estimate the tap-coefficient vector Ĉn,i such
that the weighted squared error (cost function) at tn+1, de-
fined as

Jn+1,i =
n+1∑
j=0

λn+1−j |εn+1−j,i|2

=
n+1∑
j=0

λn+1−j∣∣p̃n+1−j,i − V T
n−j,iĈn−j,i

∣∣2, (8)
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is minimized. In equation (8), λn+1−j is an exponential
forgetting factor taking into account that the correlation be-
tween Vn and Vn+N decreases as N increases. If λ = 1,
then all the estimates Vn−j , j = 0, 1, . . . ,n, are to be
treated equally; if λ < 1, then the estimate obtained at
earlier times (with larger j values) are to have a smaller
influence than more recent estimates (with smaller j val-
ues). The RLS algorithm with a constant λ for updating the
estimate of the tap-coefficient, Ĉn+1,i, can be summarized
as

Ĉn+1,i = Ĉn,i +Gn+1,i
(
Hn+1,i − V T

n,iĈn,i
)
, (9)

Gn+1,i =H ′n,iVn,i
(
1 + V T

n,iH
′
n,iVn,i

)−1
, (10)

Hn+1,i =
Hn,i −Gn+1,iV

T
n,iHn,i

λ
, (11)

where the (m+ 1)-by-(m+ 1) matrix Hn+1,i is defined as
Hn+1,i , [

∑n
l=1 λ

n−lVn,iV
T
n,i]
−1 and H ′n,i = Hn,i/λ. The

initial values of Ĉn,i and Hn,i can be chosen as

Ĉ0,i = ~0, H0,i = δI

for a soft-constrained initialization, where δ � 1 is a large
positive constant, and I is the identity matrix of (m + 1)
dimension.

The above discussion shows how to predict the proba-
bility information for the time moment tn+1 based on the
measurement data up to time tn. If it is desirable to further
predict the probability information for tn+2 based on the
measurement data up to time tn, one way is to update the
input vector of the RLS predictor to

V̂n+1 =
(
~̂pn+1, ~pn, . . . , ~pn+1−m

)T
,

where the first component is the previous output of the
RLS predictor and all other components are the previous
outputs of the fuzzy inference system. The ith element of
the probability vector ~̂pn+2, p̂n+2,i, can then be obtained

from equation (6) using the same tap coefficient ~̂Cn,i. The
structure of the RLS predictor for one component of the
probability vector, p̂n+2,i, is shown in figure 3(b). The
probability vector at tn+N for N > 3 can be predicted in
a similar way. However, it is expected that the prediction
error will increase as the value of N increases, due to the
fact that the prediction is based on previous estimates up
to time tn.

3.3. Discussions

Several issues regarding the adaptive fuzzy inference
system and its applications need to be discussed.

1. The complexity of the multiple-input (an,i) multiple-
output (pn,i) fuzzy inference system (for i = 0, 1, . . . , 6)
may be a concern. However, in practice, the complex-
ity can be significantly reduced if (a) we make use of
the relation

∑
i pn,i = 1 and (b) the number of BSs to

which the mobile user has a potential to handoff at tn+1

is limited to less than 6 by neglecting the BSs which
have weak pilot signal power at the mobile user. For
example, for the mobile user shown in figure 1, it is
reasonable to limit the future BSs that the mobile user
will communicate with (at tn+1) to BS 1, BS 2, and
BS 6, since the mobile user locates in sub-region O1 of
cell 0 at time tn.

2. The implementation cost for the fuzzy inference system
is low in the sense that (a) it is a one-pass build-up proce-
dure that does not require time-consuming on-line train-
ing; (b) it makes use of the available pilot signal power
measurement and transmission of the measured data to
the MSC in the wireless system; no extra signaling and
measurement are necessary; (c) the required real-time
measurement and computation are a linear function of
the number of mobile users. As a result, the proposed
system is practical even when the number of mobile
users is large.

3. Based on the propagation model, equation (1), the prob-
abilities are estimated and predicted using the received
pilot signal powers. There are other (handoff initiat-
ing) criteria, such as carrier-to-interference ratio, which
can affect the estimation and prediction. The fuzzy in-
ference system proposed here can be directly extended
to situations using other handoff initiating criteria. By
defining the relation between the mobility information
and the criterion under consideration, the same training
procedure can be used to establish the fuzzy rule base
according to the criterion employed.

4. In the proposed adaptive fuzzy inference system as
shown in figure 2, the fuzzy inference system and the
RLS predictor are connected in tandem. The proposed
structure offers the advantage of implementation sim-
plicity. Another possible approach is to integrate the
fuzzy inference system with the RLS predictor, i.e. to
put the RLS predictor inside the fuzzy inference sys-
tem, as suggested in [21]. By combining the RLS al-
gorithm with each fuzzy inference rule, the prediction
accuracy may be increased. However, this is achieved
at an increased implementation complexity, which may
not be practical for real-time prediction especially when
the number of the neighboring BSs taken into consider-
ation is large.

5. With the RLS predictor, the adaptive fuzzy inference
system can predict the probability vectors a few steps
in the near future. The mobility information is partic-
ularly useful in prediction-based wireless network re-
source management such as call admission control and
rate-based flow control. Due to user mobility, QoS
provisioning in wireless/wired network environments is
technically very challenging. The approach of shadow
cluster and VCT [1,8,19] has been proposed as an effec-
tive way to manage network resources. In the approach,
base stations reserve resources in advance for handoff
calls according to predicted mobility information, which
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reduces the chance of handoff dropped calls and ensures
the QoS provisioning for mobile users. In other words, if
the resource reserved for a mobile user in a neighboring
cell is weighted by the probability of the user handing
off to the cell, a large statistical multiplexing gain can
then be achieved in the resource management when the
network operates in the neighborhood of its full capac-
ity, taking into account a large number of mobile users.
This, on the other hand, will allow the network to accept
more new call requests without breaking the QoS com-
mitments made to the mobile users already admitted to
the network. The prediction of the probability will also
allow the network to allocate its resources dynamically
to mobile users with different QoS requirements. For in-
stance, if it is predicted that a mobile user with real-time
traffic has a high chance to handoff to a neighboring cell,
then the future home BS can reserve enough resources
for the mobile user by allocating less resources to non-
real-time traffic sources in the cell through rate-based
flow control.

4. Numerical results

This section first gives the details of how the simulation
environment is set up, then presents the performance of
the fuzzy inference subsystem, and finally evaluates the
adaptive fuzzy inference system for predicting the mobility
information.

4.1. The simulation system

The microcellular network under consideration has a
hexagonal cell structure as shown in figure 4. The BS is
located at the center of each cell. The probability pn,i that
a mobile user will be active in cell i at tn depends on its
location (xMT, yMT) at tn. In order to reduce the complexity
of the estimation, the following assumptions are made:

Figure 4. A mobile user located at (xMT, yMT) in the cellular system.

1. Limit the number of BSs for handoff to 3. For the mobile
user shown in figure 4, since yMT > 0, let pn,4 = pn,5 =
pn,6 = 0.

2. Further reduce the number of BSs for handoff to 2. For
the mobile user shown in figure 4, since xMT > 0 (i.e.
the mobile user is located on the right side of cell 0),
let pn,3 = 0.

3. The probability that the mobile user will remain in cell 0
depends on yMT

pn,0 = 1− yMT√
3D

. (12)

4. pn,1 and pn,2 can be solved by

pn,1 + pn,2 = 1− pn,0, (13)
pn,1

pn,2
=
d2

d1
, (14)

where the distances d1 (from point a to the mobile user)
and d2 (from the mobile user to point b) depend on xMT

and yMT. It can be derived that

d1 =
xMT(yMT/

√
3− xMT)√

x2
MT + y2

MT sin(α)
, (15)

d2 = d1 + 2
√
x2

MT + y2
MT sin(α), (16)

where α = π/6− arctan(xMT/yMT).

For simplicity, the assumptions specify that the probabili-
ties pn,i are functions only of the locations of the mobile
user and the BSs. In practice, the probabilities also de-
pend on other factors such as path attenuations, interfer-
ence and noise powers at the BSs. The simulation model
can be easily generalized if the relation between the prob-
abilities and each of the related factor is known. Based
on the assumptions, given the location of each mobile user
(xMT, yMT) at time tn, the true value of the probability pn,i

(i = 0, 1, . . . , 6) can be obtained from equations (12)–(16).
The true value is needed to generate the fuzzy IF–THEN
rules and to evaluate the performance of the fuzzy system.
For presentation clarity, in the following, we consider only
the one-dimensional case where the number of BSs that
each mobile user has potential to handoff is one. How-
ever, the simulation and analysis can be easily extended to
a typical two-dimensional case where the number of BSs
that each mobile user has potential to handoff is larger than
one.

If the fuzzy inference system can identify the potential
BS (e.g., BS 1) for the mobile user to handoff, then we
need to estimate only pn,0 and pn,1. The side information
may be obtained from the previous locations of the mobile
user. As a result, the objective is to estimate pn,0 and pn,1

based on an,0 and an,1. To obtain the membership functions
of an,i (i = 0 and 1), we divide the shadow area shown in
figure 4 vertically into 8 subregions corresponding to pn,0 in
[0, 0.15], [0.15, 0.25], [0.25, 0.35], [0.35, 0.5], [0.5, 0.65],
[0.65, 0.75], [0.75, 0.85], [0.85, 1.0], respectively. Due to
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the symmetry of the area, pn,0 can be calculated according
to equation (12), and pn,1 = 1 − pn,0. The membership
function of an,i is determined based on the mean and vari-
ance of an,i for each subregion. The membership function
of pn,0 is determined based on the probability values for
each subregion. In simulations, we consider 50,000 mo-
bile users uniformly distributed in the shadow area shown
in figure 4. The simulation parameters are: D0 = 100 m,
D = 1, 500 m, κ = 2, 4, 6, γn,i = 1 (normalized), and
σ = 1, 2, . . . , 6 dB, respectively. Figures 5 and 6 show
the membership functions of an,0 (for σ = 2 dB) and
pn,0, respectively. Graphs of these functions have triangular
shapes. The overlapping of the triangular shapes possess
a natural capability to express and deal with observation
and measurement uncertainties (crisp points do not have
this capability). Table 1 gives the degree µ(an,0, an,1) of
expert’s belief on each input data pair (an,0, an,1). If a mo-
bile user is closer to BS i (i = 0 or 1), then an,i is large
and the effect of shadowing, MAI, and background noise is
relatively small. That is, we have a high confidence level
about the measurement accuracy of an,i. Therefore, we as-
sign a large value to µ(an,0, an,1) corresponding to a data

Figure 5. Membership function of an,i (i = 0 and 1) for σ = 2 dB.

Figure 6. Membership function of pn,i (i = 0 and 1).

Table 1
The degree µ(an,0 , an,1) assigned to input data (an,0, an,1) which repre-

sents the usefulness of the data.

an,1\an,0 ES VS S SM ML L VL EL

ES 0.1 0.2 0.3 0.4 0.5 0.8 0.9 1.0
VS 0.2 0.1 0.2 0.3 0.4 0.6 0.8 0.9
S 0.3 0.2 0.1 0.2 0.3 0.4 0.6 0.8

SM 0.4 0.3 0.2 0.1 0.2 0.3 0.4 0.6
ML 0.5 0.4 0.3 0.2 0.1 0.2 0.3 0.4
L 0.8 0.6 0.4 0.3 0.2 0.1 0.2 0.3

VL 0.9 0.8 0.6 0.4 0.3 0.2 0.1 0.2
EL 1.0 0.9 0.8 0.5 0.4 0.3 0.2 0.1

pair (an,0, an,1) which has one large component. When
the mobile user is close to the cell boundary, the shad-
owing, MAI, and noise have a relatively large effect on
both an,0 and an,1; therefore, we assign a small value to
µ(an,0, an,1) corresponding to a data pair which has a small
value for |an,0 − an,1|. The degree µ(an,0, an,1) increases
linearly as the difference between an,0 and an,1 increases.
The overall degree of expert’s belief on each training data
set {an,0, an,1, pn,0} to rule k is determined by

µk =
µ(an,0, an,1)
(σA0kσA1k )

, (17)

where σA0k and σA1k are the standard deviations of an,0

and an,1, respectively, for the input region of rule k. The
standard deviation characterizes the degree of uncertainty
in each measured an,i value and depends on the value of
σ and the cell structure. From equation (2), the degree Qk
assigned to rule k is then

Qk = µ(an,0, an,1)

[
µIk (an,0)
σA0k

][
µIk (an,1)
σA1k

]
× µOk (pn,0)µOk (pn,1). (18)

4.2. Performance of the fuzzy inference subsystem

The fuzzy rule base generated based on the 50,000 pairs
of training data for κ = 4 and σ = 2 dB is shown in table 2
and the degree Qk (normalized to 1) associated with rule
Rk is shown in table 3. In table 2, there is no rule for input
data pair (an,0, an,1) where both an,0 and an,1 are small or
large, due to the fact that no training data pair falls in the
domain. The corresponding degree in table 3 has value
equal to zero. In table 3, it can be seen that, in general, a

Table 2
The fuzzy rule base for pn,0 (σ = 2 dB).

an,1\an,0 ES VS S SM ML L VL EL

ES SM S VS ZE
VS SM SM S VS ZE
S SM SM SM S VS ES

SM ML SM ML SM S S VS
ML ML ML ML SM SM
L L L L ML

VL VL VL VL
EL OE OE OE OE

Table 3
The degree associated with each rule for pn,0 (σ = 2 dB).

an,1\an,0 ES VS S SM ML L VL EL

ES 0.00 0.00 0.00 0.00 0.58 0.91 1.00 0.68
VS 0.00 0.00 0.00 0.25 0.57 0.75 0.88 0.63
S 0.00 0.00 0.10 0.29 0.34 0.47 0.64 0.38

SM 0.00 0.44 0.28 0.11 0.21 0.30 0.38 0.19
ML 0.71 0.46 0.34 0.22 0.08 0.20 0.00 0.00
L 1.00 0.74 0.48 0.33 0.17 0.00 0.00 0.00

VL 0.92 0.85 0.63 0.36 0.00 0.00 0.00 0.00
EL 0.70 0.60 0.52 0.27 0.00 0.00 0.00 0.00
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Figure 7. The estimated probability p̃n,0 versus true probability pn,0 with
κ = 4 and σ = 2 dB.

Figure 8. The estimation error (pn,0− p̃n,0) versus true probability (pn,0)
with κ = 4 and σ = 2 dB.

large difference between the an,0 and an,1 values results in
a large value of the degree. However, the relation between
the degree and |an,0 − an,1| is nonlinear and is different
from that shown in table 1 because the degree of each rule
depends on the membership functions of an,i and pn,0, the
standard deviations of an,0 and an,1, etc., in addition to the
degree µ(an,0, an,1).

Figure 7 shows the comparison between the true prob-
ability pn,0 and the fuzzy inference system output p̃n,0 for
κ = 4, σ = 2 dB, whereas figure 8 shows the correspond-
ing estimation error pn,0 − p̃n,0 versus pn,0. Table 4 gives
the mean and standard deviation of the estimation error
(pn,0 − p̃n,0) for various σ values, where the true prob-
ability pn,0 is obtained based on the mobile user location
(xMT, yMT) and the estimated probability p̃n,0 is obtained by
the fuzzy inference system according to the measurement
data an,0 and an,1. Due to the geometrical symmetry, esti-
mation of pn,1 and the estimation accuracy are the same as

Table 4
The mean and standard deviation of the estimation error

(pn,0 − p̃n,0) of the fuzzy inference system given κ = 4.

σ (dB) Mean Standard deviation

1 −3.55e−4 3.14e−2
2 4.10e−4 4.08e−2
3 −3.39e−3 4.80e−2
4 1.13e−3 6.25e−2
5 −1.75e−3 7.32e−2
6 −5.29e−3 8.32e−2

Table 5
The mean and standard deviation of the estimation error
(pn,0 − p̃n,0) of the fuzzy inference system given σ = 2 dB.

κ Mean Standard deviation

2 8.20e−4 6.94e−2
4 4.10e−4 4.08e−2
6 3.00e−4 3.92e−2

those of pn,0. From the simulation results given in figures 7
and 8 and in table 4, it is observed that:

(a) The estimator is unbiased since the mean of the esti-
mation error is very small and can take on positive or
negative values.

(b) As the value of σ increases, there is an increase in the
degree of shadowing effect of the propagation channel,
resulting in an increased estimation error.

(c) Given a certain σ value (such as σ = 2 dB in figures 7
and 8), the estimation error is relatively small when the
mobile user is close to one BS (i.e. pn,0 is very small
or very large), where the shadowing has less effect on
degrading the performance of the fuzzy inference sys-
tem.

In other words, the effect of the shadowing on the estima-
tion accuracy increases as the mobile user moves to the cell
boundary, even though the area close to the cell boundary
is very important for making handoff decisions. The re-
duced accuracy is due to the reduced confidence level on
the measured data, which is a direct result of the near–far
problem inherent in CDMA systems.

Table 5 illustrates how the first and second order statis-
tics of the estimation change as the path loss exponent, κ,
changes, where σ = 2 dB is used for the different κ val-
ues. It is observed that, as the value of κ increases, both the
mean and the standard deviation decreases. This is because
a larger κ value means a faster attenuation of the received
signal level as the distance between the mobile user and
the BS increases. Correspondingly, the degree of the ran-
domness in the received signal level due to different xMT

values in each subregion is reduced, resulting in a better
estimation. On the other hand, variations in the value of κ
do not significantly change the accuracy of the estimation
as long as σ is fixed. From tables 4 and 5, the parameter
σ plays a more important role in the estimation accuracy
than the parameter κ, because the shadowing characterized



372 X. Shen et al. / User mobility profile prediction

by σ is the main source which introduces randomness to
the received signal levels.

4.3. Evaluation of the adaptive fuzzy inference system

In order to evaluate the overall system performance, 500
mobile users are simulated with movement patterns char-
acterized by the following:

1. The initial location of each mobile user is uniformly
distributed in the sub-region O1 of cell 0 and O4 of cell 1
as shown in figure 1.

2. Each mobile user has a constant velocity uniformly dis-
tributed in [10, 30] m/s.

3. The initial direction of movement is uniformly dis-
tributed in [0, 2π] and the movement direction is then
changed several times each being uniformly distributed
in [0, 2π] and independent of previous direction(s).

4. The time interval ∆t for updating the mobility informa-
tion is 1 s.

The parameters κ and σ of the propagation environment are
4 and 2 dB, respectively, and the parameter m of the RLS
algorithm is 7. To evaluate the performance of the RLS
predictor, table 6 gives the mean and standard deviation of
the estimation error for one-step prediction, two-step pre-
diction, and three-step prediction, respectively, where the
estimation error is defined as the difference between the
fuzzy inference system output p̃n+N ,0 and the correspond-
ing predicted probability p̂n+N ,0 at the RLS predictor out-
put for N = 1, 2, 3. For the overall performance of the
adaptive fuzzy inference system, table 7 shows the mean
and standard deviation of the prediction error defined as
the difference between the true probability pn+N ,0 and the
corresponding predicted probability p̂n+N ,0 at the RLS pre-
dictor output for N = 1, 2, 3. From tables 6 and 7, it is
observed that:

(a) The standard deviation of both estimation error and pre-
diction error increases as the number of the prediction

Table 6
The mean and standard deviation of the estimation error
(p̃n+N ,0 − p̂n+N ,0, N = 1, 2, 3) of the RLS predictor given

κ = 4 and σ = 2 dB.

Prediction Mean Standard deviation

One-step 2.10e−4 9.53e−2
Two-step 1.24e−3 9.56e−2
Three-step 2.56e−3 9.67e−2

Table 7
The mean and standard deviation of the prediction error
(pn+N ,0− p̂n+N ,0, N = 1, 2, 3) of the adaptive fuzzy infer-

ence system given κ = 4 and σ = 2 dB.

Prediction Mean Standard deviation

One-step 9.76e−3 9.90e−2
Two-step 1.08e−2 9.94e−2
Three-step 1.21e−2 1.01e−1

step increases, due to the lack of the most recent mea-
surement data.

(b) The standard deviation of the prediction error is similar
to the corresponding value of the estimation error in
table 7, but is larger than the corresponding value in
table 4. This is because the prediction error includes
the estimation error of the RLS predictor and the error
of the fuzzy inference system.

(c) Although the mean of both estimation error and pre-
diction error increases as the number of the prediction
step increases, from a detailed analysis of the simu-
lation results, it is concluded that both the estimation
and prediction are unbiased and the mean of the errors
should decrease if the number of mobile users simulated
increases.

As an example, figure 9 shows the movement trajectory
of a particular mobile user simulated. The velocity of the
mobile user movement is 24 m/s. Figure 10 shows a com-
parison of the true probability pn+1,0 and the corresponding

Figure 9. The movement trajectory of a mobile user simulated.

Figure 10. The comparison of the true probability and the corresponding
one-step predicted probability for the mobile user.
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one-step predicted probability p̂n+1,0 at the adaptive fuzzy
inference system output. From figures 9 and 10, it is ob-
served that:

(a) The predicted mobility information at the output of the
adaptive fuzzy inference system can track quite well
the variation of the true probability as the mobile user
moves.

(b) The prediction error is smaller than 0.1 and can be
positive or negative. Taking into account statistic mul-
tiplexing, the effect of the prediction errors on the re-
source management of the wireless network will be re-
duced, because the errors are unbiased. For example, in
reserving resources for potential handoff calls, the pos-
itive errors will cancel the negative errors to a certain
degree in the overall resource reservation.

5. Conclusions

An adaptive fuzzy inference system is developed to pre-
dict the probabilities that a mobile user will be active in the
nearby cells at future moments using the real-time measure-
ment data of the pilot signal powers received at the mobile
user from the BSs. The advantages of the adaptive fuzzy
inference system lie in

(a) its simplicity – it is a one-pass build-up procedure that
does not require time-consuming on-line training,

(b) its usefulness – the probabilities are critical for balanc-
ing efficient utilization of the network resources and
satisfying the QoS requirements of mobile users, and

(c) its low cost – the predicted probabilities are obtained
based on the existing signaling in CDMA networks for
handoff, without requiring extra signaling over wireless
channels.

Computer simulation results demonstrate that the perfor-
mance of the adaptive fuzzy inference system depends on
the degree of channel shadowing (characterized by the pa-
rameter σ), the construction of the membership, and on the
availability of information which limits the number of po-
tential base stations. Taking into account that the overall
estimation accuracy can be significantly increased with sta-
tistic multiplexing, the fuzzy inference system provides a
good solution to obtaining mobility information.
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