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Abstract

ŽUser mobility poses a significant technical challenge to network resource management in wireless ATM Asynchronous
. Ž .Transfer Mode networks. In order to guarantee quality of service QoS to mobile users and to achieve a high efficiency in

network resource management, the information of mobile users’ handoff at a future moment is essential for statistical
multiplexing. This paper develops a novel fuzzy logic inference system to estimate the user mobility information for a

Ž .wireless ATM network which uses a direct sequence code division multiple access DSrCDMA protocol. The estimation is
based on measured pilot signal strengths from a number of the nearest base stations by the mobile user. Numerical results are
presented to demonstrate the performance of the proposed technique under various path losses and channel shadowing
conditions. The proposed technique can achieve simplicity, accuracy and low cost. q 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Future wireless ATM networks are expected to
interwork with wired broadband networks to provide
multimedia services for mobile users anywhere at
anytime. The integration of wired and wireless ATM
networks poses significant challenges in resource
management because of user mobility, limited radio
frequency spectrum, radio channel impairments, etc.,
in the wireless segment. Resource management is
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Ž .critical to quality of service QoS provisioning,
including flow control, resource allocation, conges-
tion control, and call admission control. Resource
management functions should capture the effect of
user mobility in order to provide satisfactory QoS.
Unless a suitable handoff mechanism is in place to
maintain service continuity, user mobility can disrupt
an ongoing connection.

Handoff is the process in which a mobile user
switches its connection from one base station to

Ž .another base station BS to maintain service conti-
nuity. Handoff is often initiated either by cell bound-
ary crossing or poor link quality in the current
connection. One way to deal with user mobility is to
treat each handoff call as a new call in call admis-
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sion control. This approach tends to increase the
number of new calls and, hence, computational in-
tensity in call admission. Another way is to reserve
resource in all the cells for a mobile once the mobile
is admitted to the network. This approach achieves a
low probability of call dropping at the expense of
standby capacity, which reduces system efficiency.
Because of the limited radio spectrum, it is critical
that wireless networks make efficient use of the
radio frequency bandwidth. Several techniques have
been proposed to make a compromise between sys-
tem resource utilization and QoS. The shadow clus-

w x Ž . w xter 1 and virtual connection tree 2,3 approaches
make use of statistical multiplexing of data traffic to
and from mobile users so that a higher resource
utilization can be attained without increasing the call
dropping probability. However, statistical multiplex-
ing requires a knowledge of the user movement
patterns and trends. To our knowledge, in all the
work reported in the literature, the probability that a
mobile user will reside in a particular cell is assumed
known.

Mobility information plays an important role in
the design of cellular systems. Previous research
efforts on mobility information have focused on

w xstatistics such as mobility model 4–6 , channel hold-
w x w xing time 6 , cell boundary crossing rate 7–9 , mean

w x w xhandover rate 4,10 , and cell residence time 4,11 .
In this paper we are concerned with the determina-
tion of mobility information that a mobile user is to
handoff to a particular BS at a future moment. The
mobility information can be used to assist user mo-

Ž . w xbility management such as traffic routing 2 , to
Žmanage network resources such as resource alloca-

tion, call admission control, congestion and flow
. w xcontrol 12 , and to analyze handoff algorithms in

w xintegrated wiredrwireless ATM networks 14 . In
general, if a mobile user is closer to a BS, then the
propagation path attenuation from the BS to the
mobile user is smaller, and vice versa. Hence, if the
BS transmits a pilot signal with constant transmitted
power, then the received power of the signal at the
mobile user carries the information of the distance
between the mobile user and the BS. Since the
probability that the mobile user will handoff to a BS
at a future moment depends on the current distance
between the mobile user and the BS, the probability
can be estimated based on the real-time measurement

of the received pilot signal power at the mobile user
from nearby BSs. As a result, in the proposed scheme
to be described, the user mobility information is
estimated based on the real-time measurements.

The remainder of the paper is organized as fol-
lows. Section 2 describes the system model which
uses direct sequence code division multiple access
Ž .DSrCDMA . By using the pilot signals in the

Ž .forward channel down link , no extra signaling is
needed for obtaining user mobility information. After
giving the motivation of applying the fuzzy inference
approach for mobility information acquisition, Sec-
tion 3 is devoted to the design of the fuzzy inference
system. Numerical results and discussions on the
performance of the proposed technique are presented
in Section 4. Section 5 gives some concluding re-
marks of this work.

2. Mobility information model

We consider a wireless ATM network operating
Ž .in a frequency division duplex FDD mode. Mobile

users in each cell share the radio frequency spectrum
through the DSrCDMA protocol. The same total
frequency bandwidth is reused in every cell to in-
crease the radio spectral efficiency and to eliminate
the need for frequency coordination. Due to the
universal frequency reuse and the use of Rake re-
ceivers, soft handoff becomes possible. A mobile can
transmit to and receive the same signal from more
than one BS at any time. During transition from one
cell to its neighboring cell, the mobile user estab-
lishes a communications link with the new BS, while
at the same time keeping its communications link
with the original BS. The original communications
link is terminated only after the mobile user has
firmly established itself in the new cell. In the for-
ward link, each base station transmits a distinct pilot

Ž .signal for pseudorandom noise PN code and carrier
synchronization at the receiver of a mobile terminal.
Prior to any transmission, a mobile terminal monitors
the received pilot signal power levels from nearby
base stations. The terminal chooses its home base
station according to the maximum pilot signal power
received. The network uses mobile terminal assisted
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w xsoft handoff as in the IS-95 standard 13 . While
tracking the signal from the home base station, the
mobile searches for all the possible pilots and main-
tains a list of all pilots whose signals are above a
prescribed threshold. This list is transmitted to a

Ž .mobile switching center MSC periodically through
the home base station. The MSC uses the informa-
tion to make decision on when the soft handoff
should start. In addition, the MSC uses the informa-
tion to determine the probability that the mobile will
locate in a particular cell in the next period.

Consider a uniform grid of hexagonal cells, as
shown in Fig. 1, where the mobile user under consid-
eration is located in the sub-region R of cell_0. Let1
Ž .d t denote the distance between the mobile useri

and the first-tier BS_i at time t, is0,1, . . . ,6. The
local mean of the received pilot signal amplitudes

w xcan be modeled by 15
yn j Ž t .r10ia t sg d t rD 10 , is0,1, . . . ,6Ž . Ž .i i i 0

1Ž .

where g is a constant proportional to the amplitudei

of the pilot signal, n is the path loss exponent, D is0

the close-in reference distance which is determined
Ž .from measurements close to the transmitter, j t is ai

normal random variable at any t with zero mean and

Fig. 1. The hexagonal cell layout.

2 Ž . Ž .variance s , j t and j t are independent fori j

i/ j. If the transmitted pilot signals have the same
power, then g sg for is0,1, . . . ,6. For simplicity,i

assume that the mobile user will communicate with
either BS_0 or BS_1 at tqD t. Under this assump-

Ž .tion, we are interested in the relation between d t0
Ž . Ž .and d t . The probability that d t is larger than1 1

Ž .d t can be derived as0

10 log a t ra tŽ . Ž .10 0 1
p d t )d t sFŽ . Ž .1 0 ž /'2s

2Ž .

u 2 'Ž . Ž .where F u sH exp yx r2 d xr 2p . The ap-y`

proach for computing the probability has some draw-
Ž .backs: a the calculation is limited for comparing

the distances of the mobile user to two BSs; how-
ever, for the probability of handoffs, we need to
know the relation among the distances from the
mobile user to more than two BSs. It is very difficult
Ž .if not impossible to extend the calculation to a

Ž .situation involving multiple more than two dis-
Ž .tances; b some algorithm needs to be used to

w Ž .xpredict the probability p d t q D t ) d t q D t1 0
Ž . Ž .based on measured data a t and a t , and the0 1

Ž .prediction may not be accurate; c the calculation
does not take into account the errors in measuring
Ž . Ž .a t and a t . The received signals are contami-0 1

Ž .nated by the multiple access interference MAI due
to other users in the system and unavoidable back-
ground noise. As a result, the measured data are not
accurate. To overcome the drawbacks, a fuzzy infer-
ence approach can be used which can incorporate the

Ž .degree of certainty or accuracy of the measured
data in the process of obtaining the mobility informa-
tion. The development of such a fuzzy inference
system for the mobility information is presented in
the following, which is to be implemented at the
MSC.

3. Fuzzy inference system design

The configuration of the fuzzy inference system
to be designed is shown in Fig. 2, which is a special
expert system. It employs a knowledge base, ex-
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Fig. 2. The fuzzy inference system.

pressed in terms of fuzzy inference rules, and an
appropriate inference engine to estimate the probabil-
ity of handoff at a future moment. The system is
capable of utilizing knowledge elicited from human
operators. The knowledge is expressed by using
natural language, a cardinal elements of which are

w xlinguistic variables 16,17 . A fuzzy set X in a
universe of discourse U is characterized by a mem-

w x Ž .bership function m :U™ 0,1 , with m u repre-X X

senting the grade of membership of ugU in the
fuzzy set X. Thus, a fuzzy set X in U may be
represented as a set of ordered pairs. Each pair
consists of a generic element u and its grade of

�Ž Ž . < 4membership function, i.e., Xs u, m u ugU .X

A linguistic variable is characterized by a quintuple
˜Ž Ž . .y,T y ,U,G, M in which y is the name of the

Ž .variable; T y is the term set of y, i.e., the set of
names of linguistic values of y with each value
being a fuzzy set defined on U; G is a syntactic rule

˜for generating the names of values of y; and M is a
semantic rule for associating each value with its

w xmeaning 18 . In other words, if a variable can take
words in natural languages as its values, this variable
is defined as a linguistic variable. These words are
usually labels of fuzzy sets. A linguistic variable can
take either words or numbers as its values. For
example, if y indicates the linguistic variable for the
received signal level, then the universe of discourse
is the set of all possible received signal levels and

Ž .we can choose T y to be the set containing the
Ž .following elements: extremely small ES , very small

Ž . Ž . Ž .VS , small S , small to medium SM , medium to
Ž . Ž . Ž .large ML , large L , very large VL , extremely
Ž .large EL . If y indicates the linguistic variable for

the probability of handoff, then the universe of dis-
w x Ž .course is the interval 0, 1 and we can choose T y

to be the set containing the following elements: zero
Ž . Ž . Ž .ZE , extremely small ES , very small VS , small
Ž . Ž . Ž .S , small to medium SM , medium to large ML ,

Ž . Ž . Ž .large L , very large VL , extremely large EL , and

Ž .one OE . In general, a set should be determined at
an appropriate level of granularity to describe the
values of linguistic variables, and the number of
terms in a set should be selected as a compromise
between the complexity and the fuzzy inference sys-
tem performance. The membership functions of the

Ž . Žinput the received signal level and the output the
.probability of handoff depend on service area, trans-

mitted pilot signal power, the path loss parameter n
and channel long-term fading statistics. In the fol-
lowing, the four basic components in the fuzzy
inference system shown in Fig. 2 are briefly de-
scribed, which are fuzzifier, fuzzy rule base, fuzzy
inference engine, and defuzzifier.

The fuzzifier translates the measured data into
linguistic values of the fuzzy set in the input uni-
verse of discourse. Each specific value of the mea-

Ž . Ž .sured signal level a t is1, 2, . . . , 6 from BS_ii
Ž .at time instant t represented by a for simplicity isi

1 1 Ž .mapped to the fuzzy set T with degree m a andy y ii i
2 2 Ž .to the fuzzy set T with degree m a , and so on,y y ii i

where T l is the name of the l th term or fuzzy sety i

Ž .value belonging to the term T y .i

The fuzzy rule base is the control policy knowl-
edge base, characterized by a set of linguistic state-
ments in the form of IF–THEN rules that describe
the fuzzy logic relationship between the measured
data and the mobility information.

R :k

If a is A and a is A and . . . and a is A ,0 0 k 1 1k 6 6 k

then p is P and p is P and . . . and p is P0 0 k 1 1k 6 6 k

ks1,2, . . . , K

where A and P are fuzzy sets in U and Uik ik a pi
™ TŽ .respectively, and a J a ,a , . . . ,a g U = U0 1 6 a a0 1

™ TŽ .= . . . =U JU and pJ p , p , . . . , p gU =a a 0 1 6 p06

U = . . . =U JU are linguistic variables, withp p p1 6

U and U being the universe of discourse of a anda p ii i
™ ™p respectively. Note that the a and p are the inputi

and output respectively of the fuzzy inference en-
gine.

In the fuzzy inference engine, fuzzy logic princi-
ples are used to combine the fuzzy IF-THEN rules in
the fuzzy rule base into a mapping from fuzzy sets in
U to fuzzy sets in U .a p
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Given Fact:

˜ ˜ ˜a is A and a is A and . . . and a is A0 0 1 1 6 6

Consequence:

˜ ˜ ˜p is P and p is P and . . . and p is P0 0 1 1 6 6

˜ ˜ Žwhere A and tilde P is0,1, . . . ,6 are linguistici i

terms for a and p respectively. The fuzzy rule basei i
Žcan be created from training data sequence mea-

.sured input–output pairs . To avoid tedious field
trials, the training data can be generated in computer
simulation based on propagation model, cell struc-
ture, and mobile user movement patterns. Given a set
of desired input–output data pairs

Ž .1 Ž1. Ž1. Ž1. Ž1. Ž1.a ,a , . . . ,a ; p , p , . . . , p ,Ž .0 1 6 0 1 6

Ž .2 Ž2. Ž2. Ž2. Ž2. Ž2.a ,a , . . . ,a ; p , p , . . . , p ,Ž .0 1 6 0 1 6

. . . . . . . . . . . .

a set of fuzzy IF-THEN rules can be generated. In
addition, a degree which reflects the expert’s belief
of the importance of the rule can be assigned to each
rule. In general, the measurement accuracy increases
as the received signal-to-interference-and-noise ratio
Ž .SINR increases. With the same interference-and-
noise component for all received pilot signals, the
differences among the SINR values are proportional
to the differences among the received power values
of the pilot signals. If the mobile is closer to BS_i
than to BS_ j, the received signal power from BS_ i
is larger than that from BS_ j. Hence, the measured

Ždata for BS_i should be weighted more i.e., have a
.larger degree than that for BS_ j. The degree as-

signed to rule k is calculated by using product
operations

6 6

Q sm m a m p 3Ž . Ž . Ž .Ł Łk k I i O ii k i k
is0 is0

where the subscript k denotes rule k, I denotes thei k

input region of rule k for a , O the output regioni i k
Ž .for p , m a is the degree of a in I obtainedi I i i i ki k

Ž .from the membership functions, m p the degreeO ii k

of p in O , and m is the degree of the data vectori i k k
Ž .a ,a , . . . ,a assigned by human operators. There0 1 6

will be some conflicting rules, i.e., rules which have
the same IF part but a different THEN part. When

there is more than one rule in one box of the fuzzy
rule base, the rule that has the largest degree is
chosen.

The defuzzifier performs a mapping from fuzzy
™ Ž .sets p in U the output of the inference engine to ap

™crisp point pgU which is the probability that thep

mobile will be in cell i at tqD t. Among the
commonly used defuzzification strategies, the center
average defuzzification method yields a superior re-

w xsult 19 . The formula for the output of the defuzzi-
fier is

K 6

Q m a pŽ .Ý Łk I j i kjk
js0ks1p si K 6

Q m aŽ .Ý Łk I jjk
js0ks1

where bar p is the center value of the output regioni k
Ž .of rule k, bar Q is the degree normalized to 1 ofk

rule k, and K is the total number of the fuzzy rules.
Two issues regarding the fuzzy inference system

need to be discussed:
Ž .i The complexity of the multiple-input

multiple-output fuzzy inference system may be a
concern. However, in practice, the complexity can be

Ž .significantly reduced if a we make use of the
Ž .relation Ý p s1 and b we limit the number ofi i

BSs to which the mobile user has a potential to
handoff at tqD t to less than 6 by neglecting the
BSs which have weak pilot signal power at the
mobile user. For example, for the mobile user shown
in Fig. 1, it is reasonable to limit the future BSs that

Ž .the mobile user will communicate with at tqD t to
BS_1, BS_2, and BS_6, since the mobile user lo-
cates in subregion R of cell_0 at time t.1

Ž . Ž .ii Based on the propagation model 1 , the hand-
off initiating criterion considered here is the dis-
tances between the mobile user and neighboring BSs.
In other words, we assume that the mobile user

Ž .always communicates with the nearest BS s . How-
ever, due to the particular environment surrounding
the mobile user at certain time moments, it is very
possible that the nearest BS provides poorer link
quality than other BSs which are farther away. As a
result, accurate handoff decisions depend both on the
geometric description and on the specific propaga-
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tion model. In addition, there are other handoff
initiating criteria such as received signal strength or
carrier-to-interference ratio. It should be mentioned
that the fuzzy inference system developed here can
be directly extended to situations using other handoff
initiating criteria. By defining the relation between
the mobility information and the criterion under con-
sideration, the same training procedure can be used
to establish the fuzzy rule base according to the
statistical model of the criterion employed.

4. Numerical results and discussion

We consider a microcellular system with a hexag-
onal cell structure as shown in Fig. 1. The BS is
located at the center of each cell. The probability pi
Ž .is1,2, . . . ,6 that a mobile user will handoff to
BS_i at tqD t for mobility information update de-

Ž .pends on its location x , y at t. As an exam-M T M T

ple, for the mobile user shown in Fig. 3, we make
the following assumptions:
Ž .i Limit the number of BSs for handoff to 3.
Since y )0, let p sp sp s0;M T 4 5 6
Ž .ii Further reduce the number of BSs for handoff

Žto 2. Since x )0 i.e., the mobile user isM T
.located on the right side of cell_0 , let p s0;3

Ž .Fig. 3. The mobile user location x , y and mobility infor-M T M T

mation p .i

Ž .Fig. 4. Membership function of a is0 and 1 for s s2 dB.i

Ž .iii The probability that the mobile user will
remain in cell_0 depends on yM T

'p s1yy r 3 D ; 5Ž .0 M T

Ž .iv p and p can be solved by1 2

p qp s1yp , 6Ž .1 2 0

p rp sd rd 7Ž .1 2 2 1

Žwhere the distances d from point a to mobile1
. Ž .user and d from mobile user to point b2

depend on x and y . It can be derived thatM T M T

'x y r 3 yxŽ .M T M T M T
d s ,1 2 2(x qy sin aŽ .M T M T

2 2(d sd q2 x qy sin aŽ .2 1 M T M T

Ž .where aspr6-arctan x ry .M T M T

Based on these assumptions, if the location of a
mobile user is known, then the mobility information

Ž .p is0,1, . . . ,6 can be obtained. The mobile useri

location can be estimated based on the local means
of the pilot signal power from the BSs. As a result,
we can estimate p based on the measured power ofi

Žthe three strongest pilot signals including the one

Ž .Fig. 5. Membership function of p is0 and 1 .i
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Table 1
Ž . Ž .The degree m a ,a assigned to input data a ,a which repre-0 1 0 1

sents the usefulness of the data

a ra ES VS S SM ML L VL EL0 1

ES 0.1 0.2 0.3 0.4 0.5 0.8 0.9 1.0
VS 0.2 0.1 0.2 0.3 0.4 0.6 0.8 0.9
S 0.3 0.2 0.1 0.2 0.3 0.4 0.6 0.8
SM 0.4 0.3 0.2 0.1 0.2 0.3 0.4 0.6
ML 0.5 0.4 0.3 0.2 0.1 0.2 0.3 0.4
L 0.8 0.6 0.4 0.3 0.2 0.1 0.2 0.3
VL 0.9 0.8 0.6 0.4 0.3 0.2 0.1 0.2
EL 1.0 0.9 0.8 0.5 0.4 0.3 0.2 0.1

.coming from the current home BS, i.e., BS_0 . To
design the fuzzy inference system, we simulate
50,000 mobile users uniformly distributed in the
shadow area shown in Fig. 3. The simulation param-
eters are: D s100 meters, Ds1,500 meters, ns2,0

Ž .4, 8, g s1 normalized , and ss1, 2, . . . , 6 dB,i

respectively. Based on the location of each mobile
user, p and a can be obtained given the standardi i

Ž .deviation s in 1 . From the training data set p andi

a obtained from the mobile users, the fuzzy infer-i

ence system can be developed as described in Sec-
Ž .tion 3. In the following, we consider two cases: a

one-dimensional space where the number of BSs that
each mobile user has potential to handoff is one, and
Ž .b two-dimensional space where the number of BSs
is two.

4.1. One-dimensional space

If the fuzzy inference system can identify the
Ž .potential BS e.g., BS_1 for the mobile user to

Table 2
Ž .The fuzzy rule base for p s s2 dB0

a ra ES VS S SM ML L VL EL0 1

ES SM S VS ZE
VS SM SM S VS ZE
S SM SM SM S VS ES
SM ML SM ML SM S S VS
ML ML ML ML SM SM
L L L L ML
VL VL VL VL
EL OE OE OE OE

Table 3
Ž .The degree associated with each rule for p s s2 dB0

a ra ES VS S SM ML L VL EL0 1

ES 0.00 0.00 0.00 0.00 0.58 0.91 1.00 0.68
VS 0.00 0.00 0.00 0.25 0.57 0.75 0.88 0.63
S 0.00 0.00 0.10 0.29 0.34 0.47 0.64 0.38
SM 0.00 0.44 0.28 0.11 0.21 0.30 0.38 0.19
ML 0.71 0.46 0.34 0.22 0.08 0.20 0.00 0.00
L 1.00 0.74 0.48 0.33 0.17 0.00 0.00 0.00
VL 0.92 0.85 0.63 0.36 0.00 0.00 0.00 0.00
EL 0.70 0.60 0.52 0.27 0.00 0.00 0.00 0.00

handoff, then we need to estimate only p and p .0 1

The side information may be obtained from the
previous locations of the mobile user. As a result, the
objective is to estimate p and p based on a and0 1 0

Ža . To obtain the membership functions of a is01 i
.and 1 , we divide the shadow area vertically into 8

w x wsubregions corresponding to p in 0,0.15 , 0.15,0
x w x w x w x w x0.25 , 0.25,0.35 , 0.35,0.5 , 0.5,0.65 , 0.65,0.75 ,

w x w x0.75,0.85 , 0.85,1.0 , respectively. Due to the sym-
metry of the area, p can be calculated according to0

Ž .Eq. 5 , and p s1yp . The membership function1 0

of a is determined based on the mean and variancei

of a for each subregion. The membership functioni

of p is determined based on the probability values0

for the subregions. Figs. 4 and 5 show the member-
Ž .ship functions of a for ss2 dB and p respec-0 0

tively. Graphs of these functions have triangular
shapes. The overlapping of the triangular shapes
possess a natural capability to express and deal with

Žobservation and measurement uncertainties crisp
.points do not have this capability . Table 1 gives the

Table 4
The mean and standard deviation of the estimation error p y p̂0 0

given ns4

Ž .s dB Mean Standard deviation

1 y3.55e-4 3.14e-2
2 4.10e-4 4.08e-2
3 y3.39e-3 4.80e-2
4 1.13e-3 6.25e-2
5 y1.75e-3 7.32e-2
6 y5.29e-3 8.32e-2
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Ž . Ž .Fig. 6. Relation between estimated probability p and true probability p .ˆ0 0

Ž .degree m a ,a of expert’s belief on each input data0 1
Ž . Žpair a ,a . If a mobile user is closer to BS_i is00 1

.or 1 , then a is large and the effect of shadowing isi

relatively small. That is, we have a high confidence

Ž . Ž .Fig. 7. The estimation error p yp versus true probability p with ss2 dB.ˆ0 0 0
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Fig. 8. Relation between p and p with ss4 dB.ˆ0 0

level about the measurement accuracy of a . There-i
Ž .fore, we assign a large value to m a ,a corre-0 1

Ž .sponding to a data pair a ,a which has one large0 1

component. When the mobile user is close to the cell

Ž . Ž .Fig. 9. The estimation error p yp versus true probability p with ss4 dB.ˆ0 0 0
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boundary, the shadowing has a relatively large effect
on both a and a ; therefore, we assign a small0 1

Ž .value to m a ,a corresponding to a data pair which0 1
< < Ž .has a small value for a ya . The degree m a ,a0 1 0 1

increases linearly as the difference between a and0

a increases. The overall degree of expert’s belief on1
� 4each training data set a ,a , p to rule k is deter-0 1 0

mined by

m sm a ,a r s s 8Ž . Ž . Ž .k 0 1 A A0 k 1 k

where s and s are the standard deviations ofA A0 k 1 k

a and a , respectively, for the input region of rule0 1

k. The standard deviation characterizes the degree of
uncertainty in each measured a value and dependsi

on the value of s and the cell structure. From
Ž .Eq. 3 , the degree Q assigned to rule k is thenk

Q sm a ,a m a rsŽ . Ž .k 0 1 I 0 Ak 0 k

P m a rs m p m p . 9Ž . Ž . Ž . Ž .I 1 A O 0 O 1k 1 k k k

As an example, the fuzzy rule base generated by
the 50,000 pair of training data for ns4 and ss2

Ž .dB is shown in Table 2 and the Q normalized to 1k

associated with rule k is shown in Table 3. In Table
Ž .2, there is no rule for input data pair a ,a where0 1

Ž .both a and a are small or large, due to the fact0 1

that no training data pair falls in the domain. The
corresponding degree in Table 3 has value equal to
zero. In Table 3, it can be seen that, in general, a
large difference between the a and a values results0 1

in a large value of the degree. However, the relation
< <between the degree and a ya is nonlinear and is0 1

different from that shown in Table 1 because the
degree of each rule depends on the membership
functions of a and p , the standard deviations of ai 0 0

Ž .and a , etc., in addition to the degree m a ,a .1 0 1

Table 5
The mean and standard deviation of the estimation error p y p̂0 0

given s s2 dB

n Mean Standard deviation

2 8.20e-4 6.94e-2
4 4.10e-4 4.08e-2
6 3.00e-4 3.92e-2

Table 6
Ž .The fuzzy rule base for p s s2 dB0

a ra ES VS S SM ML L VL EL0 1

ES VS S VS VS ZE
VS S S VS VS S ZE
S ML SM SM VS VS ES
ML ML ML S S VS VS S
ML ML ML S ML SM VS VS
L L L L L ML ML
VL VL VL VL VL
EL OE OE OE EL

Table 4 shows the mean and standard deviation of
the estimation error p yp , where p is obtainedˆ0 0 0

Ž .based on the mobile user location x , y and p̂M T M T 0

is obtained by the fuzzy inference system according
to the measurement data a and a .0 1

Figs. 6 and 8 show the relation between p and0

p for ns4, ss2 dB and 4 dB respectively,ˆ0

whereas Figs. 7 and 9 show the corresponding esti-
mation error p yp versus p . Table 4 gives theˆ0 0 0

mean and standard deviation of the estimation error
for various s values. Due to the geometrical sym-
metry, estimation of p and the estimation accuracy1

are the same as those of p . From the simulation0

results given in Figs. 6–9 and in Table 4, it is
Ž .observed that: a the estimator is unbiased since the

mean of the estimation error is very small and can
Ž .take on positive or negative values; b for a certain

s value, the estimation error is relatively small
Žwhen the mobile user is close to one BS i.e., p is0

.very small or very large , where the shadowing has
less effect on degrading the performance of the fuzzy

Table 7
Ž .The degree associated with each rule for p s s2 dB0

a ra ES VS S SM ML L VL EL0 1

ES 0.00 0.00 0.00 0.59 0.84 0.73 0.58 0.52
VS 0.00 0.00 0.39 0.36 0.55 0.50 0.47 0.39
S 0.00 0.00 0.17 0.30 0.44 0.36 0.39 0.31
SM 0.86 0.57 0.33 0.14 0.30 0.29 0.29 0.00
ML 0.75 0.45 0.41 0.22 0.11 0.15 0.15 0.00
L 1.00 0.79 0.54 0.33 0.23 0.05 0.00 0.00
VL 1.00 0.87 0.64 0.38 0.00 0.00 0.00 0.00
EL 0.69 0.61 0.49 0.25 0.00 0.00 0.00 0.00
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Ž . Ž .Fig. 10. The estimation error p yp versus true probability p with ss2 dB.ˆ0 0 0

Ž .inference system; c the effect of the shadowing on
the estimation accuracy increases as the mobile user

moves to the cell boundary, due to the reduced
Ž .confidence level on the measured data; d as the

Ž . Ž .Fig. 11. The estimation error p yp versus true probability p with ss4 dB.ˆ0 0 0
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value of s increases, there is an increase in the
degree of shadowing effect of the propagation chan-
nel, resulting in an increased estimation error.

Table 5 illustrates how the first and second order
statistics of the estimation change as the path loss
exponent, n, changes, where ss2 dB is used for
the different n values. It is observed that, as the
value of n increases, both the mean and the standard
deviation decreases. This is because a larger n value
means a faster attenuation of the received signal
level as the distance between the mobile user and the
base station increases. Correspondingly, the degree
of the randomness in the received signal level due to
different x values in each subregion is reduced,M T

resulting in a better estimation. On the other hand,
variations in the value of n do not significantly
change the accuracy of the estimation as long as s

is fixed. From Tables 4 and 5, the parameter s plays
a more important role in the estimation accuracy
than the parameter n, because the shadowing charac-
terized by s is the main source which introduces
randomness to the received signal levels.

4.2. Two-dimensional space

In this case, the estimation of p , p and p is0 1 2

based on the three strongest pilot signals. Due to the
symmetry of the area, p , p and p can be ob-0 1 2

Ž . Ž .tained by Eqs. 5 – 7 . During the simulations, it is
observed that the changes of a are relatively small2

compared with those of a and a when the mobile0 1

user moves from one subregion to another, mainly
due to small distance changes from BS_3 to each
subregion defined according to p . As a result, the0

estimation of p relies only on a and a for the0 0 1

simplicity of the fuzzy inference system. The estima-
tion procedure is similar to that of estimating p in0

the one-dimensional case except that p can take on2

nonzero value. Based on training data from 50,000
mobile users uniformly distributed in the shadow
area of Fig. 3, Table 6 gives the decision rules for
ss2 dB, and Table 7 gives the corresponding
degree assigned to each rule. Figs. 10 and 11 show
the estimation error p yp versus p for s equalsˆ0 0 0

to 2 dB and 4 dB respectively. Table 8 gives the
mean and standard deviation of the estimation error

Table 8
The mean and standard deviation of the estimation error p y p̂0 0

Ž .s dB Mean Standard deviation

1 3.35e-3 5.95e-2
2 1.39e-3 6.36e-2
3 -1.92e-3 7.66e-2
4 1.99e-3 9.04e-2
5 -4.76e-3 1.29e-1
6 2.51e-3 1.44e-1

for various s values. Due to the geometrical sym-
metry, estimation of p and the estimation accuracy1

are the same as those of p . We have some observa-0

tions similar to those in the one-dimensional case:
Ž . Ž .a the estimator is unbiased; b for a certain s

value, the estimation error is relatively small when
Ž .the mobile user is close to one BS; c the effect of

the shadowing on the estimation accuracy increases
Ž .as the mobile user moves to the cell boundary; d a

larger value of s results in a larger estimation error.
Comparing Tables 2 and 6, we see that p in the two0

dimensional case is the same as, or very close to, the
corresponding value in the one-dimensional case

Ž .when p is relatively large say, larger than 0.5 ,0

where p is equal to or close to zero; on the other2
Žhand, when p is relatively small say, less than0

.0.5 , the value of p in the two-dimensional case is0

slightly smaller than that in the one-dimensional case
due to the fact that p is larger in the former2

situation. Comparing the estimation accuracy in the
.two-dimensional case Figs. 10 and 11 and Table 8

Žwith that in the one-dimensional case Figs. 7 and 9
.and Table 4 , we see that the side information that

the mobile user will communicate with either BS_0
Ž .or BS_1 but not BS_2 improves the performance

of the fuzzy inference system.

5. Conclusions

We have developed a fuzzy inference system to
estimate the probabilities that a mobile user will
communicate with different base stations at a future
moment based on the real-time measurement data of
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the received pilot signals’ power from the base sta-
tions. The advantages of the fuzzy inference system

Ž .lie in a its simplicity — it is a one-pass build-up
procedure that does not require time-consuming on-

Ž .line training, b its usefulness — the probability
information is critical in statistical multiplexing for
an efficient utilization of the network resources while
satisfying the QoS requirements of mobile users, and
Ž .c its low cost — the probability information is
obtained based on the signaling in CDMA networks
for handoff, without requiring extra signaling over
wireless channels. Computer simulation results
demonstrate that the performance of the fuzzy infer-
ence system depends on the degree of channel shad-

Ž .owing characterized by the parameter s , the con-
struction of the membership, and on the availability
of information which limits the number of potential
base stations. Taking into account that, with statisti-
cal multiplexing, the overall estimation accuracy can
be significantly increased, the fuzzy inference system
provides a good solution to obtaining mobility infor-
mation. Further work on the topic may also incorpo-
rate the information of previous pilot signal power
Ž .in addition to the current one to the estimation of
the mobility information, which is expected to im-
prove the estimation accuracy at the cost of the fuzzy
inference system complexity.
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