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Game Theory Approach to Discrete H,, Filter Design and Kalman filters in terms of model uncertainty and gives better

estimates.
Xuemin Shen and Li Deng
Il. DiSCRETE Ho FILTER DESIGN
Abstract—In this correspondence, a finite-horizon discreteH. filter Consider the following discrete-time system
design with a linear quadratic (LQ) game approach is presented. The ex- ,
ogenous inputs composed of the “hostile” noise signals and system initial g1 = Apzp + Brwy
condition_ are assqmeq to be _fir_]itg energy signals wit_h unknovyr) statistics. yr = Cexr + Uk
The design criterion is to minimize the worst possible amplification of
the estimation error signals in terms of the exogenous inputs, which is k=0,1,---,N - 1 To = To 1)

different from the classical minimum variance estimation error criterion

for the modified Wiener or Kalman filter design. The approach can show where

how far the gstimation error can be r_educgd und_er an exister]ce condition r, € R" state vector,
on the solution to a corresponding Riccati equation. A numerical example m .

is given to compare the performance of theH . filter with that of the wy € R process noise vector,
conventional Kalman filter. yr € R? measurement vector,

v € RP measurement noise vector.

A, B, andC), are matrices of the appropriate dimensions. Assume

] ) ~ that(Ag, By) is controllable and C, Ay ) is detectable. Define the
The celebrated Wiener and/or Kalman estimators have been widg{gasurement history @& = (yx,0 < k < N — 1). The estimate of

used in noise signal processesing. This type of estimation assufigSstater, at timek is computed based on the measurement history

that signal generating processes have known dynamics and ifigtto N — 1. We are not necessarily interested in the estimation of
the noise sources have known statistical properties. However, thesegt in the estimation of a linear combination of

assumptions may limit the application of the estimators since in many

situations, only approximate signal models are available and/or the zp = Lyxy. )
statistics of the noise sources are not fully known or are unavail-
able. In addition, both Wiener and Kalman estimators may not be )
robust against parameter uncertainty of the signal models. RecBlfP' ¢x = #k = %k for any wy, vi € l2 andao €
developments in optimal filtering have focused on the estimation of performance is then given by

. INTRODUCTION

The H.. filter is required to provide an uniformly small estimation
R". The measure

methods [1]-[10]. The optim&l . estimator is designed to guarantee N—1
that the operator relating the noise signals to the resulting estimation Z [|zr — 5k||?2k
errors should possess dh.. norm less than a prescribed positive J= k=0 3)
value. In theH . estimation, the noise sources can be arbitrary signals . Nt ) )
with only a requirement of bounded noise. Since fhe estimation llzo — 10”,230—1 + Z{||'ll7kt||iv.]:1 + ||”k||'\,/k—1}
k=0

problem involves the minimization of the worst possible amplification

of the error signal, it can be viewed as a dynamic, two-person, zefdere ((xo — &o),wk,vg) # 0,3 is an apriori estimate of

sum game. In the game, thl. filter (the designer) is a player , Q, > 0,p;" >0, W, >0 andV; > 0 are the weighting matrices,

prepared for the worst strategy that the other player (the nature) Qﬁﬂj”sk“%{k = 5! Ry s;. The optimal estimate;, among all possible

provide, i.e., the goal of the filter is to provide an uniformly smalg, (i.e., the worse-case performance measure) should satisfy

estimation error for any processes and measurement noises and any

initial states. In this correspondence, we define a difference game supJ <1/v 4)

in which the state estimator and the disturbance signals (process%s - . .

noise, initial condition and measurement noise) have the conflictifg - 4P st_ands for supremum, amd>'0 Is a prescribed level of
; nglse attenuation. The matricés. > 0, W, >0,Vi >0 andpo >0

objectives of, respectively, minimizing and maximizing the estimation . -
L . : ) - are left to the choice of the designer and depend on performance
error. The minimizer picks the optimal filtered estimate, and the ~ . . - . L
o . . . .. V{Fquwements. Discretfl ., filtering can be interpreted asminimax
maximizer picks the worst-case disturbance and initial condition. ?oblem where the estimator strateggy play against the exogenous
give a detailed derivation to solve the game that directly producgs ypay ag 9

the solution for the discreté .. filtering problem. A similar design '"PULS @k, vk and the initial stater,. The performance criterion
. . becomes

approach has been proposed in [1] and [2] for the continuous caSé.

We then give a numerical example to compare khe filter with the min max J

Kalman filter. The comparison includes the magnitudes of the transfer *x (v&:wk:70)

functions from processes and measurement noises to estimation _ —Lllwo — &0l _1_1
errors, which are the estimations of the true signals. It is shown 2y Po 2
that the H., filter is more robust compared with those of Wiener Nt . 1
~ 2 2 2
. Z ||Zk - ZkHQk - ;(”u'kn]/[/k—l + ||7-"k||vk—1) (5)
k=0
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determined by (1) once the optimal valueswf andxo are found. whereZ; and P, are undetermined variables; and \; represent
Letting Z2. = L@, we can rewrite the performance criterion (5) aghe optimal value of:, and)\, respectively, for any fixed admissible
N1 functions ofz, andy. The optimal values fow, andxz, are

. 1 - -
min  max | J==gllro = ol - 43 ;0[“” — Tellg, wi=WiBi Nosr, @y = &0+ pohs. (18)

B (yp,wi,zo)
— l(||wk||f4,,—1 +llye — Crail[} -] (6) Substituting (17) into (15) results in
oé k k

_ _ Thpt + Popi Ny = AeTr + AP + BeWiBE AL 19
where@, = LI QL. The following theorem presents a complete s AR mEk R WieBi Ak (19)

solution to the H, filtering problem for the system (1) with the gnd
performance criterion (6).

Theorem: Let v >0 be a prescribed level of noise attenuation. Mo =(I=~Q P+ CLV, " CuP) ™
Then, there exists ail . filter for z; if and only if there exists a QT — &) + CLVT (g — Crr)
stabilizing symmetric solutiod®; > 0 to the following discrete-time AT *
Riccati I + Ap Apgq]- (20)
iccati equation:
Pipi = AvPo(I —~Q, Po + CEV, T Cu P ™ From (19) and (20), we have
- Al + B.W, B} Trrt — AT — APl — QP + CL VT Oy P) ™
Py = po. (7) Q@ — ) + CEV (i — Crn)]
/ Vol Tyr—1 —1
The H.. filter is given by = [_Ekﬂ + AkP’f(I = 7@ P+ Cp Ve CrPy)
AL + BiWiBL I i (21)

2k = Li#r, k=0,1,---,N -1 (8)
For (21) to hold true for arbitrary}, both sides are set identically

where to zero, resulting in
Fear = Apdy + Ki(ye — Crdin), &0 = do. 9 _ o ~
et Kk + Ki(yr kZk), B0 = Lo ©) Topr = AT + AP [T — (1Q, — CLV T Cr P
K is the gain of theH ., filter and is given by Q@ — 1) + CEV g — Crn))
Ki = AL Pl =20, P+ CLVT PO LV (10) To =40 (22)

Proof: By using a set of Lagrange multiplier to adjoin the conand
straint (1) to the performance criterion (6), the resultifgmiltonian

is Piy1 = A Po(I — Qi P + Clz“fk_lck)Pk)_lAl{
1 L , , + B, Wi B}
M = > ||I}. - -I‘l.”ak - ;(||LLL||V1;1 + ||y1~'7 - CL“I’A‘||\/”]\f1) Py =po.- (23)
n AL [Aewr + Brawoy — 24s1] Equation (23) is the well-known Riccati difference equation. It has
24 been prooven that if the solutioR:. to the Riccati equation (23)
+ [Apze + Brwn — zipi] Ak+1_ (11) existsVk € [0, N — 1]. Then, P, > 0VEk € [0, N — 1].

Now, substituting the optimal strategies (18) into the performance

Taking the first variation, the necessary conditions for a maximuff): We obtain
are N-1

. 1 * 12 1 —_ * ~ 2
axJ = ——]|\ = Te + P\ — 2k||5
@0 = &0 + poAo, Av =0 (12) 11;111 e 2‘)"” ol + 2 l;“' Tt LA JkHQk
wi = Wi BE Ay 13 1, .
k j’f k Akl ) e (13) — —(||"1’/kBI?Ak+1||?4,,f—l + |lyx — CrTa
A = A Aer1 +7Q (2 — &1) + Cr Vg~ (ye — Crr). v ‘ k
(14) — Ch PG| [ -] (24)
k
These first-order necessary conditions result in a two-point bounddn the sequel, we will perform thein-maxoptimization of.J with
ary value problem respect to#, and y., respectively. Adding to (24) the identically
<il3k+1> B < B A/k’ BkWTk’B,;[,V T zero term
Ak B A)Qk - le ‘/rk_]ck ‘41{ )\k+1 1 N Lo N—1 . "
0 g[llkollio — ANy 4+ D0 UNegalBy = IR,
—+ — . _ . k=0
<—’>"kak +CE Ve ) =0 (25)
E=0,1,---,N =1 (15)

] B results in the followingmin-maxproblem
with boundary conditions

min max .J

To = To +p0)\0, Ay = 0. (16) Ty Yk

2

—1
Since the two-point boundary value problem is linear, the solution —
is assumed to be of the form

DO =

_ .2 1 2
I = #ally, = =l = Cimllf ] (@8)

Il

0

x5 =Tk + P (17) subject to the dynamic constraints (22) and (23).
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Vk 15 ! ' —desired output’ ! !
\L A 4 — — :estimated output
Wy | signal |Xg |measure- y Hyo | Xk
—_— generator Sr;;g:n —>@—$ filter a 0.5
0
Fig. 1. Signal generating mechanism.

5 10 15 20 25 30 35 40 45 50
Letting Fig. 2. Kalman filter estimate.
Tk =Tk — Tk, q;—y;—CklA (27)
15 T j ! ! —T :desired output” " )
(26) becomes
9 ~ — :estimated output
1 N—-1 1
. 2 2
min max.J = = rells — = llaells =1 - 28
s = 3 3 el - Halia | @ )
The two independent players andg;. in (28) affect the variables 0
Ty, butT; does not appear in the performance index, and thereforebs

the optimal strategies of, and ¢; are “o 5 10 15 20 25 30 35 40 45 50
) discrete time
re =0 an =0 (29) Fig. 3. H.. filter estimate.
i.e.
Te = &5, UL = Cun. (30) The optimal strategy of the measurement noise can be obtained by
vy =y — Criy = CrpTp — Crir = 0. (37)

The value of the game is the value of the cost function (6).
When the optimal strategies;,y;,w;, and =5 in (18) and (30)  With (22) and (30), the optimall.. filter is given by

are substituted into the (6) 35 = Lydl, E=0.1,---.N -1 (38)
J (g, Yk wi, 25) =0 (1)  where
giving a zero value game. FPro1 = Ardp + Ke(ye — Crdg), To = %o (39)

Thu§ far, the strategies @E,,,_yzf, w;ﬁ, andz{ have been assum_e_d to Ky = A Po(I =10, P+ OV Cu Py~ O v (40)
be optimal, based on the satisfaction of the necessary conditions for o
optimality. If the strategies can also satisfy a saddle-point inequali§f}d I« is given by (23). _ _
they represent optimal strategies. A saddle point strategy can bét iS important to note that the optimaf .. filter depends on the

obtained by solving two optimization problems: weighting on the estimation error in the performance criterion, i.e.,
) ) the designer choses the weighting matrices based on the performance
MR ax s max J=J (32)  requitements, whereas both Wiener and Kalman filters are dependent
max max max min J = J,. (33) on the variance of the noises. .
Yk Wk To & For the time-invariant caséN — o), the optimal steady-state
WhenJ* = J., the solutions to (32) and (33) produce saddle poirf{~ filter is given by
strategies. It can be easily shown thaPif existsvVk € [0, N —1], the 2 = L}, k=0,1,--,c (41)

optimal strategies. yi, wi, andu; satisfy a saddle point inequality

J(if Yk W, 20) < J(£Za y;:ﬂ wlt,v 173) < J (@ y;: 'wl’:ﬂ QUS)-

Fra1 = Adp 4 K(y, — Ca%), To = &0 (42)
(34)

K =AP(I—-~QP+CTviecpy 'ctv  (43)
Note that the notatio/; > J, means that/, — .J, is a positive

semi-definite matrix. _ T 7 o
The right inequality can be checked by adding the identically zero P=AP(I-yQP+C "V CP) A" + BWB". (44)

and the Riccati equation becomes

term The solution of the Riccati equation (44) can be obtained by the
a2 a2 following [9]. Let
S-llleg = oll}—1 = Il = #nls : o _
g o N oo < A~ ATT[CTV =i — Q)
N—1 - rpT =T rRT 4—T Tyr—1 e .
. BWB'" A A4+ BWB AT [C'VT'C —~Q]
o A 2 P 2
+ AE:O (||Ik+1 lk+1||pk—+11 ||‘rk rk||P;1)] (35) (45)

Assume that matrix@d has no eigenvalues on the unit circle and
at the eigenvectolS corresponds to the outer circle (unstable)
eigenvalues of the matrifl. SpanningS as S = [S{ S7]%, the

to J(&, vy, wy, x5 ), and the left inequality can be checked by addinﬁ1
the identically zero term

QL[II»ro —#5l5 -1 = llen — aN 5=t solution of Riccati equatior is given as
~ 0 N
N P=25,57" (46)
K 2 k112
+ Z(H”’Hl - "7/@+1||p;+11 = |l = ‘"k”pk—l)] (36) Details of the last result can be found in [11]. Note that in the
k=0

limiting case, where the parameter— 0, the H, filter given by
to J(2%, Yk, Wi, o). (41)—(44) reduces to a steady-state Kalman filter.
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logITzwl
=
T
.

- — —:Kalman filter

——H-infinity filter

10'
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over all possible disturbances of finite energy; therefore, they are
overconservative, resulting in a better robust behavior to disturbance
variations. All the simulation results are obtained by using MATLAB
[12].

IV. CONCLUSIONS

A difference game has been formulated and solved for the discrete
H., filter design. The existence of a solution to the difference Riccati
equation, over the time interval, is a necessary and sufficient condition
for the existence of the optimal discrefg,, filter. Since the design
criterion is based on the worst-case disturbance, Ahg filter is

10 T
. - — —:Kalman filter less sensitive to uncertainty in the exogenous signals statistics and
2 ——H-infinity filter dynamical model.
E =
N o T T =TT
E10" | i
g NN
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