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Game Theory Approach to Discrete Filter Design

Xuemin Shen and Li Deng

Abstract—In this correspondence, a finite-horizon discreteH1 filter
design with a linear quadratic (LQ) game approach is presented. The ex-
ogenous inputs composed of the “hostile” noise signals and system initial
condition are assumed to be finite energy signals with unknown statistics.
The design criterion is to minimize the worst possible amplification of
the estimation error signals in terms of the exogenous inputs, which is
different from the classical minimum variance estimation error criterion
for the modified Wiener or Kalman filter design. The approach can show
how far the estimation error can be reduced under an existence condition
on the solution to a corresponding Riccati equation. A numerical example
is given to compare the performance of theH1 filter with that of the
conventional Kalman filter.

I. INTRODUCTION

The celebrated Wiener and/or Kalman estimators have been widely
used in noise signal processesing. This type of estimation assumes
that signal generating processes have known dynamics and that
the noise sources have known statistical properties. However, these
assumptions may limit the application of the estimators since in many
situations, only approximate signal models are available and/or the
statistics of the noise sources are not fully known or are unavail-
able. In addition, both Wiener and Kalman estimators may not be
robust against parameter uncertainty of the signal models. Recent
developments in optimal filtering have focused on theH1 estimation
methods [1]–[10]. The optimalH1 estimator is designed to guarantee
that the operator relating the noise signals to the resulting estimation
errors should possess anH1 norm less than a prescribed positive
value. In theH1 estimation, the noise sources can be arbitrary signals
with only a requirement of bounded noise. Since theH1 estimation
problem involves the minimization of the worst possible amplification
of the error signal, it can be viewed as a dynamic, two-person, zero
sum game. In the game, theH1 filter (the designer) is a player
prepared for the worst strategy that the other player (the nature) can
provide, i.e., the goal of the filter is to provide an uniformly small
estimation error for any processes and measurement noises and any
initial states. In this correspondence, we define a difference game
in which the state estimator and the disturbance signals (processes
noise, initial condition and measurement noise) have the conflicting
objectives of, respectively, minimizing and maximizing the estimation
error. The minimizer picks the optimal filtered estimate, and the
maximizer picks the worst-case disturbance and initial condition. We
give a detailed derivation to solve the game that directly produces
the solution for the discreteH1 filtering problem. A similar design
approach has been proposed in [1] and [2] for the continuous case.
We then give a numerical example to compare theH1 filter with the
Kalman filter. The comparison includes the magnitudes of the transfer
functions from processes and measurement noises to estimation
errors, which are the estimations of the true signals. It is shown
that theH1 filter is more robust compared with those of Wiener
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and Kalman filters in terms of model uncertainty and gives better
estimates.

II. DISCRETEH1 FILTER DESIGN

Consider the following discrete-time system

xk+1 =Akxk +Bkwk

yk =Ckxk + vk

k =0; 1; � � � ; N � 1; x0 = x0 (1)

where

xk 2 Rn state vector,
wk 2 Rm process noise vector,
yk 2 Rp measurement vector,
vk 2 Rp measurement noise vector.

Ak; Bk; andCk are matrices of the appropriate dimensions. Assume
that (Ak; Bk) is controllable and(Ck; Ak) is detectable. Define the
measurement history asYk = (yk; 0 � k � N � 1): The estimate of
the statêxk at timek is computed based on the measurement history
up toN � 1: We are not necessarily interested in the estimation of
xk but in the estimation of a linear combination ofxk

zk = Lkxk: (2)

TheH1 filter is required to provide an uniformly small estimation
error ek = zk � ẑk for anywk; vk 2 l2 andx0 2 Rn: The measure
of performance is then given by

J =

N�1

k=0

jjzk � ẑkjj
2

Q

jjx0 � x̂0jj2
p

+

N�1

k=0

fjjwkjj2
W

+ jjvkjj2
V

g

(3)

where ((x0 � x̂0); wk; vk) 6= 0; x̂0 is an a priori estimate of
x0; Qk � 0; p�1

0
> 0;Wk> 0 andVk > 0 are the weighting matrices,

andjjskjj2R = sTkRksk: The optimal estimatezk among all possible
ẑk (i.e., the worse-case performance measure) should satisfy

supJ < 1=
 (4)

where “sup” stands for supremum, and
 > 0 is a prescribed level of
noise attenuation. The matricesQk � 0;Wk > 0; Vk> 0 andp0> 0

are left to the choice of the designer and depend on performance
requirements. DiscreteH

1
filtering can be interpreted as aminimax

problem where the estimator strategyẑk play against the exogenous
inputs wk; vk and the initial statex0: The performance criterion
becomes

min
ẑ

max
(v ;w ;x )

J

= �
1

2

jjx0 � x̂0jj

2

p
+

1

2

�

N�1

k=0

jjzk � ẑkjj
2

Q �
1



(jjwkjj

2

W
+ jjvkjj

2

V
) (5)

where “min” stands for minimization and “max” maximization.
Note that unlike the traditional minimum variance filtering approach
(Wiener and/or Kalman filtering), theH

1
filtering deals with deter-

ministic disturbances, and noa priori knowledge of the noise statistics
is required. Since the observationyk is given, vk can be uniquely
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determined by (1) once the optimal values ofwk andx0 are found.
Letting ẑk = Lkx̂k, we can rewrite the performance criterion (5) as

min
x̂

max
(y ;w ;x )

J =�
1

2

jjx0 � x̂0jj

2

p
+

1

2

N�1

k=0

[jjxk � x̂kjj
2

Q

�
1



(jjwkjj

2

W
+ jjyk � Ckxkjj

2

V
)] (6)

whereQk = LTkQkLk: The following theorem presents a complete
solution to theH1 filtering problem for the system (1) with the
performance criterion (6).

Theorem: Let 
 > 0 be a prescribed level of noise attenuation.
Then, there exists anH1 filter for zk if and only if there exists a
stabilizing symmetric solutionPk > 0 to the following discrete-time
Riccati equation:

Pk+1 =AkPk(I � 
QkPk + C
T
k V

�1

k CkPk)
�1

� A
T
k +BkWkB

T
k

P0 = p0: (7)

The H1 filter is given by

ẑk = Lkx̂k; k = 0; 1; � � � ; N � 1 (8)

where

x̂k+1 = Akx̂k +Kk(yk � Ckx̂k); x̂0 = x̂0: (9)

Kk is the gain of theH1 filter and is given by

Kk = AkPk(I � 
QkPk + C
T
k V

�1

k CkPk)
�1
C
T
k V

�1

k : (10)

Proof: By using a set of Lagrange multiplier to adjoin the con-
straint (1) to the performance criterion (6), the resultingHamiltonian
is

M =
1

2
jjxk � x̂kjj

2

Q
�

1



(jjwkjj

2

W
+ jjyk � Ckxkjj

2

V
)

+
�Tk+1



[Akxk +Bkwk � xk+1]

+ [Akxk +Bkwk � xk+1]
T �k+1



: (11)

Taking the first variation, the necessary conditions for a maximum
are

x0 = x̂0 + p0�0; �N = 0 (12)

wk =WkB
T
k �k+1 (13)

�k =A
T
k �k+1 + 
Qk(xk � x̂k) + C

T
k V

�1

k (yk � Ckxk):

(14)

These first-order necessary conditions result in a two-point bound-
ary value problem

xk+1
�k

=
Ak BkWkB

T
k


Qk � CT
k V

�1

k Ck ATk

xk
�k+1

+
0

�
Qkx̂k + CT
k V

�1

k yk
;

k = 0; 1; � � � ; N � 1 (15)

with boundary conditions

x0 = x̂0 + p0�0; �N = 0: (16)

Since the two-point boundary value problem is linear, the solution
is assumed to be of the form

x
�

k = xk + Pk�
�

k (17)

wherexk andPk are undetermined variables.x�k and��k represent
the optimal value ofxk and�k, respectively, for any fixed admissible
functions ofxk andyk: The optimal values forwk andx0 are

w
�

k = WkB
T
k �

�

k+1; x
�

0 = x̂0 + p0�
�

0: (18)

Substituting (17) into (15) results in

xk+1 + Pk+1�
�

k+1 = Akxk + AkPk�
�

k +BkWkB
T
k �

�

k+1 (19)

and

�
�

k =(I � 
QkPk + C
T
k V

�1

k CkPk)
�1

� [
Qk(xk � x̂k) + C
T
k V

�1

k (yk � Ckxk)

+A
T
k �
�

k+1]: (20)

From (19) and (20), we have

xk+1 � Akxk �AkPk(I � 
QkPk + C
T
k V

�1

k CkPk)
�1

� [
Qk(xk � x̂k) + C
T
k V

�1

k (yk � Ckxk)]

= [�Pk+1 + AkPk(I � 
QkPk + C
T
k V

�1

k CkPk)
�1

� A
T
k +BkWkB

T
k ]�

�

k+1: (21)

For (21) to hold true for arbitrary��k, both sides are set identically
to zero, resulting in

xk+1 =Akxk +AkPk[(I � (
Qk � C
T
k V

�1

k Ck)Pk]
�1

� [
Qk(xk � x̂k) + C
T
k V

�1

k (yk � Ckxk)]

x0 = x̂0 (22)

and

Pk+1 =AkPk(I � 
QkPk + C
T
k V

�1

k Ck)Pk)
�1
A
T
k

+BkWkB
T
k

P0 = p0: (23)

Equation (23) is the well-known Riccati difference equation. It has
been prooven that if the solutionPk to the Riccati equation (23)
exists8k 2 [0; N � 1]. Then,Pk > 08k 2 [0; N � 1]:

Now, substituting the optimal strategies (18) into the performance
(6), we obtain

min
x̂

max
y

J =�
1

2

jj�
�

0jj
2

p +
1

2

N�1

k=0

[jjxk + Pk�
�

k � x̂kjj
2

Q

�
1



(jjWkB

T
k �

�

k+1jj
2

W
+ jjyk � Ckxk

� CkPk�
�

kjj
2

V
)]: (24)

In the sequel, we will perform themin-maxoptimization ofJ with
respect tox̂k and yk, respectively. Adding to (24) the identically
zero term

1

2

[jj�

�

0jj
2

p � jj�
�

N jj
2

P +

N�1

k=0

(jj�
�

k+1jj
2

P � jj�
�

kjj
2

P )]

= 0 (25)

results in the followingmin-maxproblem

min
x̂

max
y

J

=
1

2

N�1

k=0

[jjxk � x̂kjj
2

Q
�

1



jjyk � Ckxkjj

2

V
] (26)

subject to the dynamic constraints (22) and (23).
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Fig. 1. Signal generating mechanism.

Letting

rk = xk � x̂k; qk = yk � Ckxk (27)

(26) becomes

min
r

max
q

J =
1

2

N�1

k=0

jjrkjj
2

Q
�

1



jjqkjj

2

V
: (28)

The two independent playersrk andqk in (28) affect the variables
xk, but xk does not appear in the performance index, and therefore,
the optimal strategies ofrk and qk are

r
�

k = 0; q
�

k = 0 (29)

i.e.

xk = x̂
�

k; y
�

k = Ckxk: (30)

The value of the game is the value of the cost function (6).
When the optimal strategieŝx�k; y

�

k; w
�

k; and x�0 in (18) and (30)
are substituted into the (6)

J(x̂
�

k; y
�

k; w
�

k; x
�

0) = 0 (31)

giving a zero value game.
Thus far, the strategies of̂x�k; y

�

k; w
�

k; andx�0 have been assumed to
be optimal, based on the satisfaction of the necessary conditions for
optimality. If the strategies can also satisfy a saddle-point inequality,
they represent optimal strategies. A saddle point strategy can be
obtained by solving two optimization problems:

min
x̂

max
y

max
w

max
x

J =J
� (32)

max
y

max
w

max
x

min
x̂

J =J�: (33)

WhenJ� = J�, the solutions to (32) and (33) produce saddle point
strategies. It can be easily shown that ifPk exists8k 2 [0; N�1], the
optimal strategieŝx�k; y

�

k; w
�

k; andx�0 satisfy a saddle point inequality

J(x̂
�

k; yk; wk; x0) � J(x̂
�

k; y
�

k; w
�

k; x
�

0) � J(x̂k; y
�

k; w
�

k; x
�

0):

(34)

Note that the notationJ1 � J2 means thatJ1 � J2 is a positive
semi-definite matrix.

The right inequality can be checked by adding the identically zero
term

1

2

[jjx

�

0 � x̂0jj
2

P
� jjx

�

N � x̂N jj
2

P

+

N�1

k=0

(jjx
�

k+1 � x̂k+1jj
2

P
� jjx

�

k � x̂kjj
2

P
)] (35)

to J(x̂k; y�k; w
�

k; x
�

0), and the left inequality can be checked by adding
the identically zero term

1

2

[jjx0 � x̂

�

0jj
2

P
� jjxN � x̂

�

N jj
2

P

+

N�1

k=0

(jjxk+1 � x̂
�

k+1jj
2

P
� jjxk � x̂

�

kjj
2

P
)] (36)

to J(x̂�k; yk; wk; x0):

Fig. 2. Kalman filter estimate.

Fig. 3. H1 filter estimate.

The optimal strategy of the measurement noise can be obtained by

v
�

k = y
�

k � Ckx̂
�

k = Ckxk � Ckx̂
�

k = 0: (37)

With (22) and (30), the optimalH1 filter is given by

ẑ
�

k = Lkx̂
�

k; k = 0; 1; � � � ; N � 1 (38)

where

x̂
�

k+1 =Akx̂
�

k +Kk(yk � Ckx̂
�

k); x0 = x̂0 (39)

Kk =AkPk(I � 
QkPk + C
T
k V

�1

k CkPk)
�1
C
T
k V

�1

k (40)

and Pk is given by (23).
It is important to note that the optimalH1 filter depends on the

weighting on the estimation error in the performance criterion, i.e.,
the designer choses the weighting matrices based on the performance
requitements, whereas both Wiener and Kalman filters are dependent
on the variance of the noises.

For the time-invariant case(N ! 1), the optimal steady-state
H1 filter is given by

ẑ
�

k = Lx̂
�

k; k = 0; 1; � � � ;1 (41)

where

x̂
�

k+1 =Ax̂
�

k +K(yk � Cx̂
�

k); x0 = x̂0 (42)

K =AP (I � 
QP + C
T
V
�1
CP )

�1
C
T
V
�1 (43)

and the Riccati equation becomes

P = AP (I � 
QP + C
T
V
�1
CP )

�1
A
T
+BWB

T
: (44)

The solution of the Riccati equation (44) can be obtained by the
following [9]. Let

H =
A�T A�T [CTV �1C � 
Q]

BWBTA�T A+BWBTA�T [CTV �1C � 
Q]
:

(45)

Assume that matrixH has no eigenvalues on the unit circle and
that the eigenvectorS corresponds to the outer circle (unstable)
eigenvalues of the matrixH: SpanningS asS = [ST1 ST2 ]

T , the
solution of Riccati equationP is given as

P = S2S
�1

1 : (46)

Details of the last result can be found in [11]. Note that in the
limiting case, where the parameter
 ! 0, theH1 filter given by
(41)–(44) reduces to a steady-state Kalman filter.
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Fig. 4. Estimation error power spectra—without disturbance.

Fig. 5. Estimation error power spectra—with disturbance.

III. N UMERICAL EXAMPLE

A signal generating system (Fig. 1) is the damped harmonic
oscillator with velocity measurements described by

_x =
0 wn
�wn �2�wn

x+
0

wn
w

y =(0 1)x+ v

where the statex = (x1 x2)
T with x1 as the position andx2

as the velocity. The natural frequencywn = 1:1, and the damping
coefficient� = 0:15: w is a driving signal, andv is the measurement
noise. It is assumed thatw andv are uncorrelated, stationary, zero-
mean, white noise processes of unit intensity. Assuming a zero-order
hold on the input, this system is converted to the following discrete
system with sample timeT = 1:

xk+1 =
0:5079 0:7594

�0:7594 0:2801
xk +

0:4921

0:7594
wk

yk =(0 1)xk + vk

where it is desired to estimate

zk = (1 0)xk: (47)

Using (45), (46), and (43), the following Kalman filter gain(
 = 0)

andH1 filter gain (
 = 1:24) are obtained.

GK =
0:4236

0:0873
; GH =

0:1792

1:1321
: (48)

The performance of the two filters is compared by simulating their
estimate ofzk and the magnitudes of the transfer functionTzw from
noises[wTk vTk ]

T to the estimation errorek: The results are depicted
in Figs. 2 to 5. From Figs. 2 and 3, it is observed that theH1 filter
gives the estimatezk relatively better than that of the corresponding
Kalman filter, even though the statistics of the noiseswk and vk
are known. Figs. 4 and 5 give the magnitudes of the estimation error
power spectra using bothH1 filter and Kalman filter when the system
parameters(wn; �) vary from (0.9, 0.08) to (1.1, 0.3). It is shown that
the error spectra of theH1 filter have lower peaks, which means
that the error spectra of theH1 filter are less sensitive to exact
knowledge of the parameters of the system. This can be explained
as follows:H1 filters guarantee the smallest estimation error energy

over all possible disturbances of finite energy; therefore, they are
overconservative, resulting in a better robust behavior to disturbance
variations. All the simulation results are obtained by using MATLAB
[12].

IV. CONCLUSIONS

A difference game has been formulated and solved for the discrete
H1 filter design. The existence of a solution to the difference Riccati
equation, over the time interval, is a necessary and sufficient condition
for the existence of the optimal discreteH1 filter. Since the design
criterion is based on the worst-case disturbance, theH1 filter is
less sensitive to uncertainty in the exogenous signals statistics and
dynamical model.
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