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Abstract 

In this paper, we propose a decomposition numerical method for the solution of the H, filter gain in singularly perturbed 
systems. The decomposition removes the ill-conditioning (stiffness) problems of singularly perturbed systems so that only 
low-order, well-defined subsystems are involved in algebraic computation. We have achieved the decomposition via the use 
of a nonsingular transformation, which is applied to the Hamiltonian form of the singularly perturbed H, filtering system. 
An efficient Newton-type algorithm is used for the related computation. An F-8 aircraft application example is given to 
demonstrate the efficiency of the proposed method. 

Zusammenfassung 

In diesem Beitrag schlagen wir eine numerische Zerlegungsmethode zur Bestimmung der Verstiirkung eines H,-Filters in 
singular gestiirten Systemen vor. Die Zerlegung beseitigt Probleme der schlechten Konditionierung (Steife) singuhir gestiirter 
Systeme, so da8 nur wohldefinierte Untersysteme niedriger Ordnung an algebraischen Berechnungen beteiligt sind. Wir 
haben die Zerlegung durch die Verwendung einer nicht-singullren Transformation erreicht, welche auf die Hamilton-Form 
des singular gestorten H,-Filtersystems angewandt wird. Ein effizienter Algorithms newtonscher Art wird fir die betroffene 
Berechnung gebraucht. Als Beispiel wird eine Anwendung in einem FS-Flugzeug herangezogen, urn die Wirksamkeit des 
vorgeschlagenen Verfahrens zu demonstrieren. 

RCsumC 

Dans cet article, nous presentons une mtthode de decomposition numerique pour trouver le gain de filtre H, dans des 
systemes perturb&s singulierement. La decomposition elimine les problemes ma1 posts (rigiditt) des systemes perturb&s 
singulierement de sorte que seuls des sous-systemes d’ordre peu BlevC et bien d&finis sont ntcessaires au calcul algebrique. 
Nous avons obtenu la decomposition en utilisant une decomposition non singulibre, qui est appliquee a la forme hamiltonienne 
du systeme de filtrage perturb6 singulierement. Un algorithme efficient de type Newton est utilise pour le calcul y relatif. Un 
exemple d’application B l’avion F-8 est don&, afin de montrer l’efficacite de la mithode proposte. 
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1. Introduction 

The Kalman-Bucy filter works extremely well in 
cases where the dynamical system is accurately mod- 
eled. However, most real systems include model er- 
rors, arising from variation of parameters, noise, etc. 
In order to ensure a more robust filter design, recently, 
a new class of optimal filter has been developed us- 
ing H, minimum estimation error spectrum crite- 
rion [7, 15, 1,2, 8, 161. Unlike the celebrated Wiener 
and/or Kalman filtering design which minimizes the 
variance of the estimation error, the H, estimator is 
designed to guarantee the smallest possible estimation 
error energy over all possible disturbances of fixed en- 
ergy, i.e. the operator relating the noise signals and pa- 
rameter uncertainties to the resulting estimation error 
should possess an H, norm less than a prescribed pos- 
itive value. Therefore, H, filter is over-conservative, 
which results more robust in terms of model uncer- 
tainties and lack of statistical information on the ex- 
ogenous signals. 

H, filtering and control problems for the singu- 
larly perturbed system have been studied in different 
set-up by many researchers [14, 17, 10,4, 131. Both 
the solutions of filter and regulator gains for the sin- 
gularly perturbed systems are related to the solutions 
of the differential or algebraic Riccati-type equations. 
Due to the presence of small parasitic parameters, the 
Riccati-type equations are ill-defined and may be very 
difficult to be solved directly. In this paper we will 
present an efficient recursive numerical method for 
the solution of the H, filter gain in a singularly per- 
turbed system. Two important reasons for this study 
are: (a) to avoid an ill-defined numerical problem of 
singularly perturbed systems; (b) to reduce the size 
of required computations, generate solutions with any 
desired accuracy from decoupled slow and fast sub- 
systems, and speed up the estimation process. The 
presented method is as follows. We first decompose 
the Hamiltonian form of the singularly perturbed sys- 
tem into two well-defined subsystems (slow and fast) 
so that the H, filter gain is obtained by solving two 
reduced-order linear algebraic equations instead of the 
nonlinear ill-defined differential Riccati equation. We 
then apply an efficient Newton-type algorithm for the 
related computation. The proposed method produces 
a near-optimal solution of the H, filter gain with an 
any desired order of accuracy, i.e. O(ci), where E is a 

small positive parasitic parameter, and i is the num- 
ber of iteration. An F-8 aircraft application example 
is given to demonstrate the efficiency of the method. 

2. Problem formulation 

Consider a continuous-time linear system as 

%(t) = Am(t) + A2X2(0 +&w(t), 

&2(t) = A3Xl(l) +&Z(t) + Bzw(t), 

with a linear measurement 

(1) 

(2) 

y(t) = ClXl(O + Czxz(t) + u(t), (3) 

where state vector xi(t) E 9’1, state vector x2(t) E 
9”’ and measurements y(t) E WJ’, w(t) E 9?“’ and 
v(t) E WP are the system and measurement noise vec- 
tors. Ai,i = 1, 2, 3, 4, Bj and C’, j = 1, 2, are SYS- 

tern matrices of the appropriate dimensions. E is a 
small scalar positive parameter. The system (l)-(3) 
is called singularly perturbed system in the sense that 
when E is neglected (made zero) the order of the sys- 
tem is reduced from n = ni + n2 to nl. The system 
has ‘slow’ and ‘fast’ phenomena because state vec- 
tor x2 changes much faster than state vector xi near a 
boundary layer. 

For the system (l)--(3), we want to design a filter 
to estimate system states. We are interested not nec- 
essarily in the estimation of x(t) = [x:(t) x:(t)] but 
in the estimation of a linear combination of x(t). Let 
a vector z(t) E &Y be the linear combination of x(t), 

z(t) = Gixi(t) + Gzxz(t). (4) 

The estimation system is illustrated in Fig. 1. 
The measure of the filtering performance over a 

finite time interval [0, T] is defined as a disturbance 
attenuation function 

J 0.f 

s,’ II40 - f(t)1 I: dt 

= 11x0 -loll;;, +s,T#4~)II;-~ + IlWll$-,W 

(5) 

where e(t) = z(t) - Z(t) is the estimation error, 
(x0 - is) is the error in the state-estimate at the ini- 
tial time t = 0, 20 is the initial state-estimate which 
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Fig. 1. The signal generating system. 

is known, ps > 0 is a positive-definite matrix that 

reflects a priori knowledge as to how close the initial 
guess $0 is to x0, R 80, W > 0 and V > 0 are the 
weighting matrices which are chosen by the designer 
according to the performance requirements. The no- 

tation JOT 11~11: dt = JoT(sTRs)dt is defined as the 
square of the weighted (by R) L2 norm of S. The & 
filter is required to guarantee that the optimal esti- 
mate z(t) among all possible Z(t) (i.e. the worst-case 
performance measure) should satisfy 

1 
supJ< -, 

Y 
(6) 

where “sup” stands for supremum and y > 0 is a 
prescribed level of noise attenuation. 

It has been shown [ 15, 1, 121 that the Z-Z, filter 
for the system (l)-(4) with performance measurement 
criterion (5) can be obtained for the maximum value 
of y for which the Hamiltonian matrix 

A BWBT 
cTV-‘C _ ?GTRG -AT 1 (7) 

has no eigenvalues on the imaginary axis, and if there 
exists a positive-definite solution to the following dif- 
ferential Riccati equation: 

P(t) = Al’(t) + P(t)AT + BWBT 

-P(t)[CTV-k’ - yGTRG]P(t), P(0) = po. 

(8) 

Then an H, filter is given by 

i(t) = Ai + P(t)CTV-‘[y(t) - C.?(t)], 

where 

K(t) = P(t)CrV-’ 

(9) 

(10) 

is the gain of the H, filter and 

i(t)= [;;;;;I, A= [/$$], 
B= B’ 

[ 1 B2I& ’ 
C = [C, C,], G = [Gl G2]. 

The fact that HF has no eigenvalues on the imaginary 
axis guarantees that sup J < l/y [3, p. 271, which sug- 
gests a way to find the largest y: select a positive num- 

ber y; test if sup J < l/y by calculating the eigenvalues 
of HF; increase or decrease y accordingly; repeat. The 
existence ofP(t) Yt E [0, T] is essential for optimality. 

It is important to note that the dependence on the 
linear combination of the states that we intend to es- 

timate (i.e., the Gj) distinguishes the H, filter from 
the Kalman filter. In Kalman filtering, the optimal es- 
timator produces the best estimate of all the states, 
independent of G. In the H, filtering, the optimal es- 
timator produces the best estimate of that particular 
combination of states whose estimate is sought, i.e., 
the H, filter is specifically tuned toward the linear 
combination Gixi. 

The presence of the small parasitic parameter E 
makes this problem numerically ill-defined, produc- 

ing a so-called numerical stiff problem. In order to 
overcome this difficulty and obtain an efficient nu- 
merical method for solving Eq. (8), we will utilize 
the Hamiltonian form (7) for the solution of the 
differential Riccati-type equation and a nonsingular 
Chang transformation [2]. The Hamitoniun form can 
‘linearize’ the differential Riccati equation and the 
Chang transformation is used to block diagonalize 
the Hamiltonian, so that the required solution of the 
Riccati equation is obtained in terms of reduced-order 
problems. In addition, an efficient Newton-type al- 
gorithm [6] (with quadratic rate of convergence, i.e. 
O(c2’), where i is the number of iterations) is used 
to solve the algebraic equations, which results in 
forming the Chang transformation. 
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3. Decomposition solution of the H, filter gain 

Consider the pair of linear matrix differential equa- 
tions 

U(t) = AM(t) + BF@N(t), M(tlJ) = PO, (11) 

N(t) = [CT+ C - yG*RG]M(t) - A*N(t), 

N(to) = I. (12) 

This pair of equations can also be written into the 
Hamiltonian system 

MO 
[ 1 No 

[ A BWB* 
= M(t) 

C*V-‘C - yG*RG -A* I[ I N(t) ’ 

(13) 

Since the initial value problem is linear, the solution 
of the pair equations is assumed to be of the form 

M(t) = P(t)N(t). (14) 

Differentiating this form we obtain 

if(t) = P(t)N(t) + P(t)ni(t). (15) 

Using Eqs. (11) and (12), this becomes 

AM(t) + BWBTN(t) = P(t)N(t) 

+P(t)[CTV-‘C - yG*RG]M(t) - P(t)ATN(t). 

(16) 

Substituting (14) and collecting terms produces the 
equation 

{P(t) - P(t)A* - AP(t) + P(t)[C*V--IC 

-yGTRG]P(t) - BWB*}N(t) = 0. (17) 

If N(t) is assumed to be nonsingular for all T 2 t B to, 

this equation is equivalent to (8), and Z’(t) can be 
obtained by 

P(t) = M(t)N-l(t). (18) 

Note that 

P(to) = M(to)N-‘(to) = PO1 = PO, 

thus the initial condition is also satisfied. 

(19) 

However, N(t) may be close to singular for 
to < t < T, which can cause the numerical instabili- 
ties associated with (18). A reinitialization technique 
(such as the Modified Davison-Maki Algorithm) [9] 
can be applied to solve the invertibility problem of 
N(t) whenever necessary. 

For singularly perturbed systems, we know the na- 
ture of the solution of (8), which is properly scaled as 

PI 

pl(t> P2(0 
P(t) = 

[ 1 P;(t) ?(t) ’ 

PCto)= [g; $;;I > 

W) 

wheredimpi =ni xni, dimPs =n2xn2, nl+n2 = 

n (q - slow variables, n2 - fast variables). 
We introduce compatible partitions of M(t) and 

N(t) matrices: 

M(t) = 
[ 

Ml(t) M2(t) 

1 M3(t) M4(t) ’ 
(21) 

1 
\ I 

N(t) = 
Nl(t) Ndt) 

fi3w ti4(t) * 

Partitioning (11) and (12), according to (21), will 
reveal a decoupled structure, that is, equations for 
Mi(t),Ms(t),Ni(t)andNs(t)areindependentofequa- 
tions for A42(t), k&(t), N2(t) and Nq(t) and vice versa: 

h(t) Al A2 QI Q2l~ 

k3w A3I.5 A~/E Q;/E Q3b2 

S2 -A; 

ii S, -A; 

-AT/E 

-A;/& 

x 1 Nl(t) 1 

-41 A2 Ql Q2b 

-431~ A4l~ Q,‘l& Q3b2 

S, S, -A; -A;/& 

S;’ S3 -A; -A;/& 

(22) 

(23) 
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where 

S = CTV-‘C - yGTRG 

= 
C;I‘V-‘C, - yG;RG, C;V-‘C2 - yG;RGz 

C; V-‘C, - yG;RG, CZ’V-‘C;! - yG;RGz 1 s1 s2 

= s?’ s3 . [ 1 
Interchanging second and third rows in (22) and 

(24) 

(25) 

It is important to note that both (24) and (25) retain 
the singular perturbation form. Introducing notations 

Pea) 

Wb) 

we obtain two singularly perturbed system matrix 

equations 

ir(t) = Tl U(t) + T2Z(t), 

(28) 
Ei(t) = T,U(t) + T,Z(t), 

B(t) = TS(t) + T2Y(t), 
(29) 

&I;(t) = T3X(t) + T4Y(t), 

with new initial conditions 

U(to> = P,(O) 

[ 1 

pm 
I 1 

n, 
Z(to> = 0 

[ I 3 

X(to) = [ P2CO) P3(0)I& = 0 1 3 Y(to) [ ~nJ~ 1 . 

Note that systems (28) and (29) have exactly the same 
form and the only difference is the initial conditions. 

In the sequel, we introduce the following transfor- 
mation [2] defined by 

EHL -EH 1 12n2 ’ 

(30) 

where matrices L and H satisfy 

T4L - T3 - EL(T, - T2L) = 0, (.31) 

-H(T4 + ELT?) + T2 + E(T, - T2L)H = 0. (132) 

The matrices L and H can be obtained by using the re- 
cursive Newton-type algorithm [6] with quadratic rate 
of convergence, under the condition that T4 is nonsin- 

gular when E = 0. The algorithm is briefly summa- 
rized in the following. 

Assumption. The pair (Ad, B2) is controllable and 
(44, C2) is observable. 
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Under this assumption, matrix T4 is nonsingular [5]. 
For the algebraic equation (3 1) the initial guess is 
easily obtained to O(s) accuracy, by setting E = 0 in 
the equation, that is 

,5(O) = T4-‘T3 = L + O(E). (33) 

Thus the Newton sequence will be O(s2), O(a4), 
0(&8),... ,O(E”) close to the exact solution, respec- 
tively, in each iteration. 

The Newton-type algorithm for solving (3 1) can 
be constructed by setting Lo+‘) = L(‘) + nL(‘) and 
neglecting O(AJC)~ terms. This will produce a 
Lyapunov-type equation of the form 

@)~(‘+t) + L(i+t)@) = ~(0, 

where 

(34) 

Di’) = T, + 0T2, OF’ = -s(T, - T2Lci)) 9 

E(i) = T, + &T&(i) , i = 0, 1, 2, . . . . 

with the initial condition given by (33). 
Having found the solution of (3 1 ), up to the required 

degree of accuracy, one can get the solution of (32) 
by solving directly a Lyapunov equation of the form 

H(i)@) + D(‘)@) = 
1 2 

T 
29 (35) 

which implies H(‘) = H + 0(.s2’). 

The transformation (30) is then applied to (28) and 
(29): 

(36) 

with 

This will produce two completely decoupled sub- 
systems 

P(t) = (Tt - T2L)U(O, 

U(to) = v2n, - .zHL)U(to) - tiZ(to), 
(37) 

&) = (T4 + dT2)Z(Q 

Z(to) = Uto) + Wo), 
(38) 

&) = (8 - T2LK(t), 

x_(to) = (Z2,, - flLW(to) - EHy(to), 
(39) 

d%) = (T4 + dT2)Y(t), 

E(to) = Jfxto) + Wo). 

Solutions of (37H40) are given by 

u(t) = e(T’-r2L)‘u(to), 

z(t) = e1/E(r4+ELfi)tz(to), - 

x(t) = e(T’-T2L”X_(t~), 

r(t) = e1ie(r4+tir2)t~(to). 

From Eq. (36) we have 

(40) 

(41) 

(42, 

(43) 

Then the solutions in the original coordinates are 

U(t) = e(rl-GL)‘u(to) + &He1’E(T4’ELT2)‘Z(fo), (44) 

Z(t) = -Le(T’-fiL)‘tI(to) 

+(I - ELH)e1”(r4+ELr2)tZ(to), (45) 

X(t) = e(T1-TzL)tX_(t~) + cHe’i’(r4+ELr2)tl’(to), (46) 

Y(t) = -Le’T’-T2L”X_(to) 

+(I - ~H)e’i”(Lf~LT2)‘y(t). (47) 

Partitioning (44)-(47) according to (26)-(27) will 
produce all components of matrices M(t) and N(t), 
so that the required solution of (8) is given by 
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Thus, in order to obtain the solution of ill-defined dif- 

ferential Riccati equation (8), i.e. p(t), one would 
have to take direct integration of stiff linear differen- 
tial system (13) of size 2n, which takes a total of 8n3 

multiplications per time step [9, method 41. In our ap- 
proach, the total number of multiplication per time step 
is 16(n: + ni). When ni is close to 122, the saving is 

about 32n: multiplications per time step. It should be 
mentioned that although well-defined decoupled lin- 
ear subsystems (37), (39) of size 2ni are in slow time 
scale, and (38), (40) of size 2n2 are in fast time scale, 
after time scaling, we can use same integration step 
size to integrate (37)-(40) in parallel. Furthermore 
the integration step size for (13) is smaller than that 

for (37)-(40) due to the stiffness, the ratio of the step 
sizes depends on E. In other words, in order to obtain 
the solution p(t) over a time duration T, the number 
of step for computing (13) is much larger than that 

for (37)-(40). The smaller the E is, the more compu- 
atation is reduced by the decomposition approach. 

The accuracy of p(t) depends on the accurate solu- 
tions of L in (3 1) and H in (32). Using the Newton- 
type algorithm, we can obtain solutions of L and H 

with any desired accuracy. The computations for L 

and H are negligible as compared with that of solving 

(13) and (37)-(40), since they are independent from 
the time duration T. After having the solution of p(t)_ 
the H, filter gain can then be obtained from (10). 

The proposed algorithm which presents a complete 
solution to our problem is as follows. 
Step 1. Using (34) with (33) to calculate L(‘+” recur- 
sively, then solve (35) to obtain H(j); 
Step 2. Calculate c( to ), z( to ), X_( to ) and Y’( to) from 

Eqs. (37)-(40); 
Step 3. Calculate u(t), Z(t), X(t) and Y(t) from Eqs. 

(44H47); 
Step 4: Calculate P(t) from Eq. (48). 

4. Application example 

In order to demonstrate the proposed method for 

the solution of the H, filter gains, we present an F-8 
aircraft application example [6]. The linearized sys- 
tem model of the motion of the aircraft has four sys- 
tem states: horizontal-velocity deviation; the flight- 
path angle; the angle of attack and the pitch rate. The 

system matrices are 

A1 
0.278386 -0.965256 

= [ 0.089833 -0.290700 1 ’ 
AZ [ 

-0.074210 0.016017 
= 0.012815 -0.001398 1 ’ 

A3 
-0.001815 0.005873 

= [ 0.002850 -0.009223 I ’ 

A4 

-0.030344 0.075024 
= [ -0.075092 -0.016777 I ’ 

B, = [ -;,;$;;i’] , Bz = [I;;:;;;;;;] , 

‘I=[;-3:36]’ “= [-O.O~3152Ood~~;2]~ 

The matrices Gi and G2 represent the specific 
choice of the linear combination of states to be esti- 

mated, 

G,= ;:, , G2= 
[ 1 

The small parasitic parameter s which is roughly the 
ratio of the magnitude of the slow eigenvalues to that 
of the fast eigenvalues, weighting matrices W, V and 
the noise attenuation constant y are: E = 0.025, W = 

0.000315, V = diag[0.000686, 401, R = diag[l, 1] 
and y= 1.44. The initial condition P(Q) = diag[O. 1, 
0.1, 1 .O, 1.01. With the proposed method, simulation 
result for the singularly perturbed matrix differential 
equation (8) is obtained by using the package PC- 
MATLAB for the computer-aided control system de- 

sign [ll]. 
Using (34) and (35), after 5 iterations, we obtain 

matrices L(‘) and H(j): 

-1.7309 -3.5437 -0.8503 -0.1150 

L’5’ = i 0.1298 1.4618 0.0372 0.0131 1 ’ 0.2899 0.6983 0.5196 -0.0134 
-0.3089 -0.6989 0.7262 -0.1822 

0.5258 0.7365 0.8576 -0.0358 

H’S’ = i -0.0135 -0.1839 0.1170 -0.0133 I -0.2932 0.3133 -1.7521 0.1303 
-0.6994 0.7057 -3.5583 1.4669 
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The initial time is selected as to= 0. When t = 0.5, 
using (48) we obtain 

P&t = 0.5) 

i 

0.2795 -0.043 1 3.4242 3.3020 

-0.043 1 0.0777 -0.2456 -0.4599 = 
3.4242 -0.2456 116.72 76.6439 ’ 
3.3020 -0.4599 76.6439 106.7942 I 

(49) 

The obtained solution Papp, given by (49), is iden- 

tical to the solution of the global Riccati differential 
equation (8) obtained by using any standard method 
[9]. However, in our method we have been using 
the reduced-order algorithm and the problem of ill- 
conditioning due to the singularly perturbed structure 
is eliminated. After getting the solution of (8), the H, 
filter gain can be obtained by (10): 

zc(t = 0.5) = P&t = 0.5)CTV1 

= 

24.0672 0.0113 
-3.3522 -0.0075 
558.6291 0.1212 
778.3835 0.1485 I. (50) 

5. Conclusions 

The H, filter gain of singularly perturbed systems 
is obtained. Instead of solving nonlinear ill-defined 
differential Riccati equation, we determine the H, fil- 

ter gain directly from the decomposed Hamiltonian 
form of the system. The proposed method overcomes 
the stiffness problem and considerably reduces the 
amount of required computation. 
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