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Abstract-The algebraic regulator and filter Riccati equa- 
tions of weakly coupled dticrere-rime stochastic linear control 
systems are completely and exactly decomposed into 
reduced-order continuous-time algebraic Riccati equations 
corresponding to the subsystems. That is, the exact solution 
of the global discrete algebraic Riccati equation is found in 
terms of the reduced-order subsystem nonsymmetric 
continuous-time algebraic Riccati equations. In addition, the 
optimal global Kalman filter is decomposed into local 
optimal filters both driven by the system measurements and 
the system optimal control inputs. As a result, the optimal 
linear-quadratic Gaussian control problem for weakly 
coupled linear discrete systems takes decomposition and 
parallelism between subsystem filters and controllers. 

1. Introduction 
The theory of weakly coupled control systems has been very 
well documented in the control literature, (Kokotovic et al., 
1969; Gajic et al., 1990, Gajic and Shen, 1993; and references 
therein). Discrete-time linear control systems have been the 
subject of recent research (Shen and Gajic, 199Oa, b). In this 
paper we introduce a completely new approach that is pretty 
much different than all other methods used so far in the 
theory of weak coupling. The new approach is based on a 
closed-loop decomposition technique that guarantees 
complete decomposition of the optimal filters and regulators 
and distribution of all required off-line and on-line 
computations. 

In the regulation problem (optimal linear-quadratic 
control problem), we show how to decompose exactly the 
weakly coupled discrete algebraic Riccati equation into rrvo 
reduced-order continuous-time algebraic Riccati equations. 
Note that the reduced-order continuous-time algebraic 
Riccati equations are nonsymmetric, but their O(e*) 
approximations are symmetric. The Newton method is very 
efficient for solving these nonsymmetric Riccati equations, 
since initial guesses O(c’) close to the exact solutions can be 
easily obtained. It is important to note that it is easier to solve 
the continuous-time algebraic Riccati equation than the 
discrete-time algebraic Riccati equation. 

In the filtering problem, in addition to using duality 
between filter and regulator to solve the discrete-time filter 
algebraic Riccati equation in terms of the reduced-order 
continuous-time algebraic Riccati equations, we have 
obtained completely independent reduced-order Kalman 

*Received 20 October 1993; revised 10 September 1994; 
received in final form 13 May 1995. This paper was not 
presented at any IFAC meeting. This paper was 
recommended for publication in revised form by Associate 
Editor M. Ikeda under the direction of Editor A. P. Sage. 
Corresponding author Professor Zoran Gajic. Tel. +l 908 
445 3415; E-mail gajic@ece.rutgers.edu. 

t Rutgers University, Department of Electrical and 
Computer Engineering, Piscataway, NJ 08855-0909, U.S.A. 

$ University of Waterloo, Department of Electrical and 
Computer Engineering, Waterloo, Ontario, Canada N2L 
3Gl. 

jilters both driven by the system measurements and the system 
optimal control inputs. In the literature on linear stochastic 
weakly coupled systems it is possible to find exactly 
decomposed reduced-order Kalman filters for wntinuous- 
time systems (Shen and Gajic, 199Oc) and for discrete-time 
systems (Shen and Gajic, 199Ob), but these filters are driven 
by the innovation processes, so that additional wmmunica- 
tion channels have to be formed in order to construct the 
innovation processes. In the last part of this paper we use the 
separation principle to solve the corresponding linear- 
quadratic Gaussian control problem. 

2. Linear-quadratic control problem 
Consider a linear time-invariant discrete system 

x(k + 1) = Ax(k) + Ru(k) + Gw(k), (1) 

with the corresponding quadratic performance criterion 

J = : 5 [x(k)=Qx(k) + u(h)=Ru(h)]. (2) 
k=O 

The weakly coupled structure of (1) and (2) gives the 
following partitions (Gajic and Shen, 1993): 

where x1 E IV’* and x2 E I?‘2 are state variables wrrespond- 
ing to two weakly coupled subsystems, ui E w”i, i = 1,2, are 
control inputs, and l is a small coupling parameter. In 
addition, it is assumed that det A = O(1) edet A, = O(1) 
and det A, = O(1) (Gajic and Shen, 1993). 

It is well known that the solution to the above optimal 
regulation probem is given by 

u(k) = -R-‘R=A(k + 1) = -(R + R=P,R)-‘R=P,Ax(h) 

= -F(e)x(k) = -[e;‘), $7 
1 
x(k), (5) 

where A(k) is a costate variable and P, is the positive- 
semidefinite stabilizing solution of the discrete algebraic 
Riccati equation given by (Dorato and Levis, 1971; Lewis, 
1986): 

P, = Q + ATPr(I + SF’,)-‘A 

= Q + A=P,A - A=P,B(R + R=P,B)-‘R=P,A. (6) 

Such a solution exists under the standard stabilixability- 
detectability assumption imposed on the triple (A, B, Q). 
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The Hamiltonian form of (1) and (2) can be written as the 
forward recursion (Lewis, 1986) 

(7) 

where 

H,= 
/, + BR-'BTA-~TQ -BR- ‘BTA -1 

-A -‘T’Q A 4 1 (8) 

is a symplectic matrix that has the property that its 
eigenvalues can be grouped into two disjoint subsets I, and 
Tz, such that for every A, E I, there exists Ad E Tz satisfying 
AcAd = 1, and we can choose either I, or Tz to contain only 
the stable eigenvalues (Salgado et al., 1988). 

Partitioning the vector A(k) such that A(k) = 
[AT(k) AT(k) with A,(k) E W”I and A,(k) E W”?, we get 

It has been shown in Gajic and Shen (1993, p. 181) that the 
symplectic matrix (7) has the form 

(10) 

Note that in the following there is no need for analytical 
expressions for matrices with an overbar. These matrices 
have to be formed by the computer in the process of 
calculations, which can be done easily. Interchanging 
subvectors in (9) yields 

where 

Introducing the notation 

we have the weakly coupled discrete system 

L’(k + 1) = T,,U(k) + cTZ, V(k). 

V(k + 1) = cT,,CJ(k) + T,,V(k). 

11) 

(12) 

(13) 

(14) 

Applying the transformation (Gajic and Shen, 1989, 1993) 

to (14) produces two completely decoupled subsystems: 

= v(k + 1) = (T,, - •ZLK)~(k), (16) 

= 5(k + 1) = (L + &T2,)5(k), (17) 

where L, and H, satisfy 

H,T,, - T,,H, + T,, - e2HrT2,Hr = 0, (18) 

L,(T,, + E*H~T~~) ~ (T,, ~ c*T2,Hr)L, - T,, = 0. (19) 

By assuming that E is sufficiently small, the unique solutions 
of (18) and (19) exist under the condition that the matrices 
T,, and -T4, have no eigenvalues in common (Gajic and 
Shen, 1989). The algebraic equations (18) and (19) can be 
solved using the Newton method (Gajic and Shen, 1989) 
which converges quadratically in the neighborhood of the 
sought solution. The good initial guess required in the 
Newton recursive scheme is easily obtained, with an accuracy 
O(E*), by setting E =0 in those equations, which requires 
solution of linear algebraic Lyapunov equations. Note that 
(18) and (19) could have been obtained in completely 
decoupled form if, instead of the transformation of Gajic and 
Shen (1989), we had used the transformation developed in 
Qureshi (1992) (see also Gajic and Shen, 1993, p. 74). 

The rearrangement and modification of variables in (11) is 
done by using a permutation matrix E of the form 

From (13). (15)-(17) and (20) we obtain the relationship 
between the original coordinates and the new ones: 

(21) 

Since A(k) = P,x(k), where P, satisfies the discrete algebraic 
Riccati equation (5). it follows from (21) that 

In the original coordinates, the required optimal solution 
has a closed-loop nature. We have the same characteristic for 
the new systems (16) and (17): that is (Su and Gajic, 1992) 

(23) 

Then (22) and (23) yield 

It can be shown from (21) that II,=1 + U(E)+I-I,, = 
I + O(E), IIar = U(E), which implies that the matrix inversion 
defined in (24) exists for sufficiently small E. 

Following the same logic, we can find P, by introducing 

and this yields 

(25) 

The required matrix in (26) is invertible for small values of E, 
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since from (25) we have Q=Z+ O(e)+&,=1 + O(e), 
Grr = O(e). Partitioning (16) and (17) as 

[;:I: 1 :;I = [z:: :::l[,“::y 
= CT,, - l 27Wr)[ $3 (27) 

E;Ik” 1 :;I = K:: “b::l[::::;l 
= G + EzKm g; [ 1 , (28) 2 

and using (23) yields two reduced-order nonsymmetric 
algebraic Riccati equations. 

Praar, - a,,P, - a3, + Praa2,Pra = 0, (29) 

&bb,r - b4reb - &r + Prbb2rcb = 0. (30) 

It is very interesting that the algebraic Riccati equation of 
weakly coupled discrete systems is completely and exactly 
decomposed into two reduced-order nonsymmetric 
continuous algebraic Riccati equations (29) and (30). These 
are much easier to solve. The existence of unqiue solutions 
for the continuous algebraic Riccati equations (29) and (30) 
is guaranteed for sufficiently small z by the implicit function 
theorem and by assuming stabilizability-detectabiltiy of the 
subsystems (A,, B,, Q,) and (A4, Bq, Q4) (see Su and Gajic, 
1992). 

It can be shown that 0(e2) perturbations of (29) and (30) 
lead to the symmetric reduced-order discrete-time algebraic 
Riccati equations obtained in Shen and Gajic (1990b). The 
solutions of these equations can be used as very good initial 
guesses for the Newton method for solving the obtained 
nonsymmetric algebraic Riccati equations (29) and (30). 
Another way to find initial guesses 0(e2) close to the exact 
solutions is simply to perturb the coefficients in (29) and (30) 
by 0(r2), which leads to the reduced-order nonsymmetric 
algebraic Riccati equations 

-- - 
P$jj)A,, - A;,,P$:’ - Qlr + P$jj).S,rP;sj) = 0, 

-- 
P$A4, - AT2rP$.’ - Qbr + P$s;;;P$ = 0. 

(31) 

The nonsymmetric algebraic Riccati equations have been 
studied in Medanic (1982). An efficient algorithm for solivng 
the general nonsymmetric algebraic Riccati equation is 
derived in Avramovic et al. (1980). 

The Newton algorithm for (29) is given by 

Pg+‘)(al, + a,,Pc) - (adr - P$)a2,)P(‘+‘) 

=a3,+ Pga,,Pii, i =0, 1, 2,. (32) 

The Newton algorithm for (30) is similarly obtained as 

Ppb+‘)(b,, + b,,P$) - (bdr - P!‘b’b,,)P$+” 

= b,, + P$b,,P!J, i = 0, 1,2, (33) 

The proposed method is very suitable for parallel 
computations. The reduced-order subsystems in the new 
coordinates are given by 

nr(k + 1) = (a,, + a2,P&h(~), (34) 

&(k + 1) = (b,, + bzrP&,(k). (35) 

The importance of the reduced-order techniques for 
solving algebraic Riccati equations for systems containing 
small parameters is demonstrated in Skataric and Gajic 
(1992), where the global eigenvector method for solving the 
algebraic Riccati equation failed to produce the answer for a 
14th-order hydropower plant. However, on decomposing this 
global algebraic Riccati equation into two reduced-order 
algebraic Riccati equations of orders six and eight, the 
method proposed in Skataric and Gajic (1992) has produced 
the desired solution. Note that the ‘Schur method’, according 
to Laub and his co-workers (Kenney et al., 1989, pp. 110) ‘is 
relatively efficient and reliable’. Thus reduced-order tech- 
niques for solving the algebraic Riccati equations are 
desirable. 

3. New filtering method for weakly coupled linear discrete 
systems 

The continuous-time filtering problem of weakly coupled 
linear stochastic systems has been studied by Shen and Gajic 
(199Oc). In this section we solve the filtering problem of 
linear discrete-time weakly coupled systems using the 
problem formulation from Shen and Gajic (199Ob). The new 
method is based on exact decomposition of the global weakly 
coupled discrete algebraic Riccati equation into reduced- 
order local agebraic Riccati equations. The optimal filter gain 
will be completely determined in terms of the exact 
reduced-order continuous-time algebraic Riccati equations, 
based on the duality property between the optimal filter and 
regulator. Furthermore, we have obtained the exact 
expressions for the optimal reduced-order local filters both 
driven by the system measurements. This is an important 
advantage over the results of Shen and Gajic (199Ob, c), 
where the local filters are driven by the innovation process, 
so that additional communication channels have to be used in 
order to construct the innovation process. 

Consider the linear discrete-time invariant weakly coupled 
stochastic system 

x,(k + 1) =A,x,(k) + l A,n,(k) + G,w,(k) + l G2w2(k), 

q(k + 1) = l A3x,(k) + A,x,(k) + l G3w,(k) + G4w2(k), 

x,(O) =x10, x2(0) =x20, (36) 

with corresponding measurements 

where xi E EW are state vectors, wi E lW and vi E W’d are 
independent zero-mean stationary white Gaussian noise 
stochastic processes with intensities W, >O and V, >O, 
respectively, and y, E I@, i = 1,2, are the system measure- 
ments. In the following Ai, G, and C,, i = 1,. ,4, are 
constant matrices. 

The optimal Kalman filter, driven by the innovation 
process, is given by (Kwakernaak and Sivan, 1972) 

l(k + 1) = AZ(k) + K[y(k) - Cf(k)], (38) 
where 

The filter gain K is obtained from 

K=AP,CT(V+CP,CT)-‘, v= (4) 

where Pr is the positive-semidefinite stabilizing solution of 
the discrete-time filter algebraic Riccati equation and is given 
by 

Pr= APrAT - AP,CT(V + CP,C’)-‘CPfAT + GWGT, (41) 

with 

‘=[ezj 21~ w=[; i2]. 
(42) 

Owing to the weakly coupled structure of the problem 
matrices, the required solution Pr has the form 

p = Me) @t-2(E) f [ 4.(~) 1 43(r) . 
(43) 

Partitioning the discrete-time filter Riccati equation given 
by (41) in the sense of weak-coupling methodology, will 
produce a lot of terms and make the corresponding problem 
numerically inefficient, even though the problem order 
reduction is achieved. Using the decomposition procedure 
given in the previous section and the duality property 
between the optimal filter and regulator, we propose a new 
decomposition scheme such that the subsystem filters of the 
weakly coupled discrete systems are completely decoupled 
and both are driven by the system measurements. 
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The desired decomposition of the Kalman filter (38) will 
be obtained by using duality between the optimal filter and 
regulator, and the decomposition method developed in 
Section 2. Consider the optimal closed-loop Kalman filter 
(38) driven by the system measurements; that is, 

f,(k + 1) = (A, - K,C, - l ‘K,C$,(k) 

+ e(A2 - K,C2 - K,C,)12(k) 

+ Kf Y,(k) + EK2Y,(k)3 
(44) 

f,(k + 1) = l (A3 - KjC, - Kz,C&,(k) 

+ (A, - K4C4 - l ‘K&)P&) 

+ l K3y,(k) + KhY,(k). 

By using (36) and duality between the optimal filter and 
regulator, that is, 

A -+ A”. Q -+ G WC”-, B + C”. 

BR-‘B’ + C’V -‘C, 

the filter ‘state-costate equation’ can be defined as 

(45) 

where 

(46) 

H = AT+drV ‘CA ‘GWG’ -C’V ‘CA ’ 
f -A ‘GWG” 

A / 
1 

(47) 

Partitioning h(k) as A(k) = [h:(k) ~[(k)]‘, with A,(k) E R”I 
and A,(k) E WI, (46) can be rewritten as 

Interchanging the second and third rows yields 

where 

These matrices comprise the system matrix of a standard 
weakly coupled discrete system, so that the reduced-order 
decomposition can be achieved by applying the decoupling 
transformation from Section 2 to (49), which yields two 
completely decoupled subsystems: 

(52) 

Note that the decoupling transformation has the form of 
(15). with Hf and Lt matrices obtained from (18) and (19) 

with the T,, taken from (SO). By duality, the 
reduced-order nonsymmetric algebraic Riccati 
hold: 

eaaIf - a4Ff0 - a3f + Pfaa2fP, = 0. 

Pfd,f - b.sfPfh - bxr + Pfhb2fb2fPfh = 0. 

Using the permutation matrix 

following 
equations 

(53) 

(54) 

we can define 

“t=[;:; ;::]=ET[‘-;y -;L’]E. (56) 

Then the desired transformation is given by 

Tt=Il,,+II,,P,. (57) 

The transformation Tt applied to the filter variables (44) as 

= T, I- L A, - K,C, - e’K& l (Az - K, Cz - K2C4) 

443 - K,C, - K,C,) A, - K4C4 - l ‘K& I 

(58) 

(59) 

such that the complete closed-loop decomposition is 
achieved: that is. 

il,(k+I)=(a,,+a,rP,)‘rj,(k)+K,y(k), 

%(k + 1) = (b,r+ bztPr,Jr%(k) + &y(k), 
(60) 

where 

= Tf =K. (61) 

It is important to point out that the matrix Pf in (57) can be 
obtained in terms of Pr, and Pfh by using an expression dual 
to (26): that is, 

with L&t. RZf. S23t and Rdf obtained from 

The results obtained can be summarized in the following 
lemma. 

Lemma 1. Given the closed-loop optimal Kalman filter (44) 
of a linear discrete weakly coupled system, there exists a 
nonsingular transformation matrix (57) that completely 
decouples (44) into reduced-order local filters (60), both 
driven by the system measurements. Furthermore, the 
decoupling transformation (57) and the filter coefficients 
given in (51) and (52) can be obtained in terms of the exact 
reduced-order completely decoupled continuous-time Riccati 
equations (53) and (54). 

4. Linear-quadratic Gaussian optimal comrol problem 
This section presents a new approach in the study of the 

LQG control problem of weakly coupled discrete systems 
when the performance index is defined on an infinite-time 
period. The discrete-time LQG problem of weakly coupled 
systems has been studied in Shen and Gajic (1990b). We shall 
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solve the LQG problem by using the results obtained in 
previous sections. That is, the discrete algebraic Riccati 
equation is completely and exactly decomposed into two 
reduced-order continuous-time algebraic Riccati equations. 
In addition, the local filters will be driven by the system 
measurements, in contrast to the work of Shen and Gajic 
(199Ob), where the local filters are driven by the innovation 
process. 

Consider the weakly coupled discrete-time linear stochastic 
control system represented by (Shen and Gajic, 199ob) 

x,(/c + 1) =A,x,(k) + l AA,xz(k) + B,uI(k) 

+ l B~zuz(k) + G,w(k) + eG,w,(k), 

+(k + 1) = eAA3x,(k) + A.&k) + l B3uI(k) 
(64) 

+ B,u,(k) + eG+v~(k) + Ghk), 

with the performance criterion 

J = $E{ & [z=(k)z(k) + uT(k)lu(k)]], R > 0, (65) 

where xi E R”i, i = 1,2, are the state vectors, ui E R”g, 
i = 1,2, are the control inputs, yi E Rh, i = 1,2, are the 
observed outputs, wi E Rrl, i = 1, 2, and vi E R’l, i = 1, 2 are 
independent zero-mean stationary Gaussian white noise 
processes with intensities Wi > 0 and v >O, i = 1,2, 
respectively, and z E w”i, i = 1,2, are the controlled outputs 
given by 

z(k) = D,x*(k) + D&k). (66) 

All matrices are of appropriate dimensions and are assumed 
to be constant. The optimal control law of the system (64) 
with performance criterion (65) is given by (Kwakemaak and 
Sivan, 1972) 

u(k) = -E(L), (67) 

with the time-invariant filter 

f(k + 1) = Af(k) + h(k) + K[y(k) - Cn(k)], (68) 

where 

The regulator gain F and filter gain K are obtained from 

F = (R + BTP,B)-‘BTP,A, (70) 

K = AP,CT(V + CP,CT)-‘, (71) 

where P, and Pr are positive-semidefinite stabilizing solutions 
of the discrete-time algebraic regulator and filter Riccati 
equations respectively, given by 

P, = DTD + A’Z’,A - ATP,B(R + B=P,B)-‘BTP,A, (72) 

Pt = APrAT - AP,CT(V + CP,CT)-‘CP,AT + GWGT, (73) 

with 

D=[fd, Z]f G=[,“d, 21. 
(74) 

The required solutions P, and Pt have the forms 

p = Prl(e) 
[ 

eprz(c) 
r 1 [ 

p = P,,(e) •z(~) 
eP%e) Pr3(e) ’ f 4%~) 1 &(~I . 

(75) 

In obtaining the required solutions of (72) and (73) in 
terms of the reduced-order problems, Shen and Gajic 
(199Ob) have used a bilinear transformation technique 
introduced in Kondo and Furuta (1986) to transform the 
discrete-time algebraic Riccati equation into the continuous- 
time algebraic Riccati equation. In this case the exact 
decomposition method of the discrete algebraic regulator and 
filter Riccati equations produces two sets of two reduced- 

order nonsymmetric algebra Riccati equations; that is, for the 
regulator 

(76) 

P,bbl, - b4rcb - b3, + &b&r&b = 0, 

and for the filter 

(77) 

&air - a4& - a3f + Sa2fPfa = 0, (78) 

Pfbblf - b4fPfb - b3f + Pfbb2fPfb = O, (79) 

where the unknown coefficients are obtained from the results 
in the previous sections. The Newton algorithm can be used 
efficiently in solving the reduced-order nonsymmetric Riccati 
equations (76)-(79) (Su and Gajic, 1992; Gajic and Shen, 
1993). 

It was shown in the previous section that the optimal 
global Kahnan filter, based on the exact decomposition 
technique, is decomposed into reduced-order local optimal 
filters both driven by the system measurements. These local 
filters can be implemented independently, and are given by 

%(k+ 1)=(a,,+a2fPfa)Tiil(k)+Kl~(k)+Blu(k), 

+2@ + 1) = @,f+ bzfPfb)Tiiz(k) + KzY@) + Bzu(kh 

(W 

where B1 
[ 1 B2 

= TFTB = (II,, + I12rPf)--TB. (81) 

The optimal control in the new coordinates can be 
obtained as 

T ij,(k) _ ^ u(k) = -Ff(k) = -FTf 
[ 1 %#I - -PI U[ ;;I:; , 1 (82) 

where F, and F2 are obtained from 

[F, F2] = FT: = (R + B=P,B)-‘BTP,A(&+ rIqfPf)=. (83) 

The optimal value of J is given by the well-known form 
(Kwakernaak and Sivan, 1972) 

Jopf = $ tr [DTDPf + P,K(CP,C’ + V)KT], 

where F, K, P, and P, are obtained from (70)-(73). 

(84) 

5. Conclusions 
A new approach to solving the LQG optimal control for 

linear weakly coupled discrete systems has been proposed. 
The importance of the proposed method lies in the fact that 
the optimal control and filtering can be completely and 
exactly decomposed into local level subproblems, which 
reduces both off-line and on-line required computations and 
allows parallelism of the filtering and control tasks. In 
addition, a very important feature of the obtained results is 
that the natural filter configuration of being driven by the 
system measurements and optimal control is preserved for 
the local filter design. The obtained results are also 
applicable to the weakly coupled linear control systems 
having off-diagonal blocks of zeros in the matrices R, V and 
W replaced by O(e) quantities. In that case the procedure is 
exactly the same, although the derivations are a little bit 
more complicated. 
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