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Abs t rae t - -A new adaptive state estimation algorithm, 
namely adaptive fading Kalman filter (AFKF), is proposed to 
solve the divergence problem of Kalman filter. A criterion 
function is constructed to measure the optimality of Kalman 
filter. The forgetting factor in AFKF is adaptively adjusted 
by minimizing the defined criterion function using measured 
outputs. The algorithm remains convergent and tends to be 
optimal in the presence of model errors. It has been 
successfully applied to the headbox of a paper-making 
machine for state estimation. 

1. Introduction 
CONTROL SYSTEM design very often involves the estimation of 
unmeasurable states. Kalman and Bucy (1961) introduced an 
effective algorithm to realize the optimum filter for Gaussian 
processes. The recursive computation nature of the algorithm 
has attracted much attention. This well-known Kalman 
filtering technique has been widely employed in inertial 
navigation (Tze-Kwarfung and Grimble, 1983), target 
tracking (Chang and Tabaczynski, 1984) and industrial 
processes (Bialkowski, 1983). 

In spite of its successful use, Kalman filter still has some 
drawbacks. Inaccuracy in system models may seriously 
degrade the performance of the filter. Particularly, the 
usefulness of the filter may be nullified by the "divergence" 
phenomenon (Fitzgerald, 1971). The linear model of a real 
system is usually obtained as a result of either purposeful 
approximation and simplification or lack of knowledge about 
the true characteristics of the system, which is always 
erroneous. The convergence problem is hence becoming a 
main research subject of Kalman filter. 

Shellenbarger (1966) considered the problem of unknown 
process noise covariances and computed maximum likelihood 
estimates of the unknown variable from the residuals. Ohap 
and Stubberud (1976) provided an adaptive algorithm to 
determine the optimal gain matrix for discrete time systems 
with stationary ergodic white noise. Masreliez and Martin 
(1977) and Tsai and Kurz (1983) compensated model errors 
by noises, and thus suggested the noise distributions be 
non-Gaussian. They proposed a robust Kalman filter based 
on the m-interval polynomial approximation (MIPA). 
Another approach to the divergence problem is to limit 
effective filter memory length. Fagin (1964) and Sorenson 
and Sacks (1971) pointed out that a given linear model is 
adequate for a certain duration of time, but may be 
inadequate over long time intervals. Thus, they suggested 
limiting the memory of the Kalman filter by using 
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exponential fading of past data via forgetting factors. On the 
other hand, it is found that it is advantageous to vary the 
time constant of the exponentially weighted filter when there 
are unpredictable jumps and drifts. Ydstie and Co (1985) 
proposed a variable forgetting factor (VFF) algorithm in 
which forgetting factors were determined based on "memory 
length". Rapid fading occurs when data give poor fit with the 
model, and slow fading for a good fit. 

The above techniques have successfully improved the 
convergence of Kalman filter. However, there are still 
further needs to improve the optimality of filter. This paper 
deals with the optimality and convergence of Kalman filters 
in the presence of both model parameter and noise 
covariance errors. New algorithms are developed to 
adaptively adjust the forgetting factors according to the 
optimality condition of the Kalman filter. Thus the filter 
remains convergent and tends to be optimal in the cases 
where there exist model errors. The algorithms are efficient 
and have very moderate computation burden, and are thus 
convenient to be implemented for industrial applications. 

2. Problem formulation 
Consider a linear, discrete time, stochastic multivariable 

system 

x (k  + 1) = ¢b(k + 1, k )x (k )  + G ( k ) w ( k )  (1) 

y(k) :- H(k)x(k) + o(k), (2) 

where x (k )  is the n x l  state vector, y(k)  is the m x l  
measurement vector, ~ ( k + l , k )  and H(k)  are  state 
transition matrix and observation matrix, respectively, w(k)  
and v (k )  denote sequences of uncorrelated Gaussian random 
vectors with zero means, the covariance matrices of which 
are 

EIw(k )wT (j)i = Q(k  )6ki (3) 

E[v(k  )vr ( j ) ]  = R (k  )~kj. (4) 

The initial state x(0) is specified as a random Gaussian vector 

E[x(0)l = ~(0), EI(x(0) - ~(0))(x(0) - ,~(0)) r l  = e(0). (5) 

If the system is completely observable, the equations 
describing the optimal estimator (the normal Kalman filter) 
are (Maybeck, 1982) 

$'(k I k - 1) = ~(k,  k - 1).~(k - 1) (6) 

£(k  ) = ~ ( k  I k - 1) + K(k  ) lY(k  ) - H(k  )Yc(k I k - 1)1, (7) 

where 

K(k )  = e ( k  I k - 1)Hr(k)  

x [H(k )P(k  t k - 1 )Hr(k )  + R(k)] ' (8) 

P(k  + 1 I k)  = dp(k + 1, k)P(k)dpr(k  + 1, k) 

+ G ( k ) Q ( k ) G r ( k )  (9) 

P(k)  = [1 - K ( k ) H ( k ) ] P ( k  I k - 1). (10) 

1333 
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The normal Kalman filter provides the best (minimum 
variance, unbiased) estimation 2(k ]k - 1) of the state x(k) 
with the given observations y ( k -  1), y ( k - 2 )  . . . . .  y(0) 
when the linear model for the system dynamics and 
measurement relation are perfect. Unfortunately, when the 
model is developed on the basis of an erroneous model, the 
filter can "'learn the wrong state too well" (Synder, 1973). 
Because the filter estimation depends highly upon the past 
data, and the system model degrades the measurement 
information from the distant past, the heavy reliance on the 
past data may cause state estimation to diverge. In order to 
overcome this problem, the filter should be capable of 
eliminating the effect of older data from a current state 
estimate if these data are no longer meaningful due to the 
erroneous model. Fagin (1964) initiated a method to limit the 
memory of the Kalman filter by using exponential fading of 
past data via forgetting factor it(k). The equations describing 
the fading Kalman filter are identical to those of the normal 
Kalman filter in equations (6)-(10) except the forgetting 
factor A(k) in the time propagation error covariance equation 

P(k + 1 I k) =it(k + l)~(k + I, k)P(k)@r(k + I, k) 

+ G(k)Q(k)Gr(k) (II) 

with A(k)-> 1. As a result, the influence of the most recent 
measured data in state estimation is overweighted and thus 
divergence is avoided. 

The performance of the exponential fading Kalman filter 
fully depends on the selection of the forgetting factor. 
Therefore,  how to generate optimal forgetting factor 3.(k) is 
the key problem in AFKF.  In the following section, we 
present three algorithms for choosing optimal forgetting 
factor X(k) to improve the convergence and optimality of 
Kalman filter. 

3. Main results 
In developing the algorithms, we employ an important 

property of the optimal filter, that is, the residual z(k)  
defined in the following equation is a white noise sequence 
when optimal filtering gain is used 

z(k ) = y ( k ) -  H(k  )2(k I k - 1). (12) 

For an arbitrary gain K(k), it can be shown that the 
covariance of the residual is 

Co(k) = E[z(k)zr(k)] = H(k)P(k I k - l )Hr(k)  + R(k)  

(13) 
and the auto-covariance of the residual is 

Ci(k) = E[z(k + j)z r(k)] 

= H(k + j)~(k + j, k + j -  I) 

x [ I -  K(k + j -  l)H(k + j -  i ) ] . . -  ~(k + 2, k + l) 

x [ I -  K(k + l)H(k + l)]~(k + I, k) 

x [P(k I k - l)Hr(k) - K(k)Co(k)] 

Vj = 1, 2, 3 . . . . .  (14) 

Substituting equations (8) and (13) into equation (14), Cj(k) 
is identical to zero. This confirms that the sequence of 
residuals is uncorrelated when the optimal gain is used. 

In practical situations, the real covariance of the residual 
Co(k ) will be different from a theoretical one given in 
equations (8)-(10) and (13) because of the errors in model 
parameters and noise covariances. Thus, Ci(k) may not be 
identical to zero. From equation (14), we know that if a 
forgetting factor can be chosen so that the last term of Ci(k ), 
which is the only common term of Cj(k) for all j = 1, 2 . . . . .  
be zero 

P(k I k - l)Hr(k) - K(k)Co(k ) = 0, (15) 

then K(k) is optimal. In other words, if the gain is optimal, 
equation (15) holds. This forms the basis for the adaptive 
filtering algorithms developed below. 

It should be noted that Co(k ) in equation (15) is computed 
from measured data, rather than from equations (8)-(10) 
and (13). 

Defining 

S(k) = e (k  I k - I ) H '  (k) - I((k)C,,(k) (lO) 

the optimality of the Kalman filter can be judged by a scalar 
function defined by 

i=1  ] = l  

where Sq(k) is the (i, j ) th element of S(k). The smaller the 
f ( k )  is, the closer the filter is to the optimum. The absolute 
minimum of f ( k )  means the most closely optimal estimate. 
Hence the forgetting factor ~.(k) should be chosen to 
minimize f ( k  ). 

It should be pointed out that Cj(k) depends also on the 
other  terms in equation (14). However,  these terms only 
include the gains in the future, K(k +j  - 1) for j = 2, 3 . . . . .  
C,(k) depends just on the term S(k). It is reasonable to 
consider equation (t5) as a performance criterion, that is, to 
adjust the current gain matrix to improve the performance of 
the filter. 

Since the measurement matrix H(k) is involved in 
optimality condition (15) and in the relation between K(k) 
and P ( k l k - 1 )  [equation (8)], we assume that H(k) is 
perfect. This assumption is reasonable in most real world 
processes since measurement relations are usually much 
easier to obtain than the system dynamics. 
Algorithm 1. (Steepest descent AFKF algorithm.) Given 
system equations (1)-(5),  the optimal forgetting factor can 
be obtained through iterative computation of the equation 

Oft(it; k) ¥l  = 0, 1, 2 . . . . .  (18) 
i t t + ' ( k )  = X t ( k )  - ~ a i t ' ( k )  

with initial conditions 

it°(1) = 1, it°(k) = it(k - 1), (19) 

where k is the time series and I is the iteration times in a time 
instant. 0 < ,iv < 1 is the step length in the gradient method. 

At  the p th  iteration, if the following condition holds 

pY(k) - i tP- '(k)l  < e (20) 

stop iteration and take 

Mk) = max {1,)."(k)}. (21) 

The gradient term in equation (18) is presented as 

ar'(it,k) ~ ,  ~ast(k)~ 
- So (k ) t o~ (~ )q ,  (22) 9)/(k) i=l j=l 

where 

St(k) = pt(k I k - l ) H r  (k ) - Kt(k )Co(k ) 

OSl(k) 
aitt(k ) 

and 

(23) 

- - =  ~(k ,  k - 1)P(k - l ) ~ r ( k ,  k - l )Hr(k)  

x {1 - [T'(k)l ~C,,(k)} + K ' ( k ) H ( k )  

× ~(k ,  k - 1)P(k - 1 )~r (k ,  k - 1)Hr(k) 

x {1 + IT'(k)]- 'Co(k)} (24) 

Pt(k  + 1 [ k) = Xt(k + 1)~(k + 1, k ) P ( k ) ~ r ( k  + 1, k)  

+ G ( k ) Q ( k ) G r ( k )  (25) 

K' (k )  = P ' (k  I k - 1 )Hr (k ) IT ' ( k ) ]  ' (26) 

Tt(k)  = H ( k ) p t (  k I k - 1)Hr(k) + R ( k )  (27) 

Pt(k)  = [1 - K t ( k ) H ( k ) ] P t ( k  [ k - 1). (28) 

The value of Co(k) can be estimated using recursive 
equations 

Co(k) = G,(k )/G2(k ) (29) 

G,(k) = G.(k - 1)/X(k - 1) + z (k ) z r (k )  (30) 

G2(k ) = G2(k - l)]).(k - 1) + 1 (31) 
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with initial conditions 

G,(0) = 0, (32(0) = 0. 

Proof. The criterion f() . ;k)  given in equation (17) is a 
nonlinear function of ).(k). The problem of searching optimal 
forgetting factor ).(k) is equivalent to the problem of 
searching the absolute minimum of nonlinear function f (k ) .  
Applying the steepest descent method, the forgetting factor 
can be calculated by 

af().; k) ).(k + 1) = ).(k) - q0 ~ . (32) 

In order to find the gradient term in equation (32), taking 
derivations in equations (11) and (13) generates the following 
equations 

OP(k I k - 1) 
O).(k) = @(k, k - 1)P(k - 1)@r(k, k - 1) (33) 

aCo(k) = HtU~ aP(k I k - 0).(k) - -"-"  a).(k) 1) H T ( k ) .  (34) 

Substituting equation (8) into (16) gives 

S(k)  = P(k I k -  1 ) H r ( k ) [ I -  r-'(k)Co(k)l, (35) 

where T(k)  is defined in equation (27). Using equations (33) 
and (34) and differentiating equation (35) with respect to 
).(k), equation (24) (without the superscript l) is obtained. 

From equation (17), equation (22) (without the superscript 
l) is obvious. 

When more than one correction on ).(k) is needed in a 
time instant, it is necessary to add superscript l in related 
equations to indicate the number of iteration. Applying the 
above results and adding superscript l in equations (8), (10), 
(11), (34) and (35) forms equations (22)-(28). 

To estimate Co(k ) by using on-line measured data, an 
unbiased consistent estimate for Co(k ) based on k successive 
residuals is presented as 

C o ( k ) = k - ~  ~= z( i )zr( i  ). (36) 

Then a fading estimation formula for Co(k) can be given to 
overweight the most recent measured data 

k - I  
Oc,z(i)zr(i)  + z ( k ) z r ( k )  

C o ( k ) -  i = l  k = l  , (37) 

Z Oi.k+l 
i = l  

where 
k - I  

oi., = l-I 1 (38) 
j=i ) ' ( j )"  

Since ) . ( j )> 1 and thus oi. , > oi_L,,  it is obvious that the 
most recent data are overweighted. For the convenience of 
real-time application, we define 

k - I  

Gt(k) = ~ oi. ,z( i)zr(i)  + z ( k ) z r ( k )  (39) 
i = l  

k - I  

G,(k) = Y.  o,,~ + 1. (40) 
i =1  

It is easy to show that Gl(k ) and G(k) can be computed 
recursively from (30) and (31). This completes the proof. 

To improve the convergency and efficiency of the iteration 
process, the Armijo algorithm (Polak, 1971) can be applied 
to choose step size. 

Defining 
C()'°; k) = {)' i f() ' ;  k) <f().o; k)) (41) 

and 
0(q0; ).; k) = [f(,!. + q0h().); k) - f ( ) . ;  k)] 

- (Vf().; k), h()'; k) ) ,  (42) 

where 
vf ( ) . ;  k)  = - a f ( ) . ;  k)  

a ) . (k)  ' 

and h().; k) is given below. The Armijo algorithm can be 
stated as follows: 
Step 1. Select ).°(k) such that the set C().°; k) is bounded; 
select tr ~ (0, 1), fiE(0, 1) and p > 0 .  
Step 2. Set l = 0. 
Step 3. Compute h().t; k) = -D(). t ;  k)Vf().t; k). 
Step 4. If [h().;k)J-<6 (E is a small positive scalar), set 
).(k) = max {1, )J(k)} and stop; otherwise, go to next step. 
Step 5. Set g = p. 
Step 6. Compute 0(p;).t; k). 
Step 7. If 0 (# ; ) . t ; k )<0 ,  set q~t=~u and go to next step; 
otherwise set/~ = fl~ and go to Step 6. 
Step 8. Set ). '+m(k)=).t(k)-q~lh(). ';k); set l = l +  1 and go 
to Step 3. 

In this paper, we select D().t; k ) =  1, ).°(1)= 1, ).°(k)= 
).(k - 1), a~ = ½, f l e  (0.5, 0.8) and p = 1. 

Algorithm 1 fails to give an explicit formula for the 
calculation of ).(k). Since iterative computation is involved, it 
may be difficult to apply this algorithm to real-time 
processes. In the remainder of this section, two one-step 
algorithms are developed. 
Algorithm 2. (One-step A F K F  algorithm.)Given system 
state equations (1)-(5) with the following Assumptions 1 and 
2: 
Assumption 1. Q(k), R(k)  and P(0) are all positive definite. 
Assumption 2. The measurement matrix H(k)  is full-ranked. 
The optimal forgetting factor can be computed by 

;~(k) = max {1 ,1 t race  [N(k)M-l(k)]} ,  (43) 

where 

M(k)  = H(k)aP(k, k - 1)P(k - 1)@r(k, k - 1)Hr(k)  (44) 

N(k)  = Co(k) - n ( k ) G ( k  - 1)Q(k - 1) 

x Gr (k  - 1)Hr(k)  - R(k). (45) 

Proof. Substituting equation (8) into the optimality condi- 
tion (15) gives 

P(k I k - 1 )Hr(k ){ l  - [H(k)P(k [k - 1)Hr(k)  

+ n ( k ) l - ' C o ( k ) }  = 0. (46) 

Since P(k I k - 1) is nonsingular and H(k)  is assumed to be 
full-ranked, it is obvious that equation (46) implies the 
following relation 

[ t t (k )e (k  [ k - 1)I tr(k)  + R(k)]- 'Co(k)  = 1 (47) 

o r  

H ( k ) e ( k  I k - 1)Hr(k)  = Co(k) - R(k). (48) 

Equation (48) means that, with Assumptions 1 and 2, the 
optimality condition (15) is equivalent to (13). Substituting 
equation (11) into (48) and reorganizing it generates 

).(k)H(k)@(k, k - 1)P(k - 1)@r(k, k - 1)Hr(k)  

= Co(k ) - H(k )G(k  - 1)Q(k - 1)Gr(k - 1)Hr(k)  - R(k). 

(49) 

Using equations (44) and (45), equation (49) is simplified as 

).(k )M(k ) = N(k  ) (50) 
o r  

) .(k)/= N(k)M '(k), ).(k)-> 1. (51) 

Taking trace in both sides of the equation, we get (43), and 
this completes the proof. 

In equation (43), the inversion of matrix M(k) is involved, 
which will complicate the computation. To avoid inversion 
manipulation, trace is directly taken in both sides of equation 
(50) and this gives Algorithm 3. 
Algorithm 3. (Simplified one-step AFKF algorithm.) Using 
system state equations and conditions given in Algorithm 2, 
the optimal forgetting factor can be computed by the 
following equation 

).(k) : max {1, trace [N(k)]/trace [M(k)]}, (52) 
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where matrices M(k) and N(k) are defined by equations (44) 
and (45). 

In choosing the preferable algorithm, the trade-off 
between performance and real-time computational effort 
should be considered. In fact, simulation and industrial 
application results show that the performance of Algorithm 3 
is quite satisfactory. 

From equations (43)-(45) and (52), the physical meaning 
of optimal forgetting factor is clear: for unknown drifts and 
process changes, the adaptive fading algorithm compensates 
the increasing estimation errors by choosing larger forgetting 
factor. 

The uniformly asymptotical stability of AFKF is obvious 
by applying the results obtained in Deyst and Price (1968) 
and Sorenson and Sacks (1971). 
Remarks. 

(1) When the filtering model is exactly correct, Co(k) is 
given as equation (13). Substituting equation (13) into 
(44)-(45), we have M(k)=N(k) ,  which thus results in 
~.(k) --- 1. This implies that in the case where exact filtering 
model is used, AFKF functions in the same way as the 
normal Kalman filter and provides the optimal (minimum 
variance, unbiased) estimation. When the model errors cause 
the covariance of the residual to deviate from the theoretical 
one, AFKF compensates the model errors by adjusting the 
forgetting factor accgrding to the optimality condition. In 
this way the filter achieves better performance. 

(2) The matrix S(k) has n x m elements. Since only one 
factor ;t(k) can be used to null out terms in S(k), the filter 
may not be exactly optimal. However, since 2(k) is adjusted 
according to the optimality condition of the filter, the 
optimality and convergence of the Kalman filter are surely 
improved. 

4. Simulation studies 
The comparison of performance between normal Kaiman 

filter and AFKF has been undertaken in the cases of model 
coetticient errors and unknown drifts. 

For simplicity, one-dimensional random state model is 
considered. For the scalar system, Algorithms 2 and 3 give 
the same results. 
Case 1. Model coefficient errors. 

The system equations of scalar discrete-time random state 
x(k) are represented as 

x(k + 1)= 0.4x(k)+ w(k) (53) 

y(k ) = x(k ) + v(k ), (54) 

where w(k)-N(O,O,  lZ), v(k)~N(O,O.5 z) and x(0) 

N(2, 0.2~'), and the erroneous filtering model is 

x(k + l )= 0.Sx(k) + w(k) (55) 

y(k) = x(k) + v(k). (56) 

The simulation results are presented in Fig. 1 .  

Case 2. Unknown drifts. 
Consider a random state described by equations 

x(k + 1) = 0.5x(k) + 0.4 + w(k) (57) 

y(k) = x(k)  + v(k), (58) 

where w(k) -N(O, 0.052), v(k) -N(O, 0.05 z) and x(0) 
N(2, 0.052), and the erroneous filtering model is 

x(k + 1) = 0.5x(k) + w(k) (59) 

y(k) = x(k) + v(k). (60) 

The simulation results are presented in Fig. 2. 
From Figs 1 and 2, it is found that the simulation results 

agree with the theoretical ones. During the initial period, a 
larger forgetting factor is generated due to the poor fit of the 
model with the actual process. Normal Kalman filter starts to 
degrade, but AFKF still performs well through adaptively 
adjusting the forgetting factors. After a while, the system 
closes to its new steady state, and the difference between the 
actual state and the estimate becomes smaller, As a result, 
the forgetting factor returns to its normal value---unity. 
Figure 3 shows the time evolution of the forgetting factors 
for Case 1. Sorenson and Sacks (1971) indicated that if the 
model discrepancy is very significant, the fading factor will be 
very large in order to recover the filter from divergence. The 
forgetting factors for Case 2 have a similar behavior. As 
predicted theoretically, AFKF has satisfactory dynamic 
performance, and the residuals of state estimate are almost 
eliminated. It can also be found that the performance of 
Algorithms 1-3 are nearly the same. 

5. Application to paper machine headbox 
We have applied the AFKF algorithm to a real world 

paper machine in a paper Mill in the P.R.C., which produces 
super-thin condenser paper. The headbox section, as shown 
in Fig. 4, is an essential part of the paper machine. Since the 
paper machine has slow machine rate (70mmin- l ) ,  its 
headbox is not pressurized, but open to atmosphere. The 
main purpose of the headbox is to distribute the water/fiber 
suspension onto the wire as evenly as possible: thick stock 
from the machine chest is diluted by white water to form thin 

\ 
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0.5 

0~- 

-0.5 

- actual state 

estimate by algorithm 1 

- - -  estimate by algorithms 2 and 3 

-- estimate by normal KF 

I i k k 

5 10 15 20 25 

FIG. 1. Simulation results with system model errors. 
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FIG. 2. Simulation results with unknown drifts. 
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/ ~ f°rga:ting ~° r  ~r ~g°dthms 2 "d 3 / 

~ ! i i i 

" ~ ! i 
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FIG. 3. Time evolution of the forgetting factor in Case I. 

stock which then flows onto the wire. The flow-rate of both 
thick stock and white water is controlled. 

The dry basis weight of paper sheet on reel is an important 
quality property, which varies with the flow-rate and the 
consistency of stock onto the wire. However, the 
measurement sensor for basis weight is not available in the 
paper machine. The purpose of using AFKF is to obtain an 
estimate of dry basis weight and other states to implement 
control algorithm. 

white water ~u2 ~Ul thick stock 

C1 

FIG. 4. Principle diagram of headbox section. 

The model of the headbox section of the paper machine 
can be described by (Xia, 1989) 

Gt(k + 1) = 0 .8667Gt(k)-  0.0344ul(k - 1) (61) 

Gw(k + 1) = 0.8667Gw(k) - 0.6877u2(k - 1) (62) 

C2(k + 1) = 0.9099C2(k ) + O. 1069Gt(k) - 0.0503Gw(k) 

+ 0.0788Cm(k - 2) (63) 

Bw(k ) = 4.089G~(k - 3) + 1.4910Gw(k - 3) 

+ 1.7533C2(k - 3), (64) 

where C I, C2, Gt, Gw and B,~ are the consistency of thick 
stock, consistency of thin stock, flow-rate of thick stock, 
flow-rate of white water, and dry basis weight, respectively. 
ul and u2 are the changes of the openings of thick stock and 
white water control valves. The sampling interval is 20 s, and 
G1, C1 and C 2 can be measured on-line. 

Denoting 

x(k)=[Gl(k)  Gw(k) C2(k)] r, 

y(k)  = [G,(k)  C2(k)] r, u(k) = [u,(k - 1) u2(k - 1)] r 

and d(k) = Cl(k - 2) as state vector, output vector, control 
vector and disturbance vector of the system, respectively, 
and adding input noise w(k) and measurement noise v(k) to 
the model, then the state space model of headbox section is 
written as 

o o / 
x(k + 1) = 0.8667 0 x(k) 

\0 .1069 -0.0503 0.9099/  

/ -0.0344 _ i . 6 8 7 7 ) u ( k )  

0 

(°/ 
+ 0 d(k)+ w(k) (65) 

\ 0 . 0 7 8 8 /  

O ~ ) x ( k ) + v ( k ) .  (66) 

Algorithm 3 is used to estimate the dry basis weight of 
paper sheet on reel. Figure 5 shows the change of actual and 
estimated basis weights when the opening of thick stock 
valve has a step change. Since there is no on-line 
measurement for basis weight, the actual basis weight is 
obtained by manually testing the paper sheet samples picked 
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FIG. 5. Basis weight with step change in thick stock valve. 

up from the dry end of the paper machine. The filter chooses 
covariances Q(k) = diag (0.42, 0.42, 1), R(k) = diag (0.32, 
0.42), P(0)= diag (0.82, 0.82, 0.82). It is seen that the actual 
and estimated basis weights match very well. AFKF has also 
been applied to a basis weight and moisture control system 
for the paper machine. The computer control system has 
been in operation reliably and satisfactorily. 

6. Conclusions 
In this paper, an adaptive fading Kalman filter algorithm 

for state estimation is proposed. The algorithm improves 
both optimality and convergence. The filter uses the variable 
exponential weighting approach to compensate the model 
errors and unknown drifts. Since there is only one adjustable 
factor in the algorithm, complete optimality may not be 
ensured. In the case where higher degree of optimality is 
required, matrix forgetting factor should be considered 
instead of scalar factor in order to provide different rates of 
fading for different filter channels. 
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