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Abstract: A recursive fixed-point-type method is 
presented to find the optimal control of a state- 
variable model of the megawatt-frequency control 
problem of multiarea electric energy systems. The 
results give the numerical decomposition so that 
only low-order systems are involved in algebraic 
computations. This approach is conceptually 
simple and produces considerable savings of com- 
putation. 

1 Introduction 

With the development of the electrical power industry 
and the interconnection of isolated power systems, very 
large power systems are formed. The most important 
contribution that modern optimal theory has made to 
the control engineers is the ability to handle a large 
multivariable control problem with ease. The engineer 
has only to represent the control system in state-variable 
form and to specify the desired performance mathematic- 
ally in terms of a cost to be minimised. The application of 
the optimal control theory to study the stabilisation and 
optimisation of power systems has been shown in Refer- 
ences 1-4. Owing to the high dynamic order of such 
systems large amounts of computer time and memory 
capacities are required for adequate solution of even the 
simplest cases. To decrease the computations and investi- 
gate the properties of large scale systems, the numerical 
power-series expansion method has been used in the past 
twenty years [a]. Because it is nonrecursive in nature, 
the power-series expansion method becomes very cum- 
bersome and computationally very expensive when a 
high order of accuracy is required. Since the optimal 
control regulator is obtained by solving the Riccati equa- 
tion of the full system, the present paper presents a recur- 
sive fixed point type method to obtain the solution of the 
Riccati equation in terms of reduced-order problems for 
weakly connected multiarea electric energy system. In 
addition, if not all of the state variables are available, the 
optimal control law requires the design of the state 
estimators. For this case, the estimator Riccati equation 
can be solved by the same algorithm. This method is 
conceptually simple and is very suitable for parallel 
programming, since it produces considerable savings of 
computation. 
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2 Problem formulation 

Consider a linear dynamical system composed of two 
subsystems in the form [SI 

il  = A 1 x l  + &A2 x2 + Btu l  + &B2 u2 

i2 = &A3 x 1  + A,  x 2  + &B3 u1 + B ,  u2 (1) 

where xi E Se"' are state vectors, ui E 9'' are control 
inputs, i = 1, 2, and E is a small coupling parameter. This 
dynamical system is represented in general by 

(2) k = AX + Bu 

x = [c: ]  A = B = [E:3 (3) 

The linear-quadratic optimal control problem requires to 
find the control U, which minimises the cost 

C = Lm[xTQx + u ~ R u ]  dt  Q 3 0, R > 0 (4) 

For the purpose of this paper we assume that the struc- 
ture of the matrix Q is consistent with the system matrix 
A, i.e. 

e=[:; 
All problem matrixes defined in eqns. 1-5 are constant 
and of appropriate dimensions. 

3 

The optimal controller that minimises the cost C along 
the trajectories of eqn. 1 weighted by a constant gain 
matrix F is given by [6] 

(6) 
where P is the positive semidefinite stabilising solution of 
the algebraic Riccati equation 

Recursive algorithm for optimal control 

U,,, = -Fop, x = - R - 'BTPx 

P A  + ATP + Q - PSP = 0 S = BR-'BT (7) 
It can be shown that the nature of the solution of eqn. 7 
is [7-81 

By partitioning eqn. 7 compatible to eqns. 3, 5 and 8 we 
obtain three algebraic equations 

P I A ,  + ATPI + Q1 - P1S1P1 

+ E'(P~  A3 + ATP;) - ~ ~ [ ( P 1 S 1 2  + P ,  ZT)P1 

+ ( P l Z  + P,(S, + E2S2,))P;I = 0 (9) 
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P3 A4 + AI P3 + c2(PT A2 + AT P2) + Q 3  

- P3(s2 + EZS,,)P3 - E2{[PT(S, + E'S,,) 

+ P 3 Z T ] P ,  + PTZP,}  = 0 (10) 

P I A ,  + P ,  A ,  + ATP, + A T P ,  

+ Q 2  - PiS,P,  - PiZP3  - P2 S 2  P3 

- &2[(P,S,, + PZZT)P2  + P,S,,P31 = 0 (11) 
where 

s, = B , R ; ' B T ,  s, = B,R;'B: 

s,, = B,R;'B;,  s,, = B , R ; ~ B :  
Z = B,R,'BT + B ,  RS'B: (12) 

Since E is a small parameter, we can define the O(e2) 
approximation of eqns. 9-1 1 as follows: 

P I A l  + ATP, - P , S , P ,  + Q, = 0 

P ,  A, + A:P,  - P 3 s 2 P 3  + Q, = 0 (13) 
and 

P z D 2  + DTPz = -(P,A, + ATP3 + Q 2  - P1ZP3) (14) 

so that the corresponding solution of eqn. 8 is 

P = [E;T ;;] = B + 0 ( & 2 )  

where 

D ,  = [A ,  - S,P,], D2 = [A,  - S2 P, ]  (16) 
The unique positive semidefinite stabilising solutions of 
eqn. 13 exist under the assumption that the triples 
(A l ,  B, ,  J(Q,)) and ( A 4 ,  B,, J(Q3)) are stabilisable- 
detectable. Under the assumption, matrixes D1 and D2 
are stable [9] so that the unique solution of eqn. 14 also 
exists. 

If the errors are defined as 

P j  = P j  + &'Ej j = 1, 2, 3 (17) 
then the exact solution will be of the form 

Subtracting eqns. 13 and 14 from the corresponding eqns. 
9-1 1 and using eqn. 17 produces the following equations 
for the errors : 

E,Dl + DTE, 

= P,S,, P I  + P ,  ZTP,  + P,ZPT 

+ P , S , P T - P , A , - A ~ P T  

+ E2(E,SlE, + P,S,,PT) (19) 
E ,  D, + DTE, 

= P3S,,P3 + P;s,P, + P3ZTP2  

+ &,(E3 s, E ,  + PTS , ,  P,) 

+ PTZP, - P T A ,  - A T P ,  

(20) 
DTE2 + E ,  D,  

= P,S,,P, + P,ZTP,  + P,S,,P3 - E,D12 

- DTIE3 + E ~ ( E , S ~ E ~  + EIZE, + E ,  S, E3) (21) 
where 

D,, = A ,  - SIP, - ZP3 
D , , =  A3 - S 2  PT - Z T P ,  (22) 
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It can be shown easily that the nonlinear eqns. 19-21 
have the form 

E,D,  + DTE, = const + E ~ ~ , ( E , ,  E,, e') 

E ,  D ,  + DTE, = const + E ~ ~ ~ ( E ~ ,  E , ,  E') 

E,  D,  + DTE, = const + &'f,(E,, E , ,  E , ,  E')  (23) 
We can see that all cross-coupling terms and all nonlin- 
ear terms in eqns. 19-21 are multiplied by E', so that we 
propose the following reduced-order parallel algorithm 
for solving eqns. 19-21 

E(li+l)D, + DTE',++" 

+ p(i)S 

+ E 2 ( @ + 1 ) S  

p(i) ~ E('+l)D,, - DT,E$ f ' )  
2 2 1 3  1 

+ E',+l)ZE$) + ET'S, E $ + , ) )  (26) 1 2  

with I?\') = 0, E\') = 0, E y )  = 0, where 

= P j  + E'EP j = I, 2, 3; i = 0, I ,  2, 3, ... (27) 
The following theorem indicates the features of the algo- 
rithm of eqns. 24-27. 

Theorem: Under the assumption, the algorithm of eqns. 
24-27 converges to the exact solution of E with the rate 
of convergence of o(E~) ,  i.e. 

IIE - Ey+')Il = O(E')I~E - EY)ll i = 0, 1, 2, . . . (28) 
or equivalently 

( ( E  - Ey'(( = O(E'~)  

Proof: The Jacobian of eqns. 9-1 1, at some E = 0, is given 
by 

Since D ,  and D, are stable matrixes (by the assumption), 
J i i ,  i = 1, 2, 3 are nonsingular and hence the Jacobian 
will be nonsingular at E = 0. By the implicit function 
theorem, the existence of the unique bounded solution of 
eqns. 9-1 1 is guaranteed for sufficiently small values of E. 

In the next step we have to prove convergence of the 
algorithm of eqns. 24-27 and to give an estimate of the 
rate of convergence. For i = 0, eqns. 19 and 24 imply 

( E ,  - E\")D, + DT(E, - E',')) = e2f1(E,, E,, E,) (32) 

IEE PROCEEDINGS-D, Vol.  138, No.  6, NOVEMBER 1991 



Since D ,  is stable and E, and E, are bounded it follows 
that 

(33) llEl - Eil)ll = O(E2) 

A =  

reheat power system (dimA,, = 5 x 5, dimA,, = 4 x 4). 
The system description is given in Appendix 8 with the 
nominal system parameter. The numerical values of the 
system and input matrixes have been computed as 

0 0.545 0 

0 0  1 

0 -3.27 -0.05 

0 0  0 -  

0 0 -5.208 

0 0  0 

0 3.27 0 

0 0  0 

p 0 0 

0 0  

0 0  

6 0  

-3.33 3.33 

0 -13 

0 0  

0 0  

0 0  

0 0  

-0.545 

0 

3.27 

0 

0 

0 

- 3.27 

0 

0 

0 

0 

0 

0 

0 

1 

- 0.05 

0 -  

- 5.208 

0 0 

0 0 

0 0 

0 0 
0 0 

0 0 

6 0 

3.33 3.33 

0 -12.5- 

0 0 0 0  0 0 0 0 1 2 . 5  01 
~~ 

Similarly from eqns. 20 and 25 we have 0 0 0 0 12.5 0 0 0 

( E 3  - E\")D, + DT(E3 - E\')) = &%(E,, E , ,  E') (34) 

Using the same arguments in eqns. 21 and 26 produces 

By continuing the same procedure and by induction we 
conclude that 

11Ez - E\"ll = O(Ez) (36) 

llEl - Ey'II = o(E2') 

llE2 - = o(E2') (37) Q =  
11E3 - E$)ll = O(eZ') 

with i = 1, 2, 3, ..., which completes the proof of the 
theorem. To get a solution of the Riccati equation P, 
which has dimensions n x n = (n, + n,) x (n, + n2), we 
have only to solve two reduced-order algebraic Riccati 
equations of dimensions (n, x n,) and (n; x n,), respec- 
tively. After obtaining the solution of the Riccati equa- 
tion P('), the optimal control in eqn. 6 is 

(38) 
When a multiarea system has more than two areas, the 
algorithm can be used repeatedly. The relationship 
among each subarea Riccati equation can be found in 
Reference 6. 

4 

U(') = - R ~ 'BTP(''x 
opt 

Multiarea electric energy systems model and 
numerical solution 

The state variable model of the megawatt-frequency 
control problem of multiarea electric energy systems was 
developed in References 1 and 2. The model is the multi- 
stage decomposition of a two-area, interconnected non- 

P =  

IEE PROCEEDIN< 

- 
3.067 0.924 0.299 0.274 
0.924 1.9035 0.350 0.177 

0.299 0.350 0.480 0.394 

0.274 0.177 0.394 0.464 

0.0566 0.024 0.0746 0.1021 

-0.924 -0.469 0.0854 0.2141 

-0.299 0.0854 -0.009 0.0106 

-0.274 0.2151 0.0106 0.0074 

--0.0566 0.056 0.0051 0.0024 
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-1 0 0 0 0  0 0 0 0  

0 1.3 0 0 0 -0.3 0 0 0 

0 0 1 0 0  0 0 0 0  

0 0 0 0 0  0 0 0 0  

0 0 0 0 0  0 0 0 0  

0 -0.3 0 0 0 1.3 0 0 0 

0 0 0 0 0  0 1 0 0  

0 0 0 0 0  0 0 0 0  

0 0 0 0 0  0 o o q  
The small coupling parameter E is built into the problem. 
The value for E should be estimated from the strongest 
coupled matrix; in this case Matrix A. It seems from our 
experience that the formula 

produces a good estimate for E, where 1 1  I/ is any suitable 
norm. In this example we have used the infinity norm. 
Simulation results are obtained by using the package 
L-A-S [IO] for the computer aided control system design. 
After 6 iterations we obtain the solution for the Riccati 
equation with accuracy of 
which verifies our theory. The solution of the Riccati 
equation P is 

(0.35112 = 3.496 x 

0.0746 0.0854 -0.009 0.0106 

0.240 -0.469 0.0854 0.2141 0.056 
0.0566 -0.924 -0.299 -0.274 -0.0566 

0.1021 0.2141 0.0106 0.0074 0.0024 

0.0237 0.056 0.0051 0.0024 0.0005 

0.056 1.9035 0.3495 0.1767 0.024 

0.0051 0.3495 0.480 0.3934 0.0746 

0.0024 0.1767 0.3934 0.4644 0.1021 

0.0005 0.024 0.0746 0.1021 0.0237 
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Using eqn. 6 we can write out the controller 

U, = [-0.707 - 0.3 - 0.932 - 1.28 - 0 . 2 9 6 1 ~ ~  

+ [-0.701 - 0.064 - 0.03 - 0.0061~2 

+ [-0.3 - 0.932 - 1.28 - 0.2961~2 

(43) 

(44) 
which is exactly the same as in Reference 2. The physical 
meanings of the controller were discussed in Reference 2. 
The Q and R matrixes were varied in Reference. 2 to show 
their effect on the system response (the improvement in 
damping given by the optimal controller to the system). 

u2 = C0.707 - 0.701 - 0.064 - 0.03 - 0.006]xl 

5 Conclusion 

A recursive reduced-order parallel algorithm has been 
developed for solving the algebraic Riccati equations of 
dynamic weakly-coupled multiarea electric energy 
systems. The algorithm is based on the fixed point 
approach to a small coupling parameter problem, where 
the small parameter plays the role of the radius of the 
convergence. It was shown that the algorithm is compu- 
tationally very efficient in the study of steady-state linear 
control problems, especially when a high order of accur- 
acy is required. 
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8 Appendix 

8. I Megawatt-frequency control program of multi- 
area electric energy systems 

The state variable model of the megawatt-frequency 
control problem of multiarea electric energy systems was 
developed in References 1 and 2. 

The system differential equation is 

APtieiV = 1 T:( j AA dt - j Af" dt) (45) 

where 

d 1 1 
Z A P + =  - - A P . + - A X  . Ti cl' Ti 

For a two-area interconnected system the following state 
and control variables can be defined 

, U = [g;; 

System parameters are taken to be 

P,, = P,, = 2000MW 

H, = H2 = 5s  

D, = D, = 8.33 x 10-3 p u ~ ~ / ~ z  

T,, = T 2  = 0.3s 

qol = qu2 = 0.08s 

R ,  = R 2  = 2.4Hz/puMW 

Pti, rrms = 200 MW 

a: - a; = 30" 

T:, = 0.545 puMW 

APd, = 0.01 puMW 
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