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Abstract—The vehicular edge computing is considered an en-
abling technology for intelligent and connected vehicles since the
optimization of communication and computing on edge has a sig-
nificant impact on driving safety and efficiency. In this paper, with
the road traffic assignment to “proactively” reshape the spatiotem-
poral distribution of resource demands, we investigate the joint
service migration and mobility optimization problem for vehicular
edge computing. The goal is to meet the service delay requirements
of vehicular edge computing with minimum migration cost and
travel time. As service migration and mobility optimization are
coupled, the joint scheduling problem suffers from the curse of
dimensionality, which cannot be solved in real time by centralized
algorithms. To this end, a multi-agent deep reinforcement learning
(MADRL) algorithm is proposed to maximize the composite utility
of communication, computing, and route planning in a distributed
way. In the MADRL algorithm, a two-branch convolution based
deep Q-network is constructed to coordinate migration action
and routing action. Extensive experimental results show that the
proposed algorithm is scalable and substantially reduces service
delay, migration cost and travel time as compared with the existing
baselines.

Index Terms—Vehicular edge computing, service migration,
mobility optimization, multi-agent deep reinforcement learning.

I. INTRODUCTION

INTELLIGENT and connected vehicles (ICVs) are playing
an important role in realizing safe, efficient, comfortable, and

energy-saving driving. With the fifth generation (5G) and beyond
wireless networks coming up, vehicles can take advantage of
their on-board intelligence as well as the edge intelligence
to make real-time driving decisions [1], [2]. By offloading
compute-intensive tasks (e.g., camera data processing, and dy-
namic route planning) from vehicles to edge servers, the edge
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Fig. 1. Joint service migration and mobility optimization.

computing will largely enhance the computational capacity of
vehicles [3]. Due to an ever-increasing quantity of ICVs that
scramble for edge computing, the sophisticated scheduling of
communication and computing resources becomes critical to
driving safety and efficiency [4].

Considering the high mobility of vehicles, service migration
[5], [6] performs multi-dimensional resource scheduling across
edge clouds to ensure service delay and maintain service con-
tinuity. However, these existing methods “reactively” schedule
edge computing resources based on predicted mobility patterns,
which can hardly meet the quality of service (QoS) requirements
of intelligent vehicles. On one hand, the already deployed base
stations (BSs) and edge servers cannot always accommodate
the offloaded tasks of associated vehicles. The service delay
cannot be guaranteed when the demand for edge computing
exceeds the capacity of nearby edge resources. On the other
hand, the dynamic cooperative route planning of intelligent ve-
hicles may break the predicted mobility patterns, which disrupts
the scheduling of edge resources. Therefore, the service mi-
gration and mobility optimization are coupled for edge-assisted
intelligent driving: 1) The road traffic assignment has a strong
influence on the spatiotemporal distribution of offloaded tasks;
and 2) Conversely, the resource scheduling of service migration
determines the correctness and timeliness of vehicles’ driving
and routing1 decisions. Only by jointly optimizing the commu-
nication, computing, and routing, can the quality of intelligent
driving be largely improved.

As shown in Fig. 1, we jointly consider the service migration
and mobility optimization for edge-assisted intelligent driving,

1In this paper, routing refers to the route planning of vehicles.
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which can “proactively” reshape the distribution of resource
demands and effectively schedule edge resources. Service mi-
gration and mobility optimization, which involve the resource
scheduling in both information domain and transportation do-
main, have been studied separately in existing works [7], [8].
However, the joint optimization of these cross-domain resources
will pose new challenges. First, the joint optimization suffers
immensely from the curse of dimensionality. Specifically, the
state space represents both the loads of edge clouds and the status
of road traffic, while the action space increases exponentially
with the number of vehicles. It is difficult to find a natural
decomposition of this joint optimization problem. Second, the
actions of service migration and vehicle mobility have long-
term consequences, so the snapshot-based scheduling cannot
achieve an optimal solution. To deal with these challenges, by
decomposing the state observations and actions of a monolithic
centralized controller into multiple simpler agents (i.e., the re-
source scheduler for each vehicle), we exploit multi-agent deep
reinforcement learning (MADRL) to maximize the long-term
composite utility of communication, computing, and routing.
With MADRL, distributed agents can cooperatively make ser-
vice migration and mobility optimization decisions based on
individual observation and learned policy. The contributions of
this paper are summarized as follows:
� A multi-agent-based framework is proposed for vehicular

edge computing. Within the framework, the cooperative
agents can help their respective vehicles to perform joint
service migration and mobility optimization.

� The joint optimization of communication, computing, and
routing is formulated to minimize the system cost while
satisfying the service delay requirements of vehicles, under
the constraints of limited communication resource, com-
puting power, and road capacity.

� We propose an MADRL algorithm for the joint optimiza-
tion problem to deal with the curse of dimensionality.
A two-branch convolution based deep Q-network, which
serves as the agent network, is constructed to coordinate
the migration and routing actions.

The remainder of this paper is organized as follows. In
Section II, recent research works on edge resource scheduling
and road traffic optimization are reviewed. The system model
and problem formulation are presented in Section III. Then,
Section IV gives the overview of MADRL. Next, the MADRL-
based joint service migration and mobility optimization ap-
proach is elaborated in Section V. The performance of the
proposed method is evaluated in Section VI. Finally, the work
is concluded in Section VII.

II. RELATED WORK

A. Low-Dimensional Resource Scheduling

In this subsection, we review recent studies that scheduled
no more than two kinds of resources in edge cloud. Vehicle-to-
Everything (V2X) [9], [10] communication is a key enabling
technology for intelligent driving, so resource allocation in
heterogeneous vehicular networks has been well studied to
ensure its high efficiency [11]. In heterogeneous wireless access

networks, the radio resource slicing [12] can be used to provide
QoS isolation among different services for ICVs. In addition,
Wu et al. [13] scheduled communication and computing jointly
to guarantee the quality of computation offloading. Zhou et al.
[14] optimized communication and caching jointly to reduce the
data access delay. These methods optimize resource scheduling
in one edge cloud, so they can hardly utilize multiple edge clouds
to achieve load balance.

The resource scheduling across edge clouds creates new op-
portunities for improving the cost effectiveness of edge com-
puting. In [15], Chen et al. investigated the computation of-
floading with the coordination of multiple edge clouds. The
authors decomposed the original scheduling problem into two
sub-problems, i.e., task placement and resource allocation. Fur-
thermore, Chen et al. [16] focused on the workload balancing
among edge clouds. Considering the spatiotemporal stochastic-
ity of the workload, they utilized the Lyapunov optimization
to jointly schedule radio access and computation offloading.
These methods have effectively scheduled multi-access edge
computing, and can be further enhanced by considering user
mobility. Taking the radio handover and computation migration
into consideration, Sun et al. [17] investigated the dynamic
matching between tasks and edge clouds using the Lyapunov
optimization and the multi-armed bandit. Some studies took
advantage of service migration to guarantee QoS with the impact
of user mobility. Taleb et al. [5] used value iteration for the
Markov decision process (MDP) to perform cost-effective ser-
vice migrations. Ouyang et al. [6] proposed a distributed approx-
imation scheme to optimize service migration under long-term
cost budget constraint. With the observation of user behavior
and network status, Chen et al. [7] proposed a reinforcement
learning based dynamic service migration method.

The low-dimensional resource scheduling is not enough to
fully empower intelligent vehicles to effectively understand
environment and plan actions, so it should be extended to a
higher dimension.

B. High-Dimensional Resource Scheduling

In this subsection, we review recent studies that jointly
scheduled communication, computing and caching. This high-
dimensional resource scheduling is crucial to the quality of
intelligent driving [18], but suffers immensely from the curse of
dimensionality. To deal with this challenge, some studies lever-
aged the software-defined networks (SDN), network function
virtualization (NFV) and deep learning to optimize the resources
[19]–[21]. Based on the vehicle mobility model, Li et al. [22]
modeled the multi-dimensional resource scheduling as a par-
tially observable Markov decision process (POMDP), which is
solved by value iteration. He et al. [23] used deep reinforcement
learning (DRL) to optimize the virtualized networking, caching,
and computing resources. They used a trial-and-error method
to find the scheduling sequence to maximize the long-term
performance. Tan et al. [24] proposed a multi-timescale deep
learning framework, which chooses candidate resources based
on the vehicle mobility, and determines resource allocation
based on the real-time wireless channel quality. However, these
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centralized DRL methods have difficulty in dealing with the
system complexity which grows exponentially with the number
of vehicles.

To deal with the huge state-action space, some studies adopted
MADRL to make resource allocation decisions distributedly.
Chen et al. [25] let each mobile user independently learn an
efficient computation offloading policy, which can coordinately
minimize the global cost of power consumption and buffering
delay. In heterogeneous networks, Amiri et al. [26] modeled
the power control problem as a multi-agent MDP. They took
advantage of multi-agent tabular Q-learning to distributedly
manage the interference. Furthermore, Nasir et al. [27] pro-
posed a distributed dynamic power allocation algorithm based
on multi-agent deep Q-learning, which is scalable to large
networks. Similarly, Meng et al. [28] exploited multi-agent
actor-critic deep deterministic policy gradient to perform power
allocation in wireless networks.

These high-dimensional resource scheduling methods have
well improved the quality of edge computing. However, the
quality will deteriorate largely when the demand for edge
computing exceeds the capacity of nearby edge resources. In
this paper, we not only perform resource scheduling to im-
prove resource utility, but also utilize route planning to reshape
the spatiotemporal distribution of resource demands, which
optimizes the quality of vehicular edge computing in a new
dimension.

C. Road Traffic Optimization

In transportation systems, the traffic lights are usually opti-
mized to improve the efficiency of road traffic. Abdoos et al.
[29] trained an independent control policy for each traffic light
using reinforcement learning. Furthermore, considering the co-
ordination of traffic lights, Chu et al. [30] proposed an MADRL
based traffic signal timing method. As for non-signalized inter-
sections, Qian et al. [31] proposed an alternately iterative descent
method to implement safe and efficient driving for autonomous
vehicles. The intersection scheduling can reactively optimize
traffic flow, while the cooperative route planning among vehicles
can proactively optimize traffic assignment. Lin et al. [32]
adopted social clustering and game evolution to select vehicle
routes. The authors have proved that their vehicle route selection
game can converge to Nash equilibrium. In [33], vehicles are
trained through Q-learning to cooperatively plan routes. Some
studies [34], [35] have used the cooperation between vehicles
and road-side infrastructure to achieve vehicle routing. Liu
et al. [34] utilized SDN and edge computing to jointly solve
the charging station selection and route planning problem for
electric vehicles. As for the trade-off between system optimum
and user optimum, Groot et al. [35] used a reverse Stackel-
berg game between the road authority and vehicles to relieve
congestion.

In this paper, we use route planning to reshape the distribution
of edge resource demands while keeping the road traffic efficient.
Existing route planning methods can hardly deal with this cross-
domain problem, so a novel joint optimization method should
be proposed.

TABLE I
SUMMARY OF NOTATIONS

Fig. 2. The framework of edge-assisted intelligent driving.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we formulate the joint optimization problem
of service migration and vehicle mobility. In Table I, some
important notations are summarized for the ease of reference.

A. Network Model

As shown in Fig. 2, we consider an edge-assisted intelligent
driving system that includes a set of BSs integrating edge servers
E , a set of intelligent vehicles V , and a set of service entities
(SEs)O hosted on edge servers. Let e ∈ E denote an edge server
as well as its co-located BS. The edge servers are connected
through backhaul links, which enables the load balancing among
them. Each vehiclev ∈ V continuously connects to an always-on
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exclusive SEov ∈ O to achieve edge-assisted intelligent driving.
The SE, defined as a bundle of individualized data of the vehi-
cle/driver and the processing logic on the data, helps the vehicle
to handle offloaded compute-intensive tasks such as camera data
processing and dynamic route planning.

With the constraint on service delay, the serving SE should
be placed on a local or a nearby edge server. Each vehicle sends
service requests to the local edge server through associated BS,
then the local edge server admits the requests if it hosts the
corresponding SE, otherwise it forwards the requests through
backhaul links to the edge server which hosts the correspond-
ing SE. To maintain satisfactory service latency for vehicles,
SEs should be dynamically migrated across edge servers to
follow vehicle mobility. Besides, the resources in edge servers
are usually managed by container-based virtualization and can
thus be scheduled flexibly. Let xe

v(t) ∈ {0, 1} denote whether
vehicle v ∈ V is associated with BS and edge server e ∈ E , and
yev(t) ∈ {0, 1} denote whether the SE of v is hosted on edge
server e, in time slot t. In one time slot, each vehicle can only
be associated with one BS, and its SE can only be hosted on one
edge server, thus ∑

e∈E
xe
v(t) = 1, ∀v ∈ V,

∑
e∈E

yev(t) = 1, ∀v ∈ V. (1)

Backhaul Delay: The backhaul delay exists when the vehicle
is served by a non-local edge server, and it is introduced by
transmission, propagation, processing, and queuing. The trans-
mission delay is denoted as bv(t)/Be, where bv(t) is the data
size of vehicle v’s offloaded task in time slot t, and Be is the
bandwidth of the outgoing link of the local edge server e. Here
the transmission time of the computing result is ignored due
to the small data size. In addition, the round-trip propagation,
processing, and queuing delays are determined by the hop count
between the associated edge server e1 ∈ E and the serving edge
server e2 ∈ E of vehicle v. Therefore, the backhaul delay for
computation offloading is given by

τ backv (t) =

{
0, e1 = e2,
bv(t)
Be1

+ 2λd(e1, e2), e1 �= e2,
(2)

where xe1
v (t) = 1, ye2

v (t) = 1, d(·, ·) is the hop count between
two edge servers, and λ is a positive coefficient.

Migration Cost: The migration of SE across edge servers
incurs additional operating cost, e.g., the proactive replication
of SE on the target edge server, and the release of resources on
the source edge server. In this paper, it is considered that the
migration cost is determined by the image size of each SE. Let
cmgt
v (t) be the migration cost of moving the SE of vehicle v

from edge server e1 ∈ E to edge server e2 ∈ E in time slot t,

cmgt
v (t) =

{
0, e1 = e2,
μ|ov|, e1 �= e2,

(3)

where ye1
v (t− 1) = 1, ye2

v (t) = 1, |ov| is the image size of v’s
SE, and μ is a positive coefficient.

B. Communication Model

The wireless communications significantly impact the quality
of edge-assisted intelligent driving. A regular hexagonal deploy-
ment of BSs, with an orthogonal frequency-division multiple
access (OFDMA) system, is focused in this paper. There are
K orthogonal resource blocks without interference, and the
bandwidth of each resource block isW . At each BS, the resource
blocks are allocated averagely to the associated vehicles, and a
resource block is allocated only to a single vehicle. The uplink
transmission, which is used to upload the task data for edge
computing, is the main bottleneck in radio access network. The
uplink transmission rate achieved by vehicle v to its associated
BS is given by

Rv = W

⌊
K

E

⌋
log2 (1 + SNRv), (4)

where �·� is the floor function, E is the number of vehicles
associated with the BS, and SNRv is the received signal-to-noise
ratio given by

SNRv =
Phl

α(ε−1)
v

N
, (5)

P is the constant baseline transmit power of vehicles, h denotes
the channel power gain, lv is the distance from vehicle v to
its associated BS, α is the path loss exponent, N is the noise
power, and ε is the fractional channel inversion power control
component.

Wireless Transmission Delay: For a computation offloading
task, the average wireless transmission delay for v is

τ comm
v (t) =

bv(t)

Rv
, (6)

where the downlink transmission delay is omitted because the
result data size is usually very small after processing on the edge
server. Though a simplified communication model is used here,
the model can be extended to multi-tier networks that consider
inter-cell interference.

C. Computation Model

At each edge server, multiple SEs share the computing re-
source to help their serving vehicles process the offloaded tasks.
The computing capacity of edge server e is denoted as Ue,
measured by CPU cycles per second. It is assumed that the SEs
hosted on edge server e share Ue evenly.

Computing Delay: Let uv(t) denote the number of CPU
cycles required by the offloaded task of vehicle v in slot t. The
computing delay on edge server is given by

τ comp
v (t) =

∑
e∈E

uv(t)y
e
v(t)

Ue

/∑
v′∈V y

e
v′(t)

. (7)

From the equation it can be seen that the computing delay on
an edge server grows linearly with the number of SEs hosted on
the edge server. As the number of SEs increases, the edge server
may not provide satisfactory services for vehicles. The dynamic
migration of SEs can balance the computing loads among edge
servers, thus improving the QoS of intelligent driving.
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D. Transportation Model

In this paper, the mobility of vehicles is modeled in a grid
world [8]. Without loss of generality, the road network is par-
titioned into disjoint hexagonal grids in accordance with the
deployment of BSs. Although the vehicles travel on the actual
road network, the route planning is abstracted in a grid manner.
Considering the multiple feasible link-level routes between two
adjacent grids, we assume that the vehicles can autonomously
plan link-level routes when next-hop grid is given. To this end,
only the grid-level traffic conditions are leveraged for dynamic
traffic assignment. Let wg1g2(t) denote the average travel time
from g1 to g2 in time slot t, where g1 and g2 are adjacent grids.
Specifically, wg1g2(t) is averaged over all vehicles that travel
from g1 directly into g2 in time slot t, no matter what particular
link-level route each vehicle has selected.

Traffic Cost: Let wv be the total travel time of v between its
origin-destination (O-D). Andwv is calculated as the summation
of a sequence of wg1g2(t) along v’s actual trajectory. Based on
wv , we define traffic cost to evaluate the overall performance of
v’s route planning actions,

ctfcv (t) =

{
wv, v finishes its trip in t,
0, otherwise.

(8)

The traffic cost ctfcv (t) can be obtained only when v finishes
the trip, and it is the delayed and accumulative consequence of
previous route planning actions.

E. Problem Formulation

To improve the composite quality of edge-assisted intelligent
driving, the following problems are jointly optimized.
� Service migration: With the mobility of vehicles, it decides

whether and where to migrate the SE. Considering the
status of communication and computing resources, service
migration is aimed at meeting the requirement of service
delay and reducing the migration cost.

� Mobility optimization: For each vehicle, it generates an
appropriate route to get to the destination. The cooperative
route planning will not only increase transport efficiency
but also optimize the spatiotemporal distribution of com-
putation offloading tasks.

By jointly optimizing the service migration and vehicle mo-
bility, the objective of this paper is to minimize the system cost
while satisfying the service delay requirements of vehicles. The
total service delay for vehicle v consists of wireless transmission
delay, backhaul delay, and computing delay,

τv(t) = τ comm
v (t) + τ backv (t) + τ comp

v (t). (9)

Let τ denote the upper bound of service delay. Therefore,
τv(t) ≤ τ,∀v ∈ V should be achieved to ensure the quality of
computation offloading. In addition, individual cost cv(t) is
defined as the weighted sum of the migration cost and traffic
cost incurred by vehicle v,

cv(t) = (1 − ω)cmgt
v (t) + ωctfcv (t), (10)

where ω is the weight parameter. Therefore, the system cost for
all vehicles in time slot t is

c(t) =
∑
v∈V

cv(t). (11)

It is needed to learn the optimal policy that minimizes the long-
term system cost while satisfying the service delay requirements.

IV. MULTI-AGENT DEEP REINFORCEMENT LEARNING

A. MDP and Deep Q-Learning

In reinforcement learning, the environment is formulated as
an MDP. A discounted MDP is represented as (S,A,P,R, γ),
where S and A are environment states and system actions,
respectively. For current state s ∈ S , action a ∈ A, and next
state s′ ∈ S , the probability of each state transition is defined
as P(s′|s, a) : S ×A× S → [0, 1]; and the immediate reward
is derived from R(s, a, s′) : S ×A× S → R. In addition, γ ∈
[0, 1] is the discount factor used to balance immediate and
long-term reward. For the MDP, π(s, a) : S ×A → [0, 1] is a
policy which gives the probability of the agent taking action a
when in state s. The best solution to the MDP is the optimal
policy denoted as π∗(s, a) ∈ {0, 1}.
Q-learning is a well-established model-free method, which

enables an agent to learn the optimal policy through continual
interactions (i.e., observations, actions and rewards) with the
environment. To this end, Q : S ×A → R is defined to evaluate
the quality of a state-action combination. The Q-function for
a specific π, is the expected accumulative rewards if the agent
chooses action a in state s and utilizes π to generate follow-up
actions,

Qπ(s, a) = Eπ

[ ∞∑
i=0

γir(i+ t)
∣∣s(t) = s, a(t) = a

]
, (12)

where r is the immediate reward received according to R. Q-
learning aims at finding the optimal policy that achieves the
largest accumulative reward. To this end, an optimal Q-function
can be given

Q∗(s, a) = max
π

Qπ(s, a). (13)

Thus, the optimal policy π∗ is any policy whose action in state
s is argmaxa Q

∗(s, a). By leveraging the temporal-difference
recursive equation, Q-function is updated as

Qk+1(s, a) = Qk(s, a)

+ β
(
r + γmax

a′
Qk(s

′, a′)−Qk(s, a)
)
,

(14)

where s′ ∈ S represents the state at the next time step, and β is
the learning rate. Qk(s, a) can definitely converge to Q∗(s, a)
when a proper β is used.

DeepQ-learning uses a neural network to learnQ∗(s, a). Thus
it is more applicable to high-dimensional environment with large
and complex state spaces. The neural network is called deep
Q-network (DQN) and represented asQ(s, a; θ), where θ stands
for network weights. The DQN can be trained by minimizing
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the following loss function

L(θ) = E
[
(z −Q(s, a; θ))2

]
, (15)

where z = r + γmaxa′ Q(s′, a′; θ̄) is the target Q-value, and
the weights θ̄ get updated to θ slowly and periodically. How-
ever, the regular DQN may overestimate the action values,
resulting in unstable training. To relieve this problem, double
DQN [36] decouples the action selection from the calcula-
tion of target Q-value, and it calculates the target Q-value as
z = r + γQ(s′, argmaxa′ Q(s′, a′; θ); θ̄).

B. Multi-Agent Deep Reinforcement Learning

Though deep reinforcement learning can adapt to environ-
ment with complicated state spaces, a single super agent can
hardly learn large-scale decentralized policies, whose joint ac-
tion spaces grow exponentially with the quantity of actors.
Decomposing a single monolithic agent into multiple simpler
agents can reduce the dimensionality of the state and action
spaces. Therefore, MADRL overcomes the scalability issue,
which takes advantage of efficient communication and coop-
eration among agents to solve complex tasks. In MADRL, the
problem of cooperation is a decentralized partially observable
Markov decision process (Dec-POMDP). A Dec-POMDP is
defined by the tuple (V,S, {Av}, {Ωv},P,R,O), where V and
S represent agents and states, respectively. In addition, {Av}
denotes the possible actions taken by v ∈ V , and {Ωv} denotes
the possible observations of v aboutS . Finally,P is the joint state
transition probability function,R is the joint reward function, and
O is the joint observation function. In the reinforcement learning
setting, we have no knowledge of P, R, and O, which should be
modeled by the interactions between agents and environment.

MADRL is complex because all agents potentially interact
with each other and concurrently learn their respective policies.
Independent Q-learning (IQL) [37] is a straightforward and
commonly used method for multi-agent learning. With IQL,
each agent regards the behavior of others as a component of
environment dynamics, and then trains its network parameters
independently. Since the learned policies of some agents can be
efficiently transferred to other homogeneous agents, the IQL is
completely scalable. In this paper, we take advantage of IQL
to train cooperative agents for the joint optimization of service
migration and vehicle mobility.

V. MADRL-BASED JOINT SERVICE MIGRATION AND

MOBILITY OPTIMIZATION

In this paper, MADRL is exploited to cope with the curse of
dimensionality in the joint service migration and mobility opti-
mization problem. As a natural decomposition of the problem,
each SE is regarded as an agent to maximize the accumulative
utility of communication, computing, and routing. The joint
optimization problem is formulated as a Dec-POMDP, whose
system state, agent action, and reward model are defined in this
section. Then a two-branch convolutional deep Q-network is
designed and trained for agents to get the optimal policy.

Fig. 3. Representation of system state.

A. State Space, Action Space and Reward Function

1) State Space: The joint state observed by vehicle v in slot
t is defined as

sv(t)=
{
sodv (t), sveh(t), ssev (t), sse(t)

}
, (16)

where sodv (t) denotes the current grid and destination grid of
vehicle v, sveh(t) represents the number of vehicles in each grid,
ssev (t) is the edge server hosting v’s SE, and sse(t) represents the
number of SEs hosted by each edge server. It should be noted that
sveh(t) indicates not only the traffic condition in each grid but
also the load of each BS. Considering the spatial distribution
of grids, we use multi-channel graph signals to represent the
system state. The graph signals can form a unified representation
of the system states for any network coverage (e.g., the hexagon
for macro cell, and the Voronoi tessellation for small cell). In
directed graphG = (G, T ), each node inG represents a grid, and
an edge exists inT if the corresponding grids are adjacent to each
other. Specifically, sodv (t) ∈ G2, ssev (t) ∈ G, sveh(t) ∈ N |G|, and
sse(t) ∈ N |G| are represented as graph signals. An example of
the system state is shown in Fig. 3.

2) Action Space: In the system, every agent has to decide
where to transfer its SE, and what the next grid for the vehicle
to travel to. Therefore, the composite action of vehicle v in slot
t is represented as

av(t) =
{
amgt
v (t), artv (t)

}
, (17)

where amgt
v (t) performs the SE transfer from e ∈ E to e′ ∈ E ,

i.e., yev(t− 1) = 1, ye
′

v (t) = 1; and artv (t) gives the next grid
g ∈ G which is adjacent to current grid. Besides, letAmgt

v (t) and
Art

v (t) be the set of all possible migration actions and routing
actions, respectively. Thus, action av(t) is valid if amgt

v (t) ∈
Amgt

v (t) and artv (t) ∈ Art
v (t).

3) Reward Function: The reward function for vehicle v
should minimize the individual cost cv(t) while meeting the
required service delay τ . The immediate reward is expressed as

rv(t) = −cv(t)− dv(t) + r̃v(t), (18)

where dv(t) denotes the penalty carried once the current service
delay of v exceeds the upper bound,

dv(t) =

{
C−, τv(t) > τ,
0, otherwise,

(19)

C− > 0 is a constant penalty; and r̃v(t) represents the reward
for v reaching its destination,

r̃v(t) =

{
C+, v finishes its trip in t,
0, otherwise,

(20)
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Fig. 4. The architecture of two-branch deep Q-Network.

C+ > 0 is a large reward for v reaching its destination. The
action of agent determines what reward will be gained, i.e., the
agent gets an immediate reward rv(t) with respective observed
state sv(t) and action av(t) in time slot t. Each agent aims at
learning the optimal policy which maximizes the accumulative
reward, given by

Rv(t) = maxE

[
T−1∑
i=0

γirv(i+ t)

]
, (21)

where T denotes the look-ahead slots. By leveraging IQL, the
system objective can be approached by achieving Rv(t) inde-
pendently for every agent.

B. The Architecture of DQN

As DQN is an off-policy DRL algorithm, it is much more
sample efficient than other on-policy DRL algorithms, particu-
larly in this multi-agent environment. This is because each agent
can be trained by reusing both its past experience and other
agents’ experience. Besides, DQN can be easily extended to
plan multi-task actions, which is suitable for optimizing service
migration and route planning simultaneously. Therefore, DQN
is used as the agent network which maps the observed system
state to the state-action values.

As a regular hexagonal grid model is considered, we leverage
a convolutional neural network (CNN) to capture the spatial
features fromG. The observed state components sodv (t), sveh(t),
ssev (t) and sse(t) are organized into 4-channel input features
of DQN. As shown in Fig. 4, the observed state sv(t) is fed
into convolutional layers followed by fully connected layers
to calculate the state-action value for each composite action.
A multi-task learning scheme is used to deal with the joint
optimization problem, i.e., two network branches are designed to
perform route planning and service migration, respectively. The
network branch for route planning is fed with current location,
destination location, traffic conditions, and the loads of base
stations. These state components are selected because route
planning aims to optimize traffic efficiency as well as the dis-
tribution of resource demands. Meanwhile, the network branch
for service migration is fed with current location, destination
location, traffic conditions, the loads of base stations, and the
loads of edge servers, because the service migration should
be optimized by considering the mobility of vehicles and the
resource status of edge clouds. The joint reward in (18) is used

to coordinate these two action branches, which will be elaborated
in the following subsection.

As a result of homogeneity, each agent v ∈ V has the same
copy of DQN in time slot t. If two or more vehicles are currently
with the same O-D pair and their SEs are hosted on the same edge
server, the observed state will be identical, so their following
actions will be exactly the same. To deal with this phenomenon,
a stochastic policy for the agent is used: the actions taken by
the agent are drawn from a distribution derived by applying a
softmax over the Q-values. In this way, the vehicles with the
same state can probably take different actions, thus avoiding the
bursty resource requests from vehicles.

C. The Training of DQN

We leverage the paradigm of centralized training and dis-
tributed execution to ease implementation. Within the multi-
agent environment, all agents are assumed to take actions si-
multaneously, so each agent has no knowledge of other agents’
current actions. As the agents are considered homogeneous, all
their accumulative experiences are used to train a single DQN
in a centralized way. This can effectively increase the amount of
training data generated per step of the environment.

The complicated coupling of service migration and mobility
optimization poses a big challenge on the training of multi-task
DQN. As separate optimizations cannot achieve the system
optimum, we exploit a joint reward instead of separate re-
wards to train these two branches. Specifically, the reinforce-
ment learning environment for the service migration branch
is defined as s = {sodv (t), sveh(t), ssev (t), sse(t)}, a = amgt

v (t),
r = rv(t); while the reinforcement learning environment for the
route planning branch is defined as s = {sodv (t), sveh(t)}, a =
artv (t), r = rv(t). Governed by joint reward rv(t), the service
migration can be optimized by considering route planning, and
vice versa. However, the dual exploration of these two branches
is confronted with large action space, which decelerates the
convergence to optimal policy. To overcome this limitation,
we just train one network branch during a period of time, and
keep the other branch fixed during this period. In this way, the
migration policy of SEs is iteratively updated under a stable
route planning policy, and then the routing policy of vehicles is
iteratively updated under a stable service migration policy. The
above procedure should be repeated until the training converges.
The training algorithm is shown in Algorithm 1.

In the algorithm, we use superscript F and L to differentiate
the fixed branch and the learning branch. For example, Q(·)L
is the learning network branch, then aLv(t) is the action derived
from Q(·)L, and θL is the network weights of Q(·)L. In addition,
double DQN mechanism is adopted: 1) a main network to learn
theQ-values from agents; and 2) a separate target network which
is updated periodically to compute target Q-values. Besides, ex-
perience replay is exploited to stabilize training by decorrelating
the training examples in each batch to update the main network.

D. The Distributed Execution of DQN

After completing the training process, the model parameters
of DQN are transferred to each agent on the edge server. When
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each vehicle travels into a new grid, its agent uses the DQN to
perform service migration and plan vehicle routing based on the
observation of system state. The state observation of each agent
is formed from the total effect of the overall population and its
individual status. In this way, the interactions between single
agent and the population are used to approximate the complex
interactions among agents. Specifically, the individual status
sodv (t) and ssev (t) can be directly observed by the agent, while
the total effect sveh(t) and sse(t) can be effectively aggregated
from all agents through the backhaul network of edge servers.
Finally, the distributed agents’ closed-loop observations and
actions can jointly optimize service migration and route planning
for intelligent vehicles.

Fig. 5. The simulation scenario.

VI. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Settings

1) Macroscopic Traffic Flow: As shown in Fig. 5, we con-
sider a road network covered by |G| = 19 hexagonal grids, which
are determined by the coverage areas of macro cells. The traffic
simulation is performed based on the Macroscopic Bureau of
Public Roads (MBPR) model [38]. The MBPR model is used to
estimate the average travel time given the dynamic traffic flow
over a region-wide road network, which is calculated as

w̄ = w̄∗ + w̄∗ηV
2, (22)

where w̄ is the average travel time per kilometer, w̄∗ is the
free-flow travel time per kilometer, V is the hourly total traffic
flow from the region to a neighboring region via different links,
and η denotes the sensitivity of average travel time towards
traffic congestion. In a specific road network, the real-world GPS
data from vehicles can be used to perform model calibration for
the MBPR function. In this paper, without loss of generality,
model parameters w̄∗ = 0.018 h/km and w̄∗η = 9.45 × 10−8

h3/km/veh2 are used throughout the following simulations. The
O-D demand on the road network is generated randomly. Con-
strained by limited computational power, both intelligent vehi-
cles with edge computing and traditional vehicles without edge
computing are considered in the following simulations.

2) Computation Offloading: The macro cells shown in Fig. 5
are deployed to assist intelligent driving, and their commu-
nication and computing capacity is considered to be homo-
geneous. When a vehicle performs computation offloading in
time slot t, the size of data transmitted to its SE varies from
bv(t) = 200 MB to bv(t) = 600 MB in different scenarios,
while the required CPU cycles follow a uniform distribution
uv(t) ∼ U(2, 4)× 108. The other parameters used throughout
simulations are shown in Table II.

3) Multi-Agent Deep Q-Network Hyperparameters: The hy-
perparameters used for training the deepQ-network can be found
in Table III.

B. Compared Methods

The proposed MADRL-based joint optimization method
(MAJO) is compared with the composite of the following al-
gorithms.
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TABLE II
SIMULATION PARAMETERS

TABLE III
DEEP Q-NETWORK HYPERPARAMETERS

1) Shortest-Distance Routing (SR): Dijkstra algorithm is
used to find the route with the shortest travel distance for each
vehicle.

2) DQN-Based Routing (DR): A separate DQN is used to
plan routes based on dynamic traffic conditions. The system
state is {sodv (t), sveh(t)}, the action is artv (t), and the reward
function is rroutingv (t) = −ctfcv (t) + r̃v(t).

3) Lazy Migration (LM): The SE will not be migrated until
its service delay exceeds the upper bound τ . Once the migration
is triggered, the SE image is migrated to the local edge server
of the vehicle.

4) DQN-Based Migration (DM): A separate DQN is used to
migrate SEs based on the loads of base stations and edge servers.
The system state is {sodv (t), sveh(t), ssev (t), sse(t)}, the action is
amgt
v (t), and the reward function is defined as rmigration

v (t) =
−cmgt

v (t)− dv(t).
In the following subsection, the performance of MAJO is

compared with SRLM, SRDM, DRLM, and DRDM. It is worth
noting that MAJO and DRDM have the same neural network
architecture, but have different ways of using the system reward
to train the neural network.

C. Simulation Results

The objective of this paper is to minimize the weighted sum
of migration cost and traffic cost while satisfying the service
delay requirement. However, an appropriate weight parameter
ω defined in (10) should be chosen to make a trade-off between
the optimization of service migration and that of route planning.
To analyze how ω affects the system performance, the pure total

reward rroutingv + rmigration
v , the average service delay, and the

average travel time with respect to ω are shown in Fig. 6, where
bv(t) = 200 MB and |V| = 30. When ω = 0.7, the best pure
total reward and service delay are achieved, and the road traffic
keeps efficient enough. Under this circumstance, the MAJO can
well reshape the distribution of edge resource demands without
decreasing the road traffic efficiency. Therefore, ω is set to 0.7
in the following simulations.

The total reward is a comprehensive reflection of the migra-
tion cost, traffic cost, and service delay. Therefore, the total
reward is considered a key metric for the composite quality of
edge-assisted intelligent driving. The total reward with respect to
iteration is shown in Fig. 7. With different task sizes and different
traffic volumes, MAJO can converge quickly and always provide
the highest total rewards compared to other separate optimiza-
tion methods. It is worth noting that MAJO performs much better
than DRDM, though the network architecture of these two meth-
ods nearly keeps the same. Two DQNs of DRDM are trained
with separate rewards, so its optimization of route planning does
not consider the loads of edge clouds, and the optimization of
service migration does not consider the trajectories of intelligent
vehicles. It is demonstrated that the joint optimization of service
migration and vehicle mobility can largely improve the quality
of edge-assisted intelligent driving.

After comparing the performance on total reward, which is a
composite metric, we show the performance on service delay,
service success rate and travel cost, respectively. The service
delay determines the response time of an intelligent vehicle for
its varying environment. In Fig. 8(a), the average service delays
under different task sizes are shown, where |V| = 30. It can
be seen that the average service delay obtained by MAJO is
below 0.25 second, and the superiority of MAJO becomes more
obvious on large task size. The reason is that MAJO not only op-
timizes service migration based on the loads of edge clouds, but
also optimizes the routes of vehicles to balance the distribution of
edge computing demands. In the meanwhile, other methods may
plan efficient routes for vehicles, but the capacity of edge clouds
along the routes is not adequate to support intelligent driving.
Then, the service success rates under different values of delay
upper bound are evaluated in Fig. 8(b), where bv(t) = 300 MB,
|V| = 40, and the values of delay upper bound follow a uniform
distribution at the corresponding interval. A task is considered
to be successful if its service delay is below the upper bound.
The service success rate is defined as the ratio of the number of
successful tasks to the total number of offloaded tasks. From the
figure, it can be seen that the MAJO achieves the highest service
success rate for different values of service upper bound. Finally,
the average travel time is used to represent the performance
of route planning. Fig. 8(c) shows the average travel time for
different traffic volumes, where bv(t) = 200 MB. As SRLM
and SRDM utilize the same routing algorithm, their routing
performance keeps the same and is merged with label SR in the
figure. For the same reason, the routing performance of DRLM
and DRDM is merged with label DR. The simulation results
show that MAJO can coordinate the routing of vehicles to avoid
congestion.
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Fig. 6. Performance on the choice of weight ω for MAJO. For pure total reward, the solid lines are smoothed by window size of 20 epochs, while shaded areas
show the standard deviations. (a) Pure total reward (b) Average service delay (c) Average travel time.

Fig. 7. Performance on total reward. The solid lines are smoothed by window size of 20 epochs, while shaded areas show the standard deviations. (a) bv(t) =
300 MB, |V| = 30. (b) bv(t) = 400 MB, |V| = 30 (c) bv(t) = 500 MB, |V| = 30 (d) bv(t) = 200 MB, |V| = 30 (e) bv(t) = 200 MB, |V| = 40 (f) bv(t) =
200 MB, |V| = 50.

Fig. 8. Performance on service delay, service success rate and travel time. (a) Average service delay (b) Service success rate (c) Average travel time.
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TABLE IV
THE GENERALIZATION OF MAJO W.R.T. TOTAL REWARD

As the system evolves, the well-trained agents are confronted
with gradually changing scenarios (e.g., the number of intelli-
gent vehicles, and the type of computation tasks). Therefore, it
needs to evaluate the MAJO’s generalization capability: whether
the well-trained agents can work effectively in unseen scenarios.
We use the experience gathered from different scenarios to
train the agent network, then apply the learned policy to both
existing and unseen scenarios. Specifically, the agent network
is trained with a mixed setting |V| = 30, 40, 50 and bv(t) =
300, 400, 500 MB, and the performance of learned policy on
total reward is shown in Table IV. We can find that the learned
policy works well not only on existing scenarios but also on
unseen scenarios (i.e., the last row and the last column in
the table). It reflects that MAJO has the ability to scale and
generalize. However, if the scenario changes dramatically, the
newly gathered experience should be used to train the agent
network incrementally.

VII. CONCLUSION

In this paper, we have developed a joint service migration
and mobility optimization approach for vehicular edge com-
puting. To cope with the curse of dimensionality on the joint
optimization problem, we have proposed a multi-agent deep
reinforcement learning algorithm, which decomposes the state
observations and actions of a monolithic centralized agent into
multiple simpler agents. Besides, we have constructed a two-
branch deep Q-network, and exploited an alternate stationary
policy for each branch during training time to decrease training
convergence time. Extensive simulations have shown that the
proposed method can effectively reduce the system cost and
the service delay of vehicles. In the future, we will extend
the joint service migration and mobility optimization method
to a multi-tier wireless communication and multi-access edge
computing scenario.
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