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Abstract— Energy harvesting with combination of multiple
cooperating radio access technologies (multi-RAT) is regarded as
a promising network paradigm to improve the energy efficiency
of 5G networks. In this paper, we propose a resource-on-demand
energy scheduling strategy for multi-RAT wireless networks,
where the varying energy demand of the network can be satisfied
by both grid power and harvested energy. Due to the high sensi-
tivity to uncertainties of energy harvesting, a dynamic network
energy queue model is designed first considering the inherently
stochastic and intermittent nature of the harvested energy. Then,
to minimize time-averaged grid power consumption and make
effective utilization of harvested energy, the energy scheduling is
formulated as a stochastic optimization problem subject to data
queue stability and harvested energy availability, considering
the high ynamics of wireless channel states and renewable
energy sources. Following the Lyapunov optimization framework,
the stochastic grid power minimization problem is decomposed
into a network flow control subproblem, a network energy
management subproblem, and a network resource allocation
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subproblem, respectively. In order to solve these subproblems,
we develop a dynamic adaptive resource-on-demand (DAROD)
algorithm to effectively reduce the grid power consumption
cost by allocating the resource efficiently based on the dynamic
demands of multi-RAT networks. Finally, the tradeoff between
grid power consumption cost and network delay is achieved,
in which the increase of network delay is approximately linear
with the network control parameter V and the decrease of
grid power consumption cost is at the speed of 1/V . Extensive
simulations are conducted to verify the theoretical analysis and
show the effectiveness of our proposed algorithm.

Index Terms— Resource-on-demand, multi-RAT networks,
resource optimization, energy harvesting.

I. INTRODUCTION

THE exponential growth of wireless data driven by mobile
Internet and smart devices (e.g., smart phones, drones,

smart cars and sensors) has triggered the investigation on 5G
cellular networks [1], [2]. In order to serve such high data
traffic with a massive number of terminals, future 5G networks
should be sustainable to support high network capacity with
enhanced energy efficiency, since using an extremely large
amount of energy to increase the communication capacity will
result in unacceptable operating costs for both the network
operators and the electricity grid [3]. Hence, reducing the net-
work energy consumption while keeping high-quality service
provision effectively is a critical requirement of future 5G
networks, which has become a primary concern in achieving
long-term green communication and self-sustainable opera-
tions with renewable energy in a resource-efficient way.

To achieve sustainable wireless communications, the energy
harvesting (EH) technology has been introduced in wireless
networks, which has attracted great attention from both acad-
emia and industry. The CO2 emission of future networks
with EH capabilities will be potentially reduced by 20% [4].
The emerging radio access technologies (RAT) network with
EH components that can capture ambient recyclable energy,
(e.g., solar energy, RF energy and wind energy), are jointly
considered to collect renewable energy as supplementary for
the electric grid power [4], [5]. The implementation of renew-
able energy and energy efficient RATs can bring significant
benefits by helping network operators to reduce energy costs
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and the burden of the electricity grid. Hence, it is desirable that
wireless networks integrate EH capability, which breed new
challenges for effective utilization of the harvested energy.

Recently, the integration of various multi-radio access tech-
nologies (multi-RAT) networks has been studied to address the
challenges of the massive growth in mobile traffic demands,
which plays vital roles to comprehensively improve wire-
less services from different aspects of 5G networks [6]. For
instance, in order to effectively manage various devices in
a large scale, an Internet of Things (IoT) system may inte-
grate wireless networks adopting different RATs by means of
Network Function Virtualization (NFV) and Software Defined
Networking (SDN) [7]. In this manner, users could have
connections to base stations (BSs) via different RATs, thus
having seamless connectivity. Specifically, combined with the
EH technology, the multi-RATs can harvest different amounts
of energy in diverse environment. Then, energy consumption
can be reduced effectively by leveraging energy between the
multi-RATs, by means of coordinating RATs with overlapping
coverage. However, the coexistence of multi-RAT networks
requires efficient resource management algorithms of cross-
RAT resource allocation to improve the energy efficiency.

Although EH-aided wireless networks have attracted recent
attentions with potential advantages, they also introduce
new design and management issues for multi-RAT network
operators. First, since the harvested energy of surrounding
environment depends heavily on environmental factors such
as location and weather condition, the harvested energy will
be quite unstable with environmental variations, due to the
fact that the EH process is the characteristics of time-varying
and strongly stochastic behaviors [8]. Furthermore, although
multiple RATs co-exist in 5G networks, they are managed
alone, which may lead to suboptimal utilization of overall
network resources. For instance, RATs may be in disparate
traffic load with different energy requirements, leading to the
huge mismatch between harvested energy and traffic loads,
which further degrades the resource utilization. Thus, the
insufficiency and randomness of harvested energy without
the priori knowledge of the energy result in the increasing
network operating expenditure and unsatisfactory quality of
services (QoS) of users. Furthermore, the aggregated resources
on different RATs are underutilized to satisfy future require-
ments in the highly heterogeneous energy environment for
energy-constrained 5G networks.

Therefore, to make full use of the harvested energy and
overcome the huge mismatch situation between harvested
energy supply and energy demand, an efficient resource-
on-demand (ROD) energy management strategy with hybrid
energy sources is necessarily needed, where the ROD strategy
aims to scale the network capacity and energy to the actual
network demand dynamically according to different QoS
requirements of users. Cooperative energy scheduling between
RATs is enabled, where the harvested energy can be trans-
ferred and shared flexibly by multi-RATs, in order to further
improve the energy utilization. In addition, the data traffic and
energy is distributed based on various factors such as traffic
QoS requirements, the number of mobile devices, the type
of service applications and the geographical environments.

In order to fully exploit the availability of these resources con-
sidering the contextual environment information, the energy in
multi-RATs should be cooperatively scheduled on demand and
utilized with higher efficiency, for saving energy consumption
and improving the network energy efficiency performance.

Research works have begun to study the renewable energy
with the EH technology in wireless networks [4], [5], and
the green-oriented resource allocation issues have also been
investigated in [9], [10]. However, the existing works ignore
the accumulation benefits and randomness of harvested energy
in multi-RATs in the long term. Moreover, the previous works
focused on the resource allocations based on perfect channel
state information (CSI), neglecting the bursty of arrival data
rates and the dynamics of CSI. Note that there are few
works studying the EH technology in multi-RAT networks,
which brings the urgent needs for studying renewable energy
utilization and optimizing resource allocations in multi-RAT
networks with heterogeneous energy sources.

In this paper, we propose a resource-on-demand alloca-
tion strategy for multi-RAT wireless networks, which are
simultaneously powered by both harvested energy and grid
power. By considering the dynamics of randomly varying
harvested energy, dynamic traffic arrival and time-varying
wireless channels, the flexible energy scheduling is formulated
as a stochastic optimization problem to minimize the grid
power consumption. Specifically, under the sporadic avail-
ability and discontinuity of the harvested energy, a dynamic
network energy queue model is proposed to provide the
enduring operation for resource optimization in multi-RAT
wireless networks with renewable energy. Following the Lya-
punov optimization framework, the stochastic optimization
problem is transformed into a sequence of optimization sub-
problems, including the network flow control subproblem,
the network energy management subproblem, and the network
resource allocation subproblem. By solving these subprob-
lems, an optimal resource-on-demand algorithm for multi-
RAT wireless networks is developed to adapt to the dynamic
environment. The main contributions of this paper are outlined
as follows.

• We propose a resource-on demand strategy for flexible
energy scheduling in multi-RATs with heterogeneous
energy sources, where the harvested energy is effectively
shared between RATs to satisfy varying energy demand.

• We propose a heterogenous energy supply model for
the multi-RAT networks, which is powered by both the
harvested energy and the grid energy. More specifically,
we develop a realistic grid power cost model for the grid
energy.

• We formulate the energy scheduling as a stochastic opti-
mization problem to minimize the grid power cost. With
the aid of Lyapunov framework, the dynamic adaptive
resource-on-demand (DAROD) algorithm is proposed to
accommodate the multi-dimension stochastic states in
the dynamic environment. The grid power consumption
can be effectively reduced with efficient utilization of
harvested energy, where a priori distribution knowledge
of the wireless channel and data arrival state is not
required, which is very practical in real systems.
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• The tradeoff between grid power consumption and net-
work delay is achieved, in which the increase of delay is
approximately linear in V and the decrease of grid power
consumption is at the speed of 1/V with the control
parameter V . It can provide guidelines for dynamic
resource allocation in multi-RAT networks with heteroge-
nous energy sources.

The remainder of the paper is organized as follows. The
related work is presented in Section II. Section III gives
the network model and problem formulation. The DAROD
algorithm is given in Section IV. The tradeoff performance
between network delay and network utility is investigated in
Section V and Section VI. The proposed algorithm is verified
by simulation results in Section VII. The conclusions are
drawn in Section VIII.

II. RELATED WORKS

1) Allocation of Resources in Multi-RAT Networks: The
resource allocation problem in multi-RAT wireless networks
has attached great attentions, which helps different RAT net-
works jointly improve their wireless resource utilization and
network performances. It is well known that the orthogonal
frequency division multiple access (OFDMA) technique has
a strong robustness on frequency-selective fading channels,
which is widely adopted in various wireless standards. For
jointly allocating the subcarrier and power resource, a joint
OFDMA-based iterative subcarrier and water filling power
allocation algorithm was proposed in multi-RAT networks
in [9]. A monotonic-based optimal approaching algorithm was
proposed to maximize the sum rate and the number of sched-
uled non-prioritized links [11]. Nevertheless, the OFDMA-
based allocation is with the binary variables and the resource
allocation problem is formulated as a mixed integer nonlinear
programming problem with prohibitive computational com-
plexity. The mentioned literatures [9], [11] cannot obtain the
optimal resource allocation solution. For deriving the optimal
energy efficiency policy, a multiple-objective optimization
problem was formulated to minimize the maximum of sev-
eral quasiconvex fractional functions [12]. A decentralized
parameter-free approach was developed to obtain the optimal
multi-homing resource allocation efficiently in [13]. However,
the EH technologies, which are promising to achieve green
networking, are not considered in these works.

2) EH Technique in Communication Systems: The EH
techniques have attracted significant attentions from both the
industry and academia in recent years. To benefit the green-
ness from EH while overcoming the instability of renewable
energy, a base station access and power control algorithm
was developed to minimize the long-term average network
service cost in [14]. A sustainable resource allocation was
proposed to maximize the difference between the user utility
gain and on-grid energy costs in cloud radio access net-
works which are powered by hybrid energy supplies [15].
An online dynamic transmission algorithm was developed in
an energy harvesting communication system in [16]. A new
relay selection and power allocation problem about selecting
solar-powered relay station and grid-powered relay station was

formulated as Mixed Integer Linear Programming to minimize
the total grid power consumption in [17]. The tradeoff between
throughput of small cell users and the associated power cost
was optimized considering both energy harvesting constraints
and interference constraints [18]. Under the heterogeneous
energy supplies from renewable energy and electricity grid,
a discrete time stochastic cross-layer optimization problem is
formulated to maximize the time-average rate utility in [19].
In the schemes above, harvested energy is supplied only to
its own use without energy cooperation. However, as the
harvested energy is intermittent and sporadic, if a RAT is
sheltered by the building or trees, the RAT’s harvested energy
will be not enough. Hence, this RAT will consume a lot of
power resource from the grid energy. While, the RAT under
good light condition may have too much harvested energy
to consume, hence the remaining energy will disappear as
heat. These inflexible designs [14]–[19] not only waste a lot
of harvested energy but also consume more grid energy,
which lead to huge mismatch between the dynamic traffic and
renewable energy.

3) Resource-on-Demand (ROD) Strategy: The ROD strat-
egy has been investigated by several works. For reducing the
energy waste in dense wireless networks, a ROD strategy was
developed to activate only the number of access points (AP)
that is strictly needed with the actual traffic in [20]. An optimal
power allocation problem was proposed to maximize the over-
all throughput based on non-orthogonal multiple access relay
in multiple mobile users scenario in [21]. The higher coverage
and capacity was achieved by using opportunistic carrier sense
multiple access in multi-RAT networks [22]. A joint resource
allocation scheme was proposed to minimizing the energy
consumption while satisfying QoS performance requirements
by the network cooperation in HetNets in [10]. For large scale
wireless networks, an energy efficiency maximization prob-
lem on power allocation in wireless communication systems
with multiple parallel channels was proposed in [23], [24].
However, all of these works are based on grid energy model,
the jointly harvested energy and grid energy demand strategy
has not been investigated yet.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first discuss the network model of multi-
RAT wireless networks, which includes the heterogeneous
energy supply model. The energy supply model and data
queue model are also given herein. Then, we formulate the
grid power consumption cost minimization as a stochastic
optimization problem.

A. System Model

In this paper, the tightly integrated multi-RAT wireless
network scenario is considered as shown in Fig. 1. We assume
that each UE is equipped with multiple radio capacity and
it can access to the same core network through N differ-
ent RATs simultaneously. It should be noted that the inter-
RAT interference can be relieved since different frequency
bands are generally used for different RATs [11]. Let N =
{1, 2, · · · , N} and U = {1, 2, · · · , U} denote the set of RATs
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Fig. 1. System architecture of multi-RAT wireless network.

and UEs in multi-RAT wireless network, respectively. Due
to the practical limits in multi-RAT capability, we consider
that each UE u (RAT n) can connect to the set of Nu RATs
(Un UEs) from the available RATs set N (UEs set U), then
U =

⋃N
n=1 Un, and N =

⋃U
u=1 Nu.

We assume that the multi-RAT networks are operated in
slotted time. The time-slots are normalized to integer values
t ∈ {0, 1, 2, · · · }. Under the deployment of OFDMA tech-
nology, the RATs need to allocate its subcarrier and transmit
power resources to service the UEs that are connected to
RATs. We define J as the number of subcarriers with the
set J . xk

n,u(t) is the indicator function with binary variable
to allocate subcarrier k to UE u in RAT n at time-slot t. Let
gk

n,u(t) be the channel gain for RAT n to UE u on subcarrier
k and pk

n,u(t) be the transmit power. We give the assumption
that g(t) = [gk

n,u(t)]n∈N ,u∈Un,k∈J is independently and
identically distributed (i.i.d) over different time-slots in a finite
state space G. With the definition, the maximum achievable
data rate of UE u on subcarrier k in RAT n is calculated as
follows,

bk
n,u(t)=xk

n,u(t)Bn log2

(
1+

|gk
n,u(t)|2pk

n,u(t)
BnN0

)
, (1)

where Bn is the subcarrier spacing in RAT n, and N0 is the
power spectral density of additive white Gaussian noise. Due
to the fact that each subcarrier can be only allocated to at most
one UE in RAT n, we have∑

u∈Un

xk
n,u(t) ≤ 1, xk

n,u(t) ∈ {0, 1}, ∀k ∈ J , t ≥ 0. (2)

Then, the sum rate of UE u that is served by the RATs Nu,
is expressed as

Ru(t) =
∑

n∈Nu

bn,u(t) =
∑

n∈Nu

∑
k∈J

bk
n,u(t). (3)

where bn,u(t) is the transmission rate between RAT n
and UE u.

B. Energy Supply Model

We assume that the multi-RAT is powered by heterogenous
energy supply model that it can harvest energy from ambient
energy sources (such as solar energy that considered in this
paper) or purchase energy from the power grid. Different RATs

Fig. 2. Multi-RAT energy cooperation process.

are connected by the efficient cable. If the RAT is located
with unfavorable climate conditions so it cannot have enough
harvested energy, it can request harvested energy from other
RATs whom harvest more than enough energy to feed itself
with the energy transfer by the power grid. In addition, when
the harvested energy in multi-RAT wireless network is not
enough, the RAT should demand transmit power from the grid
as shown in Fig. 1.

Let P in
n (t) denote the demand power from the grid at time

slot t, and each RAT is equipped with a battery having the
capacity θE

n . There is en(t) energy at time slot t that is
harvested by RAT n from solar panels. Then, the demanded
energy of different RATs should be no larger than that of the
arrival which is constrained by∑

m∈N
ρn,m(t) ≤ 1, 0 ≤ ρn,m(t) ≤ 1, ∀n ∈ N , (4)

where ρn,m(t) is the energy demand variable, which indi-
cates that ρn,m(t) fraction of harvested energy of RAT n is
demanded by RAT m.

Let cn,m denote the transmission discount of the harvested
energy from RAT n to RAT m, which satisfies that if n = m,
cn,m = 1; if n �= m, 0 ≤ cn,m < 1. It shows that the RAT
can use all energy harvested by itself, while the transmission
loss will be caused if it demands energy from other RATs as
shown in Fig. 2. The energy queuing dynamic equation is

En(t + 1) = En(t) + P in
n (t) +

∑
m∈N

cm,nρm,nem(t)

−
∑

u∈Un

∑
k∈J

xk
n,u(t)pk

n,u(t). (5)
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where En(t) denotes the energy queue size of RAT n at
time slot t. In practice, the transmit power of the RAT is
bounded by the available energy in the network battery. Thus,
we can obtain that the total transmission power of RAT n is
required as ∑

u∈Un

∑
k∈J

xk
n,u(t)pk

n,u(t) ≤ En(t). (6)

in each time slot t, the total amount of energy stored in
battery is limited by the battery capacity, it should satisfy the
inequality as

En(t) + P in
n (t) +

∑
m∈N

cm,nρm,nem(t) ≤ θE
n . (7)

Furthermore, in the multi-RAT wireless network, we assume
that all of the RATs are supplied by one grid power, so that
the total required grid transmit power should satisfy∑

n∈N
P in

n (t) ≤ Pmax. (8)

Then, the maximum energy consumption of multi-RAT net-
works can be derived to Pmax.

C. Data Queue Model

The amount of data arrival for UE u at time slot t
(e.g., media content data) is modeled as a stochastic process
Au(t). With a finite state space Λ, we give the assumption
that A(t) = [Au(t)]u∈U follows i.i.d at different time slots.
In addition, the average arrival data rate of A(t) is denoted
by λ = [λu]u∈U , i.e., E[Au(t)] = λu, ∀u ∈ U . During time
slot t, the amount of flow data of UE u that arrived at RAT
n queue scheduler is denoted by γn,u(t). Then, the following
equation is satisfied∑

n∈Nu

γn,u(t) = Au(t), ∀u ∈ U . (9)

where RAT n can provide an infinite buffer to store the data,
and Qn,u(t) denotes the backlog for the data at time-slot t.
During time-slot t, the data will be transmitted, which is stored
in the buffer at the beginning of time-slot t. Hence, we describe
the queue dynamics of Qn,u(t) (∀t > 0, n ∈ N , u ∈ Un) as

Qn,u(t + 1) = max[Qn,u(t)−bn,u(t), 0]+γn,u(t). (10)

where the departure process is modeled as the first term
in (10), the second term represents the arrival process. We can
see that the arrival process of the queues and the departure
process are stochastic due to the stochastic of A(t) and the
time-varying characteristic of g(t). In addition, the queue
backlogs of RATs are varying over time. Hence, it is necessary
to make the model on queuing stability. The definition of the
strongly stable condition is given as

Definition 1: A queue is defined as strongly stable if the
following inequality holds [25]:

lim
T→∞

1
T

T−1∑
t=0

E[Qn,u(t)] < ∞. (11)

According to the definition, we can call the queue as
strongly stable if it has a bounded time average backlog. Then,

the multi-RAT networks are called strongly stable since all
individual queues of Multi-RAT network are strongly stable.
Hence, we will use the term “stable” to refer to strongly stable
in the following discussions.

Remark 1: Based on the Little’s Theorem, we can note
that the average delay is proportional to the time averaged
queue length [24]. Thus, the average delay can be depicted
by the time averaged queue length which can also be described
by network stability. In particular, it is a very important
precondition to make resource allocation decisions in multi-
RAT wireless networks.

D. Problem Formulation

For energy efficiency of multi-RAT networks, minimizing
the grid energy consumption cost is an important design
objective in wireless networks. In this paper, we will design
the energy consumption cost as the performance metric,
which is a convex increasing function of the demanded grid
power P in

n (t). The electric grid power cost increases with the
increase of the consumed electricity. In particular, we design
the energy consumption cost Fn as the performance metric
with the form of Fn(P in

n (t)) = κP in
n (t), which is a convex

increasing function of the demanded grid power P in
n (t) and

the κ is a positive constant parameter which depends on the
actual grid price. Hence, we take the form of Fn(P in

n (t)) in
this paper for simplicity of formula derivation in the following
section. It encourages the multi-RAT networks to consume
more renewable energy than the grid energy. Mathematically,
the stochastic programming problem P1 is formulated as

min
γ,x,p,ρ

lim
T→∞

1
T

T−1∑
t=0

E[Fn(P in
n (t))]

s.t. C1 : lim
T→∞

1
T

T−1∑
t=0

E[Qn,u(t)] < ∞, ∀n∈N , u∈Un,

C2 :
∑

n∈Nu

γn,u(t)=Au(t), ∀u∈U ,

C3 :
∑

u∈Un

xk
n,u(t)≤1, xk

n,u(t)∈{0, 1}, ∀k∈J ,

C4 :
∑

u∈Un

∑
k∈J

xk
n,u(t)pk

n,u(t)≤En(t), ∀n∈N ,

C5 :
∑
n∈N

P in
n (t)≤Pmax,

C6 :
∑

m∈N
ρn,m(t)≤1, 0≤ρn,m(t) ≤ 1, ∀n∈N ,

C7 :En(t)+P in
n (t)+

∑
m∈N

ρm,ncm,nem(t)≤θE
n ,∀n∈N ,

(12)

where C1 is the multi-RAT network stability constraint,
C2 shows that rate-aggregation received at the UE should be
equal to the arrival, C3 is the subcarrier resource constraint,
C4 shows that the total energy consumption at RAT n should
be smaller than the available energy at the battery of the
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RAT, C5 shows that the demanded energy of the RATs
should be smaller than the grid power, C6 shows that the
demanded renewable energy by RATs should be smaller than
the harvested energy from the solar panels and C7 is the
battery capacity constraint.

The stochastic problem P1 has the constraint that coupled
with both the time-averaged requirements and instantaneous
constraints which are performed at each time-slot. Hence,
due to the the randomly varying energy state information
(ESI), dynamic queue state information (QSI) and time-
varying wireless channel state information (CSI), problem
(12) can be viewed as a stochastic problem, which is quite
difficult to achieve the optimal solution. Then, a solution is
the approach for finding flow rate γ(t) = [γn,u(t)]n∈N ,u∈Un ,
subcarrier variable x = [xk

n,u]n∈N ,u∈Un,k∈J , transmit power
p(t) = [pk

n,u(t)]n∈N ,u∈Un,k∈J and the demand variable
ρ(t) = [ρn,m(t)]n,m∈N , P(t) = [Pn(t)]n∈N over time
according to the dynamic network state, which minimizes the
grid power cost while all the constraints are satisfied.

It is known that problem (12) includes multiple management
components, i.e. network flow control, resource allocation,
data queue management and energy management. Besides
that, by solving problem (12), the inherent tradeoff between
electricity grid power cost and network delay is derived in the
following sections.

IV. ALGORITHM DESIGN FOR MULTI-RAT
RESOURCE ALLOCATION

As mentioned above, we can see that problem P1 is a
stochastic optimization problem that cannot be directly solved
by convex optimization approach. To solve optimization prob-
lem P1, we take the advantage of Lyapunov optimization
technique [25] to design a dynamic optimization approach,
which can decompose problem P1 into three subproblems,
i.e. network flow control, resource allocation and energy
management subproblems, respectively. With the aid of Lya-
punov optimization approach, the adaptive resource allocation
algorithm is proposed to accommodate the dynamic wireless
networks only according to the current QSI and CSI,1 making
the algorithm easily implemented in practice by solving the
three subproblems.

Motivated from the Lyapunov optimization with weight
perturbation technique in [25], we introduce the weight per-
turbation θE

n , which is taken by the limited battery capacity
of RAT n defined in Section II. We note that Q(t) and
E(t) are the matrixs including the data queue {Qn,u(t)|∀n ∈
N , u ∈ Un} and energy queue {En(t)|∀n ∈ N}, respectively.
Then, the multi-RAT network state at time slot t is defined as
Z(t) � (Q(t),E(t)). We then define the quadratic Lyapunov
function as

L(Z(t)) =
1
2

∑
n∈N

∑
u∈Un

Q2
n,u(t) +

1
2

∑
n∈N

(En(t) − θE
n )2.

(13)

where L(Z(t)) is a nonnegative scalar measure of these
states, and the system will toward to unstable states when

1The current information about QSI and CSI is usually assumed as perfect.

the Lyapunov function grows large. Then, the system stability
can be achieved by making the Lyapunov function drift in
the negative direction towards zero. Hence, For achieving the
stability, minimizing the quadratic Lyapunov function can push
the energy queue towards the corresponding perturbed variable
value, and the data queue towards zero, respectively.

Then, at time slot t, the conditional expected Lyapunov drift
of the network is given by

Δ(Z(t)) :� E[L(Z(t + 1))|Z(t)] − E[L(Z(t))], (14)

where the expectation E[·] is taken over the random-
ness of departure and arrival processes of the data queue
and the energy queue, respectively. The penalty term
V E[Fn(P in

n (t)|Z(t)] is added to (14) for achieving the drift-
plus-penalty term with the Lyapunov optimization framework
as follows,

ΔV (Z(t)) = Δ(Z(t)) + V E[Fn(P in
n (t)|Z(t)]. (15)

where V > 0 is a control parameter, which can be regard
as the non-negative weight that is chosen as desired to affect
a performance tradeoff. The practical meaning of V will be
given in Section V. Furthermore, regarding the drift-plus-
penalty term, we have the lemma as follows.

Lemma 1: At time-slot t, given the feasible resource
allocation decision that can be taken, we have

ΔV (Z(t)) ≤ Θ̂ + V
∑
n∈N

Fn(P in
n (t))

+
∑
n∈N

∑
u∈Un

Qn,u(t)(γn,u(t) − bn,u(t))

+
∑
n∈N

(En(t) − θE
n )
(
P in

n (t)+

+
∑

m∈N
cm,nρm,nem(t) −

∑
u∈Un

∑
k∈J

xk
n,u(t)pk

n,u(t)

)

(16)

where Θ̂ is an upper bound on the term 1
2 [b(t)Hb(t) +

γ(t)Hγ(t)].
Proof: This proof is given in Appendix A.

Based the analysis above, the dynamic resource alloca-
tion can be motivated as follows. First, we aim to make
(Z(t)) smaller to push data queue backlog toward a lower
data queue length, guaranteeing that (11) holds. Second,
the E[Fn(P in

n (t)|Z(t)] should also been reduced without caus-
ing large grid power cost, minimizing the objective of problem
P1 at the same time. From the given analysis, our dynamic
resource allocation policy is designed to make the resource
allocation decisions for minimizing the right hand side of
(15), which can be decomposed into a series of independent
subproblems and can be solved concurrently with the current
network state information (ESI, CSI and QSI at the current
time).

A. Multi-RAT Flow Control

The optimal multi-RAT flow rate can be obtained by mini-
mizing the first item of R.H.S of (16) at each time slot. Due
to the fact that the flow rate variables of multi-RAT flow
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control problem PFC are independent among different UEs,
the minimization of flow rate can be computed for each UE
separately as

PFC : min
∑
n∈N

Qn,u(t)γn,u(t)

s.t.
∑

n∈Nu

γn,u(t) = Au(t). (17)

We can see that the optimal multi-RAT flow control solution
consists of choosing the RAT with the smallest queue backlog
Qn,u(t), and assigning the entire requested traffic Au(t),
respectively.

B. Multi-RAT Energy Management

Furthermore, the energy management subproblem PEM can
be obtained by combining the second term of the R.H.S of (16)
with constraints C5-C7, which is formulated as

min V
∑
n∈N

Fn(P in
n (t)) +

∑
n∈N

(En(t) − θE
n )P in

n (t)

+
∑
n∈N

∑
m∈N

(En(t) − θE
n )cm,nρm,n(t)em(t)

s.t. C5 :
∑
n∈N

P in
n (t) ≤ Pmax,

C6 :
∑

m∈N
ρn,m(t)≤1, 0≤ρn,m(t) ≤ 1, ∀n∈N ,

C7 :En(t)+P in
n (t)+

∑
m∈N

ρm,ncm,nem(t)≤θE
n , ∀n∈N .

(18)

The energy management subproblem PEM is composed of
renewable energy harvesting and energy demand processes.
Furthermore, all of the harvested energy will be stored
by the RATs if they have enough capacity in the battery
buffer according to the battery capacity θE

n . More specifically,
(En(t) − θE

n )cm,n is considered as the allocation weight of
the arrival harvested energy em(t). Besides that, the RATs can
demand energy from the grid power system when the harvested
energy is insufficient. Therefore, the energy management deci-
sions P in

n (t) and ρm,n(t) are jointly determined under the
current ESI and QSI which are known at the same time. Due
to the fact that the objective function of problem PEM is the
difference of convex function and linear function, and that all
of the constraints in (19) is linear, so the energy management
subproblem is a convex optimization in (P in

n (t), ρm,n(t)). The
efficient algorithm will be studied in the next section.

C. Multi-RAT Resource Allocation

By observing (16), the optimal joint subcarrier and power
allocation of at time slot t can be achieved by maximizing the
remaining item of R.H.S of (16), which is given by

PRA : max
∑
n∈N

∑
u∈Un

Qn,u(t)bn,u(t)

−
∑
n∈N

∑
u∈Un

∑
k∈J

(En(t) − θE
n )xk

n,u(t)pk
n,u(t)

s.t. C3 :
∑

u∈Un

xk
n,u(t)≤1, xk

n,u(t)∈{0, 1}, ∀k∈ J ,

C4 :
∑

u∈Un

∑
k∈J

xk
n,u(t)pk

n,u(t) ≤ En(t), ∀n ∈ N ,

(19)

This subproblem is a mixed-integer non-linear convex pro-
gramming and it is usually prohibitively difficult to solve.
Although the similar problems have been studied in [9], [26],
which optimized the subcarrier and power allocation sep-
arately, suffering from highly computational complexity.
To address this challenge, we will propose an efficient algo-
rithm in the next section.

V. OPTIMAL ENERGY MANAGEMENT

AND RESOURCE ALLOCATION

In this section, we aim to propose effective approaches to
solve the subproblems of energy management and resource
allocation in multi-RAT networks, respectively. The continuity
relaxation of binary variables will be used and Lagrange dual
decomposition method will be taken. The optimal solutions of
the two subproblems are then obtained. As the two subprob-
lems are optimized at each time slot, the slot index t will be
ignored for brevity.

A. Solution of Multi-RAT Energy Management
By observing subproblem PEM, we relax the variable

ρm,n to the continuous interval [0, 1], then subproblem PEM
becomes a convex optimization problem. The transformed
problem PEM is concave and the constraints of it are linear
inequalities. Thus, according to the Salter’s condition, the zero
Lagrange duality gap in this problem can be guaranteed [27].
Relaxing the constraints C5 and C6 by σ and νn, respec-
tively, the Lagrangian function of subproblem PEM can be
expressed as

L(P, ρ, σ, ν) = V
∑
n∈N

Fn(P in
n )+

∑
n∈N

(En−θE
n )P in

n

+
∑
n∈N

∑
m∈N

(En − θE
n )cm,nρm,nem

−
∑
n∈N

νn

(
En+P in

n +
∑

m∈N
ρm,ncm,nem−θE

n

)

− σ

(∑
n∈N

P in
n − Pmax

)
. (20)

Let Φ(P in
n ) = V Fn(P in

n )+(En−θE
n )P in

n −νnP in
n −σP in

n , and
Λn,m = (En − θE

n − νn)cm,nem, the corresponding Lagrange
dual is

d(σ, ν) = min
P,ρ

⎧⎨
⎩
∑

n∈N
Φ(P in

n ) +
∑

n∈N

∑
m∈M

Λn,mρn,m

− ∑
n∈N

νnEn +
∑

n∈N
νnθE

n + σPmax

⎫⎬
⎭

s.t.
∑
n∈N

ρn,m ≤ 1, 0 ≤ ρn,m ≤ 1, ∀n ∈ N . (21)

The equation above is a classical linear assignment problem
for energy demand variable ρm,n. Then, the optimal solution is

ρm,n =

{
1, n = argminl{Λl,m, ∀l ∈ N}
0, otherwise.

(22)
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Given the optimal energy demand variable ρm,n, the min-
imization of the problem in (21) can be achieved by finding
the partial derivative of Φ(P in

n ) with respect to P in
n , which is

given by

∂Φ(P in
n )

P in
n

= V F ′
n(P in

n ) + En − θE
n − νn − σ. (23)

Hence, the optimal grid power is given as

P in
n = F−1

n (
θE

n + νn + σ − En

V
). (24)

Then, the dual problem of (18) is formulated as

max d(σ, ν) (25)

s.t. σ ≥ 0, ν ≥ 0,

which is always a concave optimization problem. Therefore,
the gradient descent method can be used to calculate the
optimal values for σ and ν [27], i.e.

σ(ι+1)= σ(ι)−μ

(∑
n∈N

P in
n (ι)−Pmax

)
.

ν(ι+1)= ν(ι)−�

(
En+P in

n (ι)+
∑

m∈N
ρm,n(ι)cm,nem−θE

n

)
.

(26)

In the equations above, ι is an iteration index, μ and �
are the sufficiently small step sizes. Due to the fact that the
gradient of (23) satisfies the Lipchitz continuity condition,
the convergence of the iteration in (19) towards the optimal σ
and ν is guaranteed [28].

B. Solution of Multi-RAT Resource Allocation

In this subsection, the continuity relaxation of binary vari-
ables and the Lagrange dual decomposition method are used
to solve the resource allocation problem PRA.

1) Continuity Relaxation and Convexification: First,
we relax xk

n,u to the continuous interval [0, 1], we introduce a
new variable sk

n,u = xk
n,upk

n,u for each UE u and subcarrier k.
Then, we can rewrite the resource allocation subproblem as

max
∑
n∈N

∑
u∈Un

∑
k∈J

Qn,uxk
n,uBn log2

(
1+

|gk
n,u|2sk

n,u

xk
n,uBnN0

)

−
∑
n∈N

∑
u∈Un

∑
k∈J

(En − θE
n )sk

n,u

s.t.
∑

u∈Un

xk
n,u≤1, 0 ≤ xk

n,u ≤ 1, ∀k∈ J ,

∑
u∈Un

∑
k∈J

sk
n,u ≤ En, ∀n ∈ N ,

sk
n,u ≥ 0, ∀n ∈ N , u ∈ Un, k ∈ J . (27)

We can see that problem (27) is concave, because it is the
difference of a concave log function and a linear function.
In addition, since the feasible sets of the constraints are linear,
the Slater’s condition is always satisfied, so a zero Lagrange
duality gap can be achieved [27].

2) Lagrange Dual Solution: We relax the RAT battery
constraint by introducing dual variables ωn. Then, we obtain
the following Lagrange function as

L(s,x, ω) =
∑
n∈N

∑
u∈Un

∑
k∈J

Qn,uxk
n,uBn log2

(
1+

|gk
n,u|2sk

n,u

xk
n,uBnN0

)

−
∑
n∈N

∑
u∈Un

∑
k∈J

(En − θE
n )sk

n,u

−
∑
n∈N

ωn

(∑
u∈Un

∑
k∈J

sk
n,u − En

)
(28)

Then, the dual function is given as

d(ω) = min
s,x

L(s,x, ω)

s.t.
∑

u∈Un

xk
n,u≤1, 0 ≤ xk

n,u ≤ 1, ∀k∈ J , (29)

and the dual problem of (27) is formulated as

min d(ω)
s.t. ω ≥ 0. (30)

It is well known that the minimum problem (30) is identical
to the maximum problem (27). Thus, problem can be solved
by finding the optimum ω.

We take the Karush-Kuhn-Tucker (KKT) conditions for
problem (30), we can have

sk
n,u =

[
Qn,uBn

(En − θn + ωn) ln 2
− BnN0

gk
n,u

]+
xk

n,u, (31)

where [x]+ = max{0, x}.
Furthermore, we take (31) into (28) and let

Λk
n,u

=Qn,uBn log2

(
1+

|gk
n,u|2

BnN0

[
Qn,uBn

(En−θn+ωn) ln 2
−BnN0

gk
n,u

]+)

− (En − θE
n )
[

Qn,uBn

(En − θn + ωn) ln 2
− BnN0

gk
n,u

]+

−ωn

[
Qn,uBn

(En − θn + ωn) ln 2
− BnN0

gk
n,u

]+
, (32)

we finally rewrite (30) as

d(ω) = min
x

∑
n∈N

∑
u∈Un

∑
k∈J

Λk
n,uxk

n,u +
∑
n∈N

ωnEn

s.t.
∑

u∈Un

xk
n,u≤1, 0 ≤ xk

n,u ≤ 1, ∀k∈ J , (33)

The problem can be considered as a classical linear assign-
ment problem. The optimal xk

n,ml
can only be obtained among

extreme points in the constraint set (i.e., 0 or 1). Therefore,
the optimal solution is still binary after continuity relaxation on
xk

n,ml
. More specifically, the allocation of x is only determined

by Λk
n,ml

. Thus, for any subcarrier k ∈ Jn, xk
n,ml

, where
ml = argmaxml∈Mn

{Λk
n,ml

, ∀k ∈ Jn, n ∈ N}, the best
subcarrier allocation is shown as follows.

xk
n,ml

=

⎧⎨
⎩

1, ml = argmax
ml∈Mn

{Λk
n,ml

, ∀k ∈ Jn, n ∈ N};
0, otherwise.

(34)
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Because sk
n,ml

= xk
n,ml

pk
n,ml

, after computing the optimal
subcarrier allocation x∗, the optimal power allocation p∗ can
be obtained from (28).

The optimal values of ω∗ is determined by solving dual
problem (30). By using a gradient descent method, the optimal
values of ω∗ is given by

ωι+1
n=

[
ωι

n + 

(∑
u∈Un

∑
k∈J

xk
n,upk

n,u − En

)]+

, (35)

where [·]+ is defined as the projection of [·] onto the non-
negative orthant and  denotes the sufficiently small positive
step-sizes. With some sufficiently small step-sizes, the gra-
dient descent method can converge to the optimal Lagrange
multiplier [28].

3) Optimality With Respect to Resource Allocation: In this
step, we show that the continuity relaxation and Lagrange dual
method lead to the optimal subcarrier and power allocations
for optimizing problem (19).

We note that the problem (27) is a relaxed version for
optimizing problem (19), so the optimum of (29) should be
smaller than that of problem (27). Furthermore, the constraints
C3 and C4 can be satisfied by the optimal solution of the con-
tinuity relaxed problem (27). We then state that the optimum
of problem (27) is also the optimum of problem (19).

4) Computational Complexity: In (31), the dual prob-
lem (28) is solved by the subgradient method. To achieve
δ-optimality, i.e., |d(ω)−d(ω∗)| < δ, the number of iterations
is on the order of O(1/δ2) [27]. In each iteration, (31) needs
to be computed for J subcarriers. Because that there are
N × |Un| connections in the multi-RAT networks. In each
iteration, (31) needs to be operated N × |Un| times. So the
computational complexity for computing (31) is taken as
O(N × |Un|). Therefore, the computational complexity of
dynamic resource allocation is O

(
(N × |Un|)(1/δ2)

)
. Finally,

the overall procedure of the DAROD algorithm is summarized
in Algorithm 1.

VI. TRADEOFF PERFORMANCE BETWEEN POWER

CONSUMPTION COST AND DELAY

In this section, we will mathematically analyze the per-
formance bounds of the proposed DAROD algorithm based
on Lyapunov optimization. Firstly, we give the following
bound assumptions and concepts, which will be used in the
performance discussion.

Firstly, we note that s(t) = (A(t),g(t),E(t)) ∈ S and
α(t) = (γ(t),x(t),p(t), ρ(t)) ∈ Ω represent the network
state and the network decision at time slot t, where Ω is the
set of feasible network decisions and S is the network sate
space [29]. Based on the property of boundness of transmit
power p(t) and the fact of all physical quantities in realistic
systems, the electricity cost satisfies

Fmin ≤ E[Fn(P in
n (t))] ≤ Fmax, (36)

where Fmin and Fmax are some finite constants.
Specifically, aiming to minimize the current electricity cost

Fn(P in
n (t)) under the constraints (C2)-(C7), s-only policy

is defined as a stationary policy and possibly randomized

Algorithm 1 Dynamic Adaptive Resource-on-Demand
(DAROD) Algorithm

Step 1: For each time slot t, observe the current QSI Qn,u(t)
and ESI En(t);
Step 2 (Multi-RAT Network Flow Control): Calculate the
optimal flow control variable γn,u(t) according to (17);
Step 3 (Multi-RAT Network Energy Management):
repeat

Obtain the energy demand variable ρm,n(t) according to
(21);
Obtain the grid power P in

n (t) according to (24);
Update the Lagrangian dual variables σ and ν according
to (26);

until Certain stopping criteria is met;
Step 4 (Multi-RAT Network Resource Allocation):
repeat

Obtain the subcarrier allocation variable xk
n,u(t) according

to (34);
Obtain the subcarrier power pk

n,u(t) according to (31);
Update the Lagrangian dual variable ω according to (35);

until Certain stopping criteria is met;
Step 5: Updates the data queues Qn,u(t) and the energy
queues En(t).

function of the current state s(t) only that choose action
α̃(t) independently at every time-slot. With s-only policy,
the expectation of the flow rates and network rates are the
same for all time slots due to the stationary distribution of
s(t). Then, the following lemma is given(the proof is omitted
due to the limited space) [30].

Lemma 2: If λ is strictly interior to the capacity region Λ,
λ + ς is still in Λ for a positive ς , an s-only policy can be
found that

E

[
b̃n,m(t)(α̃(t), s(t))

]
≥ ς + E [γ̃n,m(t)(α̃(t), s(t))] , (37)

where b̃n,m(t) and γ̃n,m(t) denote the resulting values under
s-only policy [30].

Proof: Based on the capacity region which is defined as
all of the average traffic arrival rates λ that can be stably
supported by the Multi-RAT networks, we can obtain that a
resource allocation policy can be founded with the constraint
of the average traffic arrival rate λ [30]. We define α̃(t) as
the transmission decision under a particular s-only policy, and
define b̃n,m(t) and γ̃n,m(t) as the resulting values under s-only
policy on time slot t. Therefore, for any vector Λ, there exists
an s-only policy that satisfies as E

[
b̃n,m(t)(α̃(t), s(t))

]
≥

E [γ̃n,m(t)(α̃(t), s(t))] + ς.
The performance of the proposed DAROD algorithm can

be obtained based on Lemma 2.
Theorem 1: For any network control parameter V > 0,

if λ + ς is strictly in the capacity region Λ of the multi-RAT
and E[L(Z(0))] < ∞, the properties of proposed DAROD
algorithm can be achieved [30]:

a) F
pro

is time averaged power consumption cost and F
opt

is the optimal value for solving the original problem, we can
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have that

F
pro ≥ F

opt − Θ̂
V

. (38)

b) The proposed algorithm guarantees that all data queues
in the Multi-RAT networks are stable with V ≥ 0. The time
averaged queue length is bounded by

lim
T→∞

1
T

T−1∑
t=0

∑
n∈N

∑
m∈Mn

E[Zn,m(t)] ≤ Θ̂ + V (Fmax − F
opt

)
ς

.

(39)

Proof: The proof is omitted due to limited space.
Firstly, based on the property (a) of Theorem 1, the time

averaged power consumption cost F
pro

decreases at the speed
of O(1/V ) with a decay rate of Θ̂/V when V increases, and
F

pro
of the proposed algorithm is arbitrarily close to F

opt

when setting a sufficiently large V . It means that the proposed
algorithm is asymptotically optimal for solving the problem.
Hence, the proposed algorithm can fully utilize the harvested
and grid power energy with a sufficiently large V in multi-
RAT networks.

Secondly, the performance bound of the time averaged data
queue length is shown in the property (b) of Theorem 1.
It shows that the time averaged data queue length is pro-
portional to the network control parameter V at the speed
of O(V ). The time averaged delay of time averaged data
queue length can be depicted based on the fact that the average
transmission delay of data transmission is proportional to the
average queue length from Little’s Theorem [28]. Specifically,
a larger V value results in a larger time averaged data queue
length but a less time averaged power consumption cost.
Hence, it proves that there exists a O( 1

V ),O(V ) tradeoff
between the time averaged data queue length and the time
averaged power consumption cost, which provides an efficient
approach to control cost-delay performance to satisfy the
QoS requirements of multi-RAT design and the demands of
effective resource allocation adaptively.

VII. SIMULATION RESULTS

In this section, the simulation results are presented to
evaluate the performance of the proposed algorithm and verify
our theoretical analysis in the multi-RAT wireless networks
powered by heterogeneous energy sources. In the simula-
tion, we consider multi-RAT wireless networks constituted by
three RATs. The transmission over wireless channels between
RATs and UEs are orthogonal, thus, there is no interference
among them. the CSI is assumed to be independent and
identically distributed (i.i.d) across different time slots [31].
The channel gain between RAT n and UE u are gn,u(t) is
independently and identically distributed (i.i.d) over different
time slots, and g(t) takes values in a finite state space G
which is uniformly distributed over [4,10]. The value of QoS
requirement represents a measure of the distance between the
rate vector and the capacity region boundary. In addition,
the greedy algorithm with maximum transmission power is
taken as the benchmark algorithm. Without special statement,
the simulation parameters are set according to Table I and

TABLE I

KEY PERFORMANCE INDICATORS

Fig. 3. Multi-RAT harvested energy arrival process.

Fig. 4. Grid power consumption with parameter V.

some special parameters will be specified in each numerical
experiment if necessary.

Fig. 3 shows the harvested energy of different RATs (RAT1,
RAT2 and RAT3) and the total harvested energy in terms of the
time, respectively. It shows that different RATs are within the
uncertainty of the arrival process of harvested energy. The total
harvested energy can provide good benefits for the Multi-RAT
networks, which can be implemented into practical systems
with finite sized energy buffers.

Fig. 4 shows the averaged grid power consumption in terms
of the network control parameter V with different arrival data
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Fig. 5. Grid power consumption V.S. number of users.

rates. We set the different arrival data rate scenarios with
the users U = 40. It shows that the averaged grid power
consumption decreases along with the increase of V at the
speed of O(1/V ). In addition, it shows that the time averaged
power consumption converges to the optimal value when
the network control parameter V is large enough. Because
the proposed algorithm is asymptotically optimal in terms
of solving the original problem, which has been proved in
Theorem 1. Furthermore, it also shows that the time averaged
power consumption increases as the average arrival data rate λ
increases. Because the larger average arrival data rate λ arrives,
the larger transmission rate will occur to meet the demands of
data queue stability, leading to much more consumption of
time averaged power. Hence, the Theorem 1 is validated by
this experiment effectively.

Fig. 5 shows grid power consumption of the proposed
algorithm in terms of the number of users, compared with the
algorithm without energy cooperation. The algorithm without
energy cooperation means that there is no energy transfer
among multi-RAT networks with demand factor ρn,m =
0(n �= m). It shows that the proposed algorithm con-
sumes much less grid power than the algorithm which is
without energy cooperation. Because energy cooperation can
take advantage of harvested energy more efficiently due to
the unbalanced nature of spatial and temporal distribution,
which is taken as beneficial complement of the grid power.
In addition, we compare the proposed algorithm with greedy
algorithm which takes the maximum transmission power and
it shows that the proposed algorithm can reduce grid power
consumption effectively.

Fig. 6 shows the grid power consumption of the proposed
algorithm in terms of the number of RATs compared with
greedy algorithm. As expected, it shows that the grid power of
the proposed algorithm consumes much less than the algorithm
without energy cooperation as the increase of the number of
RATs. Because the excess harvested energy of different RATs
can be fully utilized with energy cooperation as the increase
of the number of RATs. In addition, it shows that the proposed
algorithm can reduce grid power consumption effectively com-
pared with greedy algorithm. Hence, the proposed algorithm

Fig. 6. Grid power consumption V.S. number of RATs.

Fig. 7. Average grid power consumption V.S. average arrival rate.

can gain good performance aided by the multi-RAT networks
in an energy-efficient way.

Fig. 7 shows the average grid power consumption of the
proposed algorithm in terms of average arrival rate. It shows
that time averaged grid power consumptions under both
the proposed algorithm and the algorithm without energy
cooperation increase with the increasing of the arrival data
rate. Furthermore, It also shows that the proposed algorithm
outperforms the algorithm without energy cooperation, due to
the fact that the bandwidth and power are allocated adaptively
based on the dynamics of the data queue length and the
wireless channel state. Hence, the proposed algorithm is quite
practical in the real systems.

Fig. 8 shows the variation of the average data queue length
in terms of the network control parameter V . It shows that the
averaged data queue length increases along with the increasing
of network control parameter V at the rate of O(V ), and the
larger the average arrival data rate λ is, the larger is average
data queue length, due to the fact that the average arrival data
rate is in proportion to the averaged data queue length based
on Little’s theorem.
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Fig. 8. Average data queue length V.S. network control parameter V .

Fig. 9. Power consumption V.S. battery capacity.

Fig. 9 shows the averaged grid power consumption versus
the network battery capacity. It demonstrates that the multi-
RAT networks with the proposed algorithm can increasingly
reduce the averaged grid power consumption at the cost of
increasing network battery capacity. As we know, the total
transmit power consumption equals to the harvested energy
added by the grid power. Thus, with much more harvested
energy being stored in the increasing network battery, much
less grid power will be consumed, which indeed reduces the
averaged grid power cost.

Fig. 10 and Fig. 11 show the tradeoff between the averaged
grid power consumption and the network delay with the
variation of network control parameter V . It can be seen that
the less averaged grid power consumes, the larger averaged
delay will be. Thus, there is a tradeoff between grid power
and delay, which can be quantitatively characterized with
[O(1/V ),O(V )]. Hence, the proposed algorithm can provide
an efficient approach to allocate the resources adaptively based
on the dynamic demand of multi-RAT with the network control
parameter V . For instance, a larger V will be needed if the
multi-RAT prefers to save the grid power consumption, and
a smaller V will be set if the multi-RAT requires the lower
delay performance.

Fig. 10. Grid power v.s. V.

Fig. 11. Network delay v.s. V.

VIII. CONCLUSION

In this paper, we have investigated the adaptive resource
allocation in multi-RATs networks which is powered by the
harvested energy and the grid energy. We have proposed a
realistic grid power cost model, then, we have proposed the
dynamic resource-on-demand allocation algorithm to adjust
to the stochastic states, i.e. randomly varying harvested
energy, dynamic traffic arrival and time-varying wireless chan-
nel, requiring non-priori distribution knowledge. Furthermore,
the tradeoff between grid power consumption and network
delay have been captured aided by Lyapunov optimization
approach. Future 5G networks equipped with energy har-
vesting, will operate intelligent interaction with smart grid,
the smart energy trading in real-time and autonomous planning
management will be investigated in our future work with
artificial intelligence.

APPENDIX A
PROOF OF LEMMA 1

Proof: with any non-negative scalar quantities Q, γ and b,
we can have max{Q−b, 0}+γ)2 ≤ Q2+b2+γ2+2Q(γ−b),
then we have

L(Q(t + 1)) − L(Q(t)) ≤ (γ(t) − r(t))HQ(t)
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+
1
2
b(t)Hr(t) +

1
2
γ(t)Hγ(t),

≤ Θ̂ + (γ(t) − b(t))HQ(t),

where Θ̂ is an upper bound of term 1
2 [b(t)Hb(t)+γ(t)Hγ(t)].

Adding V E[F (t)|Q(t)] as

Δ(Q(t)) + V E[F (t)|Q(t)] ≤ Θ̂+V E[F (t)|Q(t)]
+ E[(γ(t) − r(t))HQ(t)|Q(t)].

Hence,the proof of Lemma 1 is completed [30].
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