
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2014; 7:265–278

Published online 1 March 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.727
RESEARCH ARTICLE

SRC: a multicore NPU-based TCP stream reassembly
card for deep packet inspection
Shuhui Chen1*, Rongxing Lu2† and Xuemin (Sherman) Shen2†

1 College of Computer Science, National University of Defense Technology, Changsha 410073, China
2 Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
ABSTRACT

Stream reassembly is the premise of deep packet inspection, regarded as the core function of network intrusion detection
system and network forensic system. As moving packet payload from one block of memory to another is essential for
the reason of packet disorder, throughput performance is very vital in stream reassembly design. In this paper, a stream re-
assembly card (SRC) is designed to improve the stream reassembly throughput performance. The designed SRC adjusts the
sequence of packets on the basis of the multicore network processing unit by managing and reassembling streams through
an additional level of buffer. Specifically, three optimistic techniques, namely stream table dispatching, no-locking timeout,
and multichannel virtual queue, are introduced to further improve the throughput. To address the critical role of memory
size in SRC, the relationship between the system throughput and memory size is analyzed. Extensive experiments demon-
strate that the proposed SRC achieves more than 3Gbps in terms of reassembly and submission throughput and triply out-
performs the traditional server-based architecture with a lower cost. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Deep packet inspection (DPI) is considered as a crucial tech-
nique for network intrusion detection system (NIDS) [1] and
network forensic system (NFS) [2], where packet payloads
need to be matched against predefined patterns to identify
viruses, attacks, criminal evidences, and so on. Generally,
the case of a low-speed network, server-based approach can
satisfy the throughput requirement. However, with the
exponential increase of bandwidth, multi-gigabits per second
links are widely applied and placed in the campus network,
and gradually, the traditional server-based approach (even
for a server with high performance) no longer meets the
critical performance requirement. Therefore, plentiful research
efforts have been put to improve the overall throughput by
achieving efficient content matching.

To minimize the time cost for content matching, differ-
ent rule matching algorithms using field-programmable
gate array [1,3], graphic processing unit [4–7], or ternary
content-addressable memory [8] are proposed. However,
Copyright © 2013 John Wiley & Sons, Ltd.
decreasing only the content-matching time is not sufficient
to achieve the desired system performance because stream
reassembly, as an important preprocessing plug-in, takes a
major part of the whole workload. Experiments conducted
in [9] demonstrates that reassembly takes 80% of the load
of NIDS when the matching time decreases to 1% of the
overall load. In addition, when we utilized a Dell server
with two Xeon5405 CPUs, 2G DRAM, and Intel 82599
network interface card (NIC) to take Snort tests, we
obtained 2.5Gbps throughput without dropping any packet
when turning off the Stream5 (which is the stream
reassembly component in the current 2.9.2 version of
Snort) but observed that the throughput will abruptly
decrease to 1.2Gbps once the Stream5 is turned on.

In general, when packets are transmitted through net-
work, they might be dropped because of various reasons,
that is, the processing ability of routers, out of order caused
by the balance of multipath and others. Therefore, to trace
the information stream between the two ends, NIDS and
NFS exert to fetch each packet belonging to a stream (also
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http://www3.interscience.wiley.com/journal/114299116/home
http://www3.interscience.wiley.com/journal/114299116/home


Stream reassembly based on multicore NPU S. Chen, R. Lu and X. (S.) Shen
known as session or connection) and reconstruct what have
been sent from the transport layer of the end systems.

Nevertheless, many attacks cannot be detected if the
stream reassembly is not conducted completely, as either
signatures may cross the packets or stick attack could not
be identified [10,11]. Although many researches focusing
on flow measure and analysis have appeared in the past
years, most of them only investigate the stream attributes
but not stream reassembly [12,13]. In addition, although
there are some open source softwares fulfilling the stream
reassembly task, for example, Stream5 (Stream4) and
Libnids, there still exists a big gap between their through-
put and the network link bandwidth.

Memory access time is often considered as one of the
major throughput constrain of network security device.
Generally, the immanent fluidness of network packets
results in the very low hit ratio of cache. Because the
number of memory access is predefined and cannot be
changed subsequently, the crux of enhancing system
performance is to improve the efficiency of each memory
access in terms of access time.

Traditional network security devices such as NIDS and
NFS adopt high-performance CPU platforms such as x86
and MIPS. These typical CPUs focus on how to improve
the calculation performance, so they make as perfect or ef-
fective as possible on cache coherence, branch prediction,
out-of-order execution, multicore parallelism, and so on.
Their improvements on memory access concentrate on
how to increase the hit rate of the cache; therefore, stream
reassembly using legacy CPU could not achieve very high
performance.

Currently, advanced progresses have been made in the
network electron component area. For example, Raza
Microelectronics has developed XLR, XLS and XLP
network processing units (NPUs), whereas Cavium has
launched series of OCTEON NPUs. The emergence of
these multicore NPUs can largely improve the processing
ability of the network devices and network security
devices. On the other hand, multicore NPUs have many
hardware improvements on multithread operations, which
decrease the thread switching overhead, hide the memory
access latencies, and employ the memory access cycle
efficiently. As a result, their memory access performance
can be improved remarkably through these techniques.
However, there are several issues that need to be tackled
regarding using NPU to implement stream reassembly;
for example, how to distribute packets to different NPU
cores, how to accelerate stream timeout processing, and
how much memory should be used for the NPU.

To address the aforementioned issues, in this paper, we
specially exploit the stream reassembly issue and study on
how the new multicore NPU can be used to improve the
stream reassembly performance. We present a new stream
reassembly card (SRC) design, which enables to manage
and reassemble streams through adding a level of buffer
to adjust the sequence of packets by using the multicore
NPU. Specifically, the contributions of this paper are
threefold.
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• First, a multicore NPU-based stream reassembly
architecture is introduced. To the best of our knowl-
edge, this is the first work on employing multicore
NPU-based stream reassembly technology specifi-
cally for NIDS and NFS.

• Second, several improvements have been introduced
to increase the throughput of the stream reassembly
architecture. It has been found that the implementa-
tion of the stream reassembly architecture may be
restricted by the DRAM size, so the relationship
among memory requirement, timeout limit, and link
bandwidth is systematically researched.

• Finally, an SRC is implemented and evaluated to
demonstrate that the SRC can achieve more than
3Gbps in terms of capturing and processing, triply
outperforming over the traditional server-based
architecture.

The remainder of this paper is organized as follows. The
related work is provided in Section 2, and the motivations
on selection of multicore NPU are presented in Section 3.
Then, Section 4 depicts the system architecture and frame-
work. The three improvements are introduced in Section 5.
The relationship among memory size, timeout policy, and
link bandwidth are analyzed in Section 6, followed by
the experimentation and result analysis in Section 7.
Finally, we conclude our work in Section 8.
2. RELATED WORK

There are two open source programs: Libnids [14] and
Tcpflow [15] that fulfill transmission control protocol
(TCP) stream reassembly. Libnids is an application
programming interface (API) component of NIDS. Libnids
offers Internet protocol (IP) defragmentation, TCP stream
reassembly, and TCP port scan detection. It can obtain
the data carried by the TCP streams with reliability and is
widely used in the NIDS and forensic systems. On the
other hand, Tcpflow is a program that captures data trans-
mitted as part of TCP connections (flows) and stores the
data in two files that are convenient for protocol analysis
and debugging. Tcpflow understands sequence numbers
and correctly reconstructs data streams regardless of
retransmissions [16] or out-of-order delivery. But, it cannot
process IP fragments properly, and its performance is not
also suitable for network links with more than 1Gbps
bandwidth.

Previous researches related to TCP streams are often focus
on network measurements. For example, in [13], the authors
have used data recorded from two different operational
networks and study the flows in size, duration, rate, and burst,
to examine how they are correlated. In [17], the authors
concerned the problem of counting the distinct flows on a
high-speed network link. They proposed a new timestamp-
vector algorithm that retains the fast estimation and small
memory requirement for the bitmap-based algorithms, while
urity Comm. Networks 2014; 7:265–278 © 2013 John Wiley & Sons, Ltd.
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reducing the possibility of underestimating the number of
active flows.

In [18], a TCP reassembly model and a stream verifica-
tion methodology have been introduced for deriving and
computing reassembly errors. In [19], it has presented an
algorithm to solve the problem of TCP stream reassem-
bling and matching performance problem for NFS and
NIDS. Instead of caching the total fragments, their method
stores each fragment with a two-element tuple that is
constant size data structure; thus, the memory requirement
involved in caching fragments is largely reduced.

Dharmapurikar et al. [20] have introduced a hardware-
based reassembly system to solve both the efficiency and
robust performance problems in the face of the adversaries
to subvert it. They characterized the behavior of out-of-
sequence packets seen in benign TCP traffic and designed a
system that addresses the most commonly observed packet-
reordering cases in which connections have at most a single
sequence hole in only one direction of the stream.
3. THE NECESSITY OF MULTICORE
NETWORK PROCESSING UNIT

The NIDS or NFS takes advantage of a “promiscuous mode”
component or “sniffer”, to obtain copies of packets directly
from the network media, regardless of their destinations.
Raw packets captured by the NIDS or NFS are confused and
disordered messes, whereas DPI needs these packets to be
fabricated as an integrated block according to their affiliated
TCP stream before they are sent to the matching engine.

Figure 1 shows an example that a stream composed of
six packets is obtained in a monitor point where packets
2 and 3 are in disorder and packet 4 is repeated. The stream
reassembly process needs to swap disordered packets 2 and
3 and delete the second unwanted repeated packet 4. This
process incurs three times packet movement: packet 2
moving ahead, packet 3 moving backwards, and packet 5
moving ahead as well. This is just an example of a single
stream. But in a real network environment, one backbone
link may contain a large number of streams. In other
words, there may be a large number of packet movements
in the reassembling process. In addition, modern servers
always use dynamic random-access memory (DRAM), e.g.,
DDR2 or DDR3 as their main memory; one memory access
may take a number of cycles to obtain a result as DRAM has
a relatively long startup time.
Figure 1. An example of stream reassembly.
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However, using multicore NPU can improve the
throughput of the system for the following reasons:

(1) There aremany hardware threads in one core andmany
cores in one NPU, which makes the total threads in an
NPU be more than a dozen. Threads of this kind are
hardware based instead of software based, so the
switching overhead is very low. The large number of
hardware contexts enables software to more effectively
leverage the inherent parallelism exhibited by packet-
assembling applications. When one hardware thread
is waiting for the result of the memory accessing, an-
other hardware thread could switch in and make an-
other memory accessing request without much
overhead. If many threads can take advantage of the
pipeline mechanism, the latency of the DRAM will
be hidden, and the effective bandwidths of the DRAM
access would increase.

(2) A multicore NPU often has a low electric power
consumption, so it is easy to be manufactured as a
card. By utilizing a card, a server can also conduct
the task of DPI, attack warning, and so on. When an
NPU-based card is used, an extra buffer is introduced
to the flow processing, so the packets can be sorted as
they are being transferred from the memory of the
card to the memory of the host (server). It is a form
of trading space for performance. In this way, when
the packets have been received into the memory of
the card, they are stored in the memory as per their
reaching order, but their order is maintained by the
software running on the NPU.

(3) The architecture of NPU often has favorable input/
output (I/O) features, and the packets could be
imported from the interface to the memory with high
throughput. Moreover, its dispatching mechanism
(distributing packets to different threads or different
cores) is perfectly designed, so that dispatching com-
ponent could pipeline with the corresponding proces-
sing threads (or cores). As the dispatching component
generally dispatches packets according to the selected
bits from the packet head, stream reserved would not
be a considerable problem. As many researches
[22,23] focus on how to accelerate the packets captur-
ing performance, an approach to jointly consider
packet capture and stream reassembly is cost effective.

(4) An NPU often has a well-designed message-passing
mechanism among different threads, which employs
cross-bar structure or fast shared static random-
access memory (SRAM) as its transferring medium,
and makes the cooperation and synchronization
between threads facile.
4. SYSTEM ARCHITECTURE

In our proposed scheme, NPU is used as a cooperated
stream managing component, which captures raw packets
and submits ordered as well as nonrepeated packets to
267
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the host to conduct further inspection. Instead of moving
packets in its memory, NPU just keeps the order of the
packets and submits them to the CPU according to the
order, which wipes off the cost of packet moving, and
the performance of the system is mostly dependant on the
consecutive packet copying from NPU to CPU. As
depicted in Figure 2, the packets arrival sequence is like
the example of Figure 1, while the NPU removes the
redundant packets and keeps their order in its memory. In
the end, the NPU submits the TCP control block (TCB)
and the packets according to the original order at the
appropriate time.

The key concepts relative to the stream management
will be discussed in the following section.

4.1. Stream in transmission control protocol
transferring level

The TCP specification defines several “states” that any given
connection can be in. The states observable by an NIDS and
NFS (those involving the actual exchange of data between
two hosts) are not the same as TCP connection states. Only
two states (“CLOSED” and “ESTABLISHED”) would be
taken into account.

Transmission control protocol is a reliable, sequenced
stream protocol that employs IP addresses and ports to
determine whether a packet belongs within a stream. To
reassemble the information flowing through a TCP connec-
tion, NIDS and NFS must figure out what sequence
numbers are being used. TCB is a data structure used by
NIDS and NFS to describe the stream that is in the
“ESTABLISHED” state. NIDS or NFS should have a
mechanism by which TCBs can be created for newly
detected connections and destroyed for connections that
are no longer alive.

In the following discussion, we focus on three different
critical actions that the NIDS may perform during the
processing for a connection. They are TCB creation (the
action that an NIDS decides to instantiate a new TCB for
a detected connection), packet reordering (the process an
NIDS uses to reconstruct a stream associated with an open
TCB), and TCB termination (the action that the NIDS
decides to close a TCB). Simple discussions of these
actions are as follows:
Figure 2. Stream reassembly us
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(1) TCB creation
The NIDS has different approaches to employ for when to
create the TCBs. It may attempt to determine the sequence
numbers being used simply by looking at the sequence
numbers appearing in TCP data packets (referred as
synchronization on data), or it may rely entirely on the
three-way handshake (3WH). In our proposed method,
we use synchronization on data as the signal of TCB
creation for the purpose of simplicity.

(2) Packet reordering
For a packet that belongs to an existing stream is received,
NIDS needs to decide its position in the designated stream.
If the NIDS does not use sequence numbers (simply inserts
data into the “reassembled” stream in the order it is
received), it will not work properly because an attacker
can blind such a system simply by adjusting the order of
the sent packets, whereas the actual data received by the
application level of the destination will not be the same
as the data obtained by the NIDS.

(3) TCB termination
The TCB termination is crucial because the maintenance of
connections in NPU is resource consuming. When a connec-
tion is terminated, it does not need to assign resources to it as
well. There are two kinds of approaches that respectively use
RST (a flag in TCP head used to reset a connection) or FIN (a
flag in TCP head used to normally close a connection) to
terminate a connection. Note that a connection can be alive
infinitely without any data exchanging. Thus, it is inadequate
to manage the per-connection resource problem because
TCP connections do not implicitly time out. The lack of a
method to determine if a connection is idle or closed forces
the NIDS and NFS to terminate the connection and delete
its TCB when no packet appears in the connection for a long
time. The problemwith TCB termination is that an NIDS can
be tricked into closing a connection that is still active;
thereby, it forces the system to lose state and increase the
probability of detection evasion. On the other hand, a NIDS
that fails to terminate a TCB for a really closed connection is
also vulnerable because the memory will be exhausted rap-
idly. In our proposed method, both FIN and RST messages
are utilized as the basic judgment to indicate the termination
of the connections. In addition, we also rely on timeouts as an
ing network processing unit.

urity Comm. Networks 2014; 7:265–278 © 2013 John Wiley & Sons, Ltd.
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auxiliary instrument. When a connection has been termi-
nated, its remainder data on both directions will be submitted
to the host, and then, its corresponding TCB will be deleted.
Each TCP connection can be expressed as a four-element
tuple including source IP, source port, destination IP, and
destination port. Once a packet is captured, its corresponding
stream needs to be localized, and the TCB data structure
needs to be updated. The minimum information of a TCB
should be composed of the aforementioned four-element
tuple, client’s expected sequence number, server’s expected
sequence number, pointer to the next TCB for resolving hash
collision, the time that the last packet was received, and the
pointer point to the buffered packets. Generally, TCB is
attached to a hash table indexed by hash algorithm by using
some bits from the four-element tuple as parameters. Colli-
sions lead to several TCBs being attached to one table entry.
4.2. Frameworks of stream reassembly card

The framework of SRC is depicted in Figure 3. In SRC,
packets are captured from interface into memory; for main-
taining the TCP connection data, a hash table known as
stream table is used. Hash is calculated on the <SrcIP,
SrcPort, DesIP, DesPort>. When the packets enter the
memory, their locations are stored in the packet descrip-
tions. Besides the pointers that point to packets, packet
descriptions also contain the packet length and the fields
used to dispatch the packets to the threads.

Threads running on the NPU process a received packet
and then wait for another packet circularly. Once the data
need to be submitted, every thread itself is responsible
for the task of submitting the packets from the memory
of the NPU to the memory of the host. Both the softwares
running on the NPU and CPU share a little memory space
in the double data rate synchronous dynamic random-
access memory (DDR SDRAM, abbreviated as DDR) of
the NPU for message communication, which is utilized
by the NPU to gain the address of the direct memory
access (DMA), the timeout limit of the host setting, the
BlockSize, and the consuming states. CPU can also
employ the memory space to obtain the running states of
Figure 3. Frameworks of st
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the NPU. As the packets are DMAed to the host memory,
the transferring is conducted one packet after another,
which is because the packets are not stored consecutively
in the memory of the NPU while we need them to be
consecutive when they reach the memory of the CPU.

Software running on the NPU mainly executes the three
actions mentioned in Section 4.1: TCB creation, packet
reordering, and TCB termination. When a packet reaches
one core, the corresponding thread looks up in the stream
tables to determine if a corresponding TCB exists. If not,
the corresponding TCB is created, and the packet is
appended to the TCB. Otherwise, the packet is appended
to an existent TCB, and its link position is determined;
meanwhile, a judgment is made on whether the total packet
size of the stream is equal or larger than BlockSize
(submitting block size). If the answer is positive, all the
packets are submitted in the light of their sequence to the
host. In fact, there are three situations that trigger data to
be submitted to the software running on the host:

(1) When the size of the received packets attains or
exceeds the submitting block size (BlockSize is
called), the data block that is made up of these
packets has to be submitted. We need to submit
the data when the buffer possessive for one stream
is too large, as the memory is limited. The larger
the BlockSize is, the larger the whole DRAM space
will be. But if we adjust the BlockSize to be very
small, the data that the host obtains will be small
as well, which may degrade the performance of
the NIDS and NFS. Therefore, the selection of the
Blocksize causes a tradeoff between memory space
and overall performance.

(2) In the situation of a packet with a finishing tag (RST
or FIN is set in the head of the TCP packet) has
been received, it indicates that the corresponding
stream will be terminated by the server or the
client. In this case, the data block also needs to be
submitted to the host, and the corresponding TCB
needs to be deleted.

(3) In the situation of no packet for a certain stream has
been received for a very long time (referred as
ream reassembly card.
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stream timeout), it also indicates that data submis-
sion is obligatory. This is because either the com-
munication on the stream may be terminated
accidentally, or the stream is idle. The TCBs of such
streams and their corresponding packets cannot be
maintained forever, because of the memory limita-
tion. Obviously, the memory space is likely depen-
dent on the stream timeout. The larger the stream
timeout is set to, the larger the memory space will
be required. On the other side, the shorter the stream
timeout is, the less accuracy of the stream reassem-
bly will be.

The total connection records are maintained in a
hash table called stream table for efficient access. Note
that the hash needs to be independent of the permuta-
tion of source and destination pairs, which could be
achieved by comparing the source IP address with the
destination IP address, and the less one is always made
to be the first parameter, or some hash algorithms that
are not sensitive to the sequence of parameters are
used. By using the hash values as the indexes to the
stream table, the corresponding connection can be
located. Hash collisions can be resolved by chaining
the colliding TCBs in a linked list.

A data block submitted to the host consists of a TCB
and several subblocks; each of which represents a data
transmission in the TCP/IP transport level from one peer
to another. In addition, adjoining subblocks are from two
directions—one from client to server and the other from
server to client. Some subblocks may consist of only one
packets, whereas other subblocks may have several pack-
ets, which are determined by the application level protocol,
and the data amount needs to be transferred. For example,
according to the pop3 protocol, before the mail body is
Figure 4. Data structure example after reassembly.
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transferred, there will be several interactions ahead to make
the server authenticate the client and the client to check if it
has mails on the server. After the stream reassembly, the
data block will likely be in the form shown in Figure 4.
Except subblock 7, all the other subblocks consist of only
one packet, as they are very short and need not to be
divided into multiple packets. Subblock 7 consists of an
“+OK” replay and the mail body. So even if the mail
body is not very large, subblock 7 should contain at least
two packets.

The data submission procedure handled by the
packet-processing threads needs to work cooperatively
with the programs running on the host CPU. A
consecutive memory chunk needs to be allocated by
the CPU to store the packets uploaded, and for the
convenience of the packet organization, the chunk is
divided into fix-sized buffers that are organized as a
ring. Consumer software (NIDS or NFS) running on
the host continually processes the data block received.
When the speed of the consumer software is higher
than that of the threads running on the NPU, ringed
buffers will be full; finally, the NPU cannot upload
data and can only check if there is any vacant buffer.
Once a vacant buffer emerges, submission continues.
In the situation of the ringed buffers are full, packets
arrive continually, but there is no thread that can
process, as all the threads are checking the state of
the memory, packet dropping cannot be avoided. So,
the processing speed of the consumer software running
on host must match the data submission speed.

Different security applications running on the host
have different operations on the data block submitted.
For example, if we want to run applications on the
host to take evidence for the forensics by recovering
the e-mail body, it needs to scan the data on the
stream level; after the subblocks of “USER”, “PASS”,
“LIST”, and “RETR”, the subblock from pop3 server
to pop3 client is the content of the mail.
4.3. The procedures of stream reassembly

The two significant data structures in stream reassem-
bly are stream table and TCB. Stream table consists
of many entries; each of which points to a list of
TCBs with the same hash value.

Two types of threads are used to fulfill the stream
reassembly: the packet-processing thread and the timeout
thread. The packet-processing threads are responsible for
packet receiving, stream reconstruction, and data submis-
sion; moreover, stream reconstruction is divided into
TCB creation, packet reordering, and TCB termination,
as depicted in Algorithm 4.3. The timeout thread is a
simple cycle procedure; it accesses TCBs one by one
ceaselessly, comparing the current time with the time of
the last coming packet in every stream. If the gap between
the two times is larger than the appointed value, timeout
thread deems that the corresponding stream may be idle
urity Comm. Networks 2014; 7:265–278 © 2013 John Wiley & Sons, Ltd.
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or closed, so it submits the remaining data and deletes the
TCB to leave space to other streams.

The main function of ReorderPacket is to sort the
one-stream-affiliated packets according to their TCP
sequence number and drop the repeated packets that
have the same sequence number. Instead of being
processed after a batch of packets belonging to a
stream have been received, the packets are maintained
upon being received. The reasons for ordering upon
reception are as follows: (i) the batch processing
method could lead to computing burst, which is
detrimental to the smooth process, and (ii) out-of-order
packets are actually rare because most of the arrived
packets are ordinal and consecutive. As a result, pro-
cessing packets one by one saves more computational
resource.

As the data are submitted to the host, all the packets
must be ensured to be ordinal and consecutive. We use
ordering to express the sequence of the packet and continu-
ity to denote whether there is any packet that should arrive
but has not yet. When the packets arrive, their order can be
ensured by sorting the sequence number and modifying the
pointers of the list used for attaching packets, but the
continuity cannot be ensured, because of the disordered
arrival phenomena. To determine whether the data can be
submitted, a counter discontinuity number (DCN) is used
to identify whether the received packets are consecutive
or not. DCN is the counter of gaps between adjoining
packets for a stream.

The larger the DCN is, the less the degree of continuity
is. Take the following scenario as an example: from one
direction of a stream, if packets 1–5 and 7 have been
received (the numbers here are the order numbers of the
packets been sent out, instead of the sequence numbers
of the TCP transport level), the DCN of the stream is 1,
because there is a gap between packets 5 and 7. If only
packets 1–4 and 7 have been received, the DCN of the
stream is still 1, as even though there seems to be two
packets missing between packets 4 and 7, it is impossible
Security Comm. Networks 2014; 7:265–278 © 2013 John Wiley & Sons, Ltd.
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to determine how many packets can fill in the gap at the
time of reception of packet 7, and the only known fact is
that there is a sequence number gap between packets 4
and 7 from the TCP perspective.

All the packets are linked up so that packets with
smaller sequence number are in the front of the linked list
and the packets with bigger sequence number are in the tail
of the linked list. Bidirectional links for the packets are
needed, because the packets need to be submitted from
NPU to CPU according to the sequence number. Yet when
a packet arrives, locating the inserting point from the
reverse direction of the corresponding stream may gain
better performance, because the gaps exist scarcely; and
even when a gap exists, it might be filled quickly.

The determination of two packets belonging to one
stream are consecutive or not (continuity function in
Algorithm 4.3) is only needed to figure out the addition
of sequence number of the former packet and its length.
If the result is equal to the sequence number of the latter
packet, they are consecutive; if the former packet’s
sequence number plus its packet’s length is less than
the current packet’s sequence number, they are
inconsecutive; and if the former is bigger than the latter,
an error takes place, and a warn will be sent to the
software running on the host.

From Algorithm 4.3, the assembly process employs
“first reassembly policy” [11]. Theoretically, different
assembly policies should be adopted in terms of
different destination servers, but how to avoid attack is
another challenge, which is beyond the scope of this
paper.

When a stream ends, times out, or its size exceeds the
BlockSize, the packets belonging to the corresponding
stream must be uploaded to the CPU. Under the circum-
stances of a stream ending or timing out, DCN should be
zero if all is OK. If it is not zero (meaning some packets
have not been received), there is nothing that can be
carried out by the reassembly component. Instead, if it
271
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is under the circumstances in which the size of the
stream achieves the BlockSize, then the DCN is not
zero, and as a result, the reassembly procedure needs
to find the gap that causes the DCN to be not zero. We
inspect along the linked packets of the stream, if the
position of the lost packets are far ahead of that of the
last packet (e.g., 8 is an experiential value. It is because
the most frequently used default TCP window size is
8 K, which contains less than eight packets at most
times); the searching process will stop, and the packets
will be submitted, assuming that the lost packets will
no longer arrive. On the other hand, if the gap is among
the last eight packets, the set of consecutive packets will
be submitted, whereas the remaining inconsecutive
packets will stay in the list. To sum up, we try to upload
only the packets that are consecutive to the host. Packets
stored in the SRC are not in order and consecutive, and
we maintain the order by the pointers. However, when
they are being uploaded, their order and consecution
are tried to be ensured. As a result, when the packets
arrive to the memory of the host, they are ordered and
consecutive if there is no error.
5. IMPROVEMENT

Through the aforementioned analysis, there are basically
two issues needed to be tackled. The first is that every
arrived packet needs to be used to search the stream table
and be hanged to its appropriate position, but for a gigabit
Ethernet link, it is only a few microseconds available for a
packet to be processed, so it is necessary to accelerate the
processing speed. On the other hand, when it is time for
Figure 5. Improved
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the packets to be submitted to the host, the capture ability
of the host should be fully utilized. Three techniques are
adopted to improve the throughput of the two issues.
5.1. Stream table dispatching technique

There are generally two techniques implemented to
organize the TCBs in the stream table: shared stream and
separated stream tables. For the shared stream table, all
the threads share only one whole stream table, so all the
threads need to access the stream table in the global
memory. As a result, a lock must be added to the
corresponding item of the stream table when one thread
is processing the packet. It is no doubt that the accessing
competition decreases the performance. On the other hand
for the separated stream table, every thread uses its own
stream table, but we must use more memory than the
shared stream table to hold several tables to make the
TCB list within one hash entry not too long.

For both high memory utilization and high performance
are required, a new technique is hereby presented. In our
approach, a unified hash method for packet dispatching
to the threads and obtaining the stream table index is
applied, making all the streams grouped under the same
stream table index to be always dispatched to the same
thread. Therefore, the items of the stream table need not
to implement locks, as all the streams hashed to a pointed
item will be processed by one specific thread. In addition,
if the stream table items assigned to every thread are
consecutive and the size assigned to every thread is aligned
to the cache blocks, cache hit ratio of the stream table will
be high, and overall performance can be improved. The
stream table structure is illustrated in Figure 5.
stream table.
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5.2. No-locking timeout

Because a large number of parallel TCP streams are
present in the network, the states of a large number of
TCBs attached to the stream table must be carefully
maintained. To release the memory space of the streams
that are not active, three submission mechanisms have
been previously introduced: stream timeout, stream
termination, and when the size of buffered packet achieves
a specified BlockSize.

As the timed-out packets have to be uploaded, a sepa-
rated timeout thread is used to confirm whether there is
any stream is timed out. The timeout thread circularly
obtains every item in the stream table and then checks
every TCB in the link to determine if there is a timed-out
stream. If a timeout occurs, submission of the packets
and deletion of the TCB are conducted. The stream table
and the TCBs become the critical resources; thus, locks
are required because the packet-processing threads need
to process the TCBs and the timeout thread also needs to
operate the same TCBs.

Lock operation should be avoided according to the
experiences on the network device and network security
devices, as there is not so much time available to process
a packet. For example, only 300ms are available to process
a packet for a gigabit Ethernet link [24]. For the multicored
NPUs of Raza Microelectronics Inc. (RMI) and OCTEON,
they both have a fast messaging mechanism to implement
the synchronization and information transmission among
different threads. Therefore, the messaging mechanism
can be used to avoid the locks by enabling the timeout
thread to send a message to the packet-processing thread
and then the packet-processing thread submitting the
packets and deleting the TCBs.

5.3. Multichannel virtual queue

The performance of the packet capture is crucial to the
performance of the overall traffic analysis system [25,26];
similarly, data block submission is decisive to the
performance of stream reassembly. It is obvious that
multicore computers are the current dominant trend in
computers; thus, how to avoid data copying and enable
the data blocks to be distributed to different cores in the
host can bring distinct improvements to the overall
performance.

Multichannel virtual queue is introduced in [27], which
has implemented a novel multicore aware packet capture
kernel module that enables monitoring applications to scale
with the number of cores. Their technique is to distribute
the received packets to several receiving queue and then
dispatch them to different CPU cores to process. The
objective of multichannel virtual queue is to achieve the fast
data capture and load balance, but the generic NICs do not
support multi-interruptions, and only the advanced NICs
such as Intel 82575 /82576 that support receive-side scaling
(RSS) [21] have such a feature. The generic NICs do not
have the ability of hash computing, so hash computing must
Security Comm. Networks 2014; 7:265–278 © 2013 John Wiley & Sons, Ltd.
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be completed by CPU if multichannel virtual queue is
needed to be implemented; subsequently, CPU is required
to access the packet head, and as the packet is always new
to the CPU, cache will likely to be not hit, which leads to
poor performance.

Intel NIC adopts static hash to map the traffic to 128
buckets; therefore, the users may specify which queue
should the packets in the 128 buckets be dispatched to.
The default method is round-robin (arithmetical comple-
ment is utilized, so if three queues are present, the
remainder that the bucket number divide 3 is the queue
number). The detailed information can be found in [21].
Obtaining the idea from multiple receiving queues and
RSS, our approach in SRC is even better than RSS. This
is because the hash computing used by Intel NIC is based
on the source IP address and the destination IP address
and exchanging the source IP address and the destination
IP address will cause different value to be produced.

The hash technique that packets belong to the same
stream are hashed to the same processing unit is called
stream based. However, Deri [23] exploited the feature of
the Intel NIC, but he overtook that the packets on different
directions for one stream will be dispatched to different
core (matching engineer) as the adopted hash algorithm is
sensitive to the sequence of the input parameters (which
are the source IP address and destination IP address); thus,
many of the attacking warnings will not be reported as
packets from different direction are sent to different core.
We have amended this problem by enabling the NIC’s
driver to recalculate the hash value if the source address
is bigger than destination address, and if the source
address is smaller than or equal to the destination address,
hardware-distributing mechanism is kept. Although this
method is stream based, the performance of the method is
only 60% of the method in [23] on the basis of our experi-
ments. Furthermore, Intel NIC only has four fixed queues,
but the latest CPU can support eight cores, and the packets
in four queues cannot be dispatched to eight cores.

Our approach can tackle the issue as our hash is not
sensitive to the sequence of the input parameters and the
hash result is scalable to the thread number on the CPU.
The host creates several queues organized as ringed buffers
and tells the program running on the embedded multicore
NPU the number of queues, ring descriptors, length, and
head and tail pointers of the ring through the shared
memory. NPU then calculates the corresponded queue that
the data block of each stream will be dispatched according
to the information given by the CPU.
6. MEMORY SIZE REQUIREMENT
ANALYSIS

The SRC needs to buffer a large number of packets, main-
tain TCP connection records for thousands of simultaneous
connections, and access these TCBs at high speeds. For
such a high-speed and high-density storage, commodity
synchronous DRAM chip is the only appropriate choice.
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Yet as a general knowledge, a card must satisfy a stated
size requirement (e.g., a peripheral component intercon-
nect (PCI) card must not exceed the size of 31.2 cm� 12
cm). When a stream reassembly component is implemen-
ted as a card, the size of card must be reduced. In addition,
power supply of SRC is restricted by the PCI express (PCIe)
bus. To the best of our current knowledge, maximum
capability of one DRAM chip is 4Gb; if 4GB storage
memory is used without parity check, eight chips are needed.
And, boot loader, operation system, stack, and memory
shared with host are all needed to allocate memory, so the
actual memory used to storage stream table, TCBs, and
packets will be even less. In this section, the relationship
between memory requirement and link throughput, stream
timeout, is analyzed by experiments to identify if it is
feasible by the current technique of memory density.

The estimation of the memory requirement for the
reassembly is complex, for there are so many factors that
affect the memory size. Different networks, different time-
out mechanisms, and different data block sizes submitted
all influence the memory size. In the campus network of
a university, because the video and audio applications are
used more than that of the other network environments
and the stream life time will also be longer, data submis-
sion is likely to be more frequent because the block is more
easy to be full, so the memory size needed will be larger.
Even in one measure point, measures in different time
may obtain different result. The NIDS and NFS softwares
running on the host always hope for a big BlockSize
(submitting block size), as the larger the BlockSize is, the
larger the data amount writing to the disk is for one time.
But, an extra large BlockSize will cause the impossible
sustained memory requirement that cannot be supported
under the current techniques.

To obtain the memory requirement macroscopically, we
used the traffic captured in the core switch of our campus
network; 1GbE port of the switch is configured to mirror
the traffic that is sent to and received from the boundary
router. One Dell server is used to connect to the mirroring
port to obtain the bidirectional traffic leaving from and
arriving to our campus network.

Our Dell server can only achieve the capturing perfor-
mance of 300Mbps, but the actual bidirectional traffic is
about 1260Mbps. To further decrease the data capture
quantity and protect the privacy, only the head 64B are
storied. We have captured for 396 s and obtained
13.815GB dump file. With the captured file, a program is
used to analyze the stream number per Mbps throughput.
The total packets captured are 177,140,885, whereas the
TCP packets among them are 11,221,590. Different numb-
ers of streams for different timeouts are depicted in Table I.
The memory requirements per Mbps traffic in different
timeout values and different BlockSizes are depicted in
Table I. The stream number per Mbps thro

Timeout (s) 1 2 4
Stream number per Mbps throughput 82.38 133.76 184.52
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Table II. Only the memory size of the packet buffer is
considered because TCB space is relatively neglectful to
the packet space.

We have found that although there are 748.02 streams
per Mbps in the traffic when the timeout is set to 64 s, only
8.3% of streams are out of order, and the average packet
ratio out of sequence is 23% among the out-of-order
streams, which may be a result of short flows losing most
of their packets and reporting a high loss rate.

From the aforementioned experiments, if we want to
burden 2Gbps throughput (bidirectional traffic of a gigabit
Ethernet) with the timeout of general 64 s and the
BlockSize of 16K, we need 1.1231� 2000= 2.2462GB
(the typical memory requirement per 1 Mbps traffic is shown
in bold in Table II). As the 4Gb SDRAM is available, the
multicore NPU coprocessing solution is feasible by using
eight of such chips under the current technology condition.
7. IMPLEMENTATION AND
PERFORMANCE EVALUATION

7.1. Implementation

An SRC is developed using XLS416 produced by RMI.
The RMI XLS416 is a multicore, multithread MIPS64
processor with a rich set of integrated I/O. XLS416 has
four cores, and every core has four threads, so the total
thread number is 16. In our implementation, one thread
(referred as timeout thread) is used to manage timeout,
and all the other threads (referred as packet-processing
threads) execute the same routine, whose job is receiving,
assembling, and submitting packets. When the timeout
thread finds that any stream has timed out, it will send a
message to the corresponding packet-processing thread to
notify which stream has timed out. On the other hand,
every packet-processing thread circularly checks if there
is any timeout message after processing one packet.

XLS416 has three frequency models: 800M, 1.0G, and
1.2G; for the best of the performance, we used the XLS
with 1.2GHz. XLS416 integrates 8GbE interfaces or two
10GbE interfaces. To further save the printed circuit board
(PCB) size and consider that the 10GbE may be the
mainstream backbone link of the enterprise network, two
10GbE interfaces are adopted to SRC. Our SRC is
equipped with 4GB of 533MHz DRAM and one PCIe
1.1� 4 bus connecting to the host. The interface chip is
VSC8486-11 that connects the fiber module and the XLS
through XAUI. Dual-inline memory module (DIMM)
chips are used instead of DIMM strips, for the former
occupies less printed circuit board space and the stability
is better than the latter. The total card’s power consump-
tion is under 26W.
ughput according to different timeout.

8 16 32 64 128 256
246.52 360.74 581.34 748.02 839.33 890.50
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Table II. The memory required per 1Mbps traffic.

1 K 2K 4K 8K 16K 32K 64K 128K 256K

1 s 0.0128 0.0232 0.0338 0.0509 0.0698 0.0919 0.1292 0.1296 0.1296
2 s 0.0180 0.0320 0.0465 0.0699 0.0968 0.1293 0.1876 0.1881 0.1881
4 s 0.0279 0.0493 0.0714 0.1062 0.1478 0.2026 0.3021 0.3026 0.3026
8 s 0.0465 0.0807 0.1174 0.1727 0.2411 0.3219 0.5113 0.5120 0.5120
16 s 0.0753 0.1336 0.1967 0.2889 0.3985 0.5336 0.8822 0.8835 0.8835
32 s 0.1218 0.2174 0.3209 0.4690 0.6507 0.8762 1.5031 1.5056 1.5056
64 s 0.2133 0.3777 0.5560 0.8125 1.1231 1.5347 2.6942 2.6981 2.6981
128 s 0.3941 0.6981 1.0266 1.5036 2.0889 2.8569 4.9828 4.9908 4.9908
256 s 0.7507 1.3315 1.9598 2.8739 4.0122 5.4226 9.5093 9.5251 9.5261

Unit: megabytes.
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At the software level, there are a stream reassembly
program running on the SRC and a driver running on
the host. Programs running on the SRC are merged to
one image with the RMI operating system and are burned
into the Flash. We provide an SRC_API extending from
Libnids [14]. In addition to the features of the Libnids,
our SRC_API can be used to obtain the statistics and
notify software running on the SRC the number of the
analysis threads running on the host, timeout limit of
the stream, and the BlockSize. To achieve this goal, 2M
space is used to share information between the CPU and
NPU, and every thread running on the CPU is assigned
64MB memory space for packet capture.

We also develop an application level main program
based on SRC_API to test the system performance,
and this program just obtains the stream data blocks
Figure 6. Stream reassembly pe
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and then drops them, instead of conducting any
analysis of the stream.
7.2. Evaluation

The test topology is depicted in Figure 6. Dell PowerEdge
R710 server with a Xeon 2.13GHz E5606 CPU and total
16GB ECC DDR3 (4� 4GB) are used to host the SRC.
R710 server has a PCIe �8 bus that can be used to hold
the joint of the SRC. Red Hat Enterprise Server 64 b with
a 2.6.18-92.el5 kernel is used as the operation system.
An IXIA XM2 with an Xcellon-Ultra NP 10GbE load
module is used to construct the evaluation environment.
Both the packet and application level tests can be used
by IXIA XM2. The packet test was conducted by
rformance test environment.
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Table IV. Throughput of stream reassembly card and Libnids.

Packet length(byte) 1 core 2 cores 3 cores 4 cores Libnids

64 0.22 0.33 0.61 0.64 0.45
128 0.25 0.47 0.98 1.18 0.48
256 0.59 1.02 2.50 3.11 0.82
512 0.75 1.51 2.66 3.48 0.93
1024 1.30 2.73 3.12 3.70 0.99
1500 1.45 2.98 3.11 3.85 1.21

Unit: gigabits per second.

Stream reassembly based on multicore NPU S. Chen, R. Lu and X. (S.) Shen
IxExplorer, and the application level test was conducted by
IxChariot [28].

Some counters are used in the SRC, and the host can
obtain them through the shared memory; afterwards, the
counters are compared with statistics in the IxExplorer to
detect if any packet drop occurs. The maximum traffic that
does not cause any packet dropping is considered as the
throughput. By using this approach, we cannot obtain the
exact throughput in every situation, a step of 0.01Gbps
has been used as an increment to obtain the critical point.

Several factors that may affect the performance are the
computing ability of the NPU, I/O performance of the
10GbE interfaces in NPU, memory size, bus bandwidth,
and capture ability of the host application. The memory
space has been analyzed in Section 6. The maximum
processing ability can be obtained by the packet test.

Although the theoretical bandwidth of a PCIe 1.1� 4
may achieve 10Gbps, its actual performance is limited
by the 8 b/10 b coding mode, as well as the performance
of host and SRC. To obtain the utmost limit of the data
uploading, throughput from SRC to host is tested to
determine the maximal packet transfer throughput. A
modification making the software running on the SRC do
not reassemble the packet is conducted to test the perfor-
mance with different packet length and different number
of capture threads (queues). The result is described in
Table III.

We can draw a conclusion from Table III that more
capture threads yield better performance. The results also
testify the necessity of using a multichannel virtual queue
technique. On the other hand, once nine threads are used,
instead of increasing the performance, the capture perfor-
mances decrease a little than when the eight threads are
used, because the E5606 CPU has four cores and eight
threads in total; thus, more than eight threads may cause
thread switching and lead to performance debasement.
The column of the one thread shows that when the packet
length is less than 1024, the performance is almost linear to
the packet length. Longer packet produces higher perfor-
mance, which is because the packets are DMAed to the
memory of the CPU one by one, and the longer the packets
are, the larger the data quantity is; therefore, the average
transfer time for 1B decreases. However, when the packet
length is short, the key performance limit is the startup
time of DMA. In general, the highest performance that
the SRC can obtain is a little less than 6Gbps when the
largest packet length and 8 capture threads are used, which
Table III. Throughput

Packet length (byte) 1 thread 2 threads 3 threads 4 thread

64 0.13 0.22 0.27 0.44
128 0.26 0.34 0.58 0.87
256 0.53 0.67 1.02 1.89
512 1.09 1.88 1.97 2.86
1024 1.97 3.42 3.56 4.47
1500 2.80 4.73 4.96 5.69

Unit: gigabits per second.
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is approximately the same as that in [25]. As a general
knowledge, the average packet length is between 300 to
400B in a regular internet link. If 8 threads are used to
capture the data, the capture performance is above 4Gbps.

To conduct the stream reassembly test, the SRC needs
to obtain the bidirectional traffic to reconstruct the packets.
The IXIA tester can produce bidirectional traffic indeed,
but the two 10GbE interfaces connect with each other
resulting in that no traffic is obtained by the SRC. A
method must be employed to obtain the bidirectional traffic
and inject it into the SRC. We use two fiber couplers to
splitter the light; for every coupler, one input port of the
coupler is used to connect an interface of the tester to
obtain the traffic, and for the two other output ports, one
is used to connect the interface, and the other one is used
to inject traffic into the SRC.

To test the stream assembly performance of SRC, we
change the tester to the application test mode and use the
HTTP as the traffic load. Two XM2 ports are used to
emulate the traffic between one server and multiclients. To
make full use of the transferring bandwidth, eight capture
threads in the host are used. We test the performance under
different core number circumstances to obtain the relation-
ship between the NPU core number and stream reassembly
performance. Because every core has four threads, when
one core is tested, one thread is used as timeout thread,
and the other three threads are used to reconstruct the
packets; when two cores are tested, one thread is used as
timeout thread, and the other seven threads are used to
reconstruct the packets; and so forth. Owing to the
traditional NIDS used Libnids [14] to conduct its stream
reassembly, we compared our SRC’s performance with the
Libnids, an Intel 82599 is used as an Ethernet card, and
the test environment is the same as Figure 6; the results
are depicted in the last column of Table IV.
of packet capture.

s 5 threads 6 threads 7 threads 8 threads 9 threads

0.45 0.46 0.52 0.76 0.75
0.88 0.9 1.12 1.59 1.57
1.96 2.31 2.79 4.10 4.05
3.07 3.71 4.03 4.77 4.78
5.24 5.29 5.31 5.45 5.42
5.68 5.68 5.73 5.91 5.86
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To check if disordered packets affect the performance
remarkably, we adjust the packet sequence of the HTTP
reply and make the one or two packet(s) with larger
zsequence sent out previously, and the ratio of the
disordered stream is about 10%. Even through the SRC
needs to reorder the packets, no remarkable influence to
the performance has been identified, and we speculate
that this is because the SRC only needs to adjust the
pointer of the list instead of moving blocks of memory.

It is also observed that both more cores and longer
packets can lead to higher performance. If all the cores
are used, the performance is close to that of the packet
capture, which means that when all the threads in the
NPU are turned on to reassemble the packets, the perfor-
mance is nearly close to the PCI transferring ability; and
if the PCI multiplying factor is 8, the performance will be
higher than the current implementation. Because the
average packet length is between 300 and 400B in real
network environment, the throughput will be higher than
3Gbps, whereas the throughput of Libnids is between
0.82 and 0.93Gbps with the relatively high-performance
Intel NIC 82599. In other words, we can use one SRC
instead of three high-performance servers to accomplish
the same stream reassembly. From the spending viewpoint,
the cost of one SRC is less than $1000, which is much
lower than two high-performance servers.
8. CONCLUSION

Transmission control protocol packet reassembly is crucial
to NIDS and NFS. However, its performance becomes the
bottleneck as the matching performance increases. In this
paper, through the analysis on why the performance is very
low in the traditional stream reassembly, we have identi-
fied that the emerged multicore NPU can hide the delay
through parallel DRAM access. With the aforementioned
discovery, a coprocessing stream reassembly framework
based on multicore NPU has then been introduced as a
card; in this way, both the packet capture and stream
reassembly can be solved by a card. In addition, to enhance
the performance, we brought forward stream table
dispatching, no-locking timeout, and multichannel virtual
queue to improve the performance of the proposed SRC
scheme. Furthermore, RMI XLS416 was used to imple-
ment a coprocessing SRC, and we applied an IXIA XM2
tester to evaluate its performance in the situation with
different packet sizes and different numbers of processing
cores. The results have demonstrated that our scheme is
around three times better than Libnids when SRC is used
in the current predominant server.
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