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Abstract—To develop smart city and intelligent
manufacturing, video cameras are being increasingly
deployed. In order to achieve fast and accurate response to
live video queries (e.g., license plate recording and object
tracking), the real-time high-volume video streams should
be delivered and analyzed efficiently. In this article, we
introduce an end-edge-cloud coordination framework for
low-latency and accurate live video analytics. Considering
the locality of video queries, edge platform is designated
as the system coordinator. It accepts live video queries
and configures the related end cameras to generate video
frames that meet quality requirements. By taking into
account the latency constraint, edge computing resources
are subtly distributed to process the live video frames from
different sources such that the analytic accuracy of the ac-
cepted video queries can be maximized. Since the amount
of required edge computing resource and video quality to
accurately address different video queries are unknown
in advance, we propose an online video quality and com-
puting resource configuration algorithm to gradually learn
the optimal configuration strategy. Extensive simulation re-
sults show that as compared to other benchmarks, the pro-
posed configuration algorithm can effectively improve the
analytic accuracy, while providing low-latency response.

Index Terms—Edge computing, gradient method, neural
networks, video analytics.

I. INTRODUCTION

W ITH the evolution of communication infrastructure
and embedded systems, an increasing number of video
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cameras have been deployed to obtain rich environment infor-
mation for various purposes, including traffic monitoring, object
tracking, e-healthcare, and intelligent industrial robotics [1]–[3].
To serve those purposes, the captured video frames need to be
delivered to a data center with abundant computing resources,
where the contents are then processed to obtain the required
scene information. Yet, the bandwidth and computing resources
required to achieve fast delivery and accurate analysis of video
streams are prohibitive. For example, when a camera with
1280× 1024 pixels records at 20 frames per second, it generates
50 GB of data per day [4], which poses great pressure on both
video transcoding and data delivery. Video analytics is also
computation intensive. For instance, some of the deep neural
network (DNN) based algorithms require a 30-GigaFlop pro-
cessor for accurate response to an object recognition query [5].
Considering the amount of deployed cameras and the significant
data volume of captured frames, video analytics at scale is
bandwidth consuming and computation intensive [6]. Conse-
quently, cost-efficient solution for low-latency video delivery
and high-accuracy analytics is of paramount importance.

Edge computing holds great potential in enabling video deliv-
ery and analytics at scale. It provides computing resources in the
proximity of mobile devices, the advantages of which have been
manifested in supporting Internet-of-Things [7] and industrial
applications [8], video streaming [9]–[11], and caching [12],
[13], mobile augmented reality [14], and facial recognition [15].
Consider the locality of video queries, the corresponding frames
can be processed on the edge platform, instead of being streamed
to the cloud center. The benefits are two fold. First, real-time
video queries (e.g., vehicle license plate reader and object
tracking) are highly related to a specific location [16]. Address-
ing those queries on the local edge, which is only one hop
away, helps to promote context awareness and reduce service
latency, compared to delivering all the contents to the cloud
center. Second, if more video queries can be addressed locally,
significant bandwidth resources from edge to the cloud can be
saved. Unfortunately, the computing capacity at the edge node
(EN) varies significantly from several cores to hundreds of cores.
Oftentimes, the edge resources are insufficient to address all the
queries [17], [18].

To realize large-scale video analytics, the cloud and edge,
as well as their interoperation are crucial building blocks in
achieving low-latency and accurate video analytics [16]. This is
also validated by the industrial service providers. It is argued that
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hierarchical architecture consisting of end cameras, edge plat-
form, and cloud server is the only feasible solution to large-scale
video analytics [19]. Based on a combination of private clusters
and public cloud, Hung et al. revealed the tradeoff between
resource demands and the accuracy of object detection queries,
as well as its dependency on the choice of DNN detectors [6].
However, there is no well-established model to characterize
the relationship between resource demands and accuracy, as
it depends additionally on the content of video source (e.g.,
background, weather, object size). As a result, offline accuracy-
resource profiling is the common solution to online video query
planning, based on which configurations of video quality, com-
puting resource allocation, and DNN implementations are deter-
mined. Instead of making decisions based on an offline profiler,
it is of great interest to explore low-latency video analytics at the
edge by harnessing the synergies of end camera and the cloud.

In this article, we propose an end-edge-cloud coordination
framework for high analytic accuracy, while satisfying the la-
tency requirement of video queries. Generally, higher quality
of video frames contribute to better analytic results. In specific,
the video analytic accuracy depends the content type, the res-
olution, and frame rate, the available computing capacity, etc.
Yet, delivering and processing high-quality video frames also
incur longer delay and require more computing resources [5].
Furthermore, the core video analyzing components have a vari-
ety of implementations. Different implementations have distinct
resource demands that lead to varying analytic accuracy, but not
any one of them is the least resource demanding and accurate
across all scenarios [6]. As a result, it is difficult to build a
unified video analytic accuracy model to characterize the impact
of various configuration parameters.

Given that there is no established video analytic accuracy
function, we make the following simplifications: 1) each query
can be addressed based on the video frames from one single cam-
era; 2) the implementation of core video analyzing components
is given. Then, the video content corresponds to each query is
fixed. The problem of improving the analytic accuracy narrows
down to configuring only the source video quality and edge
computing resources. We formulate an accuracy maximization
problem that accounts for both video quality control and edge
resource allocation. The challenge of this problem is obtaining
the gradient of the unknown analytic function for adaptive
configuration. To address this challenge, we define a smoothed
version of the analytic function, which enables us to obtain
the gradient information directly from the function value. An
adaptive configuration algorithm is thus proposed, by which the
direction of accuracy-ascending configuration is acquired. The
performance of the algorithm is theoretically analyzed, which
turns out to be asymptotically optimal. The contributions of this
article are summarized as follows.

1) We design a camera-edge-cloud collaborative framework
for accurate video analytics at scale. Specifically, the
edge platform accepts video queries and coordinates with
the end cameras to obtain quality video frames, so that
accurate response to the video query can be produced.

2) We formulate the dynamic configuration problem as
an optimization problem. To address the uncertainty of

the analytic function with regard to video quality and
computing resources, we develop an online algorithm to
estimate the function gradient and tune the configuration
of video quality and computing resource.

3) We provide theoretical analysis of the achieved analytic
accuracy of the proposed algorithm. Extensive simulation
results are also carried out to demonstrate the advantages
of the proposed algorithm against other benchmarks.

The remainder of this article is organized as follows. Section
II reviews related works. Section III describes the collabora-
tive video analytic framework and problem formulation. The
proposed online coordination algorithm and theoretical per-
formance analysis are presented in Section IV, followed by
performance evaluation and discussions in Section V. Finally,
Section VI concludes this article.

II. RELATED WORKS

There are significant works on edge-assisted video streaming
and cost-efficient video analytics. Since users may have different
preferences to the experienced video quality metrics (e.g., frame
rate, resolution, and rebuffering occurrence), Yang et al. devel-
oped a learning algorithm to adjust the allocated edge resources
to mobile users based on their feedback, which is proved to be
asymptotically optimal in maximizing user quality of experience
(QoE) [9]. In addition to user QoE, Mehrabi et al. also considered
user fairness and proposed to periodically perform user-to-edge
mapping and per-user bitrate selection, based on the domain
knowledge from both radio access and application level at the
edge coordinator [10]. Wang et al. devised a video transcoding
framework, where transcoding servers are deployed close to base
stations [11]. In this way, video contents can be transcoded at
a finer granularity in accordance with the channel condition.
Consequently, both the bandwidth utilization and the user QoE
can be improved. For video analytics, however, the quality of
frames should be tuned to facilitate the rapid acquisition of
accurate analytical results, instead of better user QoE.

To obtain accurate results at low latency, video analytics gen-
erally requires high-performance computing facilities. There-
fore, improving the computing resource utilization becomes the
main focus of most related works. For general video queries,
Hsieh et al. designed and implemented a system named Focus,
which deconstructs video analytics into two phases, i.e., video
ingest and video query [20]. During the ingest phase, each
video frame is processed by a cheap convolutional neural net-
work (CNN) classifier to obtain coarse object indexes. After
receiving the video queries, those indexes are used to provide
fast responses. If the accuracy requirement cannot be satis-
fied, additional expensive CNN classifiers will be invoked.
By tuning the share of computing resources of both phases,
Focus achieves effective and flexible tradeoff of latency and
accuracy of video analytics. For live video analytics, Zhang
et al. proposed VideoStorm, which consists of an offline video
profiler and an online scheduler [5]. Based on the profiled query
resource-quality relationship, online configuration is optimized
to strike the balance between analytic accuracy, processing
latency, and resource consumption. Another line of research
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Fig. 1. End-edge-cloud collaborative video analytic framework.

focuses on optimizing the configuration of neural networks,
including Chameleon [21] and MCDNN [22], to reduce resource
consumption, while maintaining accuracy.

The closest work to ours is the VideoEdge system [6],
which incorporates user-specified cost budget as an optimization
constraint. It also deals with dynamic bandwidth via continuous
probing. Our article differs from these works in the following
major ways. First, instead of concentrating on video analytics
on a single processing unit, we propose an end-edge-cloud
orchestration framework, in which EN plays a vital control
role on the video continuum from end cameras to the cloud.
Second, we consider practical live video analytics, where queries
arrive asynchronously and cannot be merged. Thus the camera
coordination and resource allocation need to be performed on a
per-query basis. At last, we adopt gradient learning techniques
to configure video frames at their optimal quality level to combat
system bandwidth dynamics.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the camera-edge-cloud
collaborative video analytics framework. As shown in Fig. 1,
the collaborative analytic framework consists of three tiers: The
end cameras, the EN, and the cloud server. With the increasing
penetration of the fifth generation cellular systems, video
cameras can be readily connected wirelessly to base stations
and WiFi access points, both of which are ideal bearers of edge
deployment [7], [9]. Compared with the cloud server, ENs are
limited in storage and computing capacity. Only a subset of video
queries can be accepted and processed at the edge. Particularly,
EN makes prior decisions on query acceptance, based on the
latency requirement, the estimated computing demand, and
the edge capacity. For accepted video queries, EN configures the
video quality generated by the corresponding source camera,
and optimizes the resource allocation to all the accepted queries.
Other video queries are sent to the cloud server at additional
transmission cost and processing delay. Such coordination
enables flexible and scalable processing of video queries, which
helps to readily extend the framework to other online monitoring
applications, such as traffic monitoring and autonomous driving.
In what follows, we introduce the model of video query, source
camera configuration, edge resource allocation, and the
problem formulation. Important notations are summarized
in Table I.

TABLE I
SUMMARY OF NOTATIONS

A. Video Query

Consider a slotted system in which time is divided into a
sequence of slots T = {1, 2, . . . , T}with equal duration. There
is a setQ of video queries to be answered, which are assumed to
be associated with only one camera, including facial recognition,
vehicle license plate reader, traffic monitoring, and industry
process inspection. Video queries that require information from
multiple cameras, including target tracking and object localiza-
tion, deserve further investigation and are not the focus of this
article. The pattern of query arrival is assumed to be stable over
the time slots. At the beginning of each slot t ∈ T , only a subset
Qt ∈ Q of queries are accepted by the EN due to the limited
edge processing capacity. Unaccepted queries will be directed
to the cloud or wait until the next time slot.

The accepted video queries are first parsed by the EN, by
which the particular camera that covers the interested area of the
query will be identified.1 Afterward, EN makes two decisions
for each query q ∈ Qt: the requested quality of the captured
video frames and the amount of edge computing resources.
Once the corresponding video frames arrive at the EN, video
analytics corresponds to each accepted query is performed by
the allocated computing resources. The generated analytical
result will be fed back to the source of video query. Each
query q ∈ Q has a latency requirement τq, which constrains both
the video streaming delay and edge processing delay. Without
loss of generality, we assume, ∀q ∈ Q, τq is less than the time
slot duration, and the processing of all the accepted queries is
finished within the corresponding slot.

B. Source Video Configuration

High-performance video cameras that are capable of ultraw-
ide angle capturing, video processing, and wireless communica-
tions, are key components of surveillance systems. We assume
that those cameras are connected to the EN via a wireless
interface. After accepting video queries in each time slot, the EN

1Without loss of generality, we assume the computing resource required for
query parsing is negligible, compared to that required for video processing.
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sends a quality control information to all the relevant cameras.
As a response, the corresponding video frames will be generated
and streamed to the EN. Note that the scope of each camera is
fixed; hence, the relevant location and background information
can be made available to the EN, so that queries can be indexed
to cameras.

Generally, high video quality contributes to better analytic
results, but it also demands more resources for encoding, trans-
mission, decoding, and analyzing. For a received video clip,
denote by f the quality (in data volume) of the captured video
frames. Due to the limitation of both camera lens and supported
frame rate, it is reasonable to assume that the video quality
is upper bounded by f ≤ F . Meanwhile, to make effective
attempt on addressing the video queries, a minimum amount
of information should be provided, i.e., f ≥ F ′. Note that the
input for video analytics is the decoded frames, instead of the
coded frames from the source camera. For simplicity, we assume
that for any two accepted queries q1, q2 ∈ Qt, the corresponding
cameras are different. In case queries are concerning the same
area covered by a certain camera, the analytic results derived
from the same video stream can be used to answer those queries
simultaneously.

C. Edge Resource Model

1) Bandwidth Dynamics: Video cameras are connected to the
EN via shared bandwidth resources with other mobile devices.
Due to the mobility of mobile users and the uncertainty of traffic
demands, the available resource for delivering video frames from
each camera is time varying and unknown in advance. Denote
by rq the uplink data rate of the camera corresponding to query
q. As our objective is improving the analytics accuracy, the
uplink data rate only affects the video streaming delay. Hence,
we assume that the camera data rate corresponding to different
types of queries remain constant in each time slot, which can be
predetermined by the EN solely based on the total edge spectrum
resource.

2) Computing Resource Allocation: For a specific video
query, allocating more computing resource increases the prob-
ability that accurate analytic results can be obtained by the EN.
Yet, the video quality should be matched with the allocated
computing resource, otherwise, allocating excessive resource to
a quality limited video clip is wasteful. As a result, our objective
is to jointly determine the requested video quality level and
the corresponding computing resource, so that the amount of
accurate analytic results can be maximized by the limited edge
computing budget. Let cq,t be a positive value indicating the
allocated computing resource (in floating point operations per
second, Flop/s) for query q in the tth time slot, then we have

∑

q∈Qt

cq,t ≤ C ∀t ∈ T (1)

where C represents the computing capacity at the EN. Let
Xq ∈ {0, 1} be a binary variable that equals 1 if query q is
accurately answered, and equals 0 otherwise. Xq depends on
both the corresponding video quality fq and the allocated com-
puting resource cq . The larger the value of fq and cq , the better

Fig. 2. Impact of quality and computing capacity on the accuracy of
objection detection [24]. (a) Quality (pixels of the shorter side) versus
accuracy. (b) Execution time (computing capacity) versus accuracy.

chance that query q is accurately addressed. Formally,Xq can be
considered as a sample from a Bernoulli distribution [23] with
parameter

B (fq, cq) = min {1,Λ (fq, cq) /εq} (2)

where Λ(fq, cq) is a function that maps the video quality and
the computing resource to the accuracy of the analytic results
of query q, and εq ∈ (0,∞) is a query specific scaling con-
stant. From (2), the probability of Xq = 1 grows linearly with
Λ(fq, cq) until it is equal to 1, after which allocating additional
computing resource or requesting higher quality of video frames
is worthless. εq ∈ (0,∞) can be regarded as a measure of diffi-
culty of addressing video query q, and Λ(fq, cq) represents the
analytic capability enabled by the configured quality-computing
(QC) pair (fq, cq). Ideally, in order to obtain more accurate re-
sults in a cost-effective manner, the QC pair should be configured
such that the corresponding analytic capability is close to, but
less than εq .

For a given video clip, the accuracy of general video queries,
such as object detection, grows with both the computing capacity
and video quality. In practice, however, it is difficult to estab-
lish a general model of Λ(fq, cq) that characterize the above-
mentioned relation, which additionally depends on the video
contents, detectors, learning rate, etc. We plot the breakdown of
execution time (analogous to computing capacity), quality (im-
age scale specified by the number of pixels of the shorter side),
and the accuracy (average precision) results of two detectors
(RetinaNet-50 and RetinaNet-101) in [24], which is shown in
Fig. 2. The curves indicate that the accuracy grows sublinearly
with both quality and computing capacity. In particular, as shown
in Fig. 2(a), increasing the video quality after certain point does
not help to increase the analytic accuracy at the same pace.
Meanwhile, excessively high video quality demands substantial
uplink bandwidth and edge computation resource. In this way,
the video quality should be optimally configured, in order to
balance the analytic accuracy and resource demand.

Without loss of generality, we only make the following as-
sumptions on Λ(fq, cq): It is differentiable and concave, i.e.,
∂Λ/∂fq and ∂Λ/∂cq decrease with fq and cq , respectively, and
it satisfies the following continuous condition.
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Definition 1: There exists L > 0 such that for any two QC
pairs (f, c) and (f ′, c′), it holds that

|Λ(f, c)− Λ (f ′, c′) | ≤ L‖(f, c)− (f ′, c′) ‖ (3)

where ‖ · ‖ is the Euclidean norm.
The rationale behind such continuous assumption is that,

similar QC configurations lead to close analytical accuracy.

D. Problem Formulation

By continuously accepting video queries, configuring the
source video quality, and allocating computing resources, the
objective of the EN is maximizing the amount of queries that
are accurately responded in the long term. Formally, we formu-
late the joint video quality and computing resource allocation
problem as follows:

max
{fq,t,cq,t} ∀q, t

∑

t∈T

∑

q∈Qt

Xq,t

s.t. Xq,t ∼ B (fq,t, cq,t) ∀t ∈ T , q ∈ Qt,

fq,t
rq

+
ξfq,t
cq,t

≤ τq ∀t ∈ T , q ∈ Qt,

F ′ ≤ fq,t ≤ F,
∑

q∈Qt

cq,t ≤ C ∀t ∈ T , q ∈ Qt.

(4)

In the second inequality, fq,t/rq and ξfq,t/cq,t denote the video
streaming time and processing time, respectively. ξ is a scaling
factor that specifies the required processing capacity of unit data
volume in flop/bit. While meeting the constraints on computing
capacity, source video quality, and delay requirement, the op-
timization (4) maximizes the sum accuracy of all the accepted
queries over the long term. However, this problem cannot be
directly solved due to the following reasons. First, the delay
posed on the video quality and computing capacity is nonlinear
with decision variables. Second, the objective is a sum of a
number of random variables following different distributions
across the time span. At last, for a certain type of query, little
information on the function Λ(fq, cq) is known in advance,
except that the the accuracy grows sublinearly with both decision
parameters. Meanwhile, after Λ(fq, cq) reaches εq , the increase
of both video quality fq and computing capacity cq will not
further increase the accuracy of the analytical result. Such cutoff
feature requires repeatedly exploration around the cutoff point,
which is costly at exceedingly high values of fq and cq .

Since we focus on the long-term accuracy maximization,
the replenishment of resources in each time slot allows us
to characterize the feature of analytic capability Λ(fq, cq) of
each query in an online manner. In what follows, within the
proposed end-edge-cloud collaborative framework, we develop
an online algorithm that gradually learns and maximizes the
analytic capability in the long run.

IV. ALGORITHM DESIGN AND PERFORMANCE ANALYSIS

In this section, we attack the original problem (4) using the
divided and conquer strategy. Observing that the key challenge

of optimization problem (4) is the uncertain analytic capability
function Λ(fq, cq), we first assume that it is known in advance
for all the types of queries, based on which an offline algorithm
is designed to determine the optimal QC pair. Afterward, we
propose an online solution to the original problem based on the
offline algorithm.

A. Offline Solution

WhenΛ(fq, cq) is known in advance, to improve the probabil-
ity of obtaining accurate analytic results with minimum resource
consumption, it suffices to solve Λ(fq,t, cq,t) = εq within the
feasible region of the pair (fq,t, cq,t) for all the t ∈ T and q ∈ Qt

independently. For notational simplicity, the time slot index is
omitted in this subsection.

First, the delay constraint is rewritten as

cq ≥
ξrqfq

τqrq − fq
. (5)

To support the delivery of videos that are of the highest quality
within the delay constraint, it is necessary to provide sufficient
bandwidth to delivery frames that are of different quality levels,
i.e., it holds that τqrq ≥ F ∀q. Otherwise the delay requirement
of the video query cannot be guaranteed and it will be rejected.
Second, denote by cq = Υq(fq) the QC curve obtained by solv-
ing Λ(fq, cq) = εq . By combining Υq(fq) and the equality of
(5), we can obtain the unconstrained QC pair (f ∗q , c

∗
q). According

to the value of f ∗q , without considering the computing constraint
(1), we have the following three cases.

1) f ∗q ≤ F ′. In this case, the unconstrained optimal point
lies outside the feasible quality region. It can be in-
ferred from (5) that, the minimum computing capacity
increases with video quality. To minimize the demand
on computing capacity, (F ′, ξrqF

′

τqrq−F ′ ) should be chosen
as the optimal QC pair. Note that, such choice is over
provision, as both quality and computing are higher than
that required to achieve the analytic capability threshold,
i.e., Λ(F ′, ξrqF

′

τqrq−F ′ ) ≥ εq .

2) F ′ < f ∗q ≤ F . In this case, as the unconstrained optimal
point lies inside the feasible quality region, (f ∗q , c

∗
q) is the

optimal QC pair, and Λ(f ∗q , c
∗
q) = εq .

3) f ∗q > F . In this case, as the optimal video quality is
not support by the camera, we have to reduce the video
quality and increase the allocated computing capacity to
compensate. The optimal QC pair should be (F,Υq(F )),
and it holds that Λ(F,Υq(F )) = εq .

In the offline scenario, if the computing resource is insuffi-
cient, the treatment of queries will favor the less computation-
intensive ones, as more queries can be accepted with guaranteed
accuracy. Hence, before allocating resources, the queries are
sorted according to cq in ascending order, afterward resources
will be allocated sequentially. Since Λ(fq, cq) ≥ εq holds for
all the accepted queries by the offline algorithm, from (2), the
Bernoulli parameter B(fq, cq) equals 1. As a result, Xq = 1
and all the accepted queries are accurately answered. The cor-
responding algorithm is sketched in Algorithm 1. When the
algorithm terminates, if Q �= ∅, those queries will be rejected
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Algorithm 1: Offline Algorithm for QC Pair Determination.

Require: ξ, C, F ′, F , ∀q ∈ Q, the Λ(fq, cq),
upload data rate rq , delay requirement τq, and εq

Ensure: QC-pair (fq, cq), ∀q ∈ Q
1: solve Λ(fq, cq) = εq and obtain (f ∗q , c

∗
q), ∀q ∈ Q

2: set S1,S2,S3 ← ∅, residual computing resource
C̄ = C

3: for q ∈ Q do

4: if f ∗q ≤ F ′: (fq, cq) =
(
F ′,

ξrqF
′

τqrq−F ′
)

,

S1 ← S1 ∪ {q}
5: if F ′ < f ∗q ≤ F : (fq, cq) = (f ∗q , c

∗
q), S1 ← S2 ∪ {q}

6: else (fq, cq) = (F,Υq(F )), S1 ← S3 ∪ {q}
7: end if
8: end for
9: while C̄ > 0 do

10: find q′ = argminq∈Q cq
11: if C̄ ≥ cq′ : allocate cq′ to q′

12: else break
13: end if
14: update C̄ ← C̄ − cq′ , and Q ← Q \ {q′}
15: end while

due to the scarcity of edge computing resource. Such requests
are either directed to the cloud or wait until the next time slot. The
complexity of the algorithm lies in the sorting of |Q| queries in
the while loop (line 10), which is of polynomial time complexity
O(|Q| log |Q|) using typical algorithm, such as quick sort.

B. Online Quality-Computing Configuration Algorithm

In the online scenario, however, the queries will be treated
with differentiation. Let S1,S2,S3 be the set of queries of the
three cases in the previous subsection, respectively. Queries in
S2 ∪ S3 have higher priority, as it holds that Λ(fq, cq) = εq . In
contrast, queries in S1 are less favored, as the computing re-
sources are over provisioned, and meanwhile they provide little
information on the learning of analytic capability function. If
computing resources are insufficient, queries in S2 ∪ S3 should
be prioritized from lightweight ones to computation-intensive
ones. Then, remaining computing resources will be allocated to
queries in S1 in the same way. In what follows, we present the
details of the online QC configuration algorithm. Notice that the
analytic capability function Λ(fq, cq) is concave, we can find
the global maximum if the gradient ∇Λ is known in advance.
Unfortunately, neither Λ(fq, cq) or its first-order derivative is
known in practice.

In an online setting, however, it is possible to approximate
the gradient by subtly designed QC pairs. Let xq = [fq, cq]
be the QC pair in vector form for notational simplicity, thus
Λ(fq, cq) can be written as Λ(xq). Define the unit disk D and
the unit circle C around the origin in two-dimensional space,
i.e., D = {x ∈ R2 | ‖x‖ ≤ 1} and C = {x ∈ R2 | ‖x‖ = 1}.
The disk and circle of radius ζ are ζD and ζC, respectively.
Define the smoothed version ofΛ as Λ̃(x) = Ev∈D[Λ(x+ δv)],
then the gradient of Λ(x) can be approximated by its smoothed

counterpart, i.e., the gradient∇Λ(x) is approximated by∇Λ̃(x)
[25]. The following lemma gives the solution to the gradient of
the smoothed function.

Lemma 1: For a constant δ > 0, the gradient of Λ̃(x) can be
approximated as

∇Λ̃(x) = 2
δ
Ev∈C [Λ(x+ δv)v] . (6)

From Lemma 1, the gradient of the smoothed version of Λ(x)
at x is proportional to the expectation term in (6), i.e., ∇Λ̃(x)
can be obtained via the function value of Λ(x) at randomly
perturbed point x+ δv, where v is a unit vector randomly
sampled from the circle C. Essentially, the smoothed version
Λ̃(x) bridges the gradient of Λ(x) and its perturbed function
value, enabling us to obtain the approximate gradient of Λ(x)
directly from the function value. Approximately, the ascending
direction of function Λ(·) at x is given by the expectation of
Λ(x+ δv)v. With the approximated gradient, it is possible to
reach the maximum of the concave function Λ(x) in the limit.
Now we are ready to present the online QC pair configuration
algorithm.

The core idea of the algorithm is to continuously perform
adjustment of QC configuration on a per-query basis according
to the approximated gradient. Before reaching the optimum, the
gap of accumulative analytic accuracy between the online con-
figuration and the optimal configuration increases. To evaluate
the gap in the long run, for a certain type of query q, define
the cumulative regret of the analytic accuracy of an online QC
configuration algorithm as

Rq(T ) = max
x∈Fq

T∑

t=1

Λq(x)−E

[
T∑

t=1

Λq(xt)

]
(7)

where Fq is the convex feasible region of QC configuration of
query q given by Fq={(f, c) :F ′ ≤ f ≤ F,

ξrqf
τqrq−f ≤ c ≤ C},

and xt ∈ Fq is the algorithm configured QC pair during time
slot t. In what follows, we present a lemma to characterize
the performance of the expected gradient based online QC
configuration across the time span.

Lemma 2: Assume a sequence of QC pairs x1,x2, . . . ,xT ∈
Fq satisfy xt+1 = PFq

(xt + ηΛ(xt + δv)v), where η > 0 is
the learning rate, v is a unit vector randomly sampled from the
circle C, andPFq

(x) = argminx′∈Fq
‖x′ − x‖ is the projection

of x inside the feasible region Fq, then

Rq(T ) ≤ G
√
(F 2 + C2)T (8)

where G ≥ ‖∇Λq(x)‖ ∀x ∈ Fq .
Proof: By constructing the time-varying counterpart of the

analytic capability function Λq(·) as

Λ′q,t(y) = Λq(y) + y [Λ(xt + δv)v −∇Λ(xt)] (9)

we have E[Λ′q,t(xt)] = E[Λq(xt)] as the gradient expectation
holds in (6), and ∇Λ′q,t(xt) = Λ(xt + δv)v, which suggests
that the gradient of Λ′q,t(x) is deterministic. Denote by x∗ =
argmaxx∈Fq

Λ′q,t(x) the optimal QC pair. Let gt = ∇Λ′q,t(xt)
and the iteration of QC pair goes as xt+1 = PFq

(xt + ηgt).
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Since Fq is convex, ‖x∗ −PFq
(x)‖ ≤ ‖x∗ − x‖. Then

‖x∗ − xt+1‖2 = ‖x∗ −PFq
(xt + ηgt) ‖2

≤ ‖x∗ − xt − ηgt‖2

≤ ‖x∗ − xt‖2 + η2‖gt‖2 − 2ηgt (x
∗ − xt)

T .
(10)

Due to the concavity of Λ′q,t(x), we have

Λ′q,t(x
∗)− Λ′q,t(xt)

≤ gt (x
∗ − xt)

T ≤ ‖x
∗ − xt‖2 − ‖x∗ − xt+1‖2 + η2‖gt‖2

2η
.

(11)

Summing (11) over T slots over the time span, we have

T∑

t=1

Λ′q,t(x
∗)−

T∑

t=1

Λ′q,t(xt) ≤
‖x∗ − x1‖2

2η
+

ηTG2

2

≤ R2

2η
+

ηTG2

2
(12)

where R2 = F 2 + C2 holds due to the definition of Fq , G
is the gradient upper bound satisfying ‖gt‖ ≤ G ∀t, due to
Definition 1. By setting η = R/(G

√
T ), the above-mentioned

accumulative regret can be further bounded as RG
√
T . Since

E[Λ′q,t(xt)] = E[Λq(xt)], taking expectations on both sides of
(12) gives the lemma. �

Lemma 2 suggests that QC configuration of a certain query
based on the expected gradient achieves asymptotic optimal
performance, i.e., limT→∞Rq(T )/T → 0. Based on the above-
mentioned lemma, the following three steps will be repeatedly
executed during each time slot: 1) expected gradient-based
QC configuration; 2) feasibility analysis and query admission;
3) observation and update. The process is sketched in Algorithm
2, with detailed description as follows.

1) Expected Gradient-Based QC Configuration: The EN
maintains the information of QC configuration and resultant
feedback accuracy of each type of query during the latest time
slot that it was accepted. For each query q ∈ Q during time slot
t, randomly select a unit vector vq,t ∈ C, and set the QC pair
of query q as xq,t = yq,t−1 + δvq,t, where yq,t−1 is an interme-
diate vector updated in the last round. Next, the feasibility of
configuration xq,t = [fq,t, cq,t] will be tested.

2) Feasibility Analysis and Query Admission: As the total
computing resource is limited, the EN cannot accept all the video
queries. By sorting all the queries according to cq,t in ascending
order, computing resources will be allocated sequentially, until
the residual resource is insufficient to meet the requirements of
any of the queries. Queries that are not allocated resources will
be rejected by the EN. They need to either wait till the next time
slot or be directed to the cloud. Notethat information of queries
that are outside the set Qt will not be updated in the currently
time slot.

3) Observation and Update: For all the accepted queries
in Qt, the corresponding configuration xq,t = [fq,t, cq,t] will
be enforced to both the end camera and the EN. Upon the

Algorithm 2: Online Algorithm for Edge Coordinated QC
Pair Determination.
Require: ξ, C, F ′, F , ∀q ∈ Q, upload data rate rq , delay
requirement τq, and εq

Ensure: accepted queries Qt, and the corresponding QC
configuration (fq,t, cq,t), ∀t ∈ T , ∀q ∈ Qt

1: for t = 1, 2, . . . , T do
2: for q ∈ Q do
3: EN randomly select vq,t ∈ C

set xq,t = yq,t−1 + δvq,t

4: end for
5: sort the queries in ascending order according to cq,t,

obtain {q1, q2, · · · }
6: identify K = argmaxk

∑k
i=1 cqi,t ≤ C

7: accept Qt = {q1, q2, . . . , qK}, and enforce the
corresponding QC configurations xq,t = [fq,t, cq,t],
∀q ∈ Qt

8: for q ∈ Qt do
9: observe Λq(xq,t)

10: update yq,t = PFq
(yq,t−1 + ηΛq(xq,t)vq,t)

11: end for
12: ∀q ∈ Q \ Qt, update yq,t = yq,t−1

13: end for

completion of analytics, the accuracy Λq(xq,t) will be feedback
to the EN, which will be used to update the intermediate vector
according to yq,t = PFq

(yq,t−1 + ηΛq(xq,t)vq,t).
According to Lemma 2, continuously exploring the optimal

QC pair does not increase the regret, and the gap between
Algorithm 2 and the optimal solution diminishes in the limit.
Meanwhile, Algorithm 2 executes iteratively, the most con-
suming operation in each round is sorting, which can be effi-
ciently solved by typical sorting algorithm with O(|Q| log |Q|)
complexity.

V. PERFORMANCE EVALUATION

To demonstrate the advantages of the proposed online QC
configuration algorithm, simulation results are provided in this
section. In particular, we focus on the video analytic accuracy
of the accepted queries across the time span, and show how the
performance varies with the edge computing capacity, as well as
the performance gain against other noncooperative benchmark
algorithms.

A. Simulation Setting

1) System Configuration: The system identifies |Q| = 20
types of video queries, each of which has an analytic capa-
bility function Λq(·) unknown to the EN. Since an established
capability function is unavailable, we adopt the experimental
results of RetinaNet-50 from [24] to fit the underlying ca-
pability function. In particular, the accuracy results (average
precision) of the corresponding setting of input video quality
and execution time (as shown in Table II) are fed into a non-
linear concave function for curve fitting, where the logarithmic
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TABLE II
RetinaNet-50 DATASET ANALYTIC RESULT: IMAGE SCALE, EXECUTION

TIME, AND ANALYTIC ACCURACY ( [24, TABLE 1e])

Λ(f, c) = w1 log f + w2 log c+ w3 is adopted. w1 and w2 are,
respectively, the corresponding weight of the impact of the video
quality and the computing resource on the analytic accuracy,
while w3 is a constant. The weights w1, w2, and w3 are then
randomly perturbed to emulate the underlying analytic capabil-
ity function of different types of queries. It is worth noting that
the logarithmic function is only one form of function that fits
the data source, similar curve fitting results and evaluation can
be conducted based on other concave functions, such as square
root. The frame rates of the end cameras are considered to be
fixed, while the frame resolution acts as the knob for quality
configuration.

For end camera capability, the pixels (quality) of captured
frames can vary from F ′ = 100 pixels to F = 1000 pixels [24].
The QC scaling factor ξ = 3.75× 103 flop/bit, indicating that a
video clip of 1 Mb requires 3.75 GigaFlop processing capacity.
The delay requirement of all the queries are uniformly and
randomly sampled from [0.1, 1] s, and the uplink data rate rq
of the camera corresponds to each query is sampled from 1 to
80 Mb/s.

2) Comparison Benchmarks: We consider the following two
benchmark algorithms.

1) Delay guaranteed: Without coordination, each end cam-
era streams video frames at a certain quality level. Upon
the arrival at the EN, the minimum computing resources
that required to satisfy the delay constraint will be first
determined and sorted in ascending order. Queries will be
accepted sequentially based on the required computing
resource, the remaining ones will be rejected by the EN.

2) Fair allocation: Similarly, EN will receive uncoordinated
video frames from related source cameras. Afterward, EN
computing resources will be evenly distributed among all
the queries. As a result, the delay requirements of certain
queries may not be satisfied, and computing resources on
those queries will be wasted.

Those benchmark algorithms are noncooperative, end cam-
eras, and the EN make decisions sequentially; hence, they are
not optimized in video analytic accuracy.

B. Simulation Results

Fig. 3 shows the delay-guaranteed computing demand when
video quality varies from 100 to 1000 pixels. The uplink data
rate is set to rq = 5 Mb/s. From (5), in order to guarantee the
delay requirement, the computing capacity cq should not be
less than ξrqfq/(τqrq − fq), i.e., the computing demand cq
grows exponentially with video quality fq . It is also costly to
meet the stringent delay requirement when video quality is
high, as it requires significantly more computing resource to
process the frames. For instance, when requesting video quality
at 1000 pixels, the required computing capacity to satisfy delay

Fig. 3. Computing demand with video quality at different delay
requirements.

Fig. 4. Comparison of average accuracy (percentage) across the time
span (slots) when edge computing capacity C equals 100 GigaFlop/s.

requirement τq = 1, 0.5, and 0.3 s are 4.7, 12.5, and 37.5
GigaFlop/s, respectively. It can be seen that the extra computing
resources required to reduce the delay from 0.5 to 0.3 s is
3× more than that of reducing the delay from 1 to 0.5 s. Such
observations are useful to practical edge resource deployment.

To demonstrate the advantages of edge coordinated QC de-
termination algorithm, we show the accuracy (averaged over
the accepted queries) in each time slot across the time span in
Fig. 4. It can be seen that, as the algorithm gradually explores the
optimal QC pair, the accuracy of the proposed algorithm grows
since more information on the analytic capability function is
accumulated. In contrast, the achieved accuracy of both the delay
guarantee and fair allocation algorithm does not vary with time,
as they are making time-independent decisions without end-edge
coordination. To further illuminate the accuracy comparison
results of all the three algorithms, we plot the cumulative density
function of the average accuracy across 500 time slots in Fig. 5.
It is shown that the proposed algorithm always provides the
highest average accuracy. When the edge computing resource
increases from 50, 100, to 300 GigaFlop/s, the corresponding
median accuracy achieved by the proposed algorithm increases
from 64%, 73%, to 76%, respectively. As a comparison, the
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Fig. 5. Comparison of cumulative density distribution of mean accuracy with varying edge computing capacity C. (a) C = 50 GigaFlop/s.
(b) C = 100 GigaFlop/s. (c) C = 300 GigaFlop/s.

highest accuracy achieved by the benchmark algorithms is 60%,
which stops increasing after the computing resource is higher
than 100 GigaFlop/s, it is reasonable as the streamed video
quality is uncoordinated and does not match with the available
computing resources.

C. Discussions

When the delay requirement is guaranteed, there is clear trade-
off between the query acceptance ratio and the analytic accuracy.
As the edge platform explores different QC configurations, the
video quality and demand on computing resources increases.
In turn, the query acceptance ratio drops due to the limited
computing resource. Meanwhile, more bandwidth resources are
required to stream the high quality video frames. In case com-
puting and bandwidth resources are of different costs, EN can
strike the balance between bandwidth and computing demands
during the exploration.

Also note that the analytic capability function may vary with
time, as it is determined by many other time-varying factors, in
addition to the video quality and the computing resource. The
simplifications we made at the beginning enable us to narrow
the focus to the impact of video quality and computing resource.
The impact of time-varying factors, such as the available camera
uplink bandwidth, the changing camera direction, on the analytic
accuracy of video queries deserves further investigation.

VI. CONCLUSION

In this article, we had investigated the end-edge-cloud collab-
oration for live video analytics. To respond to video queries
with low latency at the edge, a dynamic edge configuration
algorithm was developed, which adjusts the quality of generated
video frames at the end cameras, as well as the allocated edge
resources for each video query. Theoretical analysis demon-
strated that the proposed algorithm achieves near-optimal utility,
while satisfying the latency requirements. The performance was
further validated by extensive simulation results. The proposed
algorithm provides a low-latency solution to accurate live video
analytics, which can be readily applied to practical surveillance
systems. For the future work, in addition to video streaming
and analytics at the edge, we will take into account the video
transcoding schemes to further improve the system performance.
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