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Abstract—Driven by the explosive growth in computation-
intensive applications in future 5G networks and industries,
mobile edge computing (MEC), which enables smart terminals to
offload their computation-workloads to nearby edge servers (ESs)
in radio access networks, has attracted increasing attentions.
In this paper, we investigate the energy-efficient multi-task
multi-access mobile edge computing (MEC) via non-orthogonal
multiple access (NOMA). Exploiting NOMA, a smart terminal
(ST) with multiple tasks can offload the respective computation-
workloads of different tasks to different ESs simultaneously. To
study this problem, we adopt a two-step approach. Specifically,
we first consider a given task-ES assignment and formulate a
joint optimization of the tasks’ computation-offloading, local
computation-resource allocation, and the NOMA-transmission
duration, with the objective of minimizing the ST’s total energy
consumption for completing all tasks. Next, based on the optimal
offloading solution for the given task-ES assignment, we further
investigate how to properly assign different tasks to the ESs
for further minimizing the ST’s total energy consumption. For
both the formulated problems, we propose efficient algorithms to
compute the respective solutions. Numerical results are provided
to validate the effectiveness of our proposed algorithms. The
results also show that our proposed NOMA-enabled multi-task
multi-access computation offloading can outperform conventional
orthogonal multiple access (OMA) based offloading scheme,
especially when the tasks have heavy computation-workload
requirements and stringent delay-limits.

I. INTRODUCTION

In the past decades, we have witnessed an explosive
growth in mobile Internet services along with the growing
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deployment of 4G/5G cellular networks, leading to a portfo-
lio of resource-hungry applications, e.g., unmanned vehicles,
online artificial intelligence, virtual/augmented reality, and
industrial Internet of Things (IoTs). However, conventional
smart IoT terminals usually suffer from limited computation-
resources, which result in degraded quality of experience
(e.g., excessive delay) when running these resource-hungry
applications locally. Mobile edge computing (MEC), which
enables the resource-limited smart terminals (STs) to offload
their computation-tasks to the edge-servers (ESs) equipped
with sufficient computation-resources, has provided an ef-
fective approach to address this issue. Thanks to its poten-
tials in reducing computation-delay and improving resource-
utilization efficiency, MEC has attracted lots of attentions from
both academia and industries [1]–[6]. To further improve the
efficiency of MEC, the paradigm of multi-access MEC has
been envisioned. In multi-access MEC, a ST can offload its
computation-tasks to several ESs simultaneously, yielding a
more efficient utilization of ESs’ resources [7]–[9].

However, the success of MEC and multi-access MEC
necessitates a joint optimization of computation-workload
offloading, computation-resource allocation, as well as the
transmission-resource allocation. Many studies have been de-
voted to investigating the joint resource management scheme
for MEC and multi-access MEC. In [10], [11], joint offload-
ing decision and channel allocations have been studied. In
[12], Chen et. al. further considered a multi-task scenario
and aimed at jointly optimizing the offloading decision and
allocations of computation and communication resources. In
[13], taking into account the time-varying network conditions,
a learning-based dynamic computation-offloading policy for
multi-cell MEC systems has been proposed. In [14], an online
computation offloading scheme has been proposed for wireless
powered MEC. In [15], Dinh et. al. adopted the game-theoretic
approach to study the multi-user multi-edge-node offloading
problem. For reducing energy consumption of MEC, green-
oriented MEC via joint optimization of computation offloading
and energy management has been studied in [17]–[19]. The
authors of [20] investigated joint management scheme of
computation offloading and resource allocation from the per-
spective of network economics. In [16], Zhang et. al. studied
the computation resource management problem in mobile
edge-cloud computing networks for sharing the resources be-
tween edge systems and cloud networks. Exploiting MEC, in
[21], Xu et. al. proposed a blockchain-based non-repudiation
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network computing scheme for industrial IoT. In [22], to
address the limited capability of lightweight IoT devices, a
block-streaming application execution scheme based on edge
computing has been proposed. To exploit multi-access MEC,
Guo et. al. considered a scenario of multi-user ultra-dense
MEC servers and proposed a greedy offloading scheme in [9].
In [23], an integrated scheme for multi-access edge computing
and fiber-wireless access networks has been proposed. User-
association to different resources has been studied in [24] for
multi-access MEC.

Recently, non-orthogonal multiple access (NOMA) has been
considered as one of the enabling technologies for achieving
ultra high-throughput and accommodating massive connectiv-
ity in radio access networks (RANs) [25]–[27]. Many studies
have been devoted to investigating the resource manage-
ment for NOMA to exploit its benefits, e.g., for enhancing
throughput [28], [29] and energy-efficiency [30]. In particu-
lar, NOMA has been envisioned as a promising scheme for
enabling the multi-access MEC. Exploiting NOMA, a ST can
simultaneously send its offloaded workloads to multiple edge-
servers over the same frequency channel, which thus may
help reduce the offloading delay and energy consumption. For
instance, to reduce the energy consumption in the context of
edge computing, in [31], Kiani et. al. proposed a NOMA-
based optimization framework that jointly optimizes the user
clustering, computing and communication resource allocation,
and transmit powers for minimizing the energy consumption
of MEC users. To reduce the computation-delay, in [32],
Ding et. al. investigated the minimization of the offloading
delay for NOMA assisted MEC and established the criteria
for choosing among different offloading-transmission modes
for a two-user scenario. In [33], a multi-user NOMA-enabled
MEC scheme has been proposed for minimizing the overall
delay in MEC (including the tasks’ computation-delay as well
as the uploading and downloading transmission-delay).

In many industrial applications, a smart agent may have
a group of tasks to be processed in parallel, with different
tasks having different computation-workload requirements and
different delay-limits. For instance, in the surveillance system
of an unmanned factory, a smart camera may need to execute
the delay-tolerant task of video-data compression and the
delay-sensitive task of realtime video analytics. Also, in the
context of automotive driving, an automotive vehicle may
execute realtime computation for target identification as well
as mobile data services which are delay-tolerant. Therefore,
taking into account that i) different tasks may have different
delay-limits and different workload-requirements, and ii) d-
ifferent ESs may have different computation-rates to process
the offloaded workloads, it is a critical issue about how to
properly exploit the tasks’ different delay-limits and the ESs’
different computation-rates for optimizing the performance of
the multi-task computation offloading (e.g., for minimizing the
ST’s total energy consumption for completing all tasks). In
particular, this issue becomes even more challenging when we
exploit NOMA in the offloading. Although NOMA enables
the simultaneous transmissions of different tasks’ offloaded
workloads to the respective ESs, the resulting co-channel
interference among these offloading-transmissions will strong-

ly couple the offloading-decisions (e.g., the amount of the
offloaded workloads) of different tasks. These, however, have
not been investigated in the existing studies yet. Driven by
these motivations, we investigate the energy efficient multi-
task computation offloading via NOMA. Our detailed contri-
butions in this work are summarized as follows.

• (Problem formulation): We study the NOMA enabled
multi-task multi-access MEC with the objective of min-
imizing the ST’s total energy for completing all tasks,
while subject to each task’s delay-limit. To investigate the
problem, we adopt a two-step approach. Specifically, in
the first step, we consider a given task-ES assignment and
formulate a joint optimization of the tasks’ computation-
offloading, the ST’s local computation-rate allocation, and
the NOMA-transmission time allocation. Based on the
optimal offloading solution in the first step we further in-
vestigate the optimal assignment of the tasks to different
ESs (i.e., the task-ES assignment), with the objective of
further minimizing the ST’s total energy consumption.

• (Solution methodology for the first-step problem): Despite
the non-convexity of the formulated joint optimization
problem in the first step, we exploit its layered structure
and propose an efficient layer-algorithm to compute the
optimal offloading solution. To validate our proposed
algorithm, we compare the solution of our proposed algo-
rithm with that of LINGO [36] (a commercial optimiza-
tion package), in terms of the accuracy and efficiency.

• (Solution methodology for the second-step problem): For
the optimal task-ES assignment in the second step, we
treat it as an equivalent optimal ordering problem and pro-
pose an efficient index-swapping algorithm to determine
the ordering of the tasks, which correspondingly gives the
task-ES assignment. We finally validate the advantages
of our proposed NOMA-enabled multi-task multi-access
MEC scheme by providing the performance comparison
with the conventional orthogonal multiple access (OMA)
based MEC scheme.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Figure 1(a) shows an illustrative model considered in this
paper. One ST (e.g., a smart camera) is running a group of
tasks (e.g., the delay-tolerable video-compression application
and realtime target identification) in parallel. We denote the
group tasks as K = {1, 2, ...,K}, with task k having a
required computation-workload Stot

k to be completed and a
delay-limit Tmax

k . Notice that different tasks can have different
required computation-workloads and delay-limits. Meanwhile,
there exists a group of ESs I = {1, 2, ..., I}1, with each ES
co-located with a wireless access point (AP) and providing
computation-offloading to the ST. In particular, due to the
feature of NOMA transmission, we assume that the ESs are
ordered according to:

g1 ≥ g2 ≥ ... ≥ gI , (1)

1In this work, we focus on investigating the case that the number of the ESs
is equal to the number of the tasks, namely, I = K. Our proposed algorithms
here are also applicable to other cases. For instance, for the case of K < I ,
we could add I − K virtual tasks into the system model, with each virtual
task having zero computation-requirement and a very large delay-limit.
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Fig. 1: (a) System model. (b) Detailed task-ES assignment in Sections II and III. (c) Ordering of the tasks in Section IV.

where gi denotes the channel power gain from the ST to ES
i. To exploit MEC, we consider the partial offloading. Specif-
ically, for each task k, its required computation-workload is
divided into two parts, i.e., the computation-workload sk to
be offloaded to one of the ESs, and the workload Stot

k − sk to
be processed locally.

(A detailed task-ES assignment) In Section II and Section
III, we first consider a detailed task-ES assignment, namely,
part of task k’s workload is offloaded to ES i = k directly, as
shown in Figure 1(b) for a concrete example of I = K = 3.
With this detailed assignment, we investigate the joint opti-
mization of the tasks’ workload offloading, local computation-
resource allocation, and NOMA-transmission time. With the
proposed algorithm for finding the optimal offloading solution
for this detailed task-ES assignment, in Section IV, we will
further investigate how to properly assign the tasks to different
ESs, which can be regarded as an optimal ordering of the tasks
as shown in Figure 1(c). In this work, as the initial step for ana-
lyzing the NOMA-assisted multi-task computation-offloading,
we make an assumption that each ES can only accommodate
the offloaded workload from one of the ST’s tasks, and each
task can only select one of the ESs to offload its workload.
In practice, the ESs may simultaneously process the offloaded
workloads from multiple tasks, which thus further improves
the efficiency of the multi-access computation offloading. This
is an interesting direction for us to extend this work here.

A. Modelling of NOMA Transmission for Offloading

Notice that in Section II and Section III, we focus on the
detailed example of task i’s workload being offloaded to ES i
directly. Thus, for the sake of clear presentation, we will use
the subscript i to denote both the task and the ES in Section
II and Section III.

Based on the principle of the power-domain NOMA and
the operations of successive interference cancellation, the
ST can simultaneously send the offloaded workloads s =
[s1, s2, ..., sI ], which are measured in the number of bits, to
the respective ESs over the same frequency channel. Then,
based on (1) and Proposition 1 in [30], the ST’s minimum
total transmit-power can be given by:

P tot(s, t) = Wn0

I∑
i=1

(
1

gi
− 1

gi−1
)2

1
t

1
W

∑I
m=i sm − Wn0

gI
, (2)

where W denotes the channel bandwidth, and n0 denotes
the power spectral density of the background noise. Corre-
spondingly, the ST’s total energy consumption for NOMA-
transmission is

ENOMA = tP tot(s, t). (3)

Notice that to exploit the NOMA transmission, we assume
that different tasks are synchronized such that parts of the
workloads can be simultaneously offloaded to the ESs via the
NOMA transmission. In particular, to achieve the synchroniza-
tion, we need a proper scheduling scheme to group different
tasks (i.e., set K), especially when the number of the tasks is
larger than the number of the ESs. Design of this scheduling
scheme is an important direction for us to extend this work.

B. Modelling of the ST’s Delay and Energy Consumption

Each ES i has a fixed computation-rate denoted by µi,E
(with the subscript E denoting the “Edge”). Thus, the overall
delay for completing task i can be given by

dove
i = max

{Stot
i − si
µi,L

, t+
si
µi,E

}
, (4)

where µi,L denotes the ST’s allocated computation-rate for
processing task i locally. For the sake of clear presentation in
this work, we measure µi,E and µi,L by the number of bits
processed per second, which is equivalent to the CPU-rate
in Hz multiplied by the number of bits processed per CPU
cycle. Similar to many existing studies [31], [32], we do not
account for the delay for sending back the computation-result
in eq. (4), since the volume of the computation-result is usually
very small. According to [34], the CPU power consumption
can be modelled as a cubic relationship with respect to the
computation-rate. Thus, the ST’s total energy consumption for
completing all remaining workloads is (“LC” denotes “local
computing”):

ELC =
I∑

i=1

Stot
i − si
µi,L

ρLµ
3
i,L =

I∑
i=1

ρL(S
tot
i − si)µ

2
i,L, (5)

where ρL is a coefficient depending on the CPU chip archi-
tecture.

Notice that to facilitate modelling of the overall delay for
completing each task (i.e., eq. (4)), we assume a simple local
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processing model, namely, the local computation-rate alloca-
tion µi,L for processing task i will be optimized only once
and used throughout the execution of the task. In particular,
the modelling of the delay will be much more challenging
if we allow the re-adjustment of the computation-rate of task
i (when some other tasks are completed in advance of task
i and the corresponding computation-resources are released),
since we need to take into account the ordering of different
finishing-time of different tasks.

C. Problem Formulation for Energy-Efficiency Optimization

We formulate an energy-efficiency optimization (EEO)
problem to minimize the ST’s total energy consumption as
follows.

(EEO): minENOMA + λELC

subject to:
P tot(s, t) ≤ Pmax, (6)

max
{Stot

i − si
µi,L

, t+
si
µi,E

}
≤ Tmax

i , for i = 1, 2, ..., I,(7)

I∑
i=1

µi,L ≤ µmax
L , (8)

si ≤ min{Stot
i , Cmax

i }, for i = 1, 2, ..., I, (9)
variables: s ≥ 0,µL ≥ 0, and t ≥ 0.

Parameter λ in the objective function denotes the relative
weight on the energy consumption for local computing. Vec-
tor µL = [µ1,L, µ2,L, ..., µI,L] denotes the allocated local
computation-rates for all tasks. Constraint (6) ensures that the
ST’s total transmit-power cannot exceed its transmit-power
capacity denoted by Pmax. Constraint (7) ensures that the
overall delay for completing task i cannot exceed its required
delay-limit Tmax

i . Constraint (8) ensures that the sum of the
ST’s allocated computation-rates to all tasks cannot exceed its
maximum local computation-rate denoted by µmax

L . Finally, we
take into account that each ES may have a limited capability
to process the offloaded workload and thus use constraint (9)
to ensure that task i’s offloaded workload cannot exceed ES i’s
affordable capacity denoted by Cmax

i . Problem (EEO) jointly
optimizes the tasks’ offloaded workloads s, the ST’s allocated
local computation-rates µL for the tasks, and the NOMA-
transmission duration t, and it is a complicated non-convex
optimization problem.

III. PROPOSED ALGORITHM FOR PROBLEM (EEO)

This section presents a detailed algorithm design for solving
Problem (EEO) by exploiting its layered structure. With some
manipulations, (7) leads to the following two constraints:

Stot
i − si
Tmax
i

≤ µi,L, for i = 1, 2, ..., I, (10)

si ≤ µi,E(T
max
i − t), for i = 1, 2, ..., I. (11)

By using (10) to substitute µL, we obtain the following
equivalent form of Problem (EEO) (where letter “E” denotes

“Equivalent”):

(EEO-E): min t
(
Wn0

I∑
i=1

(
1

gi
− 1

gi−1

)
2

1
W

1
t

∑I
m=i sm − Wn0

gI

)
+λ

I∑
i=1

ρL

(Tmax
i )2

(Stot
i − si)

3

subject to:

Wn0

I∑
i=1

(
1

gi
− 1

gi−1

)
2

1
W

1
t

∑I
m=i sm − Wn0

gI
≤ Pmax, (12)

si ≤ min{µi,E(T
max
i − t), Cmax

i , Stot
i }, for i = 1, 2, .., I, (13)

I∑
i=1

Stot
i − si
Tmax
i

≤ µmax
L , (14)

variables: s ≥ 0, and 0 ≤ t ≤ min
i=1,2,...,I

{Tmax
i }.

Constraint (13) stems from (11) and (9), and constraint (14)
stems from (10) and (8). In addition, the duration t is upper
limited by mini=1,2,...,I{Tmax

i } due to constraint (7) (other-
wise, it is meaningless to execute the computation offloading).
Let t∗ and s = [s∗1, s

∗
2, ..., s

∗
I ] denote the optimal solutions of

Problem (EEO-E). We can derive µ∗
i,L =

Stot
i −s∗i
Tmax
i

, i = 1, 2, ..., I

for Problem (EEO).
Problem (EEO-E) is still a non-convex problem with respect

to s and t. To address this difficulty, we adopt a vertical
decomposition that leads to the following two-layered structure
of the problem:

1) (Top-layer optimization): On the top-layer optimization,
we aim at solving the following problem:

(EEO-E-Top): minVbot(t)

subject to: 0 ≤ t ≤ min
i=1,2,...,I

{Ti},

where for each given t, the value of Vbot(t) is given by the
optimal value of a bottom-layer optimization problem shown
below.

2) (Bottom-layer optimization): At the bottom-layer opti-
mization, we aim at solving the following problem:

(EEO-E-Bot):Vbot(t) = min t
(
Wn0

I∑
i=1

(
1

gi
− 1

gi−1

)
2

1
W

1
t

∑I
m=i sm

− Wn0

gI

)
+ λ

I∑
i=1

ρL

(Tmax
i )2

(Stot
i − si)

3

subject to:

Wn0

I∑
i=1

(
1

gi
− 1

gi−1

)
2

1
W

1
t

∑I
m=i sm − Wn0

gI
≤ Pmax, (15)

si ≤ min
{
µi,E(T

max
i − t), Cmax

i , Stot
i

}
, for i = 1, 2, ..., I,(16)

I∑
i=1

Stot
i − si
Tmax
i

≤ µmax
L , (17)

variables: s

Based on the above vertical decomposition, we identify the
following result.
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Proposition 1: Given t ∈ [0,mini=1,2,...,I{Tmax
i }], the

bottom-layer Subproblem (EEO-E-Bot) is a strictly convex
optimization problem with respect to s.

Proof: Both the objective function of Subproblem (EEO-
E-Bot) and constraint (15) are strictly convex with respect to
s when t is given. In addition, constraints (16) and (17) are
affine in s. Thus, based on the convex optimization theory [35],
Subproblem (EEO-E-Bot) is a strictly convex optimization
problem in s.

Exploiting the convexity of the bottom-layer Subproblem
(EEO-E-Bot), we thus propose an efficient algorithm to solve
it. The details are shown in the next subsection.

A. Subroutine to Solve the Bottom-Layer Subproblem

This subsection aims at proposing an efficient algorithm
for solving the bottom-layer Subproblem (EEO-E-Bot). The
convexity in Proposition 1 indicates the zero-duality gap of
Subproblem (EEO-E-Bot), which enables us to adopt the
primal-dual approach to solve it. Let us use α and β to
denote the dual variables for constraints (15) and (17), re-
spectively. In addition, we introduce the tuple of (ri, ri) to
denote the dual variables for constraint 0 ≤ ri ≤ Zi (with
Zi = min

{
µi,E(T

max
i −t), Cmax

i , Stot
i

}
according to constraint

(16) before). Furthermore, we denote the dual vectors r =
[r1, r2, ..., rI ] and r = [r1, r2, ..., rI ]. Thus, the Lagrangian
function of Subproblem (EEO-E-Bot) can be expressed as:

L(s, α, β, r, r) = λ

I∑
i=1

ρL

(Tmax
i )2

(Stot
i − si)

3

+t
(
Wn0

I∑
i=1

(
1

gi
− 1

gi−1

)
2

1
W

1
t

∑I
m=i sm − Wn0

gI

)
+α

(
Wn0

I∑
i=1

(
1

gi
− 1

gi−1

)
2

1
W

∑I
m=i

sm
t − Wn0

gI
− Pmax

)

+β

(
I∑

i=1

Stot
i − si
Tmax
i

− µmax
L

)
+

I∑
i=1

ri (si − Zi)−
I∑

i=1

risi.

With L(s, α, β, r, r), we can determine the optimal solution
of Subproblem (EEO-E-Bot) in a primal-dual approach as
follows.

1) (Solving the primal problem): Given (α, β, r, r), we can
derive the partial derivative of L(s, α, β, r, r) with respect to
each si, which is denoted by function Gi, as follows:

Gi =
∂L(s, α, β, r, r)

∂si

=(ln 2)n0(1 +
α

t
)

i∑
j=1

(
1

gj
− 1

gj−1

)
2

1
W

∑I
m=j

sm
t

−3λ
ρL

(Tmax
i )2

(Stot
i − si)

2 − β
1

Tmax
i

+ ri − ri,

for i = 1, 2, ..., I. (18)

Based on (18), solving the primal problem corresponds to
finding so = [so

1, s
o
2, ..., s

o
I ] such that Gi = 0 for i = 1, 2, ..., I

(here, we use the superscript “o” to denote the optimality to
the primal problem). To this end, we propose Subroutine-forSi
which works as follows.

• (Iterative calculations for [so
2, ..., s

o
I ]): Given the value

of s1, we can exploit the structural property of (18) to
compute so

2, ..., s
o
I one by one. Specifically, with a given

s1, we can use G1 = 0 to obtain the value of
∑I

i=1 si, and
consequently obtain the value of

∑I
i=2 si (i.e., given by∑I

i=1 si − s1). Furthermore, with the values of
∑I

i=1 si
and

∑I
i=2 si, we can use G2 = 0 to obtain the value of

s2, and consequently obtain the value of
∑I

i=3 si (i.e.,
given by

∑I
i=2 si − s2). The above process continues

until we use GI−1 = 0 to obtain the value of sI−1, and
thus the value of sI . Step 3 to Step 7) in Subroutine-forSi
summarize the iterative calculations, which consume I−2
rounds of iterations to obtain so

2, ..., s
o
I .

• (Line-search on s1 to reach GI = 0): Based on the above
iterative calculations and the given value of s1, we can
obtain the values of so

2, ..., s
o
I . Hence, we can compute the

value of GI in Step 9 of Subroutine-forSi. Our objective
here is to find so

1 such that GI = 0 (i.e., Step 10 to
Step 12). To this end, we execute a line-search on s1
with a small step-size, which is summarized by the whole
WHILE-LOOP in Subroutine-forSi. Finally, with so

1, we
also obtain the corresponding so

2, ..., s
o
I .

Subroutine-forSi: to find so such that {Gi = 0}i=1,2,...,I

1: Initialization: Set scur.lower
1 = 0, scur.upper

1 = stot
1 . Set ϵ as a very small

number. Set s1 = scur.lower
1 and a very small step-size ∆.

2: while s1 < s
cur.upper
1 do

3: Based on s1, use G1 = 0 to compute
∑I

m=1 sm.
4: Based on s1, compute

∑I
m=2 sm =

∑I
m=1 sm − s1.

5: for j = 2 : 1 : I − 1 do
6: Based on

∑I
m=1 sm,

∑I
m=2 sm, ...,

∑I
m=j sm, use Gj = 0 to

compute sj .
7: Based on sj , compute

∑I
m=j+1 sm =

∑I
m=j sm − sj (notice

that when j = I − 1, we can obtain sI ).
8: end for
9: Compute the value of GI , based on the values of∑I

m=1 sm,
∑I

m=2 sm, ...,
∑I

m=I−1 sm and sI .
10: if |GI | ≤ ϵ then
11: Set so

i = si for i = 1, 2, ..., I and break the whole While-Loop.
12: end if
13: Update s1 = s1 +∆.
14: end while
15: Output: so = [so

1, s
o
2, ..., s

o
I ].

Until now, We can obtain so under the given (α, β, r, r).
Figure 2(a) in Subsection III-C illustrates the examples of the
operations of our Subroutine-forSi. We next focus on solving
the dual problem.

2) (Solving the dual problem): With so provided by
Subroutine-forSi, we further solve the dual problem. In par-
ticular, we adopt the sub-gradient method [35] and propose
the corresponding BotforDual-Algorithm for updating the dual
variables (i.e., in Step 20 to Step 9) until convergence. For each
given (α, β, r, r), we use Subroutine-forSi to compute the
corresponding so, which is used in the following dual updating.
Meanwhile, in Step 4, we adopt the scheme of decreasing step-
size according to ϱ = A

B+C∗l [35], where l is the iteration
index, and A,B, and C are fixed parameters.

Thanks to the property of zero-duality, after convergence,
BotforDual-Algorithm can output the optimal solution to the
bottom-layer Subproblem (EEO-E-Bot), which is denoted by



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2944839, IEEE
Transactions on Industrial Informatics

6

sbot,∗ = [sbot,∗
1 , sbot,∗

2 , ..., sbot,∗
I ]. Finally, the optimal value of

the bottom-layer Subproblem (EEO-E-Bot) is given by:

Vbot(t) = λ
I∑

i=1

ρL

(Tmax
i )2

(Stot
i − sbot,∗

i )3

+t
(
Wn0

I∑
i=1

(
1

gi
− 1

gi−1

)
2

1
W

1
t

∑I
m=i s

bot,∗
m − Wn0

gI

)
. (19)

We thus finish solving Subproblem (EEO-E-Bot).

BotforDual-Algorithm: to solve Subproblem (EEO-E-Bot) and obtain
Vbot(t)

1: Initialization: Set α = 0, β = 0, r = 0, and r = 0. In addition, we set
αpre, βpre, r and r as very large numbers. Set ϵ as a very small number.
Set iteration index l = 1.

2: while |α− αpre| > ϵ or |β − βpre| > ϵ or
∣∣ri − r

pre
i

∣∣ > ϵ for any i or∣∣ri − r
pre
i

∣∣ > ϵ for any i do
3: Given the dual variables (α, β, r, r), use SubforSi-Algorithm to obtain

so.
4: Update the step-size ϱ = A

B+C∗l (which is used for updating the dual
variables below).

5: Update αpre = α, βpre = β, rpre = r, and rpre = r.
6: Update α according to: α =[

α+ ϱ

(
Wn0

I∑
i=1

(
1

gi
−

1

gi−1

)
2

1
W

∑I
m=i

so
m
t −

Wn0

gI
− Pmax

)]+
,

with function [x]+ = max{x, 0}.

7: Update β =
[
β + ϱ

(∑I
i=1

Stot
i −so

i
Tmax
i

− µmax
L

)]+
.

8: Update ri =
[
ri + ϱ(so

i − Zi)
]+ for i = 1, 2, ..., I .

9: Update ri =
[
ri − ϱso

i

]+ for i = 1, 2, ..., I .
10: Update l = l + 1.
11: end while
12: Set sbot,∗

i = so
i for i = 1, 2, ..., I .

13: Calculate Vbot(t) according to (19).
14: Output: sbot,∗ = [sbot,∗

1 , sbot,∗
2 , ..., sbot,∗

I ] and Vbot(t).

B. Proposed Algorithm to Solve Top-problem (EEO-E-Top)

BotforDual-Algorithm (with Subroutine-forSi) provides
Vbot(t) for each given t. We then continue to solve the opti-
mization problem on the top-layer, i.e., top-problem (EEO-E-
Top) that further optimizes the NOMA-transmission duration
t. However, the difficulty in solving the top-layer optimization
(EEO-E-Top) lies in that we cannot express the value of
Vbot(t) in a closed-form expression. As a result, we cannot use
conventional gradient-based approach to solve it. Fortunately,
top-layer optimization (EEO-E-Top) is a single-variable opti-
mization with the decision variable t ∈ [0,mini=1,2,...,I{Ti}].
As a result, we can use the line-search (LS) method to
numerically find t∗ that can minimize Vbot(t). The details
are shown in our TopLS-Algorithm below. Notice that, for
each given t being evaluated, we use BotforDual-Algorithm
to obtain the value of Vbot(t) (i.e., in Step 5).

Using TopLS-Algorithm to solve the top-layer optimiza-
tion (EEO-E-Top) also solves the original Problem (EEO-E).
Specifically, TopLS-Algorithm outputs t∗, based on which we
can determine s∗ by using BotforDual-Algorithm. Then, we
derive µ∗

i,L =
Stot
i −s∗i
Tmax
i

for i = 1, 2, ..., I (as explained below
(14) before). Finally, (t∗, s∗,µ∗

L) together form the optimal
solutions of Problem (EEO).

The complexity of our TopLS-Algorithm can be analyzed
as follows. TopLS-Algorithm executes a linear-search on t ∈
[0,mini∈K{Ti}]. For each enumerated t, TopLS-Algorithm
invokes BotforDual-Algorithm (in Step 5) for evaluating the
value of Vbot(t). In particular, BotforDual-Algorithm adopts
the sub-gradient method to reach the dual optimum, which
thus consumes the complexity of O( 1

ϵ2 ) with ϵ denoting the
relative error to the global optimum of the dual problem.
Moreover, in each round of the iterations of BotforDual-
Algorithm, in order to obtain so under the given tuple of
the dual variables, we invoke SubforSi-Algorithm (in Step 3)
which requires the complexity of O

( stot
1

∆ (I − 2)
)
. As a result,

the overall complexity of TopLS-Algorithm can be expressed
as O

(
(I − 2) 1

ϵ2
mini∈K{Ti}stot

1

∆2

)
.

TopLS-Algorithm: to solve top-layer optimization (EEO-E-Top)

1: Initialization: Set step-size ∆ as a very small number. Set CBV = ∞
and CBS = ∅.

2: Set t = ∆.
3: while t ≤ mini∈K{Ti} do
4: if

∑
i∈K

Stot
i −Zi

Tmax
i

≤ µmax
L then

5: Use BotforDual-Algorithm to compute Vbot(t).
6: if Vbot(t) < CBV then
7: CBV = Vbot(t) and CBS = t.
8: end if
9: end if

10: Update t = t+∆.
11: end while
12: Output: t∗ = CBS and V ∗

bot = CBV .

C. Numerical results for given task-ES assignment

This section shows the numerical results that validate the
effectiveness of our algorithms for solving Problem (EEO-E).
To this end, we set up a 3-task 3-ES scenario as follows. The 3
ESs are uniformly located on the circle with the center at (0, 0)
and the radius of 500m. Meanwhile, the ST is randomly locat-
ed within a circular plane with the center at (0, 0) and radius
of 100m, and the consequent channel power gains from the ST
to the ESs are generated according to the path-loss model as
[37]. Based on the above settings, the random channel power
gains used here are {gi}i∈I = {1.205, 0.9636, 0.2365}×10−7.
For the ST, we set its Pmax = 3W, µmax

L = 5Gbits/s,
W = 8MHz, and ρL = 0.1W. For the three ESs, we set
[µ1,E, µ2,E, µ3,E] = [14, 12, 10]Gbits/s and set Cmax

i = 30Mbits
for each ES. For the tasks, we set [Tmax

1 , Tmax
2 , Tmax

3 ] =
[2, 3, 4]ms, and [Stot

1 , Stot
2 , Stot

3 ] = [16, 20, 24]Mbits. Finally,
we set the parameter λ = 1 in the objective function, which
indicates the equal emphasis on the energy consumption for
the local computing and that for the NOMA transmission.

Figure 2(a) illustrates the line-search on s1 in Subroutine-
forSi for solving the primal-problem (i.e., to find so). Figure
2(b) shows the convergence of our BotforDual-Algorithm for
solving the dual problem (i.e., to find s∗ and Vbot(t)). Figure
2(c) illustrates the rationale of our TopLS-Algorithm that
executes a line-search over t. It is reasonable to observe that
neither a too small t nor a too large t will be beneficial, and
we need to find the optimal t∗ that can minimize the ST’s total
energy consumption.
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(b) Convergence of BotforDual-Algorithm
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Fig. 2: Illustration of Proposed Algorithm for Solving Problem (EEO-E).

Figure 3 demonstrates the accuracy and efficiency of our
algorithm for solving Problem (EEO). Figure 3(a) validates the
accuracy of our algorithm by comparing with the global-solver
of LINGO (which is a commercial optimization software [36]).
We test four different cases of [µ1,E, µ2,E, µ3,E], and for each
case, we further vary each task’s computation-requirement.
The results in Figure 3(a) show that our algorithm can achieve
the solution almost same as the solution provided by LINGO
under all the tested cases, thus validating the accuracy of
our algorithm. Figure 3(b) shows the computation-time used
by our algorithm and that used by LINGO’s global-solver2.
The results demonstrate that our algorithm always consumes
a significantly less computation-time than the global-solver
of LINGO, which validates the efficiency of our algorithm3.
Therefore, our proposed algorithm is applicable for the practi-
cal scenarios when the ST’s channel condition (for its NOMA
transmission) and its computation-requirement are relatively
stable within a certain period of interests.

IV. PROPOSED ALGORITHM FOR TASK-ES ASSIGNMENT

A. Problem formulation and algorithm design

Section II and Section III focus on minimizing the ST’s
total energy consumption under the given task-ES assignment
as shown in Figure 1(b). In this section, we continue to
investigate how to properly assign the tasks to different ESs,
with the objective of further minimizing the ST’s total energy
consumption. Based on the previous model in Section II and
the proposed algorithms in Section III, finding the optimal
task-ES assignment can be regarded as finding the optimal or-
dering of the tasks in K, as shown in Figure 1(c). Specifically,
let π denote an ordering of the tasks in K, and further let π(k)
denote the index of task k after the ordering-operation. With
the ordering π, we consider that part of the workload of task k
will be offloaded to ES π(k) for processing. In Figure 1(c), we
show a detailed example of the ordering π for K = {1, 2, 3}
with π(1) = 3, π(2) = 2, and π(3) = 1. Mathematically,
we formulate the following problem to determine the optimal

2All results are obtained with Intel(R) Core(TM) i7-7700HQ CPU at
2.80GHz.

3Due to the limited space, we do not show the similar numerical results for
the 5-ES 5-task scenario and the 7-ES 7-task scenario, which again validate
the advantage of our algorithm as Figure 3 here.

ordering of the tasks (“ORP” refers to the optimal ordering
problem).

(ORP): minE(π)

subject to: π(k) ̸= π(k′), ∀k ̸= k′ ∈ K, (20)
π̃(j) ̸= π̃(j′), ∀j ̸= j′ ∈ K, (21)

variable: π.

In Problem (ORP), the objective function represents the ST’s
minimum energy consumption under the ordering π, which is
denoted by E(π). Notice that given the ordering π, we can use
our proposed algorithms in Section III to compute the value
of E(π). Constraint (20) ensures that two different tasks in K
must be indexed differently after the ordering. We introduce
π̃(j) to denote the original index of the task in K, whose index
is j after the ordering. Constraint (21) ensures that for two
different indices after the ordering, their respectively original
indices (before the ordering) are different.

Directly solving Problem (ORP) is challenging, since Prob-
lem (ORP) can be regarded as an optimal matching problem
with externality [38], and moreover, the reward (i.e., the ST’s
total energy consumption in our problem) is non-transferable
among different pairs. To address this difficulty, we propose an
index-swapping based algorithm (IS-Algorithm). Specifically,
we first introduce the operations of index-swapping as follows.

Definition 1: (Operations of index-swapping): With a given
ordering π, the index-swapping operation σπ(k, k

′) for k ̸=
k′ ∈ K yields an updated ordering πupd as follows. Let π(k) =
i and π(k′) = i′. The the updated ordering πupd is same as π,
except that πupd(k) = i′ and πupd(k′) = i.

Our IS-Algorithm works in an iterative manner as follows.

• In each round of iteration, we select two different tasks k
and k′ from K and invoke the index-swapping operation
σπ(k, k

′) (i.e., in Step 3 and Step 4). If this index-
swapping operation can yield a more beneficial ordering,
i.e., E(πupd) ≤ E(π), we then accept the updated ordering
πupd based on σπ(k, k

′) in Step 7. Notice that given πupd

(or π), we can use TopLS-Algorithm to compute E(πupd)

(or E(π)) in Step 5.
• To avoiding being trapped at a local optimum, we adopt

the idea of the Simulated Annealing (SA), which enables
us to accept a non-beneficial index-swapping operation
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Fig. 3: Illustration of accuracy and efficiency of our algorithm in comparison with LINGO

and the resulting updated ordering with a certain probabil-
ity (i.e., in Step 10). The probability for accepting a non-
beneficial index-swapping depends on both the current
temperature T cur and the degradation in the objective, i.e.,
the value of gap evaluated in Step 9. When T cur decreases,
the probability of accepting a non-beneficial swapping
gradually decreases. We adopt the cooling scheduling as
T cur = T ini

ln l in Step 12 (with l denoting the iteration-
index and T ini denoting the initial temperature), which
can provide an asymptotic convergence [39].

Index-Swapping Algorithm (IS-Algorithm) to find π∗

1: Initialization: Initialize the ordering π as π(k) = k, ∀k ∈ K. Initialize
T ini, T cur, and the iteration index l = 1.

2: while T cur ≥ Tend do
3: Randomly select two different k ̸= k′ from K.
4: Invoke the index-swapping σπ(k, k′) to yield πupd.
5: Use TopLS-Algorithm to compute the values of E(π) and E(πupd).
6: if E(πupd) ≤ E(π) then
7: Update π = πupd.
8: else
9: Set gap = E(πupd) − E(π).

10: With probability exp(− gap
T cur ), update π = πupd (notice that gap >

0 always holds due to Step 6 before).
11: end if
12: Update l = l + 1 and T cur = T ini

ln(l)
.

13: end while
14: Output: π∗ = π.

As a summary of all our proposed algorithms in Sections
III and IV, Figure 4 shows the relationships among them.

p
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Index-Swapping Algorithm for sloving 
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Fig. 4: Relationships among all our proposed algorithms in this
work.

B. Numerical Results

This subsection shows the performance of IS-Algorithm.
We use the similar parameter-setting in Section III-C before.
Figure 5 shows the convergence of our IS-Algorithm. In
addition to the 3-task 3-ES scenario used before, we also set
up a 5-task 5-ES scenario with the 5 ESs uniformly located
on the circle with the center at (0, 0) and the radius of 500m.
The ST is again randomly located within a circular plane with
the center at (0, 0) and radius of 100m. Under this setting,
the random channel power gains used here are {gi}i∈I =
{1.948, 1.633, 1.507, 1.095, 0.270}×10−7. Meanwhile, for the
5 task, we set [Tmax

1 , Tmax
2 , ..., Tmax

5 ] = [2, 3, 4, 5, 6]ms, and
[µ1,E, µ2,E, ..., µ5,E] = [16, 14, 12, 10, 8]Gbits/s. All the other
parameters are same as those in the 3-task scenario. Figure
5 shows that our IS-Algorithm can always converge to the
minimum energy consumption for each tested case.
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Fig. 5: Convergence of our IS-Algorithm. Top: convergence under a
3-task 3-ES case. Bottom: convergence under a 5-task 5-ES case.

Table I and Table II present the detailed results on the
ordering of the ESs (obtained by our IS-Algorithm) as well
as the associated optimal computation-workloads afforded by
the ESs. We again use a 3-task 3-ES scenario. Table I shows
the results when all tasks have the common Stot

k while having
different delay-limits as [Tmax

1 , Tmax
2 , Tmax

3 ] = [2, 3, 4]ms. The
ordering obtained by IS-Algorithm (i.e., in the second row of
Table I) shows that, when we vary the common Stot

k for all
tasks from 10Mbits and 20Mbits, Task 1 (which has the strin-
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TABLE I: Ordering of the tasks and the accommodated workloads at different ESs with [Tmax
1 , Tmax

2 , Tmax
3 ] = [2, 3, 4]ms

Diff. ESs Stot
k = 10Mbits Stot

k = 12Mbits Stot
k = 14Mbits Stot

k = 16Mbits Stot
k = 18Mbits Stot

k = 20Mbits
Ordering by IS-Algorithm [1,2,3] [1,2,3] [1,2,3] [1,2,3] [1,2,3] [1,2,3]

opt. workload by ES 1 7.98Mbits 9.38Mbits 10.64Mbits 11.62Mbits 12.60Mbits 13.23Mbits
opt. workload by ES 2 7.38Mbits 8.85Mbits 10.18Mbits 11.38Mbits 12.39Mbits 13.33Mbits
opt. workload by ES 3 4.72Mbits 6.07Mbits 7.25Mbits 8.28Mbits 9.06Mbits 9.74Mbits

TABLE II: Ordering of the tasks and the accommodated workloads at different ESs with [S tot
1 , S tot

2 , S tot
3 ] = [16, 20, 24]Mbits

Diff. ESs Tmax
k = 2ms Tmax

k = 2.5ms Tmax
k = 3ms Tmax

k = 3.5ms Tmax
k = 4ms Tmax

k = 4.5ms
Ordering by IS-Algorithm [3,2,1] [3,2,1] [3,2,1] [3,2,1] [3,2,1] [3,2,1]

opt. workload by ES 1 15.10Mbits 18.48Mbits 18.65Mbits 18.76Mbits 19.19Mbits 19.46Mbits
opt. workload by ES 2 10.97Mbits 14.53Mbits 15.53Mbits 15.90Mbits 16.00Mbits 15.99Mbits
opt. workload by ES 3 6.57Mbits 9.73Mbits 10.46Mbits 10.47Mbits 10.29Mbits 10.01Mbits

gent delay-limit) is always offloaded to ES 1 which provides
the largest channel power gain and the largest computation-
rate. Table II shows the results when all tasks have the common
T tot
k while having different required computation-workloads as

[Stot
1 , Stot

2 , Stot
3 ] = [16, 20, 24]Mbits. The ordering obtained by

our IS-Algorithm (i.e., in the 2nd row of Table II) shows that,
when we vary the common T tot

k from 2ms to 4.5ms, Task
3 (which has the largest required computation-workload) is
always offloaded to ES 1 which provides the largest channel
power gain and the largest computation-rate. These results are
consistent with our intuition, i.e., it will be more beneficial to
offload the task of a stringent delay-limit (or large required
workload) to the ESs with the large computation-rates and
large channel power gains. The results in both Table I and
Table II show that the ES with a larger computation-rate and
larger channel gain tends to afford more offloaded workloads.

Figure 6 shows the performance advantage of our proposed
NOMA-enabled offloading scheme against the conventional
frequency division multiple access (FDMA) based offloading
scheme. For the sake of fair comparison, we also optimize the
bandwidth allocations for different ESs in the FDMA scheme.
Specifically, we use a 5-ES 5-Task scenario. In the left-
subplot, we consider that all tasks have the common required
computation-workload Stot

k and vary Stot
k from 11Mbits to

16Mbits (we use [Tmax
1 , Tmax

2 , ..., Tmax
5 ] = [2, 3, 4, 5, 6]ms

to differ the tasks). The results show that our NOMA-
enabled offloading scheme can outperform the FDMA-based
scheme, and the relative performance gain (i.e., the numbers
marked in the figure) increases when the tasks’ required
computation-workloads increase. In the right-subplot, we con-
sider that all tasks have the common delay-limit Tmax

k and
vary Tmax

k from 3.5ms to 6ms (we use [Stot
1 , Stot

2 , ..., Stot
5 ] =

[12, 16, 20, 24, 28]Mbits to differ the tasks). The results again
show that our NOMA-enabled offloading outperforms the
FDMA-based scheme, and the relative gain (i.e., the numbers
marked in the figure) increases when the delay-limit becomes
more stringent.

Figure 7 shows the performance comparison between our
optimal NOMA-based multi-task offloading scheme and an-
other heuristic NOMA-based offloading scheme, in which for
each task, the ST offloads a fixed portion of the computation-
workload to the optimally selected ES. Meanwhile, we also
optimize the NOMA-transmission duration for sending the
offloaded workloads to the respective ESs as well as the
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Fig. 6: Comparison between our NOMA-enabled offloading and the
FDMA scheme.

local computation-rate allocations for the tasks. We use the
3-ES 3-task scenario as in Figure 3 with [µ1,E, µ2,E, µ3,E] =
[14, 12, 10]Gbits/s. The results in Figure 7 again show that our
proposed optimal NOMA-enabled scheme can always achieve
the minimum energy consumption, in comparison with the
heuristic NOMA-based offloading scheme.
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Fig. 7: Comparison between our optimal NOMA-based offloading
scheme and another NOMA-based scheme with fixed computation

offloading.

V. CONCLUSION

In this paper, we have investigated the energy-efficient
multi-task multi-access MEC via NOMA-transmission, with
the objective of minimizing the ST’s total energy for com-
pleting all tasks. We have adopted a two-step approach to
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study this problem. In the first step, we have considered a
given task-ES assignment and formulated a joint optimiza-
tion of the tasks’ computation-offloading, local computation-
rate allocation, and the NOMA-transmission time allocation.
Despite the non-convexity of the formulated problem, we
have exploited its layered structure and proposed an efficient
algorithm to compute the optimal offloading solution. Using
the proposed algorithm as the basis, we next have studied
the task-ES assignment for further minimizing the ST’s total
energy consumption (which can be regarded as an optimal
ordering of the tasks) and proposed an efficient algorithm to
find the ordering of the tasks. Numerical results were presented
to validate our proposed algorithms and the advantage of the
NOMA-assisted multi-task multi-access offloading in terms
of reducing the energy consumption. Regarding the future
direction, we will consider the scenario of multiple STs and
investigate how to optimally divide the ESs into different
subgroups for serving different STs’ offloaded workloads, by
using our proposed algorithm in this work.
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