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Abstract—The IEEE 802.11p-based dedicated short range
communication (DSRC) is essential to enhance driving safety and
improve road efficiency by enabling rapid cooperative message
exchanging. However, there is a lack of good understanding on
the DSRC performance in urban environments for vehicle-to-
vehicle (V2V) communications, which impedes its reliable and
efficient application. In this paper, we first conduct intensive
data analytics on V2V performance, based on a large amount
of real-world DSRC communications trace collected in Shanghai
city, and obtain several key insights as follows. First, among many
context factors, the non-line-of-sight (NLoS) link condition is the
major factor degrading V2V performance. Second, the durations
of line-of-sight (LoS) and NLoS transmission conditions follow
power law distributions, which indicate that the probability
of experiencing long LoS/NLoS conditions both could be high.
Third, the packet inter-reception (PIR) time distribution follows
an exponential distribution in the LoS conditions but a power
law in the NLoS conditions, which means that the consecutive
packet reception failures rarely appear in the LoS conditions
but can constantly appear in the NLoS conditions. Based on
these findings, we propose a context-aware reliable beaconing
scheme, called CoBe, to enhance the broadcast reliability for
safety applications. The CoBe is a fully distributed scheme,
in which a vehicle first detects the link condition with each of
its neighbors by machine learning algorithms, then exchanges
such link condition information with its neighbors, and finally
selects the minimal number of helper vehicles to rebroadcast its
beacons to those neighbors in bad link condition. To analyze
and evaluate the CoBe performance, a two-state Markov chain is
devised to model beaconing behaviors. The extensive trace-driven
simulations are conducted to demonstrate the efficacy of CoBe.
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I. INTRODUCTION

RIVING safety has been the first priority for people’

daily commute as a large number of traffic accidents
happen every year. As indicated in the most recent report of
U.S. Department of Transportation, in U.S. of 2016, there were
an estimated 37,461 people were killed and 3,144,000 people
were injured in police-reported 7,277,000 traffic crashes [2].
In addition, autonomous driving has been paid tremendous
efforts in recent years, while two recent deaths involved by
autonomous vehicles from Tesla and Uber have also raised
the debate on safety, which may threaten to significantly delay
of the technology adoption [3]. For drivers and autonomous
driving systems, the inability of reacting to emergency situa-
tions timely is the major reason leading to the traffic crashes.
Building cooperative Vehicle Safety Communication (VSC)
systems [4]-[9] is a prospective solution to enhance driving
safety by providing danger warnings to drivers or autonomous
driving systems in advance. Meanwhile, IEEE 802.11p-based
Dedicated Short Range Communication (DSRC) [10], [11]
has been a standard, customized for severe-fading and
highly mobile vehicular environments. Based on DSRC,
V2X (broadly including vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), vehicle-to-pedestrian (V2P), etc.) com-
munications become the essential component to enable
cooperative VSC systems. Understanding the characteristics
of 802.11p-based DSRC, especially in urban environments,
is of capital importance to vehicular network protocols and
VSC applications.

However, to characterize the behavior of V2V! communi-
cations in urban environments, is very challenging for three
main reasons. First, as urban environments are complex and
highly dynamic, too many uncontrollable factors such as time-
varying traffic conditions, various types of roads, and all dif-
ferent surrounding trees and buildings [12]-[14], could affect
V2V link performance; it is normally hard to separate the

n this paper, we mainly focus on V2V performance since it is highly
related to the driving safety due to the fast speed of moving vehicles.
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impact of each factor. Second, to conduct realistic studies on
V2V communications in urban scenarios, experiments should
involve different traffic conditions, road types, and cover a
sufficiently long time, which are labor-intensive and time-
consuming. The lack of real-world trace is the hurdle to
achieve efficient protocols and precise modeling. Third, to well
capture the link variation in the moving, various metrics should
be comprehensively investigated. Limited-metric analytics not
only gives one-sided communication knowledge, but also
may confuse researchers and application designers without
providing multi-perspective clues.

In the literature, some measurement-based DSRC
studies have been carried out. Meireles ef al. [15] and
Boban et al. [16] focused on investigating the impact of
obstacles between the communication link. They confirmed
that line-of-sight (LoS) and non-line-of-sight (NLoS)
conditions could deeply affect the DSRC performance, based
on which, they then designed V2V propagation models with
taking LoS and NLoS conditions into consideration. However,
they conducted experiments by fixing two communicating
vehicles, and did not investigate further when vehicles move.
Similarly, physical layer measurements on DSRC channels
are conducted [17]-[20], in which the characteristics of
the path loss, coherence time, Doppler spectrum, etc., were
investigated. All these findings could be very different
when vehicles move. In our paper, we do not model a
LoS/NLoS channel but focus on investing their impacts
on V2V communications, and we pay little attention to
physical layer features as they vary dramatically in the
moving and are impossibly characterized in patterns.
By collecting communication trace form moving vehicles,
Bai ef al. [21] investigated the metric of packet delivery
ratio (PDR), and Martelli ef al. [22] studied the metric
of packet inter-reception (PIR) time, which refer to the
probability of successfully receiving a packet and the interval
of time elapsed between two successfully received packets,
respectively. However, in both pieces of work, very limited
metrics are evaluated; in addition, they did not discriminate
between different channel conditions in terms of LoS and
NLoS and drew their conclusions based on all aggregated
measurements, which could bias from the ground truth.
Nevertheless, there is no statistical study on the impact of
channel conditions in terms of LoS and NLoS and how these
two conditions interact in the moving under urban scenarios.

In this paper, we further improve our previous empiri-
cal study on urban 802.11p-based V2V communications [1].
Specifically, based on 802.11p-compatible onboard units
(OBUs), we implement a V2V communication testbed and
collect large volumes of beaconing traces together with their
simultaneous environmental context information in Shanghai
city. The data collection covers three typical road environ-
ments, i.e., urban, suburban and highway, and lasts more than
two months, with a total traveling distance of over 1,500 km.
Moreover, with the whole data collection recorded by cameras,
we visually label out all LoS and NLoS situations for all
traces. By analyzing the collected traces, we have observed
that the V2V communication performs generally well, but
the NLoS conditions, if encountered, may severely degrade
the V2V communication performance in terms of PDR.
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Given the importance of NLoS conditions, we then examine
the durations of LoS and NLoS conditions and find that both
LoS and NLoS durations follow a power law distribution,
which implies that not only the probability of meeting long
LoS conditions is high but also the probability of seeing
long NLoS conditions is also high. We further investigate the
interactions between LoS and NLoS conditions by examining
the distribution of PIR and packet inter-loss (PIL) times
(referring to the interval of time elapsed between two dropped
packets). We have two key insights as follows. First, PIR
time follows an exponential distribution in LoS conditions but
a power law in NLoS conditions. It means that consecutive
packet reception failures can rarely appear in LoS conditions
but can constantly appear in NLoS conditions. This is cross
verified by the observation that PIL time follows a power
law distribution in LoS conditions but an exponential in
NLoS conditions. Second, unlike the observation that PIR
time follows a power law distribution reported in work [22],
the overall PIR time distribution is actually a mix of an
exponential distribution of small PIR times in LoS conditions
and a power law distribution of PIR times in NLoS conditions.

As safety applications rely on reliable beacon exchanges,

we then propose a context-aware reliable beaconing strategy,
called CoBe, to enhance the broadcast reliability when meets
harsh NLoS conditions. In CoBe, the link states (LoS or
NLoS) among neighbors are first detected in real time by
supervised machine learning algorithms; in the payload of each
beacon, in addition to application data, vehicles also include
the information of their link states to its one-hop neighbors;
upon identifying a NLoS condition, the sender selects a helper
vehicle with the best link quality with both the sender and
the receiver among all the optional helpers, to rebroadcast
its beacons. As CoBe runs at the application layer and no
additional environment input or cross-layer information is
required, it is easy and feasible to implement in practice.
To analyze the performance of CoBe, we devise a two-state
Markov chain to model beaconing behaviors with taking
LoS/NLoS channel conditions into account, based on which
we derive the beaconing reliability and the corresponding cost,
evaluated by the metrics of Beacon Reception Ratio (BRR)
and Broadcast Utility (BU), respectively. Beyond that, we also
conduct extensive trace-driven simulations to evaluate the
performance of CoBe. Both numerical and simulation results
demonstrate the efficacy of CoBe, where BRR can be greatly
enhanced with very slight degradation of BU. Additionally,
highly analogous performance between the modeling and
simulation results verify the accuracy of the proposed Markov
chain model, which can be of great value for other vehicular
ad hoc network (VANET) researches such as performance
analysis, model establishment, and parameter tuning.

In the following, we summarize our major contributions:

o We implement a 802.11p-based V2V communication test-
bed and collect large-volume beaconing traces under three
different urban scenarios. In addition, we have labeled
LoS and NLoS conditions based watching the recorded

videos and opened the data for public access?.

2The labeled trace can be downloaded from our website “http://lion.sjtu.
edu.cn/project/projectDetail?id=14".
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Fig. 1. Tllustration of an experiment car.

o We find that 802.11p works very reliably in urban settings
with a wide range of “perfect zone" (i.e., the portion of
PDR larger than 80%) found, and the impact of signal
power attenuation on the link performance is not obvious
at least within a sufficiently long range of 500 meters,
which indicate that DSRC radio is adequate to deliver
safety beacons.

o In particular, LoS and NLoS channel conditions have
very opposite characteristics with respect to the PIR
and PIL time distributions, e.g., PIR times following an
exponential distribution in LoS conditions but turning out
to be a power law in NLoS conditions. Therefore, they
should be distinctively treated in data analysis, modeling,
protocol design, etc.

« We propose a context-aware reliable beaconing strategy,
called CoBe, which is a fully distributed scheme and
integrates three major techniques: 1) online NLoS detec-
tion; 2) link status exchange; 3) beaconing with helpers.
In addition, a two-state Markov chain model is devised for
performance analysis and extensive trace-driven simula-
tions are conducted; both results demonstrate its efficacy.

The remainder of this paper is organized as follows.

Section II describes the experiment platform and data-
collection campaigns. We check the overall performance of
802.11p and delve into the key factor of link performance
degradation in Section III. In Section IV, we further investigate
the interaction of LoS and NLoS channel conditions and
their impacts on 802.11p. Section V elaborates CoBe design.
We analyze the performance of CoBe in Section VI. Perfor-
mance evaluation is carried out in Section VII. We review the
related work in Section VIII. Finally, we conclude and direct
future work in Section IX.

ITI. COLLECTING V2V TRACE
A. Experiment Platform Description

In this section, we introduce our V2V communication
testbed and the data collection campaign. As shown in Fig. 1,
the testbed includes two experimental vehicles, each of which
has the following components:

IEEE 1609.2 . N
Beaconing Application
SAE 12735
Message T
0 Sublayer SAE J2945.1
o]
c
2 Transport Layer - | IETF RFC
wn Network and UDP/TCP 793/768
3 Transport
g | Lavers-WSMP | Network Layer | IETF RFC
- IPV6 2460
IEEE 1609.3 LLC Sublayer IEEE 802.2
MAC Sublayer Extension IEEE 1609.4
MAC Sublayer
IEEE 802.11p
PHY Layer

Fig. 2. Beaconing application implemented on WAVE protocol stack, where
grey blocks are not involved.

1) DSRC Module: The off-the-shelf Arada LocoMateTM
OBU [23] is adopted as the DSRC module and it is mounted
on the roof of the experimental vehicle. In the DSRC module,
IEEE 802.11p and IEEE 1609 standards are implemented for
wireless access in vehicular environments (WAVE). Fig. 2
shows the WAVE protocol stack, where IEEE 802.11p serves
as the physical and MAC layer to cope with fast fading and
Doppler frequency shift. The DSRC radio operates in the
frequency ranging from 5.700 GHz to 5.925 GHz, and supports
one Control Channel (CCH) and multiple Service Channels
(SCHs) with two optional bandwidths of 10 MHz and 20 MHz.
For a 10 MHz and 20 MHz channel, the supported data rates
range from 3 Mbps to 27 Mbps, and 6 Mbps to 54 Mbps,
respectively. The transmission power can be dynamically
specified with the maximum value up to 14 dBm. To achieve
the most reliable V2V communication, in our experiments,
we adopt the 10 MHz channel, with the lowest data rate
of 3 Mbps and the maximum transmission power of 14 dBm.
In addition, the DSRC OBU has a 64 MB memory, a 16 MB
Flash, one 680 MHz MIPS processor (running in Linux), and
one Gigabit Ethernet interface.

2) GPS Module: A high-performance GPS receiver is inte-
grated in each OBU with an external RF antenna. The GPS
receiver can help obtain the location information (including the
latitude, longitude, altitude, velocity, etc.) of the experimental
vehicle. Besides, the GPS modules are utilized to synchronize
both OBUs every 200 ms.

3) Mobile Computer: We use a ThinkPad X240 laptop,
to connect and control the OBU via its Gigabit Ethernet
interface by running the telnet protocol. In addition, as the
storage and memory of the OBU are very limited, we buffer
all transmitted and received packets at the OBU temporarily,
and periodically download those packets to the laptop, in order
to keep the data collection program running all the time.

4) Camera Recorders: As the urban environments are
highly dynamic and complex, we deploy two cameras on each
vehicle with one mounted on the front window and the other
fixed on the rear window, in order to record the whole data
collection process for offline analysis. The time of cameras
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Fig. 3. Various urban environments are selected to conduct data collection.

are synchronized to the OBU within a precision of one second
level.

5) V2V Beaconing Application: By adopting the Wave
Short Message Protocol (WSMP), we implement a beaconing
application on the WAVE protocol stack which is shown in
Fig. 2. WSMP is a transport layer protocol, in which there
is no retransmission or ACK mechanisms (similar to UDP).
There are two programs, i.e., one transmitter and one receiver,
in our beaconing application. Specifically, the receiver keeps
listening the channel and the transmitter transmits a 300-byte
beacon (the maximum payload of a WSMP packet reaches
1,300 bytes) every 100 ms in accordance with the driving
safety requirement. Each beacon contains a sequence number
as well as the latitude, longitude, altitude and speed infor-
mation of the transmitter. Both the transmitter and receiver
logs the beacon transmission/reception record, and by offline
comparing the difference between the transmitted and received
beacons, we are able to evaluate the V2V communication
performance.

B. Data Collection Campaign

To cover all typical urban road conditions, we consider
three major road types: 1) urban: roads can be unidirectional
1- or 2-lane wide and bidirectional 4- to 8-lane wide, with a
large number of tunnels, overhead bridges, tall buildings, and
elevated roads, as well as heavy traffic; 2) suburban: roads
are normally bidirectional and 4- to 6-lane wide with open
lands, remote houses and light traffic; 3) highway: bidirectional
8-lane urban freeway with a large number of walls and
time-varying traffic.

We conduct our data collection campaign within areas of the
above three road types in Shanghai, and the collection areas are
shown in Fig. 3. For each road type, the data collection lasts
for at least ten days, and in each data collection, we conduct
data collection during two different time periods, i.e., rush hour
(from 5:00 pm) and off-peak time (from 8:00 pm). To guar-
antee valid communication, during experiments, we control
the distance between two communicating vehicles to be no
more than 500 meters.> To mimic realistic driving conditions,
there is no additional requirement on how the drivers drive.

3we implement an application running in mobile phone to calculate the
distance of two vehicles by exchanging the GPS information, and report the
distance to the driver every 3 seconds.
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Fig. 4. CDFs of PDR over all traces.

The overall campaign lasts for more than two months with an
accumulated distance of over 1,500 kilometers. As a result,
for each road condition, we obtain a trace, denoted as trace
U (urban condition), trace S (suburban condition) and trace
‘H (highway condition). The total amount of all traces adds
up to 110 GB. In addition, we concatenate all three traces
of different environments together to form a universal trace,
denoted as trace A.

III. OVERALL URBAN V2V PERFORMANCE ANALYSIS

To gain an overall picture of V2V communication, we first
examine the PDR performance in different urban environ-
ments. In practice, the PDR is often calculated as the ratio
of the number of data packets received at the receiver to the
total number of packets transmitted at the transmitter within a
pre-defined time window.*

A. Observing Prevalent Perfect Zone

Fig. 4 shows the cumulative distribution functions (CDFs) of
PDR for all traces and it can be seen that the ideal case of V2V
communication could frequently happen. Ideal case means all
packets are successfully received (i.e., PDR = 100%), and
in urban, suburban and highway environments, it happens
with the probability of 81.4%, 92.9% and 67.8%, respectively.
On the contrary, in the respective environments, the probability
of worst case (i.e., PDR = 0%) drops to 4.3%, 0.7% and 6.9%.
It is interesting to compare our results with previous work [21]
that studies communication characteristics in rural and sub-
urban vehicular networks. From Fig. 2 of [21], the authors
observed the “gray-zone phenomenon” where intermediate
reception (20%<PDR<80%) prevails throughout the whole
communication range. The probability of this happening
reaches over 50.6% while the perfect reception (PDR>80%)
zone is not always guaranteed with the probability 35.2%.
Unlike their observation, we find that 802.11p performs rather
reliably in urban environments and “perfect zone” prevails
with a wide communication range up to 350 meters. For
instance, in urban, suburban and highway environments, the
probability of perfect reception can reach above 89.6%, 95.4%
and 76.2%, respectively.

4In this paper, we calculate PDR using a time window of one second.
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Fig. 5. PDR vs. distance between a pair of vehicles.

Furthermore, from Fig. 4, we can observe that compared
with the suburban environment, in urban and highway envi-
ronments, multi-path fading effects are much more severe.
Particularly, in the urban and highway environment, the prob-
ability of poor reception (PDR<20%) is about 5% and 9.6%,
respectively, while in the suburban environment, the proba-
bility falls to 1.2%. It is reasonable as in the suburban envi-
ronment, there are few vehicles or obstacles that could cause
multi-path effects. On the contrary, there are a large number of
mobile scatters (high-speed vehicles) and numerous stationary
scatters (buildings) in the urban and highway environments,
which could inject multiple paths into the channel, resulting
in poor PDRs in both environments.

B. Analyzing Key Factors of Performance Degradation

To derive the key factor of performance degradation,
the impact of the communication distance is first intuitively
investigated and we plot the average PDR within different
distance ranges, which is shown in Fig. 5. It can be seen
that in all studied environments, with the distance increasing,
the average PDR drops gradually. However, it is surprising
to find that the PDR variation increases dramatically as the
communication distance increases, especially for the urban
environment. Particularly, supposed at a communication dis-
tance of 400 meters in the urban environment, the average
PDR can often reach up to 100% but can also fall to below
10%. To figure out the reason for such large PDR variations,
we check with the recorded videos and observe that packets
are frequently lost when two vehicles are blocked by obstacles,
i.e., encountering NLoS situations. To this end, based on
watching videos, we then mark all NLoS situations when
two vehicles cannot visually see each other,’ and divide the
original trace into LoS and NLoS two categories. In real
driving scenarios, between two communicating vehicles, there
may be slopes, big obstacles such as trucks and buses, and
turns, which could result in NLoS situations.

1) NLoS Conditions Instead of Separation Distance Affect
Link Performance Most: Fig. 6 shows the CDFs of PDR
in LoS and NLoS conditions, respectively, and we can see

SNote that, although NLoS conditions found by cameras are not necessarily
to be NLoS for RF radios, those visually NLoS conditions are still good
approximations of real radio NLoS conditions and valuable for analysis.

01 02 03 04 05 06 07 08 09 1
Packet Delivery Ratio
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Fig. 6. CDFs of PDR in LoS/NLoS conditions.
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Fig. 7. PDR vs. distance under LoS/NLoS conditions.

that most packet reception failures happen under NLoS con-
ditions. For example, in the urban, suburban and highway
environments, the probability of poor reception (PDR<20%)
under NLoS conditions reaches over 82.6%, 48.3% and 62.1%,
respectively, and the probability of perfect reception is zero
in all environments. On the contrary, in the urban, subur-
ban and highway environments, the probability of perfect
reception under LoS conditions is 93.5%, 96.9% and 86%,
respectively, and the probability of poor reception is less than
1% in all environments. We can conclude that it is NLoS
conditions instead of separation distance that lead to most
packet reception failures. Although the separation distance is
not the direct reason of poor PDR, it is true that the probability
of encountering a NLoS condition increases as the separation
distance increases, which explains the large PDR variations at
long separation distances. The insight can be further verified
by Fig. 7, which shows results of Fig. 5 in LoS and NLoS
conditions, respectively.® We can see that the average PDRs in
LoS conditions seem to be rather stable (all above 95%) while
the average PDRs in NLoS conditions have poor performance
(all below 40%) regardless of the distance variation.

IV. INTERACTIONS BETWEEN LOS AND NLOS
Given the importance of NLoS conditions, we further inves-
tigate the interactions between LoS and NLoS conditions by

ONote that, results under suburban and highway scenarios are omitted due
to the similar observations and space limitation.
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Fig. 10.  An example sequence of packets, where white blocks denote
successfully received packets and dark blocks denote packet reception failures.

examining the metrics of PIR and PIL times as illustrated
in Fig. 10. In the figure, the PIR time refers to the interval
of time elapsed between two successfully received packets,
i.e., the duration between two adjacent white blocks, while
the PIL time refers to the time interval elapsed between two
dropped packets, i.e., the duration between two adjacent dark
blocks.

A. Power Law Distributions of NLoS and LoS Durations

We first examine LoS and NLoS durations to check how
they appear in real driving conditions and plot their tail
distributions, which are shown in Fig. 8 and Fig. 9, respec-
tively. Two main observations can be achieved. First, both
LoS and NLoS durations follow a power law distribution,
as linear plots in log-log scale are found in both figures.
It indicates that not only the probability of meeting long LoS
conditions is high but also the probability of meeting long
NLoS conditions is also high. It should be noted that, the cutoff
part of the tail distribution should not be considered due to the
effect of limited observation duration, which has also been
pointed out in previous studies on characterizing inter-contact
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time distribution of human [24] and vehicular [25] mobility.
In addition, linearity tests and distribution fittings are con-
ducted, and results are shown in Section VII. Second, LoS
durations are in general longer than NLoS durations. For
instance, the proportion of durations longer than ten seconds
reaches 50% in LoS conditions while drops to only 18% in
NLoS conditions. Nevertheless, the finding of heavy-tailed of
NLoS durations is critical for the beacon-based application
design, which has to cope with the relatively long and constant
communication blackouts when vehicles move.

B. Mixed Distributions of PIR Times

We plot the complementary cumulative distribution func-
tions (CCDFs) of PIR times of all traces in Fig. 11 (log-
log scale). It is also interesting to compare our results with
previous work [22] that studied 802.11p-based beaconing
performance based on data collected during trips traveled
among several Italian cities. As shown in Fig. 4 of [22],
the authors observed that the CCDF of PIR times satisfies a
power law (identified by linear plots in log-log scale) and had
the conclusion that the PIR time distribution is heavy tailed,
which means that the probability of having relatively long PIR
time is relatively high. Unlike their observation, we find that
the CCDF of PIR time appears linear in log-log scale only for
large PIR times and has a much faster decay for small PIR
times, which implies that the PIR time only partially follows
a power law. For example, as shown in Fig. 11, it can be seen
that the CCDF of PIR times is not linear when PIR time is
smaller than one second.

To explain it, we can see from Fig. 6, where large proportion
of PDRs are greater than 80% in LoS conditions while in
NLoS conditions, very poor PDR is witnessed, indicating that
small PIR times are common in LoS conditions and large
PIR times normally appear in NLoS conditions. To this end,
we check the distribution of PIR times in LoS and NLoS
conditions, and plot their CCDF results in Fig. 12 (linear-log
scale) and Fig. 13 (log-log scale), respectively. Clear linear
plots are seen in both figures, which means that PIR time in
LoS conditions follows an exponential distribution and that in
NLoS conditions follows a power law distribution. It implies
that short PIR times (consecutive successfully-received pack-
ets) are more likely to happen in LoS conditions whereas
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the probability of having long PIR time is relatively high
under NLoS conditions. Then, we can well explain why the
CCDF of overall PIR times in Fig. 11 has a much faster
decay than a power law distribution when the PIR times
are small. It is because the CCDF result is a combination
of an exponential distribution of small PIR times in LoS
conditions, and a power law distribution of PIR times in NLoS
conditions. On the other hand, we have a similar but opposite
observation on the distribution of PIL times. In particular,
as shown in Fig. 14 and Fig. 15, we find that PIL time in LoS
conditions follows a power law distribution whereas that in
NLoS conditions follows an exponential distribution. It means
that short PIL times (consecutive packet losses) are common

3 4 5 6 7
Packet Inter-loss Time (100ms)

Fig. 15. CCDFs of PIL times in NLoS conditions in linear-log scale.

in NLoS conditions while in LoS conditions, relatively long
PIL times are more likely to happen.

V. CONTEXT-AWARE RELIABLE BEACONING DESIGN
A. Overview

Reliable beaconing is an essential building block in VSC
applications, where periodical “status” messages (contain-
ing information of the vehicles position, speed, acceleration,
braking status, etc.) broadcasted by each vehicle should be
well received by all neighbors in its vicinity. From above
analysis, beacon-based VSC applications could benefit from
link context information. For instance, when encounters NLoS
conditions, a better beaconing strategy is to find proper
neighbor vehicles to help rebroadcast the beacons, to further
enhance the beaconing reliability. To this end, we propose
a context-aware cooperative beaconing strategy, called CoBe,
which can enhance the beaconing reliability when encounters
harsh NLoS conditions. In essence, CoBe integrates three
major techniques as follows: 1) online NLoS detection; 2) link
status exchange; 3) beaconing with helpers.

B. Online NLoS Detection

1) Using Physical Layer Hints: With more advanced
antenna (e.g., MIMO systems) and physical layer techniques
(e.g., OFDM modulation), NLoS conditions can be accu-
rately detected in real time. For example, the power delay
profile [26], which profiles arriving signals from multi-path
channels and gives the power strength of a received signal,
can be utilized to detect NLoS conditions.

2) Perceiving NLoS at Application Layer by Machine Learn-
ing Algorithms: In cases where physical layer hints are not
available, it is still possible for upper-layer applications to
perceive NLoS conditions. From Fig. 6, it can be seen that
all visually identified NLoS conditions have very low PDRs
which are less than 70%, while LoS conditions have rela-
tively high PDRs and 95% of them are greater than 70%.
This observation indicates that PDR values have some latent
relations to the underlying LoS or NLoS channel conditions.
Therefore, we can adopt the application layer PDR values
to infer the underlying LoS/NLoS condition. To learn those
unknown relations, supervised machine learning algorithms
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can be well applied since we have marked all LoS and NLoS
conditions. More specifically, given the consecutive time slots
(last for one second), we can extract their historical PDR
values, i.e., the PDR value within previous 1, 5 and 10 sec-
onds, as input training features. Together with their current
LoS/NLoS labels (i.e., the training targets), classical machine
learning algorithms such as support vector machine (SVM),
k-nearest neighbor (KNN), decision tree and random forest,
are leveraged to train the process and then output a binary
classifier. By calculating the previous 1-second, 5-second and
10-second PDR values and inputting them into the classifier,
NLoS conditions can be detected in real time. Particularly,
if the classifier outputs a result 1 (i.e., meaning a LoS
condition), the channel is considered to be in good condition;
otherwise, a NLoS condition is found.

C. Link Status Exchange

To be compliant with the broadcast requirement for most of
safety applications, each vehicle is required to broadcast every
100 ms [8], [27]. By logging the beacon reception records
for each one-hop neighbor, vehicles are able to calculate the
up-to-date historical PDR values of each one-hop link and
then perceive their real-time link status (LoS or NLoS). Once
a vehicle detects a NLoS condition for a link, the vehicle
should select a helper vehicle to help rebroadcast the bea-
con, in order to recover the harsh link condition. To help
vehicles choose an optimal neighbor in a distributed way,
in each beacon, in addition to application data, vehicles should
also include their one-hop link status information (0 means
NLoS and 1 means LoS), in order to exchange such link
status among neighbors. Specifically, for each vehicle (say
vehicle x), it maintains a circular recording queue for each
one-hop link and calculates the up-to-date historical PDRs to
get the link status. It then includes the information of (neighbor
vehicle ID, LoS/NLoS flag) in each beacon and broadcasts
out. In this way, by receiving beacons, vehicle x is able to
understand the link status between its one-hop neighbor (say
vehicle y) and the neighbors of y, i.e., seeing two-hop links,
which is beneficial to helper selection.

D. Beaconing With Helpers

Upon identifying one or more NLoS links between a vehicle
and its neighbors, the vehicle seeks for helper vehicles from
its neighbors to rebroadcast the beacon. Such a helper would
be selected if it has a LoS condition with both the sender and
the receiver. In general, we define the helper selection problem
as, in case that there are multiple NLoS links, how to select
helpers so that all NLoS links are covered and the number
of helpers are minimized at the same time? The following
theorem can be concluded.

Theorem 1: The helper selection problem is NP-hard.

Proof: To prove its NP-hardness, we devise a
polynomial reduction from a classic NP-hard problem,
i.e., Max k-cover [28], to the helper selection problem. In the
Max k-cover problem, there is a collection of subsets,
F ={S1, S2, ..., Si}, each of which is a set of n points; the
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objective is to select k subsets from F to maximize the total
number of points contained in their union.

The instance of the Max k-cover problem can be taken as
an input for reduction as follows. In specific, assuming that
the link conditions between each pair of vehicles within the
communication range of a sender vehicle are known, we can
construct a graph, G(N, E), where N is the set of nodes and
E is the set of edges. In the graph, each vehicle within the
communication range of the sender is a node, and there is an
edge between a pair of nodes if they have a LoS links. Denote
each node as n;, and all its LoS neighbors, i.e., the nodes
having a LoS link with n;, as §; € N, fori =1, ..., |N|. With
this graph, given a k, to find k different S; for j =1,...,k
such that their union contains as many nodes as possible,
is equivalent to the Max k-cover problem, which is NP-hard.
The problem is then to find the smallest number of k to cover
all nodes. Therefore, the helper selection problem is a NP-hard
problem, which concludes the proof. |

Given the NP-hardness of the helper selection problem,
in CoBe, we adopt a greedy heuristic to select preferable
helpers. In specific, neighbors are ranked according to the size

of §;, fori =1,...,|N|. The node with the largest |S;|, say
node ny, is first selected as a helper. Then, for each node n;,
fori =1,...,|N| and i # [, §; is updated to remove nodes

appearing in S, i.e., {njln; € S; An; ¢ S} and re-ranked to
select the second helper. This procedure repeats until that all
nodes are covered or there is no node left.

E. Protocol Overhead Analysis

The main overhead of CoBe is the required link status
information in each beacon, including the vehicle ID and the
according LoS/NLoS flag of one-hop neighbors. Denote by
Npax and N2 the maximum number of vehicles in one-hop
set and two-hop set of one particular vehicle, respectively.
To label all vehicles in the two-hop st (i.e., interference range),
the short ID is devised to replace the MAC address of each
vehicle, in order to decrease overhead. Vehicles decide their
IDs randomly and will update it if the ID is detected already
in use by another vehicle. Therefore, at least [log, N2, ] bits
are required, in order to label each individual vehicle with a
unique short ID, and [.] is the ceil function symbol. Hence,
the maximum overhead of CoBe (in bits) is

overhead = Nyqax x ([logy N2, 1+ 1). (1)

For a vehicle, as its one-hop set area is a circle with the
radius R, the N4, on a road can be calculated by
2R

N, =
max (lengthvehicle +distancegafery

)xL, (2

where R, lengthyepicie, distanceg,fery and L is the valid com-
munication range (in meters), length of a vehicle (normally
reaching 5 meters for sedans), safety following distance in
driving and the number of lanes on a road, respectively. Con-
sidering a normal urban case, R and L could be empirically
set to be 300 and 6, respectively [1]. In addition, according
to the 2 second driving rule that drivers should drive at
least 2 seconds behind the preceding vehicle even under ideal
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driving situations, the distances,fery is approximately about
2 x (60/3.6) = 33 m when gives a normal urban vehicle
speed of 60 km/h. Then, Ny = (%) x 6 = 95. Given
the ID length of 10 bits, which is able to label more than
1024 vehicles (rich enough for the size of N2 ), the overhead
then is overhead = 95 x 11 = 1045 bits = 131 bytes.

As beacon application data is normally no more than
500 bytes [29], it is acceptable to include such extra 131 bytes
of coordination data in each beacon to enable the upper-layer
CoBe functions since the overall packet size is far smaller
than the maximum payload (normally above 1,400 bytes)
that the MAC layer can support. In addition, adding extra
coordination information in beacons to achieve distributed
protocol design is common in VANETS, e.g., designing TDMA
MACGs [8], [27], [30], in which each vehicle needs to broad-
cast the ID and the according time slot index of all one-hop
neighbors, in order to negotiate the time slot usage. If these
MAC:s are adopted, the additional overhead of CoBe would be
only LoS/NLoS flags of one-hop neighbors, i.e., 95 bits =~
12 bytes in above analysis, which is very small and easy to
implement.

VI. PERFORMANCE ANALYSIS

In this section, we devise a two-state Markov model to
analyze the performance of CoBe, and compare it with the

following two benchmark schemes:
o Conventional 802.11p: In broadcast mode of 802.11p

protocol, vehicles broadcast beacons every 100 ms and
there is no any rebroadcast mechanisms;

+ Random Forwarding: In this scheme, a vehicle not only
broadcasts beacons as described above but also randomly
chooses one or more of its neighbors to rebroadcast its
beacons every time.

We analyze the performance of each scheme considering

the following two metrics:

+ Beacon Reception Ratio (BRR): refers to the ratio of
beacon reception calculating by the number of neighbors
having received the beacon to the total number of one-hop
neighbors, which is defined to evaluate the beaconing
reliability;

« Broadcast Utility (BU): refers to the ratio of the BRR to
the total number of broadcast beacons, which is defined
to evaluate the rebroadcast cost. For example, if the BRR
of 0.9 is achieved when no helper rebroadcasts (i.e.,
the beacon is broadcasted only once by the transmitter),
the BU becomes 0.45 if one more helper is sought (i.e.,
the beacon is broadcasted twice).

A. Two-State Markov Chain Model

As the channel switches between LoS and NLoS states,
a two-state Markov model can be devised as shown in Fig. 16,
where the transition probabilities are Py and Py, respectively.
The likelihood of successfully receiving a packet heavily relies
on the current link state, which is Pgpoq (0 < Pgooq < 1) when
the link is in LoS state, and is Ppaq (0 < Ppaa < Pgood) When
the link is in NLoS state. To further derive variables in this
model, we start by stating a known property of the two-state
Markov chain:
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Fig. 16. Two-state Markov chain model.

Proposition 1 (see, e.g., [31]): If 0 < Pr,Py < 1,
the unique stationary distribution (or initial state distribution)
of the two-state Markov chain in Fig. 16 is
L
Pr 4+ Py Pr 4+ Py
where P; and Py (equals to 1—Pr) represent the station-
ary probabilities of the link being in state LoS and NLoS,
respectively. Then we derive the probability P(Rx), that the
packet can be successfully received at the kth time slot, k£ > 1.
According to the law of total probability, P(Rx) can be
represented as

7[=(PL=

P(Rx) = P(L)- P(Rx|L) + P(N) - P(Rx|N)
=P(L)‘Pgood+P(N)‘Pbada 3)

where P(L) and P(N) is the probability of being in LoS state
and in NLoS state, respectively. To get the value of P(L)
and P(N) at the kth time slot, we can consider all possible
unfolding of the Markov chain during k steps. Particularly,
at the ith step, i < k, we denote P;; and P;y as the probability
of being LoS state and NLoS state, respectively. According to
the unfolding rules of our Markov chain, the recursive relations
can be achieved as follows

Pip = Pi—1r - (1 = Py)+ Pi—1n - PL
Piy = Pi_1yL - PN + Pi—1yn - (1 — Pp),

with Pi; = Pr and Py = Py. As Pp + Py = 1, from
Eq. (4), we can obtain

“)

P =P,
[ iL L (5)
Piy = Py.
As a result, P(Rx) can be derived as follows
P(RX)ZPL'Pgood"f‘PN'Pbad- (6)

B. Theoretical Results

We derive the expected BRR and BU of all schemes with
respect of one sender vehicle, one single receiver vehicle, and
one or multiple helper vehicles. To make the analysis tractable,
we further assume that all links are independent and identically
distributed. In specific, we denote B RR as the probability that
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one packet can be well received by the receiver and BU as
the ratio of BRR to the number of broadcasts.

Performance of Conventional 802.11p: As in 802.11p, there
is no helper during broadcasting, BRR and BU can be easily
obtained as

BRR = P(Rx)

BU = P(Rx). @

In the remainder of this subsection, we derive the results
of CoBe and random forwarding scheme with one or multiple
helpers.

a) Using One Helper: Performance of CoBe: To derive
the BRR of CoBe, we divide the analysis into two parts with
respective to LoS and NLoS conditions. We can get

BRR=Pp - P(BRR|L) + (1 — P1)- P(BRRIN)
:PL'Pg00d+(1_PL)'(l_(1_Pbad)'Pfail)» (8)

where Py,;; means the probability that the retransmission from
the helper is unsuccessful. The failure of retransmission can
happen due to the two reasons: one is that the helper does
not hear the notification of retransmission from the sender;
the other one is that the retransmitted packet is dropped.
Considering n neighbors exist around the sender and receiver,
CoBe may choose the helper with the probabilities py, p» and
p3 in terms of link conditions of sender-to-helper and helper-
to-receiver; p represents the probability that both two links
are in LoS conditions, p; is the probability that one link is in
LoS while the other one is in NLoS, and p3 is the probability
of both being in NLoS conditions. They can be calculated as
follows

pr=1—(1-P}"
p2=1—pi—p3 9
p3=(1—Pp)™.

Then, Py, can be written as

Prair = p1- (1 — szood) + p2- (1 = Pgood - Ppad)
+p3-(1 = PLy).
To investigate the cost of CoBe, we define the average

transmitted packets by the sender and the helper as num.
Apparently, BU can be written as

BRR-1 BRR
BU = =

(10)

(1)

Similarly, we compute num in LoS and NLoS two situations,
respectively. We can obtain

num num

num:PL'1+(1_PL)'(1+PKTheZper), (12)

where P K Tjepper 18 the average transmitted packets from the
helper. It can be calculated as follows
P2

PKThelper =p1- Pgood + )

(Pgood + Pvaa) + P3 - Ppad-
(13)
Then, BU can be derived.

Performance of Random Forwarding: For fair comparison in
terms of using the same number of helpers with CoBe, in this
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scheme, the sender will always randomly select a helper from
its neighbors to retransmit the beacon.

To derive the B RR in this scheme, we consider two events,
i.e., the helper does not receive the retransmission notification
and the helper receives the notification then retransmits the
packet. Then BRR can be calculated as

BRR=(1—P(Rx))- P(Rx)+P(Rx) - (1— (1—P(Rx)?),
(14)
Similarly, we calculate the average transmitted packets to
derive BU. Then BU can be easily obtained as

_ BRR-1 _ BRR
1+ P(Rx)-1 14 P(Rx)’

BU (15)

b) Using H Helpers: In fact, even with a helper, recep-
tion failures may also encounter due to the dynamic channel
fading. In this case, we analyze seeking multiple helpers to
expand the overlap of covering sets, which can conservatively
enhance the reliability.

Performance of CoBe: When using H helpers, ] < H < N,
Eq. (8) can also be satisfied. Py, means the probability
that the retransmissions from H helpers are unsuccessful
simultaneously. It can be written as

Prair = T2, pi, (16)

where p; for 1 < i < H, is the probability of unsuccessful
retransmission from the ith helper. The value of p; depends
on the link conditions from the sender to the ith helper
and from the ith helper to the receiver. The two links can
be in LoS-LoS, LoS-NLoS/NLoS-LoS or NLoS-NLoS three
categories. We define Prr, Pyr and Pyy as the probability
of unsuccessful retransmission from the helper under link
conditions of this three category, respectively, and thus they
can be achieved as follows

_ 2
PLL_I_Pgood

PNLzl_Pgood'Pbad (17)
Pyy =1— szad‘
In addition, given two links, they can be LoS-LoS,
LoS-NLoS/NLoS-LoS and NLoS-NLoS conditions with the
probability PLE, PNL and PNN | respectively. They can be
obtained as
pLt = p}
PNL =1—- P} —(1—Pp)?
PNN = (1 - Pp)%.

(18)

For H helpers, we define the event that i helpers, j helpers
and H — i — j helpers are with link conditions LoS-LoS,
LoS-NLoS/NLoS-LoS and NLoS-NLoS, respectively; the
event happens with the probability P(i, j) for i, j, H —i —
j = 0. Then Eq. (16) can be replaced as

Pran=2PG, j)- Pl - P, - P i j>0,i+j<H
(19)
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TABLE I
NLOS DETECTION RESULTS

. Accuracy (%) Precision (%) Recall (%) F-Score (%) FPR (%)
Algorithms 2 S U H S u H S u H S u H S u
Decision Tree | 90.86 97.52 97.57 | 9439 9871 98.77 | 93.68 9874 98.58 | 94.03 9873 98.67 | 645 126 1.43
Random Forest | 92.08 9791 98.08 | 9522 99.04 99.16 | 9437 9883 98.77 | 9479 9893 9896 | 573 1.18 1.24
SVM 93.67 9831 9828 | 98.11 99.65 99.63 | 9393 98.67 9851 | 9594 99.16 99.07 | 6.56 1.35 1.51
KNN 93.0 98.15 9821 96.6  99.31 994 | 9434 98.82 98.67 | 9545 99.07 99.03 5.9 1.19 135

The value P(i, j) depends on the rule of helper choosing.
According to CoBe design, P (i, j) can be achieved as follows

Zr’pll:HCrrzn (PLL)m(l _ PLL)nfm’

i=H;
2:’11;1'1171_ Cjzclrf—i (PLL)i (PNL)m (PNN)n—i—m ,

PG, ) =
@) 0O<i<H,j=H—i
C:;C’Jl_i(PLL)i(PNL)j(PNN)nfifj,

0<i<H,0<j<H-—I.

(20)

Then BRR can be derived. To calculate BU in this condition,
Eq. (11) and Eq. (12) can also be utilized. However, computing
P K Thepper is different from Eq. (13), it follows

o J
PKThelper =XP@,j)-( 'Pgood“l‘g : (Pg00d+Pbad)

+ (N =i =) Ppaa)- (21)

Then, BU can be derived.

Performance of Random Forwarding: For H helpers,
we define the event that i helpers for i € [0, H] receive the
retransmission notification and retransmits the packet while
the remaining H — i helpers do not receive the retransmission
notification; the event happens with a probability P(i). Then,
BRR can be calculated as

BRR=3" P@i)-(1—(1—PRx)'Y, 0<i<H,
(22)
and BU can be obtained by
BRR
<i<H. (23)

U=——FF7——,
1+ A PG) i
In addition, the probability P (i) follows

P(i)=Ci - P(Rx)' - (1—P(Rx)", 0<i<H. (24)

VII. PERFORMANCE EVALUATION

In this section, we first carry out the NLoS detection results
and then evaluate the performance of CoBe in terms of BRR
and BU.

A. NLoS Detection Accuracy

We adopt the cross-validation scheme to investigate NLoS
detection accuracy in different machine learning algorithms.
Specifically, as there are about 16,425, 16,033 and 27,439
labeled LoS/NLoS condition samples in trace H, S and U,

respectively, for each data set, we first split them into 10 sub-
sets. For each round, one different subset is chosen as the
testing set and the other 9 subsets are aggregated as the
training set. Based on the basic testing results of True Positive
(TP), False Positive (FP), True Negative (TN) and False
Negative (FN), we evaluate the following five metrics:

o Accuracy: the probability that a condition is correctly

: : : TP+TN

1dent.1ﬁed, 1.€., m, . . .
o Precision: the probability that an identified NLoS condi-

. . . . . TP .

tions is correctly identified, i.e., 1p,pps

o Recall: the probability that all NLoS conditions in ground
truth are correctly identified, i.e., %\I;
o F-Score: combining the precision and recall metric
together, i.e., 2 x %ﬁgi%;
o False Positive Rate (FPR): the probability that a LoS
condition is identified as a NLoS condition, i.e., %.
¢) Precise NLoS Detection: Fig. 17 shows the average
F-Score and FPR results in respective environments, and
we can easily observe that machine learning algorithms are
very suitable for online NLoS detection, especially for SVM
and KNN algorithms. Specifically, for the average F-Scores,
the SVM algorithm achieves the result about 95.9%, 99.2%
and 99.1% in highway, suburban and urban environment,
respectively, and the KNN algorithm achieves the respective
result about 95.5%, 99.1% and 99%, which are precise enough
to intelligently react to the channel variation. In contrast,
the average FPRs are very small in both algorithms; for
instance, in the SVM algorithm, they are about 6.6%, 1.4%
and 1.5% in highway, suburban, and urban environment,
respectively. The reason of relatively higher FPRs triggered
in highway environments, is that packets may accidentally
dropped due to the fast speed of vehicles in highways, which
are mistakenly identified as NLoS conditions. Table I shows
all metric results, demonstrating that NLoS conditions can be
precisely detected in real time. In addition, SVM achieves the
best performance among all machine learning algorithms and
in the following simulations, we adopt it as the NLoS detection
algorithm for CoBe performance evaluation.

B. Efficiency of CoBe

In this subsection, we conduct trace-driven simulations
of all candidate schemes and carry out both numerical and
simulation results.

1) Synthesizing V2V Communication Trace: Even though
we have collected a large volume of V2V traces for a pair of
vehicles, they are still not enough for extensive trace-driven
simulations when involves more vehicles in the network.
As we have disclosed PIR and PIL time distributions in both
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Fig. 17. Precise NLoS detection achieved by machine learning algorithms. (a) The average F-scores. (b) The average FPRs.
TABLE 11
FITTING RESULTS OF LOS DURATION DISTRIBUTION IN DIFFERENT ENVIRONMENTS
Fitting Results | Suburban | Highway | Urban

Coefficient C (with 95% confidence bounds) 1.098(1.092,1.103)
Coefficient a (with 95% confidence bounds) | 0.3768(0.3751,0.3784)
SSE 0.0008859
R-square 0.9993
Adjusted R-square 0.9993
RMSE 0.003086

1.014(1.01, 1.019)
0.3771(0.3758,0.3785)
0.0004907
0.9996
0.9996
0.002273

1.081(1.073,1.089)
0.3293(0.327,0.3316)
0.001941
0.9985
0.9985
0.00467

LoS and NLoS conditions, it is possible to synthesize abundant
V2V traces based on their distribution fitting results. As the
distribution of LoS durations is a power law, the CCDF of
LoS durations can be fitted by adopting the following general
model

P(LoS duration > x) =C -x “. (25)

Fitting metrics of SSE, RMSE, R-square and Adjusted
R-square, are evaluated, and Table II shows the fitting results,
in which precise fitting results demonstrate our findings in the
data analytics. Similarly, the CCDF of NLoS durations can be
fitted by adopting the following model

P(NLoS duration > x) = C -x~ ¢ (26)

as NLoS duration also follows a power law distribution. Given
the fitting results of a and C, LoS and NLoS durations can be
generated in demand.

After that, we fit PIR and PIL time distribution in LoS
and NLoS conditions, respectively. As PIR times follow an
exponential distribution in LoS conditions, to fit PIR time
distribution, we adopt the following model

P(PIR > x) = e ™, (27)

to output fitting parameters and in order to generate PIR
times under a given LoS duration. Similarly, the exponential
distribution model

P(PIL > x) = e ™, (28)

is adopted to fit PIL time distribution under a give NLoS
duration. The fitting results of NLoS durations, PIR times and
PIL times are omitted due to the space limitation.

Specifically, we first generate a LoS and NLoS duration
list, denoted as LIS = [losi,losa, ..., los,] and NS =
[nlosy, nlosa, ..., nlos,], respectively. For each los;, i €
{1,2,...,n}, a PIR time list PZR is generated. Within a
certain PIR time duration, the packets at the beginning and
ending slots are well received while packets at other slots are
lost. Similarly, for each nlos;, i € {1,2,...,n}, a PIL time
list PZL is also generated. In contrast, within a certain PIL
time duration, the packets at the beginning and ending slots
are lost while packets at other slots are well received. With
this scheme, we can synthesize abundant V2V trace by setting
the value of n, i.e., the length of LoS and NLoS duration list.”

2) Using One Helper: For choosing one helper, we inves-
tigate the impact of the number of neighbors on the choosing
decision.

a) Simulation Setup: With the fitting results of trace U/,
we first synthesize 100 links of trace and each of them lasts for
1000 min. For each round of simulation, two links trace are
first randomly chosen to mimic the sending/receiving process
between the sender and receiver. To add a neighbor in, another
two pairs of link trace are randomly chosen, one pair of which
represent the sending/receiving process between the sender
and neighbor and the another pair for the link between the
neighbor and receiver. We range the number of neighbors n
from 1 to 10 and conduct the simulation over each value
of n. For other parameters, we set them according to the
fitting results of trace U{. Particularly, P, and Py are set to
be 0.8 and 0.2, respectively. According to the average PDR

"Note that, synthesizing V2V communication trace can be also valuable
for other VANET researches, e.g., tuning models or validating protocol and
scheme designs.
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TABLE III
SIMULATION PARAMETERS
Parameters Value ||  Parameters Value
Channel number 178 Neighbors n [1,10] or 10
Channel bandwidth 10 MHz Number of links 100
Transmission power 14 dBm Chosen links [6,42] or 42
Data rate 3 Mbps Py, 0.8
Environment Urban Py 0.2
Number of lanes 4-8 Pyood 0.97
Mean distance 147.796 m Pyad 0.3
Mean Tx speed 5.107 m/s Simulation time 1000 min
Mean Rx speed 5.041 m/s Simulation rounds 30
Helpers H 1 or [1,10]

under LoS and NLoS conditions, we set the Pgpoq and Ppaq
to be 0.97 and 0.3, respectively. Table III shows the detailed
simulation parameters. For each simulation setup, we run the
simulation for 30 rounds to achieve statistically significant
results.

b) Performance Comparison: Fig. 18 (a) shows the
average BRRs achieved by three beaconing strategies when
chooses one helper from different number of neighbors. The
dashed lines represent the numerical results and the solid lines
denote the simulation results. We can observe that numerical
and simulation results present highly similar trends and other
two major insights can be achieved. First, with seeking a
helper to rebroadcast beacons, the beaconing reliability can be
greatly enhanced. Specifically, the CoBe and random approach
always outperforms the 802.11p and can enhance its BRR from
83.6% to about 96% and 95%, and from 85% to about 97.1%
and 96.8% in numerical and simulation results, respectively.
Second, CoBe is able to achieve a better performance when the
number of neighbors in the environment increases (i.e., more
helper selections appear), while the 802.11p and random
approach fail to react to the environment well. Particularly, in
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The performance of using one helper. (a) BRR vs. the number of neighbors. (b) BU vs. the number of neighbors.

simulation results, when the number of neighbors increases,
the BRRs keep constant in 802.11p and fluctuate within a
small range in random approach while they increase gradually
in CoBe. In addition, when there are more than two neighbors
in the environment, the BRR in CoBe could reach up to 97%
which outperforms the random approach of about 96.8%, and
the error bar of two schemes demonstrate the stability of CoBe.

Fig. 18 (b) shows the average BUs and we can observe
that the random approach achieves the lowest broadcast utility
(below 52%) comparing with the other two strategies (more
than 80%) in both numerical and simulation results. It is a huge
gap and can incur extra burden to the system. Besides, it can
be seen that with more neighbors in the environment, CoBe
can achieve a better BU. Specifically, in simulation results,
the BUs gradually increase and can reach more than 86.2% in
CoBe when there are more than two neighbors, which surpass
the value of 85.6% in 802.11p.

In general, compared with two benchmark strategies, CoBe
can enhance the BRR dramatically with the slight BU degra-
dation, especially when there are more than two neighbors in
the environment.

3) Using H Helpers: For choosing H helpers, we investi-
gate the upper-bound of reliability that proposed schemes can
support and their corresponding cost.

a) Simulation Setup: The detailed simulation parameters
are shown in Table II. For each round of simulation, we first
choose two links trace representing the sending/receiving
process between the sender and receiver; then, 10 neighbors
with 20 pairs of link trace are added in. We range the number
of helpers H from 1 to 10 and conduct the simulation over
each value of H. For each simulation setup, we run the
simulation for 30 rounds to achieve the statistically significant
results.

b) Performance Comparison: Fig. 19 (a) and (b) show
the average BRRs and BUs of three beaconing strategies when
using H helpers. Numerical and simulation results present
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highly similar trends and we can observe that, with more
helpers, in both CoBe and random approach, average BRRs
increase gradually while BUs decrease dramatically. Specifi-
cally, in numerical results, the average BRR increases from
the value 96.8% to 97.6%, and 95.1% to 100% in CoBe and
random approach respectively, while the BU decreases from
the value 81.1% to 36.5%, and 51.8% to 10.7%, respectively.
However, without any retransmission, the average BRRs and
BUs keep a constant value 83.6% in 802.11p. This observation
demonstrates that enhancing communications to an extreme
reliability, e.g., above 97%, means a huge cost should be
paid, especially for the random approach. Even though the
upper-bound reliability of random approach can reach 100%
when seeks more than 4 helpers, there is a huge gap of BUs
compared with CoBe, reaching over 30%, which will aggravate
the resource shortage problem in VANETSs [32]-[34]. This
observation indicates that when meets harsh NLoS conditions,
at most 2 helpers should be sought in CoBe as they can cover
all packet failures with an acceptable cost.

In summary, CoBe can be a smart strategy for beaconing
enhancement with coping with harsh NLoS conditions. In most
case, seeking one helper is enough as it can provide 96.8% and
97.2% of the average BRRs, 81% and 86.2% of the average
BUs in numerical and simulation results, respectively.

VIII. RELATED WORK
A. Characterizing V2V Communications

In [21], Bai et al. presented an extensive analysis on PDR
by investigating the impacts of transmission distance and
power, mobility and propagation environment on it. However,
only PDR is evaluated, which is insufficient to capture the
features of intermittent and time-varied V2V communications
especially in complex urban scenarios. In addition to PDR,
Martelli et al. studied the metric of PIR time in [22], and
revealed the PIR time distribution being a power-law. How-
ever, they drew the conclusion based on all aggregated mea-
surements without discriminating LoS and NLoS conditions,
which could bias from the ground truth. In [35], the authors
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investigated the reliability of DSRC communication at appli-
cation level and disclosed that the reliability is adequate since
most of the time, packets do not drop in bursts, while the data
analysis is not fine-grained enough to guarantee ultra-reliable
V2V communications for driving safety applications. There
are also some measurements on physical layer of DSRC
channels [17], [18], in which the path loss, coherence time
and Doppler spectrum are investigated. However, all their
findings could be very different when in different LoS and
NLoS link conditions. In this paper, we pay little attention to
physical layer features as they vary dramatically in the moving,
which can be hardly characterized in patterns. In regard to
LoS and NLoS affects, Meireles et al. [15] conducted the
experimental study and confirmed that the channel quality is
heavily influenced by LoS and NLoS conditions. Specifically,
they collected the PDR and together with the received signal
power information in several important scenarios, based on
which, the impact of obstructions are quantified, e.g., NLoS
conditions effectively halving the usable communication range
within which 90% of communications can be successful. This
insight is valuable, however they collected data when vehicles
and obstructions are statistic, and did not investigate the inter-
action of LoS and NLoS conditions in the moving, and thus
cannot provide comprehensive knowledge about V2V com-
munications. For LoS and NLoS modeling, Boban et al. [16]
designed a Geometry-based Efficient propagation Model for
V2V communication (GEMV2) with taking LoS and NLoS
conditions into account. In our work, we do not model a LoS or
NLoS channel but research on the LoS and NLoS interactions
during the driving and characterize V2V performance under
two distinct channel conditions.

B. Relay Schemes for Reliable Communications

1) Receiver-Oriented — Schemes: In the receiver-
oriented schemes, all vehicles that have received the
beacon, will contend for being relays employing ether
probability-based or  waiting-time-based = mechanisms.
Wisitpongphan ef al. [36] proposed three probability-based
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schemes, i.e., slotted p-persistence, slotted 1-persistence
and weighted p-persistence. They works with a similar
rule, in which, if the receiver j receives a packet from the
sender i for the first time, it will rebroadcast the packet with
the probability p; otherwise, it will drop the packet. The
difference between each scheme is the setting of value p,
in 1-persistence and p-persistence scheme, the value of which
is set to be 1 and a pre-determined probability, respectively.
Differently, the probability p;; in weighted p-persistence is
set to be DR’;j where Dj; is the transmission distance between
vehicles i and j, and R is the average communication
range. Regarding waiting time-based schemes, [37] is the
first waiting time-based forwarding scheme, in which each
candidate relay determines their waiting time solely based
on their distance d to the source vehicle, and the relay
with larger d will be associated with a smaller waiting
time. In addition, in the protocol of ABSM (Acknowledged
Broadcast from Static to highly Mobile) [38], upon receiving
a beacon, instead of retransmitting it immediately, the vehicle
will wait to check if retransmissions from other neighbor
vehicles already have covered its whole neighborhood.
Aforementioned relay schemes are easy to implement since
algorithms are processed locally and without complex nego-
tiation. However, as communication contexts are not taken
into account, they cannot react to dynamic environments well,
which would lead to the broadcast storm problem easily and
cause channel resource wasting with broadcasting duplicated

beacons excessively.
2) Sender-Oriented Schemes: Conversely, in the sender-

oriented relay schemes, the source broadcaster explicitly
selects potential vehicles to be relays, and only those vehicles
that have received the beacon, are listed as potential relays.
As the sender-oriented selections initially limits the number
of contending relays, efficient channel bandwidth utilization
can be guaranteed. However, they requires frequent updating
information of neighboring vehicles and the performance heav-
ily relies on information input, i.e., what kind of information
is leveraged and how these information can be achieved in
real driving scenarios. For example, Rehman et al. [39] pro-
posed BDSC (Bi-directional Stable Communication), in which
they investigated the relations between the estimated link
qualities and the transmission distance; after that, the relay
were selected based on quantitative representation of link
qualities. However, this study is only evaluated by theoret-
ical analysis while in practice, the distance is not the only
factor that affect link performance. In TVR (Tall Vehicle
Relaying) [40], Boban ef al. indicated that on tall vehicles,
the elevated position of antennas can improve communication
performance since tall vehicles are more likely to encounter
LoS conditions. Therefore, they distinguished between short
and tall vehicles, and chose tall vehicles as next hop relays.
The scheme normally can achieve a good performance; how-
ever it fails to work robustly when no tall vehicles exist in
the scenario, or there are slopes (i.e., the road is not flat)
between vehicles, which are common NLoS conditions during
our data collections. Differently, in our scheme, we leverage
high-frequency beacon exchange among neighbors to perceive
real-time link conditions, based on which, the helper-selection

strategy is designed. Compared with the current literature,
it advances in two aspects: 1) it can work with an efficient
channel resource utilization since rebroadcast action can be
only triggered by those vehicles who encounter harsh NLoS
conditions where rebroadcast is really in need; 2) the scheme
solely relies on the beacon receiving records and is indepen-
dent from underlying driving environments, which can be well
adopted to support universal safety applications.

IX. CONCLUSION AND FUTURE WORK

In this paper, based on real-world urban DSRC communica-
tion traces, we have presented intensive data analytics on V2V
performance, characterized the V2V channel, and proposed
CoBe to enhance the broadcast reliability by coping with
harsh NLoS conditions. To evaluate its performance, a two-
state Markov chain model has been devised for performance
analysis and extensive trace-driven simulations have been
conducted; both results demonstrate the efficacy of CoBe.
In the future, we will exploit these analytic results to benefit
other advanced vehicular techniques, such as routing, MAC
design, and architecture design. In addition, we will collect
more V2V communication traces with more involved vehicles,
over multiple locations.
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