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Abstract—Mobile crowdsensing engages a crowd of individuals to use their mobile devices to cooperatively collect data about social
events and phenomena for customers with common interest. It can reduce the cost on sensor deployment and improve data quality
with human intelligence. To enhance data trustworthiness, it is critical for service provider to recruit mobile users based on their
personal features, e.g., mobility pattern and reputation, but it leads to the privacy leakage of mobile users. Therefore, how to resolve
the contradiction between user privacy and task allocation is challenging in mobile crowdsensing. In this paper, we propose SPOON, a
strong privacy-preserving mobile crowdsensing scheme supporting accurate task allocation based on geographic information and
credit points of mobile users. In SPOON, the service provider enables to recruit mobile users based on their locations, and select
proper sensing reports according to their trust levels without invading user privacy. By utilizing proxy re-encryption and BBS+ signature,
sensing tasks are protected and reports are anonymized to prevent privacy leakage. In addition, a privacy-preserving credit
management mechanism is introduced to achieve decentralized trust management and secure credit proof for mobile users. Finally, we
show the security properties of SPOON and demonstrate its efficiency in terms of computation and communication.

Index Terms—Mobile crowdsensing, task allocation, trust management, privacy preservation.
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1 INTRODUCTION

THE integration of sensors and embedded computing
devices triggers the emergence of mobile crowdsensing

[2], in which user-centric mobile devices, e.g., smartphones,
in-vehicle devices and wearable devices, are utilized to
sense, collect and process data about social events and
phenomena. This “sensing as a service” [3] elaborates our
knowledge of the physical world by opening up a new
door for data collection and sharing [4]. Due to the in-
creasing popularity of mobile devices, mobile crowdsensing
supports a broad range of sensing applications nowadays,
ranging from social recommendation, such as restaurant
recommendation, parking space discovery and indoor floor
plan reconstrction [5], to environment monitoring, such as
air quality measurement, noise level detection and dam
water release warning. With human intelligence and user
mobility, mobile crowdsensing can significantly improve
the trustworthiness of sensing data, extend the scale of

• Part of this research work was presented in IEEE International Conference
on Communications (ICC 2017) [1].

• J. Ni and X. Shen are with Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L
3G1. Email: {j25ni, sshen}@uwaterloo.ca.

• K. Zhang is with Department of Electrical and Computer Engineering,
University of Nebraska-Lincoln, Omaha, NE 68182 USA. Email:
kuan.zhang@unl.edu.

• Q. Xia is with Center of Cyber Security, University of Electronic
Science and Technology of China, Chengdu, 611731, China, Email:
xiaqi@uestc.edu.cn.

• X. Lin is with School of Computer Science, University of Guelph, Guelph,
Ontario, Canada N1G 2W1, email: xlin08@uoguelph.ca.

sensing applications and reduce the cost on high-quality
data collection [6].

While mobile crowdsensing makes data sensing ap-
pealing than ever, it also brings new challenges towards
mobile users, one of which is privacy leakage, indicating
that mobile crowdsensing puts the privacy of mobile users
at stake [7], [8], [9]. The sensing data collected from the
surrounding areas are necessarily people-centric and related
to some aspects of mobile users and their social settings:
where they are and where they are going; what places
they are frequently visited and what they are seeing; how
their health status is and which activity they prefer to
do. Social event photos may expose the social relations,
locations or even political affiliations of mobile users. The
spatial data collected by the carried devices might disclose
mobile users’ trajectories. For example, Google Maps collect
the “anonymous” location information of drivers for real-
time traffic map generation, but still expose the driving
routes and trajectories of drivers. Further, the more sensing
tasks mobile users engaged in and the richer data the users
contribute to, the higher probability that their sensitive
information may be exposed with. Therefore, preserving the
privacy of mobile users is the first-order security concern
in mobile crowdsensing. If no effective privacy-preserving
mechanism is on-shelf, it is of difficulty to motivate mobile
users to join in mobile crowdsensing services. In addition,
the sensing tasks may contain sensitive information about
the customers who issue them, such as identities, locations,
references and purchase intentions [10]. For example, a
house agency may know Bob desire to buy a house in a par-
ticular area if Bob releases tasks to collect traffic condition
and noise level in the neighborhood. To preserve the privacy
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of customers or mobile users, several privacy-preserving
mobile crowdsensing schemes [11], [12], [13], [14] have been
proposed by utilizing anonymity techniques. Nevertheless,
anonymization is insufficient for privacy preservation, since
the mobile users may be traced by travel routes and social
relations. It is possible to uniquely identify 35% of mobile
users using their top-two locations and 85% of them from
their top-three locations based on a large set of call data
records provided by a US nationwide cell operator [15].
Therefore, it is of importance to explore strong privacy-
preserving mechanisms to prevent identity, location and
data privacy leakage at the same time for both customers
and mobile users in mobile crowdsensing.

Once all profiles of mobile users and customers are
perfectly preserved, it is impossible for service providers
to accurately recruit mobile users for task fulfillment, while
task allocation is a critical component in mobile crowdsens-
ing to ensure the quality of sensing results. Different from
traditional sensing networks, the produced data cannot be
predicted as a priori, and their trustworthiness totally de-
pends on the intelligence and behaviors of mobile users. In
general, the higher quality the sensing data have, the more
efforts and costs the mobile users should pay. Therefore,
the set of mobile users would directly affect the quality of
sensing data. How to identify the right group of mobile
users to produce the desired data according to the targets
of sensing tasks is a complex problem from the service
provider’s perspective. Geography-based and reputation-
based approaches are popular in mobile crowdsensing to
allocate tasks to mobile users, but either has its inherent
weaknesses. Firstly, reputation-based task allocation mech-
anisms [12], [16], [17], [18] need a trusted third party (TTP)
to perform heavy reputation management task and they
are vulnerable to reputation-linking attacks, in which the
anonymous mobile users can be re-identified based on
their reputations. Secondly, geography-based task allocation
schemes can optimize user selection based on their spatial
and temporal correlation [19], but they disclose the contents
of sensing tasks and the locations of mobile users to the
service provider, while location privacy is one of the prima-
ry concerns for mobile users in pervasive environments. In
summary, privacy preservation and task allocation become
a pair of contradictory objectives in mobile crowdsensing.

To resolve this issue, we propose a Strong Privacy-
preserving mObile crOwdseNsing scheme (SPOON) sup-
porting location-based task allocation, decentralized trust
management and privacy preservation for both mobile
users and customers simultaneously. By leveraging blind
signatures and randomized matrix multiplication, we ful-
ly prevent the privacy leakage from the profiles of both
mobile users and customers, including locations, identities
and credit points, without scarifying the normal mobile
crowdsensing functions of service providers, such as task
allocation, data filtering and trust management. The main
contributions of this paper are summarized as three folds:

• We design a privacy-preserving location matching
mechanism based on matrix multiplication to allow
service providers to allocate sensing tasks based
on the sensing areas of tasks and the geographic
locations of mobile users. Specifically, the service

provider can determine whether a mobile user is in
the sensing area of a task based on two randomized
matrices generated from the sensing area and the us-
er’s location, respectively. Thus, the service provider
can learn the result of location matching, but acquire
nothing about the interested areas of customers and
the locations of mobile users.

• By extending the proxy re-encryption and the BBS+
signature, we protect the sensitive information about
mobile users and customers, including their identi-
ties, credit points, sensing tasks and sensing reports.
Specifically, we allow the registered customers and
mobile users to anonymously prove their capacities
and trust levels to participate in the crowdsensing
services and securely perform the sensing tasks with-
out exposing contents of sensing tasks or sensing
reports. Besides, to prevent the mobile users from
misbehaving for unfair rewards, a trusted authority
enables to detect the greedy mobile users and recover
their identities.

• We introduce a privacy-preserving credit manage-
ment mechanism, in which mobile users are able
to prove their trustworthiness without the exposure
of credit points and the management of centralized
servers. In particular, it supports the positive and
negative updates of credit points for mobile users
based on the contributions on the tasks. In addition,
multiple service providers can cooperatively main-
tain a unique trust evaluation system, in the way that
mobile users are allowed to participate in the mobile
crowdsensing services offered by different service
providers using unique credit points.

The remainder of this paper is organized as follows. We
review the related work in section 2, and formalize system
model, threat model and identify security goals in section
3. In section 4, we propose our SPOON, followed by the
security discussion in section 5. In section 6, we discuss
some extensions on SPOON and evaluate performance in
section 7. Finally, we draw the conclusion in section 8.

2 RELATED WORK

To achieve privacy-preserving mobile crowdsensing, the
state-of-the-art solutions aim to protect the locations [20],
[21], [22], [23], identities [13], [14], [24], [25] or sensing
data [26], [27], [28] of mobile users. Christin et al. [20]
investigated the location privacy of mobile users and p-
resented a decentralized and collaborative mechanism to
allow mobile users to exchange the sensing data for the
protection of their travel routes. Wang et al. [21] designed
a location aggregation method to cluster users into groups
for k-anonymity. To et al. [22] and Ma et al. [23] protected
mobile users’ locations by adding noise to break the correla-
tion of real locations and obfuscated locations. To preserve
identity privacy, AnonySense [11] was proposed to allow
mobile devices to deliver sensing data through Mix net-
works. Dimitriou et al. [13] raised the problem of customer’s
privacy leakage and designed a privacy-preserving access
control scheme for mobile sensing to preserve the privacy
of customers. However, none of above schemes enables to
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TABLE 1
Features Comparison on SPOON and other works

Features Identity Privacy Data Privacy Location Privacy Credit Management
Users Customers Users Customers Users Customers Credit Privacy No TTP Greedy User Tracing

SPOON
√ √ √ √ √ √ √ √ √

[11], [12]
√

X X X X X X X X
[13] X

√
X

√
X

√
X X X

[14], [18], [29]
√

X
√

X
√

X X X X
[35]

√
X

√
X

√
X X

√ √

[20], [30] X X X X
√

X X X X
[24], [25]

√ √ √
X X X X X X

[26], [27], [36], [38] X X
√

X X X X X X

preserve the privacy for both mobile users and customer-
s simultaneously. Therefore, Cristofaro and Soriente [24]
proposed a privacy-enhanced participatory sensing infras-
tructure (PEPSI) based on the blind extraction technique
and identity-based encryption. Unfortunately, Günther et al.
[25] demonstrated PEPSI is vulnerable to collusion attacks
across mobile users and customers. To fix this drawback, a
new infrastructure is designed from anonymous identity-
based encryption. Qiu et al. [14] presented SLICER, a k-
anonymous privacy-preserving scheme for mobile sensing
that achieves strong privacy preservation for mobile users
and high data quality. However, these schemes may be
insufficient to preserve the privacy nowadays, since it is pos-
sible to re-identify the mobile users or customers through
the combination of information from different sources,
such as travel routes, social relations or payment records.
To protect the sensing data, Zhou et al. [26] extended a
generalized efficient batch cryptosystem to support fine-
grained multi-receiver multi-file sharing in cloud-assisted
mobile crowdsensing. Chen et al. [27] introduced a group
management protocol to guarantee differential privacy of
personal data. Rahaman et al. [28] designed a bilinear-
map based group signature scheme, while supporting sub-
linear revocation check with backward unlinkability and ex-
culpability, for anonymous-yet-accountable crowdsensing.
Although the privacy-preserving schemes that can protect
identity, location or data privacy are on-shelf, designing a
scheme to achieve strong privacy preservation is non-trivial.

However, after the privacy of mobile users and cus-
tomers is preserved, it is difficult for the service provider
to find proper mobile users for task fulfillment. Many
privacy-preserving task allocation schemes have been pro-
posed in mobile crowdsensing, which can divided into
three categories, namely, location-based task allocation [21],
[22], [29], [30], auction-based incentive [31], [32], [33] and
reputation-based task allocation [12], [34], [35], [36]. Kaze-
mi and Shahabi [29] focused on spatial task assignment
for spatial crowdsourcing, in which the service provider
allocates tasks based on the locations of mobile users. To
et al. [22] introduced a framework to determine effective
geocast regions for reaching high task assignment ratio,
while protecting the locations of mobile users. Wang et
al. [30] presented a personalized privacy-preserving task
allocation scheme for mobile crowdsensing that can effec-
tively allocate tasks while providing personalized location
privacy protection. Incentive mechanisms also have been
proposed to encourage mobile users participating crowd-
sensing tasks, in which auction is one of the commonly

adopted incentive mechanisms [31], [32], [33]. Gao et al. [32]
introduced a reverse-auction-based incentive mechanism to
select winning bids with a nearly minimum social cost,
considering the quality of sensing data. Zhang et al. [33]
designed an auction-based incentive mechanism to offer
rewards to users for both participation and solicitation, and
eliminate malicious price manipulations against dishonest
mobile users. With the consideration of bid privacy, Lin
et al. [37] designed two privacy-preserving auction-based
incentive mechanisms based on differential privacy. Jin et
al. [38] integrated user incentive, data aggregation and
data perturbation mechanisms to design an incentivizing
privacy-preserving data aggregation scheme to generate
high-accurate aggregated results in mobile crowdsensing.
In addition, it is common to realize task allocation based on
the reputation of mobile users. Kazemi et al. [34] defined
reputation scores to represent the probability that a mobile
user can perform a task correctly, and a confidence level
to state that a task is acceptable. Huang et al. [12] demon-
strated that mobile users are vulnerable to linking attacks of
reputations and presented an anonymization scheme and a
reputation management mechanism to minimize the risk of
such attack. Wang et al. [35] proposed ARTSense to achieve
the trust management without identity exposure in mobile
sensing. ARTSense achieves both positive and negative up-
dates of reputations for mobile users with no TTP, but it
still requires a reputation database for each service provider
to support reputation management. Ma et al. [36] designed
two privacy-preserving reputation management schemes
for edge computing enhanced mobile crowdsensing. The
reputation is used to identify the malicious mobile users
who are willing to participate in the tasks, but the precise
reputations are directly revealed to the service provider and
other curious entities.

For the above reasons, in our preliminary work [1], we
proposed a privacy-preserving mobile crowdsensing frame-
work enabling trajectory-based task allocation and privacy
preservation for both mobile users and customers. In this
paper, we extend this work to support privacy-preserving
reputation-based task allocation in mobile crowdsensing. In
specific, the proposed SPOON (1) provides strong privacy
preservation for mobile users; (2) protects the identities,
sensing areas and tasks for customers; (3) allows the service
provider to allocate sensing tasks based on the locations
and credit points of mobile users; and (4) supports privacy-
preserving credit management without the centralized serv-
er. We show the comparison on the desirable features be-
tween SPOON and the existing works in Table 1.
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3 PROBLEM STATEMENT

In this section, we formally define the system model and
threat model, and identify our design goals.

3.1 System model
The mobile crowdsensing service provides customers a
people-centric way for data collection from surrounding en-
vironment. The architecture consists of three entities: service
providers, customers and mobile users.

Service Providers: The service providers develop cloud
services by themselves or rent the cloud resources offered
by cloud vendors. They have sufficient storage and com-
puting resources to provide mobile crowdsensing services.
The service providers receive sensing tasks from customers
and allocate them to mobile users based on their locations.
They also collect sensing reports from mobile users, select
sensing reports based on the credit points of mobile users
and generate sensing results for customers. Finally, the
service providers distribute credit points to mobile users for
incentive.

Customers: The customers can be individuals, corpora-
tions or organizations. They need to accomplish data collec-
tion tasks, e.g., to study traffic congestion in a city, pollution
level of a creek and satisfactory on public transportation,
but they do not have sufficient capabilities to perform tasks
by themselves. Thereby, they issue their sensing tasks to the
service providers.

Mobile Users: Every mobile user has several mobile
devices, e.g., mobile phones, tablets, vehicles and smart
glasses. These mobile devices, deployed with rich comput-
ing, communication and storage resources, are carried by
their owners wherever they go and whatever they do. The
mobile users make sure their devices have sufficient power
to support the normal functions. They participate in sensing
tasks and utilize their portable devices to collect data from
their surrounding areas, and report sensing data to the
service providers for earning credit points.

As shown in Fig. 1, the system model of mobile crowd-
sensing has the following steps.
Step 1: Every mobile user or customer needs to register at
the trusted authority (TA) to access mobile crowdsensing
services.
Step 2: A customer creates a sensing task for data collection
in a sensing area and sends it to the service provider, along
with the authentication message and the reward policy.
Step 3: The service provider offers the mobile crowdsensing
service and releases the received sensing task for the cus-
tomer.
Step 4: The registered mobile users, who are willing to con-
duct data collection, obtain their current or future locations
using mobile devices capable of localization (e.g., by wire-
less access points or GPS), and send their locations to the
service provider, along with the authentication messages.
Step 5: Upon receiving the messages from mobile users, the
service provider checks whether the mobile users are in the
sensing area or they will be in the sensing area in the near
future.
Step 6: The service provider recruits the mobile users whose
locations can match the sensing area, and sends the sensing
task to the matched mobile users.

Fig. 1. System Model of Mobile Crowdsensing.

Step 7: The mobile users accept or reject the sensing task
based on reward policy and costs of performing the task,
and the mobile users, who accept the task, sense the event
or phenomena, collect data, and generate sensing reports.
Step 8: The mobile users submit the sensing reports to the
service provider.
Step 9: The service provider selects the sensing reports
generated by the mobile users with high trust levels.
Step 10: The service provider forwards the selected sensing
reports to the customer.
Step 11: The customer reads the sensing reports and evalu-
ates the quality and trust level of sensing reports to generate
the feedback.
Step 12: The customer sends the feedback to the service
provider.
Step 13: The service provider calculates the rewards (i.e.,
credit points) of the mobile users based on the feedback of
the customer.
Step 14: The service provider distributes the credit points to
the mobile users who make contributions on sensing area.

3.2 Threat Model

The service provider is responsible for offering the mobile
crowdsensing service to customers, but it may strive to
increase income and violate its privacy policy. For example,
Uber, a crowdsourcing-based ride-sharing service provider,
made ride-booking data publicly accessible without the
permission of customers in January, 2017, for its own pur-
pose. Therefore, the service provider is not fully trusted,
but honest-but-curious. On one hand, the service provider
would honestly perform the mobile crowdsensing service;
on the other hand, it may learn a spatio-temporal probability
distribution for a specific mobile user and other sensitive
information about customers and mobile users, e.g., prefer-
ence, social relation, political affiliation and purchase inten-
tion. The service provider would not collude with a mobile
user to compromise the privacy of other mobile users, since
the service provider and the mobile user have separate
purposes in mobile crowdsensing, and the reputation of
the service provider would be seriously damaged once the
collusion is public.

Mobile users are interested in the privacy of the cus-
tomers and the other mobile users. In particular, they are
willing to know the other mobile users participating in the
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same tasks, and learn the background of customers they
are working for to reach the expectations of customers.
Also, mobile users may be greedy, such that they may
anonymously submit more sensing reports than allowed
to earn more credit points. In addition, the mobile users
may maliciously forge, modify the sensing data or deliver
ambiguous, biased sensing data to cheat customers. These
forged or biased data can be discovered using redundancy
or truth discovery approaches. The locations are extracted
from GPS trusted chips in mobile devices or access points,
we assume that mobile users cannot modify their location
information.

The external attackers, such as eavesdroppers and hack-
ers, also bring serious security threats towards mobile
crowdsensing services. It is possible for an attacker to obtain
the identities of the nearby mobile users or customers via
physical observation, such that the anonymization may be
insufficient to guarantee privacy preservation for customers
and mobile users. The customers are fully trusted since they
are the main beneficiaries of mobile crowdsensing services.

3.3 Design Goals

To enable strong privacy-preserving mobile crowdsensing
under the aforementioned system model and against secu-
rity threats, SPOON should achieve the following design
goals:

• Strong Privacy Preservation: Strong privacy preser-
vation refers that no sensitive information of mobile
users would be exposed to the public, including
location, identity, data or credit points. Compared
with the traditional privacy preservation that focuses
on obfuscating the location or the identity of mobile
user, strong privacy preservation needs the protec-
tion of all the sensitive information, from the location
and identity to the sensing data and credit points in
mobile crowdsensing.

1) Location Privacy Preservation: The locations
of mobile users and the sensing areas of sens-
ing tasks would not be exposed to others. The
mobile users are only aware of whether they
are in the sensing area or not.

2) Data Confidentiality: No entity, except the del-
egated participants, can obtain the contents of
releasing tasks or sensing reports, such that
the privacy of customers and mobile users
would not be disclosed to others.

3) Anonymity of Mobile Users and Customer-
s: The customer, mobile user, the service
provider or their collusion is unable to link
a sensing report to a mobile user or link a
sensing task to a customer. It is even impos-
sible for an attacker to identify whether two
sensing reports are generated by the same
mobile user, or two sensing tasks are issued
by the same customer.

4) Greedy User Tracing: The identity of the
greedy mobile user, who submits more than
one sensing reports for the same task in a
reporting period, is identified to prevent the

mobile user from being awarded unfair credit
points.

5) Privacy-preserving Credit Management: Cred-
it points are used to record the trust of mobile
users and encourage them to participate in
the crowdsensing activities as rewards. The
precise credit points of mobile users are hid-
den against the curious entities, including the
service providers and the mobile users.

• Accurate Task Allocation: Accurate task allocation
refers that the recruited mobile users are capable of
fulfilling the sensing tasks. The capabilities include
the fact that the mobile users are in sensing area or
will visit the sensing area in the near future, and they
are trusted to report available sensing data with high
quality.

1) Location-based Task Allocation: The sensing
tasks are allocated to the mobile users in the
sensing areas defined by the customers, and
other mobile users out of the given areas
cannot learn any information about the tasks.

2) Trust-based Report Selection: The service
provider selects the sensing reports based on
the credit points of mobile users and awards
credit points to mobile users if they report
trustworthy sensing data. The balance of cred-
it points is achieved, which means that it is
impossible for the mobile users to forge credit
points without being detected, such that the
total credit points that a mobile user has
should be equal to the awarded credit points
plus the initial points.

4 SPOON
In this section, we review the preliminaries and propose
our SPOON, which is composed of five phases, Service
Setup, User Registration, Task Allocation, Data Reporting
and Credit Assignment, based on the matrix multiplication,
the BBS+ signature [41] and the proxy re-encryption [42].

4.1 Preliminaries

We review the preliminaries that are used to design our
SPOON, including the bilinear map, the BBS+ signature and
the proxy re-encryption.

Bilinear Map. Let (G1,G2,GT ) be three cyclic groups
with a prime order p. ê : G1 × G2 → GT is the bilinear
pairing with the following properties:

• Bilinearity. For g ∈ G1, h ∈ G2, a, b ∈ Zp, ê(ga, hb) =
ê(g, h)ab.

• Non-degeneracy. For g ̸= 1G1 , h ̸= 1G2 ê(g, h) ̸= 1GT .
• Computability. ê is efficiently computable.
• (Unique Representation). The binary presentation for

all elements in G1,G2,GT is unique.

If G1 ̸= G2 and there is no efficiently computable
homomorphism between G1 and G2 in either direction, ê
is a type 3 bilinear pairing [43]. If G1 = G2, ê is a type 1
bilinear pairing.
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BBS+ Signature [41]. We briefly review the BBS+ signa-
ture with type 1 bilinear pairing due to [41], which can be
utilized to sign ℓ-message vector (m1, · · · ,mℓ).

Let g, g1, · · · , gℓ+1 be generators of G1. Randomly
choose x from Zp as the secret key of the signature scheme,
and compute the corresponding public key as y = gx.

A signature on messages (m1, · · · ,mℓ) is (A, e, s), where
A = (ggm1

1 · · · gmℓ

ℓ gsℓ+1)
1

x+e and (e, s) are random values
chosen from Zp.

This signature can be checked as:
ê(ggm1

1 · · · gmℓ

ℓ gsℓ+1, g)
?
= ê(A, yge).

The security of BBS+ signature can be reduced to the
q-SDH assumption and it can be utilized to construct a zero-
knowledge proof-of-knowledge protocol that allows the
signer to prove the possession of the message-signature pair.

Proxy Re-encryption [42]. Proxy re-encryption is a special
public key encryption with a desirable property that a semi-
trusted proxy enables to convert a ciphertext for Alice into a
ciphertext for Bob without seeing the underlying plaintext,
given a proxy re-encryption key. Thanks to this promising
property, it has been widely employed in data sharing
scenarios. The proxy re-encryption scheme was proposed
by Ateniese et al. [42], the detailed scheme with the type 1
bilinear pairing is as follows:

• KeyGen(·). Alice picks a random value a ∈ Zp as the
secret key ska and compute the public key pka = ga.

• RKeyGen(ska, pkb). Alice delegates to Bob by send-
ing the re-encryption key rkA→B = gb/a to a proxy
by using Bob’s public key.

• Encrypt(m, pka). To encrypt a message m ∈ GT

under pka, Alice chooses a random value k ∈ Zp

to compute ca = (gak,mê(g, g)k).
• Re-Enc(ca, rkA→B). The proxy can change the ci-

phertext ca into a ciphertext cb for Bob with rkA→B .
From ca, the proxy calculates ê(gak, gb/a) = ê(g, g)bk

and releases cb = (ê(g, g)bk,mê(g, g)k).
• Decrypt (cb, skb). Bob enables to decrypt cb to obtain

m as m = mê(g, g)k/(ê(g, g)bk)1/b.

4.2 Main Ideas of SPOON

Intuitively, the service provider should have the detailed
profiles of mobile users, such as location, identity and trust
level, to provide accurate task allocation, which results in
the privacy leakage of mobile users. In fact, the service
provider only needs to have the knowledge whether a
mobile user is capable of performing the targeted sensing
task, instead of possessing all the profiles. According to
this observation, the privacy-preserving location matching
scheme is designed from randomized matrix multiplication.
Specifically, the location of each mobile user is represent-
ed as a matrix L̃m×n, which is randomized by a matrix
M̃m×n. The sensing area of the task is denoted as another
matrix L̂m×n and randomized by a matrix M̂m×n. Matrix
randomization protects the location of the mobile user and
the sensing area of the task, but it is difficult for the service
provider to identify the mobile users whose locations can
match the sensing area of the task, after the locations are
randomized. Therefore, we construct two invertible random

matrices M̃m×n and M̂m×n to achieve privacy-preserving
location matching based on the multiplication of two ran-
domized matrices.

Furthermore, the customers encrypt the sensing tasks for
preventing the curious service provider and the unmatched
mobile users from accessing them. Nevertheless, when the
customer encrypts the sensing task, she is not aware of the
mobile users who can conduct the sensing work, such that
she has no idea about which public key should be used.
Although proxy re-encryption [42] can achieve the sharing
of encrypted sensing task in the aid of a proxy, such as
the service provider, it will expose the sensing task to the
proxy. To protect the sensing task, we divide the proxy into
two entities, i.e., TA and the service provider, and design
a two-level proxy re-encryption scheme for the sensing
task sharing among matched mobile users. Specifically, the
sensing task is encrypted by the public keys of both TA and
the service provider, and the mobile users can decrypt the
sensing task on the condition of owning the proxy key of
TA and the re-encrypted ciphertext of the service provider.
In this way, the service provider cannot acquire the task
due to the lack of the secret key of TA, and the unmatched
mobile users learn nothing since they cannot decrypt any
ciphertext. Moreover, to enable TA to be offline, the proxy
key of TA can be delegated to each mobile user during the
user registration.

Finally, the blind signature is one of the widely used
approaches to protect the identities of the mobile users.
By using the BBS+ blind signature [41], the mobile user
generates the zero-knowledge proof of the BBS+ signature
to convince the service provider that she is the registered
user capable of joining in the crowdsensing activity without
exposing her real identity, and the tracing tag is gener-
ated from the public key to identify the greedy mobile
user who double-reports the sensing data. However, if the
mobile users are anonymous, it is challenging to support
trust management of mobile users. Therefore, we extend
the BBS+ blind signature by integrating the credit point
into the signature of the user’s identity and enabling the
addition operation of credit points. Thereby, the positive
and negative update of credit points can be supported.
Specifically, the credit assignment is enabled for the service
provider to reward credit points to the mobile users if
their submitted reports are trustworthy, or penalize credit
points, otherwise. The service provider can generate the
new BBS+ signature on the rewarded or punished credit
point for credit finalization. The BBS+ signature can be
proved to other service providers when the mobile user
participates in new sensing tasks, along with the updated
credit points. Different from the existing trust management
mechanisms in which a centralized server is needed for
credit point management, each mobile user can manage her
own credit points and show her trust level to the service
provider when necessary. Thus, unique trust management
is achieved, and multiple service providers can share the
unique trust management system, as long as they trust each
other. In addition, the zero-knowledge range proof of the
credit points is designed, along with the zero-knowledge
proof of the BBS+ signature. Based on the range proof, the
mobile user can convince the service provider that she has
higher credit points than the chosen threshold. By doing
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so, the service provider can select the sensing reports from
the mobile users who have high credit points based on
the exposed thresholds, but it has no knowledge about the
precise credit points of mobile users.

4.3 High-Level Description
We first provide a high-level description of SPOON. The
notations frequently used in SPOON are listed in Table 2.

Service Setup: TA bootstraps the whole
mobile crowdsensing service for the service
provider by defining the public parameters
(G,GT , p, g, g0, g1, g2, g3, h, h0, h1, h2, h3, h4, G,H,G,H,F)
and generates its secret-public key pair (α, T, T0). The
service provider also generates the secret-public key pair
(β, S), and defines a matrix Lm×n to denote the geographic
region of its crowdsensing service.

User Registration: TA registers the mobile users and
customers, who are willing to participate in the mobile
crowdsensing service. It evaluates the registrant to deter-
mine the initial credit point P0 and interacts with the regis-
trant to generate an anonymous credential (A, e, s, B, f, t).
(A, e, s) is used to access the mobile crowdsensing service
and (B, f, t) is used to credit management for the registrant.
To achieve the anonymity, the ownership of (A, e, s) and
(B, f, t) is proved by the registrant for identity authenti-
cation and credit evaluation using zero-knowledge proofs,
respectively. Besides, RK is assigned to the registrant for
the decryption of allocated sensing tasks.

Task Allocation: A customer generates a
sensing task ST and sends the message
(c1, c2, c3, expires, N̂n×n, γ, w,PK2) to the service
provider, which consists of the encrypted task (c1, c2, c3),
the expiration time expires, the randomized sensing area
N̂n×n, the identity proof PK2 and other information.
The latter releases (num, expires, γ) to attract mobile
users for participation, where num is the identifier of
ST . A mobile user Ui{i∈R} sends its location Ñn×n and
identity proof PK3 to the service provider. Then, the
service provider finds the set of mobile users Ui{i∈L} in the
sensing area of ST based on two matrices (N̂n×n, Ñn×n).
Since (N̂n×n, Ñn×n) are randomized matrices, the service
provider can learn whether Ui is in the sensing area of ST
based on matrix multiplication, but has no information
about ST ’s sensing area and Ui’s location. The service
provider re-encrypts the ciphertext (c1, c2, c3) to be
decryptable for Ui{i∈L} using β. Finally, the service
provider sends (num, c2, c3, c4, expires, γ, w) to Ui{i∈L}.

Data Reporting: Ui{i∈L} encrypts the collected da-
ta mi to generate (Di, D

′
i), and sends the sensing re-

port (num,Di, D
′
i, C

′
i, Xi, Yi, Zi, Qi, τj ,SPK) to the service

provider, in which C ′
i is the commitment on the identity Ii

and credit point Pi, Xi is the identifier of this report, Yi

is the identifier of Ui, Zi is a tag to identify the double-
reporting user, Qi is the claimed credit threshold to show
that the number of credit points Ui has is larger than Qi, τj
is the current slot for reporting, and SPK is used to prove
the ownership of its credit points Pi. The service provider
selects w−sensing reports based on the claimed thresholds
and forwards the selected reports to the customer. TA can
recover the identity of the anonymous mobile user who

TABLE 2
Frequently Used Notations

Ui{i∈R} Set of registered mobile users
Ui{i∈L} Set of mobile users in sensing area L
ST A task issued by a customer
task The detailed content of a task ST
expires The expiration time of a task ST
area The sensing region of a task ST
Lm×n A matrix to represent the service area of the service provider
L̂m×n A matrix to represent the sensing area of a task ST

L̃m×n A matrix to represent the current and future locations of a user
M̂m×n A random invertible matrix
M̃m×n A random invertible matrix
I The unique identity of a registrant (mobile user or customer)
P0 The initial credit point of a mobile user
ϵ The trust level of a sensing report
γ The maximum of trust level in a task ST
Q The credit threshold chosen by a mobile user
A, e, s The anonymous credential of a mobile user or customer
B, f, t The anonymous credential of a mobile user with credit point P

double-reports sensing reports with the service provider
using the double-reporting tag Zi.

Credit Assignment: The customer evaluates the trust-
worthiness of each report and returns the corresponding
trust level ϵi ∈ [−γ, γ] to the service provider. The latter
computes the number of credit points awarded to Ui, θi,
and forwards (Bi, t

′′
i , fi, θi, Yi) to Ui, where (Bi, t

′′
i , fi) is the

ticket for awarded credit points θi, and Yi is used to identify
the mobile user Ui. Once receiving (Bi, t

′′
i , fi, θi, Yi), Ui

updates its credit points P ′
i = Pi+θi and generate the credit

credential (Bi, fi, ti) of the new P ′
i .

4.4 The Detailed SPOON

We then show the detailed SPOON as follows.

4.4.1 Service Setup

Let (G1,G2,GT ) be three cyclic groups with a prime order
p, where p is λ bits, and ê be the type 3 bilinear map. The
authority picks random generators g, g0, g1, g2, g3 ∈ G1,
h, h0, h1, h2, h3, h4 ∈ G2 and computes G = ê(g, h) and
H = ê(g, h0) respectively. TA also chooses a random
value G ∈ GT and defines a cryptographic hash function
H : {0, 1}∗ → Zp and a pseudo-random function
F : Zp × {0, 1}∗ → Zp. The public parameters param are
(G1,G2,GT , p, g, g0, g1, g2, g3, h, h0, h1, h2, h3, h4, G,H,G,
H,F). TA randomly chooses α ∈ Zp as its secret key and
calculates the public keys T = gα and T0 = hα.

To setup the mobile crowdsensing service, the service
provider randomly chooses its secret key β ∈ Zp and
computes S = gβ as its public key. It also employs a
matrix Lm×n to denote the geographical region that the
crowdsensing service can cover according to the longitude
and latitude. Each entry in the matrix denotes a small grid in
the sensing region, as shown in Fig. 3. Assume the longitude
of Ontario is from 74.40◦W to 95.15◦W, the latitude is from
41.66◦N to 57.00◦N, we can use a 208 × 154 matrix or
2075× 1534 matrix more precisely to represent the Ontario
region.
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4.4.2 User Registration
Either customer or mobile user is required to register at the
TA to obtain an anonymous credential, which is used to
participate in the crowdsensing service. Each registrant is
assigned a unique identity I in the system, which can be the
telephone number or mailing address in practise. The reg-
istrant picks three random values s′, a, t′ ∈ Zp to compute
C = gs

′

1 ga2 , C ′ = ht′

1 h
a
2 , Â = ha

0 , and sends (I, C,C ′, Â) to
TA, along with the following zero-knowledge proof:

PK1{(s′, t′, a) : C = gs
′

1 ga2 ∧ C ′ = ht′

1 h
a
2 ∧ Â = ha

0}.

TA firstly checks the proof PK1 for ensuring that (C,C ′, Â)
are generated correctly. Then, it evaluates the registrant’s
initial credit point according to its credit record, which
is assumed to be P0. After that, TA randomly pick-
s s′′, e, t′′, f ∈ Zp to calculate A = (g0Cgs

′′

1 gI3)
1

α+e ,
B = (h0C

′ht′′

1 hI
3h

P0
4 )

1
α+f , RK = Â

1
α , and return-

s (A,B, s′′, t′′, e, f, P0, RK) to the registrant through se-
cure channel. Finally, TA stores the tuple (I, P0, Â) in its
database.

The registrant computes s = s′ + s′′, t = t′ + t′′ and
checks

ê(A, T0h
e)

?
= ê(g0g

s
1g

a
2g

I
3 , h),

ê(Tgf , B)
?
= ê(g, h0h

t
1h

a
2h

I
3h

P0
4 ).

The registrant stores (A, e, s, B, f, t, a, I, P0, Â, RK) secret-
ly on the read-only memory of mobile device.

4.4.3 Task Allocation
A customer with registered information
(A, e, s, B, f, t, a, I, P0, Â, RK) has a sensing task to
be allocated to mobile users and requests the sensing
data slot by slot, where each slot ranges from minutes
to days depending on the specific requirements of the
sensing task. The statement of the task is defined as
ST = (task, expires, area, γ, w), which indicate the
content (what to sense), the expiration time (when to sense),
the sensing area (where to sense), the maximum trust level
and the number of required reports, respectively. Other
attributes (e.g., sensing intervals, acceptance conditions,
benefits, reporting periods) can be illustrated in task. To
protect the content of the task, the customer randomly
picks k, r1, r2, r3 ∈ Zp to calculate u = gk, c1 = Sr1 ,
c2 = T r2 and c3 = (task||u)Gr1Hr2 . Then, the customer
generates a matrix L̂m×n to represent the target sensing
region area. As depicted in Fig. 2, for each position in the
sensing area, the corresponding entry in L̂m×n is set to
be a random value chosen from Z∗

p, and the value for a
location outside is set to be zero. To mask the sensing area
in L̂m×n, the customer picks m × n random numbers from
Z∗
p to generate an invertible matrix M̂m×n and computes

N̂n×n = L̂T
m×n · M̂m×n, where L̂T

m×n is the transpose of
the matrix L̂m×n. Note that all non-zero entries in L̂m×n

should be distinct, unless an attacker still can learn the
sensing region from N̂n×n. Finally, the customer keeps k
in private and sends (c1, c2, c3, expires, N̂n×n, γ, w) to the
service provider, along with the following zero-knowledge
proof:

PK2{(A, e, s, a, I) : ê(A, T0h
e)

?
= ê(g0g

s
1g

a
2g

I
3 , h)}.

Fig. 2. Sensing Area and the Matrix L̂6×6.

The service provider checks the validity of
the proof PK2. If yes, it assigns a task identi-
fier num, releases (num, expires, γ) and stores
(num, c1, c2, c3, expires, N̂n×n, γ, w) in its database.

When a mobile user Ui{i∈R} with (Ai, ei, si, Bi, fi,

ti, ai, Ii, Pi, Âi, RKi) is willing to participate in crowdsens-
ing activities, it firstly picks a random value ν ∈ Zp to
calculate µ = hν . Then, Ui generates a matrix L̃m×n ac-
cording to its current location and the places it will visit.
For each location Ui will reach, the corresponding entry in
L̃m×n is set to be a random value chosen from Z∗

p, and
the rest entries are set to be zero. The non-zero entries in
L̃m×n should be different. To protect these location infor-
mation, it also generates a random invertible matrix M̃m×n

by picking m× n random values from Z∗
p, and calculates

Ñn×n = M̃T
m×n · L̃m×n. Finally, Ui keeps ν secretly and

sends (µ, Ñn×n) to the service provider, along with the
following zero-knowledge proof:

PK3{(Ai, ei, si, ai, Ii) : ê(Ai, T0h
ei)

?
= ê(g0g

si
1 gai

2 gIi3 , h)}.

The service provider returns failure if PK3 is invalid.
Otherwise, for each unexpired task, it uses N̂n×n to calculate
Nn×n = Ñn×n ·N̂n×n and checks whether Nn×n is zero ma-
trix or not. If Nn×n is non-zero matrix, which means that Ui

can match ST , the service provider calculates c4 = ê(c1, µ)
1
β

and releases (num, c2, c3, c4, expires, γ, w) for Ui. If there is
no task to match Ui, the service provider responds failure.

When Ui obtains (num, c2, c3, c4, expires, γ, w), it
decrypts (c2, c3, c4) by using (ν, ai) as task||u =

c3c
− 1

ν
4 ê(c2, RKi)

− 1
ai . Then, Ui evaluates the task and de-

termines to participate in or abandon this task according
to benefit and cost. If the task ST is accepted, Ui starts to
perform the sensing work according to the details in task.
The correctness of task||u is elaborated as follows:

c3c
− 1

ν
4 ê(c2, RKi)

− 1
ai (1)

= c3ê(c1, µ)
− 1

βν ê(c2, RKi)
− 1

ai

= (task||u)Gr1Hr2 ê(Sr1 , hν)−
1
βν ê(T r2 , h

ai
α
0 )

− 1
ai

= (task||u)Gr1Hr2G−r1H−r2

= task||u.

4.4.4 Data Reporting
Ui collects and pre-processes the data mi ∈ GT and submits
a sensing report to the customer periodically, which includes
the collection time, the sensing location and the detailed
content. The reporting periods are defined by the customer,
and we assume the current slot is τj . To prevent attackers
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from learning mi, Ui uses u to encrypt mi as Di = ur̂i ,
D′

i = miG
r̂i , where r̂i is a value randomly chosen from

Zp. Then, Ui randomly picks t′i ∈ Zp to compute C ′
i =

h
t′i
1 h

ai
2 hIi

3 hPi
4 . Next, Ui computes Xi = H(num||mi||τj),

vi = Fai(num||I||τj), Yi = Hvi and Zi = ê(g, Âi)GXivi . Fi-
nally, Ui chooses a credit threshold Qi and sends the report
(num,Di, D

′
i, C

′
i, Xi, Yi, Zi, Qi, τj) to the service provider,

along with the following zero-knowledge proof:

SPK



(Bi, fi, ti, t
′
i, ai, Ii, Pi, vi) :

ê(Tgfi , Bi)
?
= ê(g, h0h

ti
1 h

ai
2 hIi

3 hPi
4 )∧

C ′
i = h

t′i
1 h

ai
2 hIi

3 hPi
4 ∧

Pi > Qi∧
Yi = Hvi∧
Zi = ê(g, Âi)GXivi


(num).

The service provider returns failure if SPK is invalid;
otherwise, the service provider checks whether there is
another report (num, D̃i, D̃

′
i, C̃

′
i, X̃i, Yi, Z̃i, Q̃i) that has the

same Yi and different X̃i with the new received report
(num,Di, D

′
i, C

′
i, Xi, Yi, Zi, Qi). If yes, the service provider

computes and sends W = (
Z̃

Xi
i

Z
X̃i
i

)
1

Xi−X̃i to TA, and TA can

find the mobile user’s identity Ii by utilizing Âi in the
database to check W = ê(g, Âi). Such that, the identity of
the greedy mobile user is recovered by TA, if it submits two
different sensing reports in a reporting slot. Then, accord-
ing to the claimed thresholds of mobile users, the service
provider chooses w reports that have top-w thresholds, and
releases them to the customer. Note that the mobile users,
whose reports are not selected, can increase their thresholds
in the next reporting slot τj + 1.

When the customer retrieves the reports, it can decrypt
them using the stored k as mi = D′

iê(Di, h)
1
k one by one.

4.4.5 Credit Assignment

After the customer obtains the sensing result, it evaluates
the trustworthiness of each report and responds the corre-
sponding trust level to the service provider. The trust level
of mi is defined as ϵi ∈ [−γ, γ]. If ϵi is positive, mi is
trustworthy, otherwise, mi is incredible.

Upon receiving trust levels, the service provider ran-
domly picks t′′i , fi ∈ Zp to compute θi = INT (ϵiQi),
Bi = (h0h

t′′i
1 C ′

ih
θi
4 )

1
β+fi , and releases (Bi, t

′′
i , fi, θi, Yi) for

Ui, where INT (x) is the nearest integer function.
Ui retrieves (Bi, t

′′
i , fi, θi, Yi) from the service provider,

computes ti = t′i + t′′i , P ′
i = Pi + θi and checks whether

ê(Sgfi , Bi)=ê(g, h0h
ti
1 h

ai
2 hIi

3 h
P ′

i
4 ) or not. If yes, Ui uses the

new tuple (Bi, fi, ti, P
′
i ) to replace the previous one and

stores them together with (Ai, ei, si, ai, Ti, Âi, RKi). Mean-
while, Ui stores P ′

i in the read-only memory, which can be
used to show the credit points in the future crowdsensing
activities. Further, since (Bi, fi, ti, P

′
i ) are managed by Ui,

Ui enables to prove the ownership of (Bi, fi, ti) cross service
providers. The credit points awarded by different service
providers can be accumulated and Ui can prove the credit
points she has to multiple service providers during the
participation of mobile crowdsensing services offered by
different service providers.

5 SECURITY ANALYSIS

In this section, we show that SPOON satisfies five security
goals defined in 3.3: location privacy, anonymity, data con-
fidentiality, credit balance and greedy user tracing.

5.1 Location Privacy

The sensing region of a task is represented as a matrix
L̂m×n, which is randomized by a random matrix M̂m×n to
generate N̂n×n. The location of the mobile user is also trans-
formed to be Ñn×n. From two matrices N̂n×n and Ñn×n,
the service provider cannot learn any information about the
location of the mobile user or the sensing area of the task.
With the multiplication of the invertible matrices M̃m×n and
M̂m×n, respectively, L̃m×n’s rank is equal to Ñn×n, and
L̂m×n’s rank is equal to N̂n×n. The service provider com-
putes Nn×n = Ñn×n ·N̂n×n = M̃T

m×n ·L̃m×n ·L̂T
m×n ·M̂m×n.

Thus, the rank of Nn×n is equal to the rank of L̃T
m×n · L̂m×n.

If Nn×n’s rank is 0, i.e., Nn×n is zero matrix, one of both
entries with the same index in L̃m×n and L̂m×n must be 0,
indicating that there is no overlapping between the sensing
area of the task and the location of the mobile user. Other-
wise, there is some overlapping between the sensing area
of task and the location the mobile user. If one overlapping
grid exists, whose corresponding entry is L̂ij in L̂m×n and
is L̃ij in L̃m×n, respectively, the entries in j-row of N̂n×n

are nonzero, as well as the entries in j-column of Ñn×n.
Thus, the service provider enables to know that there are
some overlapping locations on the j-column of the sensing
area, but it cannot distinguish which location is overlapped
from m locations. Further, N̂n×n · Ñn×n or Ñn×n · N̂n×n

cannot give more information to the service provider. The
results are the same if the overlapping grids are more than
one. Therefore, the sensing area or the location of mobile
user would not be exposed to the service provider or other
entities.

5.2 Data Confidentiality

We aim to ensure that only the mobile users whose locations
can match the sensing area have the capacity to decrypt the
corresponding sensing task. In SPOON, the adversaries may
be the service provider, unmatched mobile users and exter-
nal attackers. To resist these adversaries, the task protection
consists of two stages. In the first stage, the sensing task
is encrypted by the customer under the public keys of the
TA and the service provider; in the second one, the service
provider partially decrypts the ciphertext using its secret
key and then re-encrypts the result for the matched mobile
users. Therefore, we demonstrate the task confidentiality in
the following two procedures:

• Firstly, the first-stage ciphertext should not be entire-
ly decryptable for the service provider or the mobile
users. To be specific, given the first-stage ciphertext
(c∗1, c

∗
2, c

∗
3) and two plaintexts (task1||u1, task2||u2),

if an adversary can distinguish which one out of
(task1||u1, task2||u2) is the plaintext of (c∗1, c

∗
2, c

∗
3),

we show how to construct a simulator S to solve
the q−DBDHI problem [42].



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2908638, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Given the simplified q−DBDHI tuple g, T1 =
gz1 , T2 = gz2 ∈ G1, h ∈ G2, Q ∈ GT , the
simulator S’s goal is to determine whether Q =

ê(g, h)
z1
z2 via interactions with the adversary. S set-

s T = T1. The adversary possessing the secret
key of the service provider, β, can query any cho-
sen message task||u to the simulator S to obtain
the corresponding the ciphertext. Then, S pick-
s two messages (task1||u1, task2||u2) and a ran-
dom bit b ∈ {0, 1} to compute the challenge
(c∗1, c

∗
2, c

∗
3) = (Sr2 , T2, (taskb||ub)QHr2), where r2

is a random value chosen from Zp, and returns
(task1||u1, task2||u2) to the adversary, along with
(c∗1, c

∗
2, c

∗
3). Finally, the adversary returns b̂ ∈ {0, 1}

to S . If b̂ = b, S can address the simplified q−DBDHI
problem as Q ?

=
c∗3

(taskb||ub)ê(c∗1 ,h0)
− 1

β
.

The task confidentiality against the adversary, who
possesses α, also relies on the simplified q−DBDHI
problem, given h, T1 = gz1 , T2 = gz2 ∈ G1, h0 ∈
G2, Q ∈ GT , the simulator S’s goal is to de-
termine whether Q = ê(g, h0)

z1
z2 via interaction-

s with the adversary. The proof is the same as
that above with one difference that the challenge is
(c∗1 = T2, c

∗
2 = T r1

1 , c∗3 = (taskb||ub)QGr1), where
r1 is a random value chosen from Zp. Finally, S
can address the simplified q−DBDHI problem as
Q

?
=

c∗3

(taskb||ub)ê(c∗2 ,h)
− 1

α
.

• Secondly, the sensing task should only be recovered
by the matched mobile users from the second-stage
ciphertext. To prevent unmatched mobile users from
learning the content of sensing task, the service
provider encrypts the sensing task with the tem-
porary public key µ using the proxy re-encryption
scheme [42]. Therefore, the security of the second-
stage ciphertext can be reduced to the q−DBDHI
assumption as well.

To guarantee the confidentiality of sensing reports, each
mobile user employs the proxy re-encryption scheme [42] to
encrypt mi under the temporary public key u = gk, which
is distributed to the mobile users along with the sensing
task. The decryption key k is kept by the customer secretly.
Therefore, the confidentiality of mi directly depends on the
sematic security of the proxy re-encryption scheme, which
can be reduced to the simplified q−DBDHI assumption [42].

5.3 Anonymity

The anonymity of the mobile user is defined via the game
in which the adversary cannot distinguish an honest mobile
user out of two under the extreme condition that all other
interactions are specified by the adversary. We prove that
the mobile user’s identity is preserved properly, unless the
DDH assumption [44] does not hold. Specifically, if there
exists an adversary A that can identify an honest mobile
user out of two challenging identities, we show how to
construct a simulator S to solve an instance of the DDH
problem. That is, given a tuple T1, T2, T3, T4 ∈ GT , S can
tell whether exists (z1, z2), such that T2 = T z1

1 , T3 = T z2
1 ,

T4 = T z1z2
1 . S generates (param, S, T ), picks two identities

(I0, g
a0), (I1, ga1), where a0, a1 ∈ Zp, and sends them to A.

S acts on behalf of the users I0 and I1 to register at TA. S
then interacts with A in the following interactions:

• S acts as I0 honestly to submit the location informa-
tion. For I1, in the j-th query, S randomly chooses
µj ∈ G2 and simulates the zero-knowledge proof
PK3 to prove its identity interacting with A.

• S honestly acts on behalf of I0 to report the data.
For I1, S sets H = T1, G = T2. For the j-th query,
S randomly chooses Xj , vj ∈ Zp and computes
Yj = T

vj

1 , Zj = ê(g, ha1
0 )T

Xjvj
2 . S simulates the zero-

knowledge proof SPK and sends (Xj , Yj , Zj ,SPK)
to A, along with a random sensing report.

S picks a random bit b ∈ {0, 1}. If b = 0, S honestly
reports the data acting as I0. If b = 1 and S randomly
chooses X1 ∈ Zp and calculates G = T2, Y1 = T3,
Z1 = ê(g, ha1

0 )TX1
4 . Then, S simulates SPK and a sensing

report, and sends them to A. It is easy to see that the sim-
ulation is perfect if logT1T4 = logT1T2logT1T3; otherwise, it
contains no information about I0 and I1.

Finally, A returns b̂. If b̂ = b, S can confirm that there
exists (z1, z2), such that T2 = T z1

1 , T3 = T z2
1 , T4 = T z1z2

1 .
Thus, S resolves the DDH problem.

In the proof of customer’s anonymity, a simulator S
simulates the transcript of the zero-knowledge proof of the
signature (A, e, s), PK2, to interact with the adversary A.
Since S can perfectly simulates PK2, the adversary cannot
obtain any identity information about the customer, such
that it is impossible to distinguish an honest customer from
two for A. Therefore, the customer’s anonymity can be fully
guaranteed.

5.4 Credit Balance

Credit balance means that no one can own more credit
points than the initial credit points plus the credit points
awarded by service providers. This is the most significant
requirement for credit management from the respective of
security. Assume P0 be the initial credit points and θj be the
earned points from the service provider in the j-th query.
If the adversary A at most makes R̂ reporting queries, and
owns final credit points Pf , where Pf > P0+

∑R̂
j=1 θj , while

service providers do not identify the double-reporting, there
must exist a simulator S to conduct a forgery attack on the
underlying BBS+ signature [41].

Firstly, we assume that the zero-knowledge proofs PK1,
PK2, PK3 and SPK are sound. That is, there exist extract
algorithms EX 1, EX 2, EX 3 and EXS to obtain the witnesses
of the zero-knowledge proofs, respectively.

Then, we show the simulator S that interacts with A.
S generates the public parameters param, the public keys
(T, S) and the secret keys (α, β), and is allowed to access the
signature oracle SO to get the BBS+ signature of an input.
S sends (param, S, T ) to A and interacts with A as follows:

• A randomly chooses C ∈ G1, C ′, Â ∈ G2, generates
the proof PK1 and sends them to S . S extracts the
witness (s′, t′, a) from PK1 using EX 1, and then
picks a random credit point P0 and queries the
signature oracle SO to obtain (A, e, s) and (B, f, t).
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Finally, S calculates s′′ = s − s′, t′′ = t − t′ and
RK = Â

1
α , and returns (A, e, s′′, B, f, t′′, P0, RK) to

A.
• For the j-th query, A picks a random C ′

j ∈ G2 and
executes SPK with S . S utilizes EXS to extract the
witness (Bj , fj , tj , t

′
j , aj , Ij , Pj , vj). If (Bj , fj , tj) is

not an output of SO, it is a forgery of the BBS+
signature. Otherwise, S queries SO to obtain a signa-
ture (Bj , fj , tj) on input (aj , Pj + θj , Ij). S receives
(Bj , fj , tj), computes t′′j = tj − t′j , and returns
(Bj , fj , t

′′
j ) to A.

Finally, assume A executes R̂ queries. A wins the game
if it can prove Pf > P0 +

∑R̂
j=1 θj . However, if Pf > P0 +∑R̂

j=1 θj , A must have conducted a forged BBS+ signautre
or double-reported the data. While the BBS+ signature is
secure under the q−SDH assumption [41], A cannot forge a
BBS+ signature, unless the q−SDH assumption [41] does not
hold. If A double-reports the sensing data, it must generate
another Z̃i, which is unequal to the previous Zi, in the
same time slot. Due to the soundness of zero-knowledge
proof protocol, Zi = ê(g, Âi)GXivi is the only valid Zi to
accompany the specific report identified by Xi and Yi. Since
Xi should be different in two reports, ê(g, Âi) would be
obtained as long as the proof is valid. We assume the proof
SPK is sound. Thus, the success probability of double-
reporting for A is negligible. Therefore, the probability to
obtain Pf > P0 +

∑R̂
j=1 θj is negligible if the q−SDH

assumption holds.

5.5 Greedy User Tracing

Greedy user tracing consists of two objectives, namely,
slandering prevention and hiding prevention. Slandering
prevention means that an attacker cannot slander an honest
mobile user, and hiding prevention means that a greedy
user must be identified by the TA. For the slandering, the
attacker releases pieces of reporting transcripts that can link
to other reports submitted by an honest mobile user. It is
infeasible for the attacker to compute the tracing informa-
tion about an honest mobile user since the proof SPK is
sound. Therefore, no attacker enables to slander an honest
mobile user. In terms of the hiding, the attacker is required
to generate different pieces of tracing information without
being traced. However, it is impossible for a greedy mobile
user to compute Zi if the pseudo-random function F is
correct.

In summary, SPOON achieves location privacy preserva-
tion, sensing data confidentiality, anonymity of both mobile
users and customers, credit balance, and greedy user trac-
ing.

6 EXTENSION

In this section, we propose an approach to evaluate the
trust levels of sensing reports and a new privacy-preserving
location matching mechanism to achieve communication-
efficient task allocation for mobile crowdsensing.

6.1 Evaluation on Trust Level

The service provider uploads w sensing reports to the
customer, and the customer evaluates the trust level of each
report, and distributes credit points to mobile users. Sensing
reports have distinct trustworthiness due to the various
intelligence of data sources. Furthermore, some mobile users
may forge the sensing data or deliver ambiguous, biased
data to gain credit points by cheating. Therefore, we propose
a fair trust evaluation mechanism as follows:

• The customer generates the weights of sensing data
associated with grids in the sensing region ωz{z∈L} ∈
(0, 1], such that

∑
{z∈L} ωz = 1, and divides w

sensing reports into |L| groups, where |L| means the
number of the grids in the sensing area. If the data in
a sensing report are collected from several grids, this
report is in the groups associated with these grids
meanwhile.

• For each sensing report in a group z ∈ L, the
customer computes the similarity Vi,z . If a sensing
report is significantly different from the others in the
same group (e.g., an opposite result), its similarity is
set to be a negative value Vi,z ∈ [−γ, 0]. Otherwise,
the customer sets a positive similarity Vi,z ∈ (0, γ]
for the report.

• For each sensing report in a group z ∈ L, the
customer computes ρi,z = Vi,zQi and Expz =∑

i∈Z ρi,z , where Z denotes the set of the sensing re-
ports in the group z. Then, the customer sets the trust
level of the sensing report to be ϵi,z = (

ρi,z

Expz
)ωzγ.

• If the report only contains the data collected from one
grid, its trust level is ϵi = ϵi,z ; otherwise, the trust
level is set to be the average of the trust levels for all
the grids where mi is collected as ϵi = AV Ez(ϵi,z).

6.2 Efficiency-enhanced Task Allocation

In SPOON, we use the matrices L̂m×n and L̃m×n to rep-
resent the sensing area of the task and the location of the
mobile user, respectively. To prevent attackers from acquir-
ing the location information, M̂m×n, M̃m×n are exploited to
randomize L̂m×n, L̃m×n. Although this approach is com-
putationally efficient and achieves location protection, the
service provider has to define its service region in service
setup phase and the communication overhead in task allo-
cation phase is a little heavy, since both the customer and
the mobile user are required to transmit the matrices N̂n×n,
Ñn×n to the service provider. To reduce the communication
cost, we propose a communication-efficient location match-
ing mechanism by employing the BGN encryption [45].

In the service setup phase, apart from generating param
and the secret-public key pair (α, T, T0), TA setups the BGN
encryption. It chooses two random λ-bit primes q1, q2, sets
n = q1q2, and generates two bilinear groups G1,G2 of order
n that satisfies the bilinear map ẽ : G1 × G1 → G2. It also
picks a random generator l ∈ G1 to compute l1 = lq2 . Thus,
the public key of the TA is (n,G1,G2, l, l1, T ) and the secret
key is (α, q1).

When a customer with (A, e, s,B, f, t, a, I, P, Â, RK)
has a sensing task ST = (task, expires, area, γ, w) to be al-
located to the mobile users, it generates (c1, c2, c3, u,PK2),
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TABLE 3
Computational Overhead of SPOON

Phase User Registration Task Allocation Data Reporting Credit Assignment
Authority User Customer Provider User Customer Provider User Provider User

Point Multiplication 16 19 11 12 9 0 19 25 3 5
Point Addition 12 13 5 8 5 0 14 16 3 5
Bilinear Map 0 4 1 1 2 1 5 2 0 2

Exponentiation in GT 0 0 6 15 8 1 19 15 0 0
Running Time (ms) 48.361 289.246 97.943 51.925 152.547 55.144 132.398 201.034 9.755 132.288

Fig. 3. Sensing Circle and Location.

following the steps given in 4.4.3. The sensing area area
is defined as a circle, which is uniquely identified by a
center Lc = (Lcx, Lcy) and a radius R, where Lcx is the
longitude and Lcy is the latitude. As shown in Fig. 3,
assume the geographical location of a mobile user U1 is
Lu1 . If the distance between Lu1 and Lc is shorter than
R, U1 is located in the sensing area; otherwise, it is out
of the crowdsensing region. To protect the sensing region,
the customer picks three random values r′x, r

′
y, r

′
r ∈ Zn and

computes Cx = lLcx l
r′x
1 , Cy = lLcy l

r′y
1 , and CR = lRl

r′r
1 . The

customer sends (c1, c2, c3, expires,PK2, Cx, Cy, CR, γ, w)
to the service provider and the latter releases the task ST
as described in 4.4.3.

If a mobile user Ui wants to perform sensing tasks, it
chooses a random ν ∈ Zp to compute µ = hν . Then, Ui

retrieves the location information Lui = (Lix, Liy) from
the GPS device or the access point, and encrypts it using
the public key of the TA as follows: pick random values

r′′x , r
′′
y ∈ Zn to calculate Ux = lLix l

r′′x
1 , Uy = lLiy l

r′′y
1 . Finally,

Ui generates PK3 and sends (µ,Ux, Uy,PK3) to the service
provider.

Upon receiving (µ,Ux, Uy,PK3), the service provider
firstly determines whether a sensing task’s sensing re-
gion covers the location of Ui. For each unexpired task,
the service provider computes X ′ = ẽ(Cx

Ux
, Cx

Ux
), Y ′ =

ẽ(
Cy

Uy
,
Cy

Uy
) and Z ′ = X ′Y ′, and sends Z ′ to the TA,

along with (CR, num) for every task. The TA decrypts
Z ′ and CR to recover di and R, respectively, and check-
s whether di < R to find the set of matching sensing
tasks, and returns the task numbers num to the service
provider. Then, the service provider generates c4 and re-
leases (num, c2, c3, c4, expires, γ) for Ui. Finally, Ui obtains
the sensing task and collects data.

The location matching mechanism is designed from the
BGN encryption and the homomorphic property is utilized

to compute the distance from the circle center to the lo-
cations of mobile users. The security of this mechanism
can be reduced to the sematic security of the BGN en-
cryption scheme. Moreover, the customer is required to
send (Cx, Cy, CR) and the mobile user is needed to deliver
(Ux, Uy) to the operation center, which are shorter than
N̂n×n and Ñn×n.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our SPOON
in terms of computational and communication overheads,
and analyze privacy rate and accuracy rate for credit man-
agement.

7.1 Computational Overhead
The computational overhead refers to the executing time of
our proposed SPOON for each entity in the system. The
computational overhead can be represented by the number
of the time-consuming cryptographic operations, including
point multiplication, point addition, bilinear map and ex-
ponentiation in GT , because the running time of other op-
erations, e.g., multiplication in GT , addition, multiplication
and inverse operations in Zp, is negligible compared with
these four operations. Besides, since the bilinear map is the
most time-consuming operation in cryptographic calcula-
tions, we utilize the pre-processing technique to reduce the
computational burden for each entity. Specifically, TA pre-
computes the bilinear maps {Ei}3i=0, F, {Fi}4i=0 in service
setup phase as shown in Appendix A, and the bilinear
maps {ê(g, Âi)}Ni=0 in user registration phase, where N is
the number of registrants. The mobile user Ui also can pre-
compute ê(g, Âi) in user registration phase. Table III shows
the number of the operations executed by each entity in each
phase of SPOON, respectively.

We also conduct an experiment to show the time cost of
each entity to perform the proposed SPOON. The operations
of TA and service provider are performed on a notebook
with Intel Core i5-4200U CPU, the clock rate is 2.29GHz
and the memory is 4.00 GB. The operation system is 64-
bit Windows 10 and the C++ compiler is Visual Studio
2008. The operations of customers and mobile users are
run on HUAWEI MT2-L01 smartphone with Kirin 910 CPU
and 1250M memory. The operation system is Android 4.2.2
and the toolset is Android NDK r8d. We use MIRACL
library 5.6.1 to implement number-theoretic based methods
of cryptography. The R-ATE pairing [48] is utilized to realize
the type-3 bilinear pairing. The Barreto–Naehrig curve [48],
i.e., Fp-256BN, E : y2 = x3 + 3 defined over Fp. z is
an integer so that n = 36z4 + 36z3 + 18z2 + 6z + 1 and
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Fig. 4. Accuracy and Privacy Rates with N=1000

p = 36z4+36z3+24z2+6z+1 are prime and #E(Fp) = n.
The embedding degree k = 12 is the smallest positive
integer with n|p4 − 1. E[n] ( E(Fp12), where E(n) denotes
the set of all n−torsion points on E. Let G1 = E(Fp), G2 be
the trace–0 order–n subgroup of E(n), and GT be the order–
n subgroup of F∗

p12 . p is a large prime with approximately
256 bits. (g, g0, g1, g2, g3), (h, h0, h1, h2, h3, h4) and G are
randomly chosen from G1, G2, and GT , respectively. H is
SHA-256, F is simulated by AES-256. Table 3 shows the
time cost for each entity in every phase of SPOON if it is
implemented on the corresponding devices. The running
time is less than 300ms for each entity. Therefore, our
SPOON is quite efficient to be deployed on mobile devices.

7.2 Communication Overhead

The communication overhead refers to the number of data
exchanged among TA, the service provider, the mobile
users and the customers. Note that only the data (i.e.
payload) of IP packets are taken into account, the pack-
et headers and tailers are not counted in communication
overhead, since they are fixed if the number of packets
is determined. The binary length of data exchanged be-
tween any two entities in SPOON is recorded. The public
parameters are set the same as those in the experiment,
that is, |p|=256 bits and |q|=1024 bits. In user registration
phase, a registrant, either customer or mobile user, sends
a registering request (I, C,C ′, Â,PK1) to TA, which is
|I| + 2176 bits, where |I| is the binary length of the i-
dentity, and TA returns (A,B, s′′, t′′, e, f, P0, RK) to the
registrant, whose binary length is |P0| + 2176 bits, where
|P0| is the binary length of credit point. In task allocation,
the customer uploads (c1, c2, c3, expires, N̂n×n, γ, w,PK2)
and the mobile user sends (µ, Ñn×n,PK3) to the service
provider, which are 4512 + 160n2 + |expires| + |γ| +
|w| bits and 2976 + 160n2 bits, respectively. The ser-
vice provider responds (num, c2, c3, c4, expires, γ), which
is 2560 + |num| + |expires| + |γ| bits, to a matched mo-
bile user or false, 1 bit, to an unmatched one. After the
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Fig. 5. Accuracy and Privacy Rates with w=100

mobile user obtains the sensing data, it generates the sens-
ing report (num,Di, D

′
i, C

′
i, Xi, Yi, Zi, Qi, τj ,SPK) to the

service provider, which is 8864 + |num| + |P0| + |τj | bits.
The service provider needs to send 1024-bit W to TA if a
mobile user double-submits data, and then sends w sensing
reports (num,Di, D

′
i, Yi, Qi, τj), which is of binary length

w ∗ (2560 + |num| + |P0| + |τj |), to the customer. Finally,
the customer returns (1024 + |γ|)-bit (ϵi, Yi) to the service
provider for each report and the service provider sends
(Bi, t

′′
i , fi, θi, Yi) to every mobile user, which is 1856 + |P0|

binary bits.

7.3 Credit Analysis

To prevent credit points from disclosing to other entities,
each mobile user claims a threshold Qi, which is proved to
be less than its exact credit point Pi, such that the cloud
provider can select the sensing reports based on the claimed
thresholds. In this way, neither the cloud provider nor the
customer enables to learn the precise credit points of mobile
users. Unfortunately, this method reduces the accuracy of
report selection as the cloud provider may select a sensing
report of the mobile user, whose threshold is larger than
others’, while the credit point has the opposite trend. On the
other hand, customers may prefer mobile users to choose the
thresholds that are approximate to their credit points, while
the privacy of mobile users are sacrificed. Therefore, it seems
to be impossible to reconcile the contradiction between
privacy and accuracy, because they have an opposite of
trends.

To balance this trade-off, it is critical to find a reasonable
strategy for mobile users to determine the thresholds. We
define four parameters to evaluate privacy and accuracy
in credit claiming. Specifically, accuracy rate A denotes the
maximum probability of a given threshold in the selected
reports can possess top-w credit points in sensing reports.
Accuracy rate B denotes the maximum probability that a
given credit point in the sensing reports is larger than the
minimum threshold in the selected reports. Privacy rate A
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means the probability that a given sensing report, whose
credit point is larger than the minimum of thresholds in
selected reports, has top-w credit point in all sensing reports.
Privacy rate B means the probability that a given sensing
report would be selected by the service provider, whose
credit point is larger than the minimum of thresholds in
selected reports. To determine how the threshold choosing
strategy affects the defined privacy and accuracy rates, we
simulate the credit points of mobile users on Matlab and
use different threshold choosing strategies to compute the
accuracy rates and the privacy rates. The simulation results
are illustrated in Fig. 4 and Fig. 5. We set the number of
the mobile users to be 1000 in Fig. 4 and the number of
the selected reports to be 100 in Fig. 5. We compare three
threshold choosing strategies, the first one is basing on
uniform distribution; the second one is basing on Gaussian
distribution, in which the mean is three quarters of the
number of credit points a mobile user has and the standard
deviation is one quarter; the last one is basing on Gaussian
distribution, where the mean and the standard deviation
are one quarter of the number of credit points. The second
strategy achieves the highest accuracy and the third strategy
achieves the best privacy preservation on credit points in
three strategies.

8 CONCLUSION

In this paper, we have proposed a strong privacy-preserving
mobile crowdsensing scheme with credit management to
support the privacy preservation of mobile users and task
allocation for customers. The service provider is allowed to
select mobile users for sensing task fulfillment according
to the sensing areas of tasks and the geographic locations
of mobile users, and select the sensing reports based on
the credit points of mobile users. The sensitive information,
including identities, locations, credit points, sensing tasks
and sensing reports are preserved for mobile users and cus-
tomers during task allocation and report selection. Further-
more, no trusted third party is required to achieve the credit
management for mobile users. Finally, we have demonstrat-
ed the advantages of the proposed scheme on security and
efficiency. It enables service providers to build secure and
efficient mobile crowdsensing services that support accurate
task allocation and trust management for customers. In the
future work, we will design a privacy-preserving context-
aware task allocation framework in mobile crowdsensing.

APPENDIX A
DETAILS OF PK1 ∼ PK3 AND SPK
SPK demonstrates that the number of credit points Pi a
mobile user has is larger than the claimed credit thresh-
old Qi. Thanks to the zero-knowledge range proof due to
Camenisch et al. [46], the mobile user can prove that the
value Pi − Qi is non-negative. We fix the internal of [0, V ],
where V is the unbound of the credit points of all mobile
users, chosen by the service provider. Utilizing the efficient
interval proofs in [47], the mobile user demonstrates that
Pi − Qi is one element in the interval [0, V ]. To instantiate
the zero-knowledge proofs PK1 ∼ PK3 and SPK, in the
setup phase, the service provider generates η = gφ for a

randomly chosen value φ ∈ Zp, and computes ϕι = g
1

ι+φ ,
for each ι = 0 to V . To improve the efficiency, TA can
pre-compute E0 = ê(g0, h), E1 = ê(g1, h), E2 = ê(g2, h),
E3 = ê(g3, h), and F = ê(g, h), F0 = ê(g, h0), F1 = ê(g, h1),
F2 = ê(g, h2), F3 = ê(g, h3), and F4 = ê(g, h4). These pa-
rameters are included in the public parameters as param ∩
{E0, E1, E2, E3, F0, F1, F2, F3, F4}. The service provider al-
so releases the parameters {S,Lm×n, η, {ϕι}ι∈[0,V ]}. To de-
duce the number of interactions in zero-knowledge proofs,
we utilize the Fiat-Shamir transformation, where the hash
function H can be viewed as a random oracle. The details of
PK1 ∼ PK3 and SPK are shown below.
PK1{(s′, t′, a) : C = gs

′

1 ga2 ∧ C ′ = ht′

1 h
a
2 ∧ Â = ha

0}.

1) The TA sends a random challenge R ∈ Zp.
2) The registrant randomly chooses ρs′ , ρt′ , ρa ∈ Zp

and computes T1 = g
ρs′
1 gρa

2 , T2 = h
ρt′
1 hρa

2 and T3 =
hρa

0 .
3) The registrant computes c = H(T1, T2, T3, R).
4) The registrant computes zs′ = ρs′ − cs′, zt′ = ρt′ −

ct′, za = ρa − ca, and sends c, zs′ , zt′ , za to the TA.
5) The TA computes T ′

1 = Ccg
zs′
1 gza2 , T ′

2 = C ′ch
zt′
1 hza

2 ,
T ′
3 = Âchza

0 and accepts the proof if c =
H(T ′

1, T
′
2, T

′
3, R); otherwise, rejects.

PK2{(A, e, s, a, I) : ê(A, T0h
e)

?
= ê(g0g

s
1g

a
2g

I
3 , h)}.

1) The service provider sends a random challenge R ∈
Zp.

2) The customer randomly chooses r1, r2 ∈ Zp to
compute B1 = gr12 gr23 , B2 = Agr13 . The customer
picks random ρr1 , ρr2 , ρδ1 , ρδ2 , ρe, ρs, ρa, ρI ∈ Zp

and computes T1 = g
ρr1
2 g

ρr2
3 , T2 = B−ρe

1 g
ρδ1
2 g

ρδ2
3 ,

T3 = ê(B2, h)
−ρe ê(g3, T0)

ρr1E
ρδ1
3 Eρs

1 Eρa

2 EρI

3 .
3) The customer computes c = H(T1, T2, T3, R).
4) The customer computes zr1 = ρr1 −cr1, zr2 = ρr2 −

cr2, zδ1 = ρδ1 − cδ1, zδ2 = ρδ2 − cδ2, ze = ρe − ce,
zs = ρs − cs, za = ρa − ca, zI = ρI − cI , and sends
c,B1, B2, zr1 , zr2 , zδ1 , zδ2 , ze, zs, za, zI to the service
provider.

5) The service provider computes T ′
1 =

Bc
1g

ρr1
2 g

ρr2
3 , T ′

2 = B−ze
1 g

zδ1
2 g

zδ2
3 , T ′

3 =

( ê(B2,T0)
E0

)cê(B2, h)
−ze ê(g3, T0)

zr1E
zδ1
3 Ezs

1 Ezh
2 EzI

3

and accepts if c = H(T1, T2, T3, R); otherwise,
rejects.

PK3{(Ai, ei, si, ai, Ii) : ê(Ai, T g
ei)

?
= ê(g0g

si
1 gai

2 gIi3 , g)} is
the same as PK2

SPK



(B, f, t, t′, a, I, P, v) :

ê(Tgf , Bi)
?
= ê(g, h0h

t
1h

a
2h

I
3h

P
4 )∧

C ′ = ht′

1 h
a
2h

I
3h

P
4 ∧

P > Q∧
Y = Hv∧
Z = ê(g, Â)GXv


(num).

1) The mobile user randomly chooses
r1, r2, r3, r4 ∈ Zp to compute B1 = hr1

2 hr2
3 ,

B2 = Thr1
3 , S1 = gr32 gr43 , S2 =

ϕP−Qg
r4
3 . The mobile user picks random

ρr1 , ρr2 , ρr3 , ρr4 , ρf , ρt, ρt′ , ρa, ρI , ρP , ρv, ρω1 , ρω2 ,
ρω3 , ρω4 ∈ Zp and computes T1 = h

ρt′
1 hρa

2 hρI

3 hρP

4 ,
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T2 = h
ρr1
2 h

ρr2
3 , T3 = B

−ρf

1 h
ρω1
2 h

ρω2
3 ,

T4 = ê(g,B2)
−ρf ê(T, h3)

ρr1F
ρω1
3 F ρt

1 F ρa

2 F ρI

3 F ρP

4 ,
T5 = g

ρr3
2 g

ρr4
3 , T6 = S−ρP

1 g
ρω3
2 g

ρω4
3 ,

T7 = ê(g3, η)
ρr4E

ρω4
3 ê(S2, h)

−ρP , T8 = Hρv ,
T9 = GXρv .

2) The user computes c =
H(T1, T2, T3, T4, T5, T6, T7, T8, T9, num).

3) The user computes zr1 = ρr1 − cr1, zr2 = ρr2 − cr2,
zr3 = ρr3 − cr3, zr4 = ρr4 − cr4, zf = ρf − cf ,
zt = ρt−ct, zt′ = ρt′−ct′, za = ρa−ca, zI = ρI−cI ,
zP = ρP−cP , zv = ρv−cv, zω1 = ρω1−cr1ω1, zω2 =
ρω2 − cr2ω2, zω3 = ρω3 − c(P −Q)r3, zω4 = ρω4 −
c(P − Q)r4, and sends c,B1, B2, S1, S2, zr1 , zr2 ,
zr3 , zr4 , zf , zt, zt′ , za, zI , zP , zv, zω1 , zω2 , zω3 , zω4 to
the service provider.

4) The service provider computes
T ′
1 = C ′ch

zt′
1 hza

2 hzI
3 hzP

4 , T ′
2 =

Bc
1h

zr1
2 h

zr2
3 , T ′

3 = B
−zf
1 h

zω1
2 h

zω2
3 , T ′

4 =

( ê(T,B2)
F0

)cê(g,B2)
−zf ê(T, h3)

zr1F
zω1
3 F zt

1 F za
2 F zI

3 F zP
4 ,

T ′
5 = Sc

1g
zr3
2 g

zr4
3 , T ′

6 = S−Qc
1 S−zP

1 g
zω3
2 g

zω4
3 , T ′

7 =
(ê(S2, ηh

−Q)F−1)cê(g3, η)
zr3E

zω3
3 ê(S2, h)

−zP ,
T ′
8 = Y cHzv , T ′

9 = ( Z
ê(g,Â)

)cGXzv , and accepts
the proof if c = H(T ′

1, T
′
2, T

′
3, T

′
4, T

′
5, T

′
6, T

′
7,

T ′
8, T

′
9, num); otherwise, rejects.
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