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Abstract— Targeting at implementing the next generation radio
access networks (RANs) with virtualized network components,
the open RAN (O-RAN) has been regarded as a novel para-
digm towards fully open, virtualized and interoperable RANs.
Through particularly introducing RAN intelligent controllers
(RICs), machine learning (ML) can be unprecedentedly installed,
adapting to various vertical applications and deployment envi-
ronments without sophisticated planning efforts. However, the
O-RAN also suffers two critical challenges of load balancing and
frequent handovers in the massive base station (BS) deployment.
In this paper, an intelligent user access control scheme with
deep reinforcement learning (DRL) is proposed. To optimize
the performance of distributed deep Q-networks (DQNs) trained
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by user equipments (UEs), a federated DRL-based scheme is
proposed with a global model server installed in the RIC to
update the DQN parameters. To further predictively train a
global DQN with acceptable signaling overheads, the upper
confidence bound (UCB) algorithm to select the optimal UE set
and a dueling structure to decompose the DQN parameters are
developed. With the proposed scheme, each UE effectively maxi-
mizes the long-term throughput and avoids frequent handovers.
The simulation results well justify the outstanding performance
of the proposed scheme over the-state-of-the-arts, to serve as
references for the O-RAN standardization.

Index Terms— Open radio access networks (O-RANs), user
access control, deep reinforcement learning (DRL), feder-
ated learning (FL), RAN intelligent controller (RIC), deep
Q-networks (DQNs).

I. INTRODUCTION

UNLIKE the International Mobile Telecommunications-
advanced (IMT-advanced) systems solely supporting a

single class of wireless services, such as undiscriminating
latency, reliability, and data rate, the key feature of the
IMT-2020 systems lies in enabling support multi-class wire-
less services with different requirements in terms of latency,
reliability, connection density, and data rates. This emerging
feature however greatly increases the design and deployment
complexity of the radio access network (RAN), and drives the
global industry to reach the consensus on two core principles
to evolve the current RAN to the next generation RAN [1]:
1) openness to attract more participants and collaborations
of venders/researchers in the designs and implementations of
RANs; and 2) intelligence to enable machine learning (ML)
based optimization in RANs for autonomous deployment.
To this end, an innovative solution, known as the open RAN
(O-RAN), has emerged since 2018 to create a new paradigm
of wireless infrastructure.

To achieve openness, the functions of the RAN in the
O-RAN are virtualized and divided into four key units [2], [3].
(i) The Radio Unit (RU) embraces the radio frequency (RF)
components and lower-physical layer. (ii) The Distributed
Unit (DU) sustains the higher-physical layer, medium access
control (MAC) layer and radio link control (RLC) layer.
(iii) The Central Unit (CU) hosts the radio resource con-
trol (RRC) protocol, packet data convergence protocol (PDCP)
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Fig. 1. The general deployment of the O-RAN considered in this paper,
in which there are N BSs and M UEs. The global model server is installed
at the RIC to train the global model parameters for UEs.

and service data adaptation protocol (SDAP). (iv) Most
importantly, the RAN Intelligent Controller (RIC) is unprece-
dentedly introduced. To achieve intelligence, various ML
algorithms can be installed to the RIC to perform predictive
resource/communication configuration for CUs/DUs, so as to
optimize the performance for any vertical applications over
any deployment scenarios. With the aid of this architecture,
a base station (BS) can be constructed by connecting an RU,
DU and CU through standardized interference [3], and the
RIC is responsible for the optimal resource/communication
configuration for one or multiple BSs, as illustrated in Fig. 1.
In this case, each technology contributor therefore can only
focus on the design/implementation of a single function of
these four units.

A. Challenges and Related Works

Although the O-RAN provides a revolutionary architecture
for an intelligent and agile deployment of the IMT-2020
infrastructure, this innovative technology suffers from the
engineering challenges in the multi-BS deployment. Based
on the architecture of the O-RAN, the functions of BSs are
decomposed/virtualized to CUs/DUs/RUs, which inherently
leads to a massive deployment of CUs/DUs/RUs. In such
a massive deployment, it is expected to assign each user
equipment (UE) to access a proper BS so as to maximize the
overall throughput (i.e., the sum of all individual throughputs
of UEs), known as user access control or user association [4].
In conventional user access control schemes, the user access
decisions are made based on certain metrics such as received
signal strength (RSS) or capacity [5] measured by UEs,
by which UEs always access the BS with the strongest RSS.
As a result, an RSS-based scheme may incur two critical
concerns: frequent handovers and load balancing.

Aiming at optimizing the throughput performance, in exist-
ing handover schemes, the handover procedure is triggered
when certain conditions (i.e., the RSS difference with a
particular hysteresis margin is larger than the pre-determined
threshold) occur. To reduce the number of unnecessary han-
dovers, the handover parameters (i.e. the hysteresis margin,
comparison threshold and time-to-trigger) should be designed
based on the average dynamics instead of the instantaneous
gains. For this goal, a fuzzy logic based algorithm has been

proposed to optimize the handover parameters in [6]. Addi-
tionally, a ping-pong timer has been introduced to distinguish
the types of handovers incurred by movements in [7], and
a handover skipping technique has been proposed to enable
high-speed UEs to avoid inefficient-in-throughput handovers
along their trajectories in [8]. On the other hand, to balance
the loads among BSs with different coverage sizes, a range
expansion mechanism has been developed, in which BSs
can adjust their range expansion biases based on RSSs and
throughputs of UEs for attracting UEs to access [9], and
a load-aware user association scheme has been proposed
in [10] to maximize the downlink throughput and balance the
loads by exploiting traffic load information and link qualities
of different BSs. However, in all these schemes, handover
parameters are optimized based on the fixed tracking areas
of BSs. While in the O-RAN, since the functions of BSs
are decomposed/virtualized to CUs/DUs/RUs, the massive
deployment of CUs/DUs/RUs inherently leads to a “cell-less”
architecture [11]. In such a massive deployment, performing
the optimization of user access control solely at the RAN side
may be practically intractable due to unaffordable signaling
overheads and complexity. In this case, each UE autonomously
selecting proper BSs (or CUs/DUs/RUs) to access has man-
ifested the effectiveness in significantly reducing the control
complexity and signaling overheads. As a result, to success-
fully deploy the O-RAN, an effective user access control
performed at the UE side to maximize the overall throughput
and avoid frequent handovers is urgently desired.

In [12], the user access control has been formulated as
a convex optimization with proper constraint relation and
decomposition. In [13] and [14], game-theoretical approaches
such as matching game have been applied to user association
and resource allocation in RANs. However, these approaches
rely on the prior knowledge and beliefs of each UE’s decisions,
channel conditions between each UE and BSs, and mobility
of each UE, which may not be generally available for all the
deployment scenarios. To obtain the optimal UE association
policy without the above prior knowledge and beliefs, rein-
forcement learning (RL) has been shown as a promising rem-
edy to address the frequent handover problem and maximize
the long-term performance of UEs [15], [16]. Nevertheless,
such tabular RL algorithms require a large memory space to
store the experiences of the interactions with the environment,
and an outstanding performance relies on sufficient updates of
these experiences. Unfortunately, in the practical deployment,
it is very likely that only limited experiences are available.

Recently, deep reinforcement learning (DRL) has been
shown as an effective method to fundamentally enhance the
performance of RL [17]–[19]. By performing DRL in each
UE, the variation pattern hidden in the environment and the
optimal access policies can be learned by UEs only using
local observations [20], [21]. In the meantime, unlike in the
RSS-based schemes, each UE in DRL targets at maximiz-
ing the long-term throughput instead of the instantaneous
throughput. Unnecessary handovers therefore can be avoided.
However, if DRL in each UE operates independently without
any information exchange, it may take an unacceptably long
time to achieve convergence. To guarantee the performance
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convergence, multiple DRL agents need to exchange local
observations with each other and take actions made by other
agents into considerations [22], [23] to infer global network
information [24]. However, such observation-sharing mecha-
nisms may lead to an unaffordable amount of communication
overheads. Therefore, to implement effectively distributed
DRL algorithms, UEs are only allowed to exchange a limited
amount of parameters with other UEs.

Despite that only a limited amount of parameter exchanges
are allowed among UEs, if these parameters can be adequately
trained, the performance can be significantly enhanced. To this
end, the federated learning (FL) method [25] can be adopted
to train a global DRL model using the exchanged parameters
from UEs [26], [27]. The spirit of FL is to permit each UE
to train its own (local) model with local observations [28].
Subsequently, instead of directly exchanging model parameters
among UEs, each UE can send its trained model parameters
to a global model server, in which a global model is updated
using the model parameters provided by UEs [29]. After
training the global model, the parameters of the global model
are disseminated to UEs to further improve the local models.
With the aid of the O-RAN architecture, the RIC connecting
to multiple CUs/DUs/RUs is therefore perfectly suitable to
sustain and train the global model and perform FL computation
for UEs.

B. Main Contributions

Although the O-RAN can potentially sustain different ML
algorithms to tackle complex optimization models for man-
ifold scenarios, the very first ML scheme should effectively
address user access control, so as to implement the O-RAN.
Even though the above technical merits render FL a recent
innovation for user access control, significant efforts and
particular designs are still required. With the facilitation of
the RIC to accommodate the global model server for FL,
in this paper, we consequently propose a federated DRL-based
scheme to address user access control in the O-RAN. To the
best of our knowledge, our work is the first design to
adopt FL and DRL to establish intelligent user-centric access
control mechanism to optimize the overall throughput and
avoid frequent handovers in the O-RAN, in which UEs can
access proper BSs and RBs autonomously based on their local
information. In such case, the user access control problem
can be formulated as a long-term utility optimization, and the
following contributions are provided to efficiently solve the
optimization in the O-RAN.

• In the developed federated DRL-based scheme for user
access control, each UE trains two deep Q-networks
(DQNs) using its own observations, and makes access
decisions (i.e., selecting proper BS and RB to access)
based on its DQNs. The trained DQN parameters are
subsequently forwarded to a global model server installed
in the RIC to train a global DQN, and the parameters of
the global DQN are then disseminated to each UE to
further improve its access decision.

• To substantially reduce the signaling overheads between
UEs and the global model server, the global model server
may select a part of UEs and only these selected UEs

should send their DQN parameters to the global model
server. Since the global model server may not be fully
aware of the link conditions in all the UE-BS pairs, there
is a tradeoff between exploration and exploitation in the
UE selection. To tackle this tradeoff, an upper confidence
bound (UCB)-based UE selection scheme is developed to
choose the optimal UE set.

• To optimally estimate/learn statistics of the environment,
the global model server should obtain independent sam-
ples from the environment (i.e., from the parameters of
selected UEs). However, even though a particular set
of UEs are selected to provide the DQN parameters,
it is still possible that different UEs may have a com-
mon knowledge of the interacting environment. In this
circumstance, if each selected UE provides a complete
set of the DQN parameters, these parameters may not
be independent and the convergence of learning results
may not be warranted in general. With such a disfavored
situation, in the proposed scheme, a dueling structure is
introduced to decompose the DQN parameters of each
UE into three different parts, and only two parts of the
parameters are sent to the global model server for the
global DQN training.

• Through comprehensively evaluating the performance
of the proposed scheme, simulation results show that
the proposed scheme outperforms the distributed train-
ing scheme, centralized training, RSS-based scheme,
heuristic algorithm and conventional reinforcement learn-
ing (RL) methods in terms of the long-term throughput
and the number of handovers. The proposed scheme is
also able to achieve any levels of tradeoff between the
throughput and number of handovers through properly
arranging the handover punishment factor.

C. Organizations

The rest of this paper is organized as follows. After describ-
ing the system model and problem formulation in Section II.
Subsequently, the proposed federated DRL-based user access
control in the O-RAN and corresponding motivations are
presented in Section III. In Section IV, sufficient simulation
studies are provided, and this paper is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, the O-RAN deployment as shown in Fig. 1 is
considered, in which N BSs (indexed by j = 0, 1, · · · , N−1)
connecting to an RIC through E2 or O1 interface are deployed
to serve M UEs (indexed by i = 0, · · · , M − 1), where
M > N . Let B and U denote the sets of BSs and UEs,
respectively. Since 3GPP New Radio (NR) [30] adopting
orthogonal frequency division multiple access (OFDMA) is the
only system supported by the O-RAN, in this paper, OFDMA
is also considered and all the BSs share a common resource
pool K composed of K RBs (indexed by k = 0, · · · , K − 1).
In the time domain, aligning with the frame structure of 3GPP
NR, the resources are arranged in equal-duration time slots.

Suppose that each UE is permitted to select only one BS
from B to access and is allocated with a fixed number of
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TABLE I

MAJOR NOTATIONS ADOPTED IN THIS PAPER

RBs for downlink transmissions at each time slot (since this
fixed number of allocated RBs does not impact the operation
of the proposed scheme, we can simply take this number as
one as an example). To indicate whether UE i accesses BS
j at time slot t, a binary indicator ui,j (t) is adopted, where
ui,j (t) = 1 if UE i accesses BS j, and ui,j (t) = 0 otherwise.
A RB allocation indicator fi,k (t) is further adopted to indicate
whether UE i is allocated with RB k at time slot t, where
fi,k (t) = 1 if RB k is allocated to UE i, and fi,k (t) = 0
otherwise. In Table I, major notations adopted in this paper
are summarized.

1) Channel Model: The channel gain gk
i,j (t) between UE

i and BS j in RB k at time slot t is composed of two com-
ponents, i.e., the large-scale fading component li,j(t) and the
small-scale fading component hk

i,j (t). The large-scale fading
component li,j(t) is determined by the distance di,j (t) =�

(xi (t)− xj (t))2 + (yi (t)− yj (t))2 between UE i located
at (xi (t) , yi (t)) and BS j located at (xj (t) , yj (t)). With
the facilitation of the mature channel equalization methods,
the small-scale fading component hk

i,j (t) can be regarded as
unchanged within a time slot. To capture the variation of small-
scale fading between two contiguous time slots, the Jake’s
model [31] can be applied, i.e.,

hk
i,j (t + 1) = ρhk

i,j (t) + δk
i,j (t) , (1)

where ρ is the coherent coefficient between two contiguous
time slots. hk

i,j(0) is a Gaussian random variable with zero
mean and unit variance hk

i,j (0) ∼ CN (0, 1). δk
i,j (t) also can

be regarded as a Gaussian random variable with zero mean
and a variance of 1 − ρ2, δk

i,j (t) ∼ CN �0, 1− ρ2
�
. Hence,

the channel gain gk
i,j(t) from BS j to UE i in RB k at time

slot t can be expressed by

gk
i,j (t) = li,j (t)

��hk
i,j (t)

��2 . (2)

2) Downlink Transmissions: If multiple UEs are allocated
with the same RB, the co-channel interference induced by
other BSs should be considered. In this case, the signal-to-
noise-plus-interference-ratio (SINR) at UE i in RB k from BS
j at time slot t is given by

γk
i,j(t) =

Pjfi,k(t)gk
i,j(t)�

m∈Bk\jPmfi,k(t)gk
i,m(t) + σ2

, (3)

where Bk is the set of BSs allocating RB k to other UEs, Pj

and Pm are the transmission power levels of BS j and m,
respectively, and σ2 denotes noise power. Therefore, to indi-
cate downlink transmission rate in each RB, the Shannon
capacity equation is adopted, and the expression of the achiev-
able rate of UE i from BS j in RB k at time slot t can be
given by

ck
i,j(t) = Blog2(1 + γk

i,j(t)), (4)

where B is the bandwidth of each RB. Since all the RBs have
the same slot length, based on (4), the receiving rate of UE i
from BS j at time slot t is the sum of the achievable rates in
all the allocated RBs, which is given by

Ri,j (t) =
�
k∈K

fi,k(t)ck
i,j(t). (5)

B. Problem Formulation

The objective of BS selection in each UE is to maximize
the downlink throughput. Due to mobility of UEs, the distance
between a UE and a particular BS may change rapidly, leading

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:05:31 UTC from IEEE Xplore.  Restrictions apply. 



CAO et al.: USER ACCESS CONTROL IN O-RANs: FEDERATED DRL APPROACH 3725

to a highly varying channel gain between a UE and a BS.
As a result, the throughput from the BS (mainly determined
by the channel gain) may also change drastically. In this case,
handover may take place frequently if the RSS-based BS
access scheme is adopted, which is harmful in the practical
O-RAN deployment. On the other hand, if multiple UEs access
the same BS, this BS could be heavily loaded, which leads
to a poor throughput performance. To jointly optimize the
throughput and avoid unnecessary handovers, an optimization
maximizing a utility function taking both throughput and
handover into consideration should be designed.

Definition 1: The utility function of a UE jointly consider-
ing the handover cost and throughput is defined by

Γi,j(t)
Δ=

�
Ri,j(t), ui,j(t) = ui,j(t− 1),
Ri,j(t)− C, ui,j(t) �= ui,j(t− 1),

(6)

where C is the equivalent cost of the handover, which is
incurred by the signalling overheads and power consumptions.
Particularly, C can be regarded as a system parameter indicat-
ing preference of the operator between the overall throughput
and the number of handovers in the practical deployment.
A large C implies that less handovers and a lower throughput
are allowed, while a small C implies that more handovers and
a higher throughput are preferred.

To avoid frequent handovers, an effective scheme may
lie in adopting the long-term performance as the objec-
tive of the optimization, instead of optimizing the immedi-
ate/instantaneous performance. For this purpose, in this paper,
we target at maximizing the long-term utilities of all the UEs
in the O-RAN, and such optimization can be formulated in
the following.

Optimization 1: The optimization of the long-term utilities
of all the UEs from time slot t = 0 to time slot t = T − 1 is
given by

max
U,F

T−1�
t=0

�
i∈U

�
j∈B

ui,j(t)Γi,j(t)

s.t.
�
j∈B

ui,j(t) = 1, ∀i ∈ U , (7)

�
k∈K

fi,k(t) = 1, ∀i ∈ U , (8)

ui,j(t) ∈ {0, 1} , ∀(i, j) ∈ U × B, (9)

fi,k(t) ∈ {0, 1} , ∀(i, k) ∈ U × K, (10)

where U = [ui,j(t), ∀i, j, t] and F = [fi,k(t), ∀i, k, t] are
vectors of ui,j(t) and fi,k(t), respectively. The constraints (7)
and (8) indicate that each UE is permitted to access one BS
only and is allocated with one RB for downlink transmissions
at each time slot.

Optimization is an integer programming problem, which
has been regarded as an intractable problem using the conven-
tional methods such as the convex optimization. In addition
to the mathematical programming, solving this optimization
in the practical deployment also creates critical issues to
be reckoned with. To perform this optimization with a sin-
gle/centralized agent, global network information such as posi-
tions and channel state information of UEs should be available

to this agent, which induces unaffordable signaling overheads.
On the contrary, toward performing this optimization in a
distributed manner, the objective of each UE in the proposed
scheme is to maximize its individual long-term utility, which
also can be regarded as the general-sum game. Since the
numbers of UEs, BSs and RBs are finite, there exists the Nash
equilibria for UEs, which can only be derived if the completed
network information is common knowledge for all the UEs.

However, due to the resource limitations and co-channel
interferences, the long-term utility performance of each UE
may be impacted by other UEs’ access decisions, and therefore
convergence to the optimum performance is not guaranteed.
On the other hand, since each UE cannot obtain the accurate
network information, each UE needs to infer beliefs about
other UEs’ access strategies to perform decision-making tasks.
To this end, there is an urgent need to develop an effective
mechanism at the UE side for inferring the mutual decision
impacts among UEs. These engineering concerns thus motivate
the design of an intelligent access control scheme based on
DRL, which plays a crucial role in the family of ML methods
to tackle the sequential-decision-making tasks. In DRL, the
objective of an agent is to find the optimal policy π∗ to
maximize the long-term accumulated rewards from continuous
interactions with the environment, i.e.,

Q(s, a) = E

	
T−1�
t=0

βtr(s(t), a(t))|s(0) = s, a(0) = a



,

(11)

where E [·] is the expectation operation, s and a are the
initial state and action, respectively, and r(s(t), a(t)) is the
instantaneous reward obtained by the agent visiting state s(t)
and selecting action a(t) at time slot t, and 0 ≤ β ≤ 1
is the discounting factor. Therefore, DRL can be adopted
to enable each UE to obtain the optimal access policy for
maximizing its long-term utility by continuously interacting
with the environment. To further enhance the performance of
DRL with acceptably low signaling overheads, a federated
DRL-based scheme particularly feasible for the O-RAN is
consequently proposed in this paper.

III. FEDERATED DRL-BASED SCHEME FOR USER ACCESS

CONTROL IN O-RAN

In the proposed federated DRL-based scheme,
Optimization 1 can be transformed to a Markov Decision
Process (MDP) M = {S,A,R,P}, which is composed
of the state space S, action space A, reward function R,
and transition probability space P , and the optimum access
decision can be derived using the dynamic programming (DP)
methods if the state transition probabilities of the MDP are
available. However, in practical O-RAN operations, the state
transition probabilities of the MDP are generally unavailable,
and this knowledge should be predictively estimated through
interacting with the environment. In our proposed scheme,
DRL is introduced to enable each UE to learn the hidden
variation patterns, and their DQN parameters can be regarded
as the average knowledge of the environment. Additionally,
since the objective is to optimize the overall performance,
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UEs should make access decisions cooperatively according
to the estimated global knowledge in addition to their local
observations, and the DQN parameters of the UE set with
higher accumulated rewards should be selected to update
the global knowledge of the environment to optimize the
overall performance. With the aid of FL architecture, the
global DQN parameters can be acquired by aggregating DQN
parameters from multiple UEs selected by global model
server installed in the RIC. For this purpose, the proposed
scheme is composed of three stages. In the first stage, each
UE trains two local DQNs based on its local observations.
In the second stage, the global model server installed in the
RIC selects certain UEs to acquire their parameters of DQNs,
and trains a global DQN using the obtained parameters from
the selected UEs. In the third stage, the parameters of the
global DQN are disseminated to all the UEs to further refine
their local DQNs. Each UE then makes access decisions
based on the local DQNs.

A. Proposed DRL for Each UE

Since the MDP model may significantly impact the per-
formance of the corresponding DRL, in the section, the state
space, action space and reward function for the MDP should
be designed.

Definition 2 (State Space): The state of UE i at time slot t
denoted as si(t) is composed of five components. The first
component is a vector of the BS access indicators at time slot
t− 1. The second component is a vector of the RB allocation
indicators at time slot t− 1. The third component is a vector
of the RSSs in different RBs from BS ĵ = arg max

j∈B
U i(t− 1)

at time slot t − 1, where U i(t − 1) = {ui,j(t − 1)}, j ∈ B.
The fourth component is a vector of the RSSs from different
BSs in RB k̂ = arg max

k∈K
F i(t− 1) at time slot t − 1, where

F i(t − 1) = {fi,k(t − 1)}, k ∈ K. The final component
ωi(t − 1) =

�
j∈B

Ri,j(t− 1) is the receiving rate of UE i at

time slot t− 1. si(t) is therefore given by

si(t)
Δ= {ui,0(t− 1), · · · , ui,N−1(t− 1);

fi,0(t− 1), . . . , fi,K−1(t− 1);
Pĵg

0
i,ĵ

(t− 1), . . . , Pĵg
K−1

i,ĵ
(t− 1);

P0g
k̂
i,0(t− 1), . . . , PN−1g

k̂
i,N−1(t− 1);

ωi(t− 1)}. (12)

Definition 3 (Action Space): The action of UE i at time slot
t denoted as ai(t) is a BS-and-RB selection, and UE i sends
a request to the selected BS to acquire an RB for downlink
transmissions, i.e.,

ai(t)
Δ= {ui,0(t), · · ·ui,N−1(t), fi,0(t), · · · , fi,K−1(t)} . (13)

Definition 4 (Reward Function): Since the objective of
each UE is to maximize the throughput and avoid frequent
handovers, the reward function of UE i after taking action
ai(t) at state si(t) integrates the receiving rate and the

handover costs, i.e.,

ri(si(t), ai(t))
Δ=

�
ωi(t), U i(t) = U i(t− 1),
ωi(t)− ηC, U i(t) �= U i(t− 1),

(14)

where η is a punishment factor to balance the throughput and
the handover cost.

In RL, to balance the exploration and exploitation, the

-greedy policy has been shown as an optimum policy for
action selection, in which non-greedy actions being selected
stochastically for explorations. However, in the case that a
greedy action is not selected, all the non-greedy actions
are selected with an equal probability may limit the overall
performance. To further enhance the performance, explorations
(non-greedy action selection) can be performed based on the
accumulated scores of BSs and RBs, which are updated by
the corresponding historical RSS information stored in states.
For this purpose, in the following an exploration mechanism
known as the score-based exploration is proposed.

Proposition 1 (Score-Based Exploration): At each time
slot, UE i selects the action based on the following policy,
i.e.,

ai(t) =

⎧⎨
⎩

arg max
ai(t)∈A

Q(si(t), ai(t)), with 1− 
,

arg max
ai(t)∈A

υi(ai(t)), with 

(15)

where

υi(ai(t)) = υi(U i(t), F i(t))

=

t−1�
τ=0
F i

bs (U i(t), τ) +
t−1�
τ=0
F i

rb (F i(t), τ)

2(t + 1)
(16)

where F i
bs (U i(t), τ) and F i

rb (F i(t), τ) are the scores of
the BS selection U i(t) and RB selection F i(t) of UE i at
time slot τ , respectively. Specifically, the RSSs from different
BSs (RBs) in state si(τ) are sorted in a descending order, and
the order of BS selection U i(t) (RB selection F i(t)) is set as
its corresponding score F i

bs (U i(t), τ) (F i
rb (F i(t), τ)) at time

slot t.
In the proposed DRL, the input of the DQN is the state

defined in (12), and the outputs are the action values corre-
sponding to actions. Moreover, each UE needs to construct
two DQNs, i.e., the trained DQN Qi(si, ai; θi) and the target
DQN Qi(si, ai; θ−

i ). However, since the purpose of the target
DQN is only to obtain the target of approximation in (17),
we can only focus on the trained DQN in all the following
sections. Additionally, each agent needs to establish a replay
memory Di to store its experiences with the environment.
At each time slot, UE i inputs its present state si(t) into
its (trained) DQN, and chooses an action ai(t) based on
the approximated action value Qi(si(t), ai; θi) according
to the action selection policy in (15). After interacting with
the environment using the selected action, the UE receives
a reward ri(si(t), ai(t)) and a new state si(t + 1), and this
experience {si(t), ai(t), ri(si(t), ai(t)), si(t + 1)} is stored
in the replay memory of UE i. Subsequently, the (trained)
DQN is trained by the stochastic gradient descent (SGD)
algorithm using a mini-batch size of experience samples from
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the memory Di to update the current parameters for action
value approximation θi. Specifically, when updating the DQN
parameters, the objective of UE i is to minimize the mean
square error of the temporal difference (TD) over each training
batch of samples, which can be formulated as a loss function.

Definition 5: The loss function of UE i is the mean square
error of the TD over each training batch

L(θi)
Δ= E

�
(yDQN

i −Qi(si(t), ai(t); θi)
2
�
, (17)

where yDQN
i = r(si(t), ai(t)) + β max

ai(t+1)∈A
Qi(si

(t + 1), ai(t + 1); θ−
i ) is the target of approximation.

In practice, UE i updates the parameters of the target DQN
with the parameters of the trained DQN once per Z time
slots [20].

B. Proposed Design for UE Selection

After presenting the proposed DRL for each UE, we next
focus on the FL-enabled training procedure for the global
DQN. As aforementioned, if each UE trains its DQN indi-
vidually, convergence among the parameters of DQNs trained
by different UEs may not be guaranteed. On the other hand,
although convergence could be achieved using a central-
ized training method through collecting all the experiences
from UEs, the signaling overheads may not be affordable.
To address the above issues in the proposed design, FL [25]
is introduced to develop global parameters in a distributed
manner. In FL, the global parameters are disseminated to all
the UEs, and UEs adopt the trained global model parameters
to further refine their local model parameters. By iteratively
aggregating the trained model parameters form different UEs,
the global parameters are updated until achieving a desirable
accuracy. Generally, the architecture of FL offers two key
technical merits: 1) The global model server does not require
UEs’ complete data (or model) but only needs their local
model parameters, to reduce the signaling overheads for UEs.
2) The nature of the distributed data storage/process in FL
significantly reduces the complexity of the centralized data
storage/process.

Aligning with the spirit of FL, the proposed FL-enabled
training procedure is composed of two phases: UE selec-
tion and global model aggregation, while the proposed UE
selection is presented in this section. To develop FL-enabled
training procedure for maintaining global DQN parameters,
a global model server installed in the RIC should select a
certain set of UEs to perform local training (i.e., UE updates
the parameters of its DQN based on its observations). The
updated parameters are then sent to the global model server
for further aggregation (this part will be detailed in the next
section). Similar to the formulation of MDP for DRL, the UE
selection is of crucial importance and may largely impact the
performance of FL. Since the objective of FL is to minimize
the long-term global loss function after a period of training,
the optimization of the UE selection in FL can be formulated
as a long-term loss function minimization problem, i.e.

min
U ′(t)

L (θG(t)) = min
U ′(t)

1
|U �(t)|

Ttrain�
z=t

�
i∈U ′(t)

L (θi(z)), (18)

where |·| is the 1-norm operation, U �(t) is the set of the
selected UEs at time slot t, θi(t) and θG(t) are the local
model parameters of UE i and global model parameters at
time slot t, respectively, and Ttrain is the length of the training
period.

Remark 1: In the Q-learning based DRL, the loss function
is the mean square of the TD errors (i.e., the differences
between the target of approximation and present approxima-
tion) during the interactions with the environment, as shown
in (17), and the target of approximation is actually the
expected accumulated reward. Hence, minimizing TD errors of
all UEs is equivalent to maximizing the long-term accumulated
rewards of UEs. Based on the loss function of DRL, above loss
function minimization problem can be rewritten as

max
bs(t)

T�
t=0

M−1�
i=0

bi(t) · ri(si(t), ai(t)), (19)

where bs(t) is a vector of indicators

bs(t) = {b0(t), · · · , bM−1(t)} (20)

and bi(t) for all i is a binary indicator to indicate whether
UE i is selected at time slot t. UE i is selected at time slot
t if bi(t) = 1, and bi(t) = 0 otherwise. Therefore, the UE
selection problem can be transformed to a long-term reward
maximization problem.

In Remark 1, let As denote the space of bs(t). Since the
total number of UEs is M , the number of possible solutions
for the UE selection is |As| = 2M . Due to mobility of
UEs, there exits uncertainty on the set of UEs having the
best access decisions. Different from the greedy selection,
in which the set of UEs with the current best performance
are always chosen, the UCB algorithm [32] may provide a
better exploration ability to predictively search for the best
actions so as to achieve long-term maximization. With this
technical merit, a UCB algorithm is adopted in our scheme
to select UEs to perform local training, and maximize the
long-term global model training performance in FL. UCB is
a sort of RL algorithms, which therefore aims at maximizing
the mean of accumulated rewards through choosing a proper
action (i.e., UE selections). For this purpose, the reward
at each time step of UCB should be adequately designed.
Since the objective of UE selections is also to maximize
the overall throughput and avoid frequent handovers, which
aligns to the objective of DRL in each UE, the reward of
UCB can be constructed based on the reward of DRL in
each UE.

Proposition 2 (Reward of UCB): Note that the objective of
the UE selection is to maximize the long-term accumulated
overall rewards of UEs, which can be calculated by the
global model server. Suppose that the UE selection is per-
formed every nf (nf ≥ 0) time slots, the reward of the
designed UCB algorithm Rs(t) is the sum of the accu-
mulated rewards from all the UEs in nf continuous time
slots, i.e.,

Rs(t) =
t+nf−1�

τ=t

M−1�
i=0

ri(si(τ), ai(τ)). (21)
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With the provided reward, the global model server performs
UE selection based on the following criterion

bs(t) = arg max
ι∈As

�
μ̂ι +

�
2ln t

Tι (t− 1)

�
, (22)

where Tι is the number of time slots that action ι ∈ As has
been selected prior to time slot t, and μ̂ι is an estimated value
with the following updating rule

μ̂ι ← μ̂ι + αs (Rs (t)− μ̂ι) . (23)

where αs is the learning rate of UCB. From (22), when action ι

has been continuously selected for a long time, μ̂ι +
�

2ln t
Tι(t−1)

becomes smaller. As a result, other bs(t) may be selected. This
design therefore facilitates exploration and avoids the result
being trapped in the local optimum.

C. Design for Aggregation Stage

In this section, we continue the discussion on the proposed
design for the model aggregation in FL. In the proposed
scheme, all the UEs have a common objective to maximize
the overall throughput and minimize the number of handovers.

Proposition 3: In FL, the FedAvg algorithm [33] is a
widely adopted method to train the global model parameters
using the following rule

θG(t) =
1�

i∈U ′(t)
Di

�
i∈U ′(t)

Diθi(t), (24)

where Di is the size of the dataset of UE i. From (24), the
ratio of each selected UE’s datasize to the sum of datasizes in
each model aggregation phase can be regarded as the weight
for corresponding UE’s DQN parameters. In the proposed
scheme, for all the UEs with a common objective, UEs can
be regarded as homogeneous with the same datasize in the
training phase, and the DQN parameters from each selected
UE can be given the same weight. Therefore, the updating
rule of the model aggregation operation can be the average
of parameters from the selected UEs,

θG(t) =
1

|U �(t)|
�

i∈U ′(t)

θi(t). (25)

Since the reward of each UE is influenced by other UEs’
actions, UEs may suffer from non-stationary issues in the
training phase. To alleviate this issue, in our proposed scheme,
each UE regards the other UEs as part of the environment, and
the global DQN parameters as the average common knowledge
for the environment are shared among UEs. In the following
theorem, the convergence of the global DQN parameters using
the proposed model aggregation is justified.

Theorem 1: When UEs are selected uniformly and the UE
selection is performed for a large number of runs, the final
parameters of the global DQN trained by the global model
server using FL converge to

θ∗
G =

1
M

M−1�
i=0

θ∗
i . (26)

where θi
∗ are the converged DQN parameters of UE i.

Proof: According to (25), the updated parameters of the
global DQN in the model aggregation can be rewritten as

lim
t→∞θG(t + 1) = lim

t→∞
1

|U �(t)|
�

i∈U ′(t)

(θG(t)− gθi(t))

= lim
t→∞θG(t)− lim

t→∞
1

|U �(t)|
�

i∈U ′(t)

gθi
(t),

(27)

where gθi(t) = (θi(t+1)−θi(t))/α is the gradient of UE i at
time slot t. Noted that the state space and action space defined
in Section III-A are finite and the reward function is bounded.

When the learning rate α satisfies lim
T→∞

T−1�
t=0

α =∞ and

lim
T→∞

T−1�
t=0

α2 <∞, the convergence of tabular Q-function can

be achieved after a large number of updates [34]. According
to [35], the convergence of the DQN (with particular activation
functions) can be proved theoretically, which indicates that
the convergence of the parameters θi can be achieved after
a large number of updates. Therefore, when t → ∞, gθi

(t)
approaches zero, and the convergence of θG can be achieved
in (27).

Furthermore, since each UE is selected uniformly, the
probability of UE i being selected is 1

M . After a large number
of runs, the sample average of the parameters of selected UEs
approaches to the mean of the parameters of selected UEs

lim
T→∞

1
T

T−1�
t=0

1
|U �(t)|

�
i∈U ′(t)

θi(t) = lim
T→∞

1
T

T−1�
t=0

M−1�
i=0

1
M

θi(t)

=
1
M

M−1�
i=0

θ∗
i . (28)

By substituting (28) to (25), the parameters of the global
DQN converge to (26). �

Theorem 1 shows that the converged global DQN para-
meters are actually the mean value of the converged DQN
parameters trained by all UEs separately. Thus, the converged
DQN parameters can be regarded as a consensus of the best
decisions obtained by multiple UEs. In this case, before
reaching convergence, there must exist a bias χi(s, a; θi) in
the estimated action value of UE i along with the consensus
result. The action value can therefore be generally formulated
as the sum of a consensus function yc(s, a; θi) and a bias
function χi(s, a; θi), i.e.,

Qi(s, a; θi) = yc(s, a; θi) + χi(s, a; θi). (29)

If all the DQN parameters of UEs are aggregated directly
to generate the global DQN parameters, the bias of each UE
i cannot be adequately presented and effectively eliminated.
As a consequence, the global model parameters may not
converge to the optimum result [36]. To avoid this undesirable
case, only a part of DQN parameters of UEs should be
aggregated as the consensus of all the UEs, while the bias
function is trained by each UE locally.

As illustrated in Fig. 2, different from the traditional DQN
structure, Qi (s, a; θi) in the adopted dueling DQN [36],
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Fig. 2. The structure of dueling DQN.

rewritten as Qi (s, a; θc
i , θ

v
i , θa

i ), is decomposed as two parts:
the value function V (s; θc

i , θ
v
i ) and the advantage function

A (s, a; θc
i , θ

a
i ), where θc

i , θv
i and θa

i are the common-network
parameters, value-function parameters, and advantage-function
parameters, respectively. The common-network part, which
can be a group of fully-connected layers in the DNN,
is deployed as the front part in the dueling DQN to extract
features from the inputted state. The copies of the output
of the common-network part as two independent streams are
inputted into the value-function part and advantage-function
part, respectively. The value function is only used to estimate
the value of state, and the advantage function represents the
importance of each action in the given state. The expression
of Qi (s, a; θi) in the dueling structure therefore can be
decomposed to

Qi (s, a; θc
i , θ

v
i , θa

i ) = V (s; θc
i , θ

v
i ) + A (s, a; θc

i , θ
a
i ) . (30)

Since the consensus of all UEs is the aggregation of
decision policies, the value-function parameters θv

i and the
common-network parameters θc

i are used to represent the
consensus function yc(s, a; θG). While since the bias func-
tion can be regarded as the preference of each action for
UE i, the advantage-function parameters θa

i are used to
represent the bias function χi(s, a; θi). Since the results of
the value function and advantage function cannot be recov-
ered given a specific action value, (30) is unidentifiable
and the performance may largely degrade if (30) is applied
directly. To improve the identifiability of V (s; θc

i , θ
v
i ) and

A (s, a; θc
i , θ

a
i ), a constant can be added to V (s; θc

i , θ
v
i ) and

the same constant can be subtracted from A (s, a; θc
i , θ

a
i ).

The average of A (s, a; θc
i , θ

a
i ) is therefore introduced and

the expression used in practical implementations is given by

Qi (s, a; θc
i , θ

v
i , θ

a
i ) = V (s; θc

i , θ
v
i ) + A (s, a; θc

i , θ
a
i )

− 1
|A|

�
a∈A

A (s, a; θc
i , θ

a
i ). (31)

In each training step of FL, the selected UEs only present
their common-network and value-function parameters (θc

i , θ
v
i )

to the global model server in the uplink reports. In the
following proposition, the model aggregation operations of θc

i

and θv
i at the global model server side are provided.

Proposition 4: In the global model aggregation phase, the
global common-network and value-function parameters are

obtained by averaging the corresponding parameters from the
selected UEs, i.e.,

θc
G(t) =

1
|U �(t)|

�
i∈U ′(t)

θc
i (t), (32)

θv
G(t) =

1
|U �(t)|

�
i∈U ′(t)

θv
i (t). (33)

After aggregation, the obtained parameters θc
G(t) and θv

G(t)
are sent back to each UE. UE i then combines the newly
obtained parameters and the locally trained advantage-function
parameters θv

i (t) as new parameters of its local (trained) DQN,
i.e., θi(t + 1) = {θa

i (t), θc
G(t), θv

G(t)}. In the subsequent
time slot, each UE makes decisions based on the new local
(trained) DQN.

D. The Proposed Federated DRL-Based Scheme

After providing the UE selection scheme and the duel-
ing structure, we are now ready to propose the federated
DRL-based scheme for user access control, as illustrated in
Fig. 3. To implement access control at the UE side, each UE
needs to learn the hidden long-term variation pattern by using
proposed DRL framework to interact with the environment.
Since the objective is to maximize the overall performance,
UEs should not only consider their local information but also
concentrate on the common knowledge of the environment,
which is presented by the global DQN parameters. Moreover,
since the decisions of UEs are influenced by each other, if the
complete local DQN parameters of UEs are considered, these
complete local DQN parameters may not be independent.
To optimally train global DQN parameters, the common
knowledge of the environment should be represented without
considering UEs’ local preferences in actions. In this case,
only partial DQN parameters of each UE are adopted to
present the consensus of UEs, and partial parameters are
trained locally to preserve local preferences to access actions.
Specifically, in the proposed scheme, each UE makes access
decisions based on its trained DQN with the parameters
{θa

i (t), θc
G(t), θv

G(t)}, which is trained by an FL-enabled
training algorithm. Additionally, to achieve long-term per-
formance optimizations, a global model server installed in
the RIC is responsible for selecting UEs to perform local
training by using the provided UCB-based selection scheme,
and aggregating the parameters collected from the selected
UEs to update the global DQN parameters. The temporal
structure of the proposed scheme consists of two phases,
i.e., the initialization phase and the training phase.

• Initialization Phase: At the beginning of the initial-
ization phase, each UE needs to establish two DQNs,
i.e. the trained DQN Qi(si, ai; θi) and the target DQN
Qi(si, ai; θ−

i ) with the arbitrarily initialized parameters
θi and θ−

i , and the replay memory Di to store its inter-
action experience {si(t), ai(t), ri(si(t), ai(t)), si(t+1)}
at each time slot. In the first Nb slots, UE i makes access
decisions using the RSS-based method, and subsequently
receives Nb corresponding rewards. Then, these Nb inter-
action experiences are stored into its replay memory as
initialization training data.
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Fig. 3. The proposed user access control scheme.

• Training Phase: In each time slot t (t > Nb) of the
training phase, UE i visits a state, and makes its access
decision based on the trained DQN. When multiple UEs
send access requests to the same BS for the same RB,
the BS would allocate the RB to the UE with the
strongest request in terms of signal strength, and allocate
its available RBs to other UEs. After executing the
selected action, each UE receives an immediate reward
and visits a new state. The interaction experiences are
stored into its replay memory. Let tstart denote a local
record of time slot for the last training round. In every
nf time slots, (i.e., t − tstart = nf ), the global model
server would select a number of UEs for performing the
local DQN training according to the UCB-based scheme
proposed in Section III-B. Then, each selected UE sam-
ples a mini-batch size of experiences randomly from the
replay memory as training data. The parameters θi(t) are
updated using the SGD algorithm to minimize the loss
function defined in (17). Subsequently, each selected UE
sends its common-network and value-function parameters
(θc

i (t), θ
v
i (t)) to the global model server. Next, the global

model server performs model aggregation to obtain new
global common-network and value-function parameters
(θc

G(t), θv
G(t)), and sends these newly obtained parame-

ters to all the UEs. Finally, when UEs receive these global
DQN parameters, the received parameters are combined
with the locally trained advantage-function parameters
θa

i (t) as the new local DQN parameters, which are used
for access decision in the next time slot.

In Algorithm 1, above procedure of the proposed scheme is
summarized. If a new UE arrives at the O-RAN, it only needs
to download parameters of the global DQN from the global
model server, and then makes access decisions based on its
DQN with the downloaded parameters.

E. Complexity and Signaling Overheads

In this section, we analyze the complexity and signaling
overheads of the proposed scheme. For performance com-
parison, two conventional schemes are considered, i.e., the
distributed training scheme and centralized training scheme.

• Distributed Training: In the distributed training scheme,
each UE trains its DQN with local interaction experiences

independently. In particular, there is no information
exchange between each UE, and all the UEs make
decisions according to their own trained DQNs.

• Centralized Training: In this scheme, there exists a cen-
tralized trainer responsible for training a global DQN for
UEs. In the training phase, UEs present their interaction
experiences to the centralized trainer as training data. The
trainer updates the parameters of the DQN based on the
collected experiences, which are sent back to UEs for
access decisions.

In this paper, the fully-connected network is adopted to
construct the DQN for each UE. Let Zc, Zv, Za and nc

z ,
nv

z , na
z denote the number of hidden layers of the common-

network part, value-function network part, advantage-function
network part, and the number of neurons in the zth hid-
den layers of the common-network part, value-function net-
work part, advantage-function network part, respectively, the
time complexity of the adopted DQN can be ζDQN =
J((2(N + K) + 1) × nc

1 + nv
Zv + na

ZaNK + nc
Zc(nv

1 +

na
1) +

Zc−1�
z=1

nc
z × nc

z+1 +
Zv−1�
z=1

nv
z × nv

z+1 +
Za−1�
z=1

na
z × na

z+1),

where J(·) is the time complexity for updating the parame-
ters of the fully-connected layers. Therefore, for each UE,
the complexity of training a DQN in a single time slot is
O(ζDQN ×Nb). Hence, the time complexity of the proposed

scheme isO(
T̄�

z=1
ζDQN×Nb×|U �(z×nf )|), where T̄ =

�
T
nf

�
.

For the distributed training scheme, the time complexity is
O(T̄ ×M × ζDQN ×Nb) since all the UEs train their DQNs
independently. For the centralized scheme, only the centralized
trainer node trains the global DQN, and therefore the time
complexity is O(T × ζDQN ×Nb).

After analyzing the complexity, we further analyze the
signaling overheads of these three schemes. In the proposed
scheme, the selected UEs transmit partial DQN parameters
with size of DF to the global model server in the uplink
reports, and the global model server sends the aggregated DQN
parameters back to all the UEs in the downlink transmissions,
where DF = (2(N + K) + 1) × nc

1 + nv
Zv + nc

Zc(nv
1) +

Zc−1�
z=1

nc
z × nc

z+1 +
Zv−1�
z=1

nv
z × nv

z+1 is the datasize of trans-

mitted partial parameters. While in the distributed training
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scheme, each UE trains its DQN independently without
information exchange. Therefore, there is no signaling over-
head in this distributed training scheme. In the conventional
centralized training scheme, each UE sends its interaction
experience to the centralized trainer at each time slot, and the
total datasize of transmitted experience is 4M(N + K + 1).
Then the centralized trainer announces the parameters of the
trained DQN with size of DC in the downlink transmis-
sions at each time slot, where DC = DF + na

ZaNK +

nc
Zc(na

1) +
Za−1�
z=1

na
z × na

z+1 is the datasize of the complete

DQN parameters.

Algorithm 1 The Proposed Federated DRL-Based Scheme
1: Initialize Stage:
2: Each UE constructs two DQNs, i.e., Qi(si, ai; θi) and

Qi(si, ai; θ
−
i ) with randomly initialized parameters, and a replay

memory Di. The global model server installed in the RIC is
initialized.

3: In the first Nb time slots, each UE accesses the BS with the
strongest RSS and stores corresponding interaction experiences
into its replay memory.

4: Training Stage:
5: tstart ← t
6: repeat
7: Each UE visits a state si(t) at each time slot t, and makes

access decision ai(t) based on its trained DQN.
8: Each UE obtains a reward ri (si(t), ai(t)) and visits the state

si(t + 1) at time slot t + 1.
9: Store experience {si(t), ai(t), ri(si(t),ai(t)),si(t + 1)} into

its replay memory Di.
10: t← t + 1
11: if t− tstart == nf then
12: The global model server selects UEs from the UE set U

according to the provided UCB-based scheme in (22).
13: Each selected UE randomly samples a mini-batch size of

experiences from its replay memory Di and updates its local
DQN parameters by minimizing the loss function defined in
(17) using the SGD algorithm.

14: Each selected UE reports its trained common-network para-
meters θc

i (t) and value-function parameters θv
i (t) to the

global model server.
15: The global model server aggregates global parameters from

the selected UEs based on (32) and (33).
16: The server sends the newly obtained parameters back to all

the UEs.
17: Each UE combines its local advantage-function parameters

θa
i (t) and newly obtained parameters as new local DQN

parameters to make access decision.
18: The server updates the UCB-based UE selection scheme

based on (23)
19: end if
20: until The global loss decreases a desirable value (e.g., 0.05).

IV. PERFORMANCE EVALUATION

A. Simulation Settings

To evaluate the performance of the proposed scheme,
we consider an O-RAN deployment in which N = 6 BSs with
different transmission power levels share K = 10 RBs to serve
M = 20 UEs located randomly in a 1000 m × 1000 m square
area. Each UE moves with a fixed velocity along a certain
direction. The Gauss-Markov mobility model [37] is adopted

Fig. 4. Moving average overall throughputs with different DQN parameter
exchange methods with nf = 10 (moving average of the results in previ-
ous 500 slots).

to generate the mobility patterns of UEs. For the construction
of DQNs, the provided dueling structure is adopted, and
the hyperparameters of the DQN are determined using the
cross-validation algorithm [38]. Specifically, there are 2 fully-
connected layers with a sigmoid function, 3 fully-connected
layers with a sigmoid function and 3 fully-connected layers
with a sigmoid function in a DQN to represent the common-
network part, value-function part and advantage-function part,
respectively. Other main simulation parameters are summa-
rized in Table II.

For performance comparison benchmarkings, the
RSS-based scheme [5], Q-learning [39], particle swarm
optimization (PSO) algorithm, distributed training scheme and
centralized training scheme are considered. In the RSS-based
scheme, each UE accesses the BS and RB with the strongest
RSS in each time slot. In the Q-learning, each UE makes
access decisions based on its Q-table according to a softmax
selection policy. The PSO algorithm is an evolutionary
searching algorithm to find access decisions for UEs [40],
which is a commonly method to solve a binary integer
programming problem. On the other hand, the operations of
the distributed training scheme and the centralized training
scheme are aforementioned in Section III-E.

B. Results and Analysis

1) Performance With Different DQN Parameter Exchange
Methods: As aforementioned in (29), if all the DQN parame-
ters of UEs are averaged directly to generate the global DQN
parameters, the global model parameters may not converge to
the optimum result. To address this issue, a dueling structure
has been provided in our scheme. To justify the performance
of this design, we investigate the throughputs of the proposed
scheme with different DQN parameter exchange methods in
Fig. 4. From Fig. 4, we can observe that the overall throughput
grows significantly over the time if the proposed dueling struc-
ture is adopted, instead of the complete parameter exchange
method. Particularly, since the decision-makings are performed
based on historical network information, the performance
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TABLE II

PARAMETERS FOR SIMULATION

Fig. 5. Average overall throughputs with different uploading failure proba-
bilities.

Fig. 6. Moving average overall throughputs with different UE selection
methods.

achieved by the proposed scheme is sub-optimal. The result
shows that UEs are able to learn proper access policies from
interactions with the environment. Nevertheless, the overall
throughput of the adopted dueling structure is higher than that
of the complete parameter exchange method, which justifies
that the adopted dueling structure offers a greater generation
ability in the FL-enabled training algorithm.

2) Performance With Different Uploading Failure Proba-
bilities: Next, due to the imperfect channel conditions, UEs
uploading their local model parameters may suffer from differ-
ent levels of transmission latency. A transmission failure may
consequently occur if the transmission latency is too severe.

To analyze the impact of transmission latency (and thus trans-
mission failure), we should evaluate the overall throughputs of
the proposed scheme with different uploading failure proba-
bilities in Fig. 5. In the meantime, we also evaluate the perfor-
mances of the distributed training scheme (i.e., only distributed
DRL in each UE without FL), the proposed scheme with
a random exploration algorithm (i.e., in the 
-greedy action
selection, each non-greedy action is selected with an equal
probability), the proposed scheme with a Boltzmann explo-
ration algorithm (i.e., each non-greedy action is sampled based
on a Boltzmann distribution calculated by current action val-
ues), and the proposed scheme with a score-based exploration
algorithm (i.e., in the 
-greedy policy selection, if the greedy
action is not selected, the non-greedy action with the highest
score is selected, which is calculated according to (16)). From
Fig. 5, we can observe that the overall throughput achieved
by the proposed scheme with the score-based exploration is
higher than those of the random and Boltzmann exploration
since historical information is exploited in the score-based
exploration, which guides the agent to select actions with the
highest long-term channel quality instead of blind exploration
or current estimated action distribution. Additionally, with the
increase of the uploading failure probabilities, the performance
of the proposed scheme decreases and is gradually close
to that of the distributed training scheme. Nevertheless, the
proposed scheme outperforms the distributed DRL training
scheme in the range of practical uploading failure probabilities.
These results therefore suggest the robustness of the proposed
scheme against potential transmission delay.

3) Performance With Different UE Selection Methods: Next,
to justify the practicability of the provided UCB-based UE
selection method, the throughputs of the proposed federated
DRL-based user access control scheme with different UE
selection methods are evaluated in Fig. 6, including the pro-
posed UCB-based selection method, greedy selection method
and random selection method. In the greedy method, UEs
with the present maximum throughput are selected for training
local DQNs in the training phase. In other words, the greedy
method only selects UEs with the best immediate performance
but ignores the long-term performance, which may lead to a
poor generalization ability. On the other hand, in the random
selection method, UEs are randomly selected in the training
phase. Since the objective of the UCB-based method is to
maximize the long-term overall throughput, it can effectively
strike the balance between exploration and exploitation. As a
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Fig. 7. Moving average overall throughputs with different coherent coefficients with M = 20.

Fig. 8. Moving average overall throughputs with different numbers of UEs and BSs for ρ = 0.9.

result, the provided UCB-based UE selection method achieves
the highest overall throughput over the other two methods.

4) Performance With Different Coherent Coefficients: To
evaluate the performance of the proposed scheme under dif-
ferent channel conditions, in Fig. 7, the simulation results
in terms of the overall throughputs of the proposed scheme,
distributed training scheme and centralized training scheme
under different coherent coefficients are provided. Moreover,
we also evaluate the performances of context-aware mobility
management (MM) algorithm [9], batched randomization with
exponential weighting (BREW) algorithm [15] and mobility
management with batched D-UCB (MMBD) algorithm [16],
which are based on multi-arm bandit model in RL. Particularly,
in context-aware MM algorithm, user access control is first
performed based on the adjusted cell biases of BSs then RBs
are allocated to connected UEs according to their historical
throughputs and velocities, and the algorithm can be regarded
as one kind of cell-based scheme. Additionally, since there
is no RB allocation design involved in BREW and MMBD,
UEs are allocated by RBs with the best channel qualities after
accessing a specific BS in our simulations. For ρ = 0.9,

the small-scale fading is not severe, and the channel gain
varies slowly. On the contrary, the channel gain varies fast
for ρ = 0.2. From Fig. 7, we can observe that the throughputs
of all the three DRL-based schemes (i.e., proposed scheme,
distributed and centralized training schemes) when ρ = 0.9 are
higher than those when ρ = 0.2, since the variation pattern of
small-scale fading can be effectively learned when the channel
condition varies slowly. Under both cases of a slowly fading
channel (ρ = 0.9) and a fast fading channel (ρ = 0.2), the
proposed scheme significantly outperforms the other training
schemes with the aid of model aggregation in the global model
server. The reason is that the influences between UEs are
not considered in BREW and MMBD algorithms. For the
context-aware MM algorithm, it mainly concentrates on the
historical throughput for fairness among UEs, and channel
gain variations between BS-UE pairs are not considered. These
results justify the effectiveness and robustness of the proposed
scheme under any channel conditions.

5) Performance With Different Numbers of UEs and BSs:
Subsequently, we evaluate the performance of the proposed
scheme with different numbers of UEs and BSs in Fig. 8.
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Fig. 9. Overall throughput and numbers of handover with different handover
costs and punishment factors in the reward function with M = 20 and
ρ = 0.9. (All the results are calculated over 500 time slots in which the
performances of all the schemes have converged.

For performance comparison, we also evaluate performances
of the benchmarkings adopted in Fig. 7. When there are
large numbers of UEs and BSs (M = 40 and N = 8),
the overall throughput achieved by the proposed scheme is
higher than that when there are smaller numbers of UEs and
BSs (M = 30 and N = 6). This indicates that the overall
throughput increases gradually with the growth of numbers
of UEs and BSs. Besides, in different network scales, the
proposed scheme outperforms the other three bandit-based
algorithms (i.e., context-aware MM, BREW and MMBD) and
the distributed training scheme since UEs are only able to
estimate the environment variations from their own observa-
tions in these algorithms. The performances of the proposed
scheme and the centralized scheme are around the same level,
while the convergence time of the proposed scheme is far
shorter than that of the centralized scheme. This indicates that
information sharing between UEs is necessary as the network
scale increases. Additionally, the convergence of the proposed
scheme is not influenced by the numbers of UEs and BSs in
the O-RAN.

6) Performance With Different Handover Punishment Fac-
tors: Finally, we evaluate the impact of the punishment factor
η in the reward function to the overall throughput and the
number of handovers. For performance comparison, we also
evaluate the overall throughputs of the RSS-based method,
PSO algorithm, Q-learning, distributed training method and
centralized method. From Fig. 9(a) and 9(b), we can observe
that UEs with the proposed scheme can achieve the highest
overall throughput and the least number of handovers as com-
pared with the other five schemes. In the RSS-based scheme,
multiple UEs would access the same BS, and the access
decisions are heavily influenced by mobility of UEs, leading
to frequent handovers. For Q-learning, since there exists a
high-dimensional decision space to explore, the Q-table cannot
be fully updated, resulting in a poor throughput performance.
Additionally, the overall throughput and the number of han-
dovers decrease as the value of η increases. Hence, the
proposed scheme with a larger η leads to a lower overall

throughput and less handovers. Different levels of tradeoff
between the overall throughput and the number of handovers
can therefore be achieved by adopting different η.

V. CONCLUSION

To address the foundational issues in the O-RAN to max-
imize the overall throughput and avoid frequent handovers,
UEs need to access proper BSs at each time slot through
maximizing the long-term utility. To tackle this optimization
problem in practical O-RAN deployment, we propose a fed-
erated DRL-based scheme for user access control, in which
each UE independently makes access decisions with its DQN,
and a global model server installed in the RIC updates
the global DQN parameters by aggregating DQN parameters
obtained from the selected UEs. To select proper UEs to
provide their DQN parameters, we develop a UCB-based
UE selection method to find the optimal UE set in the
training phase of the proposed FL-enabled training algorithm.
To further facilitate convergence of the proposed scheme,
a dueling structure is provided to decompose the DQN para-
meters at the UE side, and the selected UEs only exchange
the common-network and value-function parameters with the
global model server. Through comparing the performance with
different training schemes and the state-of-the-art schemes, the
simulation results have shown that a significant throughput
enhancement and less number of handovers can be achieved
by the proposed scheme over these benchmarkings under
different channel conditions, numbers of UEs and BSs and
handover punishment factors. Our proposed scheme therefore
offers an effective design of intelligent user access control
for the O-RAN. It can be interesting to extend the proposed
scheme to construct RL-based decision scheme for multi-
layer networks with different control cycles and establish more
general resource allocation mechanisms (e.g. power control
and dynamic beamforming) in the O-RAN.
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