
5374 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Multiagent Meta-Reinforcement Learning for
Adaptive Multipath Routing Optimization

Long Chen , Member, IEEE, Bin Hu , Member, IEEE, Zhi-Hong Guan , Senior Member, IEEE,

Lian Zhao , Senior Member, IEEE, and Xuemin Shen , Fellow, IEEE

Abstract— In this article, we investigate the routing problem
of packet networks through multiagent reinforcement learn-
ing (RL), which is a very challenging topic in distributed
and autonomous networked systems. In specific, the routing
problem is modeled as a networked multiagent partially observ-
able Markov decision process (MDP). Since the MDP of a
network node is not only affected by its neighboring nodes’
policies but also the network traffic demand, it becomes a
multitask learning problem. Inspired by recent success of RL
and metalearning, we propose two novel model-free multiagent
RL algorithms, named multiagent proximal policy optimiza-
tion (MAPPO) and multiagent metaproximal policy optimization
(meta-MAPPO), to optimize the network performances under
fixed and time-varying traffic demand, respectively. A practicable
distributed implementation framework is designed based on the
separability of exploration and exploitation in training MAPPO.
Compared with the existing routing optimization policies, our
simulation results demonstrate the excellent performances of the
proposed algorithms.

Index Terms— Adaptive routing, metapolicy gradient, multia-
gent, reinforcement learning (RL).

I. INTRODUCTION

AS A fundamental function of paramount importance in
networked systems, routing is the problem of selecting

paths to send data packets or goods from sources to desti-
nations while meeting the quality-of-service (QoS) require-
ments under various system constraints. It has applications
in a wide range of fields, such as goods transportation in
logistics systems [1], power transmission in smart grids [2],
traffic scheduling in intelligent transportation systems [3], and
especially information exchange in communication networks
[4]–[7]. Due to its intrinsic difficulty and the great benefits
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of optimal routing, routing has become a challenging issue
attracting great research attention in recent years.

The performance metrics of routing strategy, such as end-
to-end delay, throughput, packet delivery rate, link utilization
ratio, and energy consumption, depend on network topol-
ogy, nodes’ processing capabilities, traffic pattern, and so
on [8]–[10]. To analyze and improve routing protocols, a net-
worked system is often modeled as a weighted graph, where
weights are related to node and link properties, including but
not limited to latency, capacity, reliability, and energy. The
shortest path routing (SPR) is widely used due to its simplicity
and effectiveness. However, finding the minimum cost paths
that satisfy multiple constraints in a graph is NP-complete [9].

Many heuristic routing policies have been proposed to pro-
vide suboptimal solutions in both wired and wireless networks.
When deploying the SPR protocol in practical IP networks,
desirable performance can be observed with few link weight
changes in scenarios of time-varying traffic demand matri-
ces [10]. In large-scale complex networks, routing algorithms
are proposed to balance traffic by minimizing the maximum
generalized node betweenness centrality [11]. To increase
throughput and end-to-end reliability, multipath approaches,
such as equal-cost multipath [12] and optimization of link
weights (OLW) [13], are adopted in multihop networks, where
the source delivers the packets to their destinations via multiple
paths, thereby supporting a higher transmission rate than what
is possible with only one path. A heuristic approach, called
generalized destination-based multipath routing (GDMR), can
achieve the same high performance as explicit routing [14].
However, multipath routing also leads to some problems, such
as energy balance and multipath cooperation. In addition,
obtaining an accurate view of traffic demand and statistical
characteristics of the communication channels is a nontrivial
task in practice, as most networks lack the appropriate mea-
surement infrastructure [15].

Reinforcement learning (RL), a bioinspired machine learn-
ing technique where an agent seeks an optimal behavior
policy through repeated trial and error interactions with a
dynamic environment [16], can provide a model-free solution
for routing problems. Q-routing proposed in [17] is the first
autonomous and distributed packet routing scheme based on
Q-learning. With consideration of Q-value freshness, the pre-
dictive Q-routing [18] keeps the best Q-values and reuses
them to predict the traffic trend. Based on collaborative RL,
the mobile ad hoc network routing protocol proposed in [19]
uses feedback in the selection of next-hop links to adapt
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its routing behavior, resulting in optimization of network
throughput. As a model-based Q-learning approach, QELAR
aims at maximizing the residual energy of the network nodes
in underwater wireless broadcast channel environments [20].
By adding a penalty for dropping packets into the cost func-
tion, the channel-aware RL-based multipath adaptive routing
(CARMA) [21] is proposed for optimizing route-long energy
consumption. A self-learning routing protocol based on RL
is designed for flying ad hoc networks in a complicated
flight environment [22]. More RL-based routing algorithms
can be found in [23]. Due to the well-known “curse of
dimensionality” [16], the complexity of training RL with large
state–action space prohibits a comprehensive representation of
dynamic network states, thus limiting the potential benefit of
RL-based packet routing policies.

Inspired by the recent success and thorough research on
hybrid neural networks [24]–[30], the deep learning (DL) has
been introduced in RL, named deep reinforcement learning
(DRL), to represent large state–action space and execute auto-
matic feature extraction in high-dimensional space. With deep
neural network (DNN) as a powerful approximator of value
function [31], DRL-based routing can achieve more efficient
exploration and end-to-end decision-making. The Q-function
of Q-routing is approximated via a neural network instead of a
table, allowing agents to consider arbitrary information related
to routing efficiency [32]. Deep Q-routing with communi-
cation (DQRC) proposed in [33] uses an independent long
short-term memory (LSTM) recurrent neural network, which
extracts routing features from high-dimensional information
regarding backlogged packets and past actions, to approxi-
mate the Q-function effectively. Utilizing the router selection
Markov decision process (MDP) to formulate the routing
problem, two novel deep Q network (DQN)-based central-
ized online algorithms are designed to reduce the network
congestion probability with short transmission paths [34].
In order to automatically adjust the weights of links dynami-
cally, a deep deterministic policy gradient (DDPG) algorithm,
a recently proposed efficient DRL algorithm, is applied in the
software-defined networking (SDN), providing better routing
configurations to minimize the network delay than traditional
traffic engineering based on handcrafted feature selection [35].
Another algorithm [36] considers a similar network model
while taking minimizing link utilization as the optimization
target.

In this article, we consider optimal multipath routing
schemes for distributed multihop networks. A motivating
example is the multihop wireless sensor network (WSN)
shown in Fig. 1. Several heterogeneous smart devices are
scattered throughout an area of interest to observe a physical
phenomenon, such as tracking and monitoring wild animals.
The sensor nodes closer to wild animals are the current
information sources. Within each sampling period, the real-
time monitoring information generated at the sources is for-
warded to the local edge servers (sinks) via other relay
nodes (routers), where the edge servers have more powerful
storage and computing capabilities and may be connected to
a remote monitoring center and cloud servers. As the energy
consumption of sending a data packet is much higher than

Fig. 1. WSN scenario and its network topology containing 15 nodes and
21 bidirectional links, where source nodes (diamond) Ns = {n14, n12, n13}
and sink nodes (hexagon) Nd = {n15, n11, n10}.

that of receiving it, only constraints on the forwarding ability
of nodes are considered. Since the behaviors of wild animals
are uncertain and the smart nodes are heterogeneous and with
limited capabilities, an adaptive multipath routing is needed to
meet the required QoS. Similar routing problems also appear
in the space and air segments of software-defined space–air–
ground integrated vehicular networks [7].

We leverage networked multiagent partially observable
MDP (POMDP) to formulate the packet routing problem
in a multihop network. Based on multiagent RL (MARL)
and metalearning, two novel RL-based routing algorithms
are designed to optimize network performance and resource
utilization for uncertain and dynamic network environments.
The twofold contributions of this article include the following.

1) In order to improve the communication performance
of heterogeneous multihop networks with limited for-
warding capabilities and energy supplies, we propose
a novel multipath routing scheme based on an MARL
algorithm, termed multiagent proximal policy optimiza-
tion (MAPPO). Also, a practicable distributed imple-
mentation framework of MAPPO-based routing schemes
is given. With a carefully designed reward function,
the routing protocol can be energy-efficient and achieve
a longer network lifetime in energy-limited noisy envi-
ronments without sacrificing the packet delivery time.

2) By modeling a dynamic environment as a multitask
learning problem, the multiagent metaproximal pol-
icy optimization (meta-MAPPO) is designed based
on meta-reinforcement learning (meta-RL). Using the
Kullback–Leibler divergence (KL-divergence) penalty
to obtain a more robust metapolicy, the adaptive rout-
ing with meta-MAPPO can handle the dynamic traffic
demand more effectively.

The remainder of this article is organized as follows.
Section II reviews the background knowledge of RL and its
applications in packet routing. The problem definitions of
routing are described in Section III. Section IV and V present
our design of MAPPO and meta-MAPPO routing schemes,
respectively. The performance of the proposed algorithms is
evaluated in Section VI with comparison to SPR, Q-routing,
QELAR, and DQRC. Section VII concludes this work.

II. BACKGROUND AND PRELIMINARY

In this section, we briefly review RL and its applications
in routing problems and then put forward the necessity

Authorized licensed use limited to: University of Waterloo. Downloaded on November 22,2022 at 21:41:05 UTC from IEEE Xplore.  Restrictions apply. 



5376 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

of distributed routing policies for real-world network
scenarios.

A. Reinforcement Learning

RL is a trial and error learning process to solve sequential
decision-making problems [16]. At each time step t , the agent
receives a state st in a state space S, and executes an action
at from an action space A, following a behavior policy π .
Then, the agent receives a scalar reward rt and transitions
to the next state st+1 according to the environment dynam-
ics P . When an RL problem satisfies the Markov property,
i.e., the future depends only on the current state and action,
it can be formulated as an MDP, defined by a five-tuple
(S,A, P, R, γ ), where P(st+1|st , at) is the transition prob-
ability function, R(s, a) is the reward function, and γ is the
discount factor. Denoting the discounted cumulative reward by
Gt=�∞

k=0 γ
krt+k , the goal of RL is finding an optimal policy

π(a|s) to maximize the expectation of G0. As a fundamental
concept in RL, a value function measures how good each state
or state–action pair is. The state value function is defined as
V π(s) = E[Gt |st=s], and the state–action value function is
Qπ (s, a)=E[Gt |st=s, at=a].

Because a ground-truth model of the environment is usually
not available to the agent, model-free methods have been
prevailing in RL in the past several years. There are two
main approaches to representing and training agents with
model-free RL, i.e., Q-learning and policy gradient [37].
Q-learning methods learn an approximator Qφ(s, a) with
parameter φ for the optimal action-value function Q∗(s, a) =
maxπ Qπ (s, a). Instead, policy gradient methods represent a
policy explicitly as πθ(a|s) with parameter θ . They optimize
the parameter θ directly by gradient ascent on the performance
objective J (θ) =�

s∈S dπ (s)V π(s) where dπ(s) is stationary
distribution of Markov chain {st}t≥0 for πθ . Besides, some
policy gradient methods also learn an approximator Vφ(s) with
parameter φ for the on-policy value function V π(s), which is
used to update θ . More RL methods can be found in [37].

As a family of first-order policy gradient methods, proximal
policy optimization (PPO) [38] bounds parameter updates to a
trust region in each iteration to ensure stability and reliability.
PPO achieves better performance on lots of continuous and
discrete tasks and has better empirical sample complexity
than the trust region policy optimization (TRPO). There are
two primary variants of PPO: PPO-Penalty and PPO-Clip.
PPO-Clip relies on specialized clipping in the objective func-
tion, whereas PPO-Penalty penalizes the KL-divergence. Due
to its high performance and low computational complexity,
PPO has become the default RL algorithm at OpenAI.

MARL focuses on models where several agents learn
by dynamically interacting with a common environment to
achieve a given global goal, while in single-agent RL scenarios
the state of the environment changes solely as a result of the
action of one agent, in MARL scenarios, the environment is
subjected to the actions of all agents. In contrast to the prob-
lems involving centralized control in single-agent RL, decen-
tralized control of MDP in MARL provably does not admit
polynomial-time algorithms [39]. Due to the combinatorial

nature, most MARL tasks are categorized as NP-hard prob-
lems [40]. Independently Q-learning and policy gradient meth-
ods such as PPO perform poorly in MARL [41], [46]. Nonsta-
tionarity of the environment is the main challenge in MARL
problems. A newly emerging approach to address this issue is
using a fully observable critic, which involves the observations
and actions of all agents, making the environment stationary
even though the policies of other agents change. As shown by
multiagent DDPG (MADDPG) [41], the critic of each agent
deals with a stationary environment in the training time to
guarantee its convergence, and the distributed behavior policy
only needs to access the local information in the inference
time.

Another emerging research topic is meta-RL, which is to do
metalearning in the field of RL. Meta-RL considers a distrib-
ution of different yet related tasks that differ in, for instance,
the reward function or the transition probabilities from one
state to another. Its objective is to enable agents to efficiently
adapt to new tasks by learning from prior tasks (also known
as learning to learn) [42]–[44]. Some optimization-based
meta-RL algorithms, such as MAML [44], FOMAML, and
Reptile [45], are proposed to formulate meta-RL as a bilevel
optimization procedure. We denote the metaparameter of a
metapolicy as μmeta, which can quickly adapt to new tasks
by performing a few gradient updates. The inner optimization
obtains new policy μ� = Alg(μ, ω) by adaptation to a given
task ω based on policy μ, where Alg is an RL algorithm.
The outer aims to update μmeta based on the inner procedure.
Unlike vanilla joint-training methods where μmeta ← μ�,
Reptile [45] updates the parameter by

μmeta ← μmeta + ξ(μ� − μmeta) (1)

where ξ is a learning rate. Due to taking advantage of
metagradient information from the item (μ� − μmeta), Reptile
has better generalization performance for new tasks.

B. Q-Routing Approach and Its Extensions

Q-routing [17] is a variant of Q-learning [16]. As each
node is viewed as an independent agent, the Q-routing is
essentially a multiagent learning method. For node ni , the state
si

t represents the destination node nd of the head-of-line (HOL)
packet in its queue, and the action ai

t represents the selected
next-hop neighboring node n j to relay the HOL packet to
node nd . The reward function is defined as r i

t = −(gi
t + gi j

t ),
where gi

t is the HOL packet’s queuing delay at node ni and
gi j

t is the transmission delay between nodes ni and n j . The
Q-value Qi (nd , n j ), stored in node ni ’s Q-table, estimates the
end-to-end delay for transmitting packets along node n j to
the destination nd . When ni has a packet to send, it selects a
neighbor n j with the largest Q-value. Upon sending the packet
to node n j , it receives a reward r i

t and updates its Q-table as
follows:
Qi (nd,n j ) = (1− α)Qi (nd,n j )+ α

�
r i

t +max
k

Q j (nd ,nk)
�

(2)

where α∈(0, 1] is a learning rate and nk is a neighbor of n j .
To prolong the lifetime of networks by making the residual

energy of nodes more evenly distributed, QELAR [20] adds
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the residual energy ei of each node as well as the average
energy ēi among a group of its neighbor nodes into the reward
function

r i
t = −g − α1

�
ei

t + e j
t

�+ α2
�
ēi

t + ē j
t

�
(3)

where g is the constant punishment representing the energy
consumption and delay when forwarding a packet from cur-
rent node ni to next-hop n j and α1 and α2 are the weight
coefficients. CARMA [21] additionally introduces a penalty
for dropping packets in the reward function, providing suffi-
cient QoS of packet delivery ratio. With information sharing
mechanism, DQRC [33] uses recurrent neural networks, which
take more history and state information as inputs, to make a
more accurate estimation for the transmission delay.

As the end-to-end delay and network lifetime are the
performance indicators of main concern in this article,
Q-routing, QELAR, and DQRC are chosen as baselines for
comparison due to their preferable performances in ideal and
noisy network environments.

C. Centralized and Distributed Routing Based on RL

The centralized routing schemes in [34]–[36] assume that
there is a centralized controller that can collect all necessary
information for the real-time routing decision-making, such
as the current remaining buffer size of each node and the
accurate traffic demand matrix. Thus, these centralized routing
algorithms are hard to be applied in a realistic network. In con-
trast, Q-routing and its variants are typical fully distributed
routing schemes. By sharing the Q values among adjacent
nodes, Q-routing can be characterized as an asynchronous and
online version of the Bellman–Ford shortest paths algorithm
that measures path length not merely by the number of hops
but rather by total delivery time [17]. However, Q-routing
still suffers from Q value freshness, slow convergence, and
parameter setting sensitivity [23]. With help of more infor-
mation and independent LSTM networks, DQRC obtains a
shorter average delivery time and improves the convergence,
especially at heavy traffic regimes. Nonetheless, each node
needs to send the sampled training batch to its neighbors and
get the current Q value back to recalculate the remaining
delivery time for updating parameters of its neural network,
resulting in that the communication overhead is increased in
the training process.

Since sampling data and optimizing policies are separable in
training PPO, we proposed a novel practicable implementation
framework of routing schemes with centralized learning in
multhop networks. In the exploration (sampling data) phase,
each router uses only local information for decision-making
(decentralized execution) and encapsulates the current deci-
sion information in the HOL packet, which is transmitted to
next-hop node immediately. In the exploitation (optimizing
policies) phase, a virtual central node collects all the decision
information from sink nodes and calculates each node’s new
policy parameters, which will be dispatched over the network
to each node. In addition, PPO is chosen for two other reasons.
First, the multipath routing allows nodes to forward packets of
the same destination to different neighbors, which means that

different actions can be taken for the same state. Obviously,
probabilistic policies, such as TRPO and PPO, are naturally
better suited to represent multipath routing schemes than
deterministic policies used in DDPG, twin-delayed DDPG, and
MADDPG. Second, in the process of training PPO, only V (s)
needs to be estimated. However, DDPG and soft actor–critic
need to fit Q(s, a), where the curse of dimensionality is more
severe as the inputs include both the state and action of all
nodes.

III. PROBLEM FORMULATION AND

MATHEMATICAL MODELING

In this section, we establish the mathematical model of
the routing problem on multihop networks and introduce
the formulation of MARL with networked agents for packet
routing.

A. Mathematical Model of Packet Routing

We consider a distributed multihop network made up of
N nodes, where data packets generated at the ingress nodes
(e.g., sensors) are delivered to the egress nodes (e.g., sinks)
for further processing. An example scenario and its network
topology are shown in Fig. 1, containing 15 nodes and
21 bidirectional links. The mathematical model of the routing
problem is described as follows.

1) The network is modeled as a graph G= (N , E), where
N is defined as the finite set of nodes and E is the set
of links between node pairs. Denoting the cardinality of
N by |N |, we have N=|N |.

2) At the beginning of each sampling period Ts (e.g., 6 s),
new data packets are generated at ingress nodes and
needed to be forwarded to egress nodes. We denote
the set of ingress and egress nodes by Ns and Nd ,
respectively.

3) To describe the traffic demand, the traffic matrix (TM,
denoted by η) is introduced [47]. η is a nonnegative
|Ns |×|Nd | matrix whose (i, j)th entry ηi, j represents
the traffic volume between a source ns ∈ Ns and a
destination nd ∈Nd (ns �= nd ) in one sampling period.
In addition, let κ=�

i, j ηi, j be the total traffic demand
between sources and destinations.

4) Each node is set up with a dedicated packet buffer queue
with a capacity much greater than κ , using a first-in,
first-out (FIFO) discipline. The timeline in one sampling
period is divided into lots of transmission time steps
(e.g., radio frames with 10-ms duration each in LTE).
Limited by the channel capacity and energy consumption
for transmitting data, it is assumed that node ni can send
at most ci data packets in one transmission time step.

5) Further assuming that the processing delay is negligi-
ble, only the queuing delay and transmission delay are
considered.

6) We denote by ζ the delivery time it takes to
send all newly generated packets to their destina-
tions. We assume that at the end of each sampling
period, all undelivered packets will be discarded, which
means ζ ≤ Ts .
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The network topology shown in Fig. 1 is the same as in [18].
We assume that Ns = {n14, n12, n13} and Nd = {n15, n11, n10}.
To make the problems nontrivial, the forwarding capacity ci

of node ni is given by

ci =
�

3, if ni ∈ {n1, n2, n12, n13},
1, otherwise.

Restricted by the limited forwarding capacities, network con-
gestion will soon occur in central nodes with a high degree,
such as nodes n4, n5, and n6. As finding the optimal routing of
this network to satisfy various constraints is a hard task [18],
it is chosen as the basic topology in this article.

The mission of routing is to forward each packet to its
destination through intermediate nodes. The delivery delay ζ is
mainly used to evaluate the performance of routing schemes,
while other QoS metrics, such as residual energy and link
utilization ratio, may be also considered in different practical
scenarios.

TM plays an important role in the optimization of network
routing. Even for various traffic matrices with the same κ ,
the corresponding optimal routes are usually different [36]. For
the scenario in Fig. 1, the TM is uncertain and dynamic as the
behavior of wild animals is unpredictable. In practice, the reli-
able and accurate measurement of TM is challenging for large
and dynamic IP networks. Though the TM may still be derived
from indirect information (such as link load measurements),
the routing algorithms that perform well under estimated traffic
matrices may not have a satisfactory performance with real
traffic matrices [15].

B. Networked Multiagent POMDP

Consider a system of N agents that are working in a com-
mon environment and connected by a communication network
G = (N , E). We then define the following Markov decision
problems for networked agents inspired by the decentralized
POMDP.

A networked multiagent POMDP is denoted with a tuple�{S i }i∈N , {Ai }i∈N , P, {Ri }i∈N ,G
�
, where S i is the local state

space of agent i and Ai is the set of actions that agent i
can take. In addition, let S =�N

i=1 S i and A =�N
i=1 Ai be

the joint state space and action space of all agents. Moreover,
Ri :S×A→R is the local reward function of agent i , and P :
S×A×S→[0, 1] denotes the stochastic transition probability
among the joint states. In a discrete-time environment, at time
step t , suppose that the global state is st = (s1

t , . . . , sN
t ) ∈S

and the agents execute joint actions at = (a1
t , . . . , aN

t ) ∈A.
Then, each agent i ∈N receives a reward r i

t , which is given
by Ri (st , at). Also, the MDP transits to a new state st+1∈S
with probability P(st+1|st , at ). Note that an agent’s reward
does not only depend on its own action but also the actions of
other agents. The global reward at t is defined as rt=�

i∈N r i
t ,

the sum of each agent’s local reward.
Let π i :S i×Ai→[0, 1] be the probability that agent i selects

action ai ∈Ai at local state si ∈ S i . When the state space is
large, it is useful to represent policies as parametric functions
(e.g., DNNs). For any agent i , we define the local policy as
π i
θ i , where θ i ∈ �i is the parameter and �i is a compact

set of feasible parameters. We pack the parameters together
by writing θ = (θ1, . . . , θ N ) ∈ �, where � = �N

i=1�
i . Let

π :S×A→[0, 1] be the joint policy function, that is, π(a|s)
is the probability of choosing a joint action a at a global state s.
As each agent chooses its own action individually at each time
step, the joint policy is given by π(a|s)=�

i∈N π i
θ i (ai |si).

In the following, we make some regularity assumptions
that are standard in the literature on actor–critic RL algo-
rithms with function approximation [37]. It is assumed that
for any i ∈ N , si ∈ S i , and ai ∈ Ai , the policy function
0 ≤ π i

θ i (ai |si) ≤ 1 for any θ i ∈ �i . Also, π i
θ i (ai |si )

is continuously differentiable with respect to the parameter
θ i over �i , which is required by policy gradient methods
and satisfied by well-known function classes such as DNNs.
In addition, for any θ ∈ �, let Pθ be the transition matrix
of the Markov chain {st }t≥0 induced by policy πθ , that is,
Pθ (s�|s) = �

a∈A πθ (a|s)P(s�|s, a), ∀s, s� ∈ S. We assume
that the Markov chain {st}t≥0 is irreducible and aperiodic
under any πθ and it has a stationary distribution dθ (s) over S.
Hence, the Markov chain of the state–action pair {(st , at)}t≥0

has a stationary distribution dθ (s)πθ (a|s) for any s ∈ S
and a∈A.

The objective of the networked agents is to collaboratively
find an optimal joint policy πθ that maximizes the global
long-term return using only local information. We define
Qπθ (s, a) = �∞

t=0 E[γ trt |s0 = s, a0 = a;πθ ] as the global
state–action value function, where γ is the discount factor.
The global state value function is represented by V πθ (s) =�

a∈A πθ (a|s)Qπθ (s, a). Accordingly, we denote the global
advantage function by Aπθ (s, a) = Qπθ (s, a)−V πθ (s). Then,
the goal of the multiagent decision is to solve the optimization
problem

max
θ

J (θ) =
	
s∈S

dθ (s)V πθ (s)

=
	
s∈S

dθ (s)
	
a∈A

πθ (a|s)Qπθ (s, a). (4)

C. Formulation of Routing With Multiagent POMDP

The packet routing is formulated as an MARL problem
based on networked multiagent POMDP, where each node is
an independent agent that observes the local state and makes
routing decisions according to its own policy. Therefore,
we will illustrate the definitions of each element in MARL
for a single agent.

1) State: We denote the state of agent i as si : (di , ψ i ),
where di is the destination of current HOL packet in node
ni ’s queue and ψ i is some extra information related to
agent i . We define ψ i as an |Nd |-dimensional vector whose
j th element ψ i

j is the number of caching packets destined to
the node n j ∈ Nd . Hence, the current length of node ni ’s
packet buffer is

�
j∈Nd

ψ i
j .

2) Action: The action of agent i is defined as ai : n j ∈�i ,
where �i is the set of neighbors of node ni . Accordingly, for
each agent, the size of action space equals the number of its
adjacent nodes. Once a packet arrives at the head of queue at
time step t , agent i observes a local state si

t and delivers the
packet to a neighboring node ai

t according to its policy πθ i .
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3) Reward: We craft the reward to guide the agent toward an
efficient policy for our target. To minimize the delivery time of
all packets ζ , the reward r i

t of agent i at time step t is set to be
the negative of the total number of packets in its buffer queue.
Also, the global reward is the sum rt =�

i∈N r i
t . In this way,

the problem of delayed rewards is partially alleviated because
the effective reward is available at each time step.

IV. ROUTING BASED ON NETWORKED MULTIAGENT PPO

In this section, our focus is on optimizing routing schemes
to provide better network performance in scenarios of fixed
traffic matrices without knowledge about channel statistics of
the network.

The explicit routing method for traffic engineering can
achieve high network performance as it allows traffic flows of
each source–destination pair to be distributed along predeter-
mined paths. Moreover, GDMR proposed in [14] can convert
an arbitrary explicit routing into a loop-free destination-based
routing without any performance penalty for a given TM. The
resulting destination-based routing only requires each router to
maintain a simple forwarding table with at most O(N) entries.
Therefore, we can first obtain an explicit routing based on
the previously described networked POMDP model through
the MARL method and then convert it into an easy-to-deploy
routing scheme by GDMR.

As the theoretical basis of the policy gradient algorithm and
the actor–critic method in RL, the policy gradient theorem
for single-agent RL in [16] is extended to networked MARL.
Combining observation and action spaces of all agents in
MARL and treating the problem as a single high-dimensional
MDP, the gradient of J (θ) with respect to θ is given by
[16, Sec. 13.1]

∇θ J (θ) ∝ Es∼dθ ,a∼πθ
[Qπ (s, a) log πθ (a|s)]

= Es∼dθ ,a∼πθ
[Aπ (s, a) log πθ (a|s)]

=
	
s∈S

dθ (s)
	
a∈A

πθ (a|s)[Aπ(s, a) logπθ(a|s)]. (5)

Recall that πθ (a|s) = �
i∈N π i

θ i (ai |si) in the networked
multiagent POMDP, (5) can be rewritten as follows:
∇θ J (θ) ∝ Es∼dθ ,a∼πθ

�
Aπ (s, a)∇θ

	
i∈N

logπ i
θ i (ai |si )

�
.

Due to the independence of each θ i , the partial derivative
of J (θ) with respect to local parameter θ i for networked
multiagent POMDP becomes

∇θ i J (θ) ∝ Es∼dθ ,a∼πθ
[Aπ (s, a)∇θ i logπ i

θ i (ai |si)]
=

	
s∈S

dθ(s)
	
a∈A

πθ(a|s)


Aπ(s,a)∇θ i logπ i

θ i(ai |si )
�
. (6)

Also, all the partial derivatives ∇θ 1 J (θ), ∇θ 2 J (θ), . . .,
∇θ N J (θ) actually constitute the gradient of J (θ) at θ . If we
guarantee stochastic gradient ascent of each agent’s θ i never
leaves a sufficiently small neighborhood of θ , the joint policy
will be improved from the global view.

Equation (6) shows that ∇θ i J (θ) can be obtained locally
when given the advantage function Aπ (s, a). This allows us
to take advantage of the centralized critic and distributed actor

framework and extend the policy gradient algorithms in the
single-agent RL to MARL. The centralized value function
stabilizes training by accounting for states and actions of
all agents, while this extra information is not required by
distributed agents in the exploration and execution phase. As
shown in Section VI, the distributed policies with a common
centralized critic work very well in various multipath routing
scenarios. Note that the framework still cannot avoid some
open problems in single-agent RL, such as getting trapped
into local optima. Also, due to its essential characteristics that
each agent selects actions only according to the local state,
there is no guarantee that the globally optimal policy can be
represented by the distributed strategy. Considering an extreme
scenario where the optimal action of agent i is solely decided
by another agent j , this framework obviously cannot achieve
the optimal solution.

We propose an MARL algorithm named MAPPO for opti-
mizing routing schemes by extending PPO in the multiagent
environment according to Equation (6). With the clipping of
the probability ratio between old and new policies, stochastic
gradient ascent of each agent’s θ i can stay in a sufficiently
small neighborhood of θ as much as possible.

In a training epoch of MAPPO, some trajectories D can be
obtained from interaction with the environment, including the
history of all nodes’ states, actions, and rewards. We denote
a trajectory by τ = {s0, a0, r0, s1, . . . , rT−1, sT }, where all
packets are delivered at time step T . The estimated discounted
return Ĝt on τ at time step t is computed by [16]

Ĝt =
T−1	
k=t

γ k−t rk + γ T−t Vφ(sT ). (7)

where γ ∈ (0, 1] is the discount factor and Vφ is the global
value function parameterized with φ. The global advantage
estimate Ât on τ at time step t can be given by a truncated
generalized advantage estimation (GAE) [38]

Ât = Â(st , at ) = δt + γ λδt+1 + · · · + (γ λ)T−1−t δT−1 (8)

where δt = rt + γ V (st+1) − V (st) and λ ∈ [0, 1] is a
hyperparameter to balance the bias–variance tradeoff.

Based on PPO-Clip in [38], the surrogate objective for
agent i in MAPPO is defined as

J CLIP
i (θ i )=Est ,at

�
min


ρi

t (θ
i ) Â(st ,at ), g

�
�, Â(st ,at)

���
(9)

where

ρi
t (θ

i ) = πθ i (ai
t |si

t )

πθ i
old
(ai

t |si
t )
, g(�, Â) =

�
(1+ �) Â, Â ≥ 0

(1− �) Â, Â < 0

θ i
old is the policy parameter that the agent i used to sample τ ,

and � is a hyperparameter, say, � = 0.2 by default.
Given a set of trajectories D = {τ }, the policy of each

agent i in MAPPO is updated by

θ i
new = arg max

θ i

1

|D|T
	
τ∈D

T−1	
t=0

J CLIP
i (θ i ). (10)

Authorized licensed use limited to: University of Waterloo. Downloaded on November 22,2022 at 21:41:05 UTC from IEEE Xplore.  Restrictions apply. 



5380 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

In practice, θ i can be updated iteratively via stochastic gradient
ascent

θ i ← θ i + α∇θ i J CLIP
i (θ i) (11)

where α is the learning rate of the policy.
As the state value function Vφ(s) = Eπ [Ĝt |st = s],

the global critic is updated by regression on mean-squared
error

φnew = arg min
φ

L(φ)

= arg min
φ

1

|D|T
	
τ∈D

T−1	
t=0


Vφ(st )− Ĝt

�2
. (12)

Thus, φ can be updated iteratively via stochastic gradient
descent

φ← φ − β∇φL(φ) (13)

where β is the learning rate of the critic.
The steps of MAPPO are given in Algorithm 1. It is worth

mentioning that MAPPO is not only suitable for routing
decisions but also for a wider range of general multiagent
POMDP problem-solving.

Algorithm 1 MAPPO

1: Input: initial policy parameter θ i
0 of each agent, initial

global value function parameters φ0.
2: for k = 0, 1, 2, . . . , K − 1 do
3: Collect set of trajectories Dk = {τ } with policy πθ k .
4: Compute the estimated return Ĝt by Equation (7) for

each st based on the current value function Vφk .
5: Compute the advantage estimates Ât by Equation (8)

based on Vφk .
6: Update the policy parameter θ i

k+1 of each agent i by (11)
for each state–action pair (si

t , ai
t ).

7: Fit the global value function by regression on
mean-squared error and update the critic parameter φk+1

by Equation (13) for each global state st .
8: end for

Since sampling data and optimizing policies are separable
in training MAPPO, we proposed a novel practicable imple-
mentation framework of MAPPO to search for an optimal
explicit routing in multihop networks. As shown in Fig. 2,
the policy of agent i is approximated by an independent DNN
with parameter θ i , which is also called the actor network and
located at the corresponding node ni . In order to coordinate the
learning of agents, we set up a virtual central node to deploy
the critic network (value function), which is approximated by
a DNN with parameter φ. This virtual node communicates
with each sink node and can be located in any physical
edge node. In order to eliminate the communication overhead
caused by the transmission of massive trajectory and value
function information, a shadow policy network with the same
parameters θ i is set up for each agent i at the central node.

The training of MAPPO alternates between sampling data
through interaction with the environment (exploration) and

Fig. 2. Implementation of MAPPO for multipath routing.

optimizing the objective function using stochastic gradient
ascent (exploitation) as follows.

1) In the exploration phase, each node uses only local infor-
mation for decision-making (decentralized execution).
An agent i selects next-hop node of its current HOL
packet according to the local policy network indepen-
dently and encapsulates the local decision information,
such as si

t , ai
t , logπi (ai

t |si
t ), and r i

t , into the payload of
the HOL packet which is forwarded immediately. All
the packets will be delivered to their destinations (edge
nodes in Fig. 2).

2) In the exploitation phase, the virtual central node collects
all the decision information from sink nodes to get
trajectories D. If necessary, it can also communicate
directly with other nodes to get their information. Based
on D, the parameters of shadow actors and centralized
critic are updated by Algorithm 1. Then, the parameters
of shadow policies are dispatched to the distributed
nodes for routing decisions to collect next D.

An explicit routing can be constructed from the paths in
each trajectory τ . The explicit routing with minimum delivery
delay ζmin in the whole training stage should be memorized.
After the training stage, the explicit routing is converted into
a loop-free destination-based routing solution {yd

i, j} by using
the routing conversion algorithm proposed in [14], where yd

i, j
denotes the split ratio at node ni to node n j for the traffic
destined to node nd (nd ∈ Nd , �ni , n j � ∈ E). The calculated
destination-based routing solution {yd

i, j} is further translated
to forwarding entries, which will be installed in distributed
nodes. Note that only the forwarding table is used by each
node for routing decision-making in the execution stage of
the multipath routing.

V. ROUTING WITH META-MAPPO

When the routing decision is modeled as an MARL task,
the MDP of a node is not only affected by its neighboring
nodes’ strategies but also affected by the TM. Changes in the
TM will affect the POMDP of each node, and the optimal
routing policy for various traffic matrices may also be differ-
ent [36]. Packet routing becomes a multitask learning problem
for dynamic traffic demand.

Formally, we define a task ω(η) as solving the optimal
routing scheme for a fixed TM η. We denote by � the
probability distribution of all possible tasks ω with different
traffic matrices and assume that � is a uniform distribution
over the set {ω(η)|�i, j ηi, j = κ}. For the multitask learning
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problem, we are interested to find a policy (named metapol-
icy) that shows good performance in every task ω sampled
from �. The joint-training and fine-tuning framework is used,
the idea behind which is very simple: let agents learn from all
possible tasks and environments to get a universal policy with
metaparameter θmeta, which will be fine-tuned with respect
to a specific task before execution. The joint-training process
works by repeatedly [45]: 1) sampling a task ω(η) ∈ �;
2) training on it by multiple gradient update steps from initial
parameter θmeta to get a new parameters θ ; and 3) and then
moving the parameters of metapolicy toward new θmeta by
taking advantage of θ .

Since joint-learning is a strong baseline for multitask RL
setting [45], we first propose a novel algorithm named MAPPO
with joint-learning (joint-MAPPO). Then, based on meta-RL,
the meta-MAPPO is given to resolve multiagent multitask RL
problems as a model-free method. For simplicity, we denote
μ = (θ , φ), where θ = (θ1, θ2, . . . , θ N ) are the parameters of
all actor networks, and φ is the parameters of the global critic
network.

The joint-training phase is to obtain an initial μjoint based
on a sampled batch of task ω, which is used in the fine-tuning
phase and leads to fast adaptation to time-varying traf-
fic demand matrix. To solve packet routing problems with
dynamic traffic demand, MAPPO is adopted as the inner
MARL algorithm to update the parameters θ from initial
parameter θmeta. The steps of joint-MAPPO are given in
Algorithm 2.

Algorithm 2 Joint-MAPPO
Phase 1: joint-training
1: Initialize μ0 = (θ0, φ0), composed of each node’s policy

parameters θ i
0 and the value function parameter φ0.

2: for iteration k = 0, 1, 2, . . . , K − 1 do
3: Sample task ω from the distribution � where tasks are

given with different traffic matrices.
4: Compute μk+1 using MAPPO with μk based on ω.
5: end for
6: Set μjoint = μK .

Phase 2: fine-tuning
For the task ω with current TM η, update the parameter μ

using MAPPO with initial parameter μjoint.

As a metalearning method with good performance,
Reptile [45] can be used here to solve the multitask problem,
and we call the Reptile with MAPPO by reptile-MAPPO
for short. However, after multiple gradient updates by (1),
the differences between policies with parameters μ� and
μmeta become so large that the performance of the updated
metapolicy deteriorates. In order to address this problem,
a novel metagradient MARL algorithm, named meta-MAPPO,
is proposed by adding a KL-divergence penalty in the inner
objective function.

For the trajectories D sampled with parameters μ, we define
the surrogate objective of meta-MAPPO’s inner optimization

procedure for agent i as

Ji(θ
i )=Est ,at

�
min


ρi

t (θ
i ) Â(st , at ), g

�
�, Â(st , at )

��

−ν KL
�
πθ i

meta

�·|si
t

�
, πθ i

�·|si
t

���
(14)

where Ât is computed based on D, KL(· , ·) is the
KL-divergence, ν is an adaptive coefficient, and ν = 3
by default. Note that the clipping of ρi

t makes the updated
θ i not deviate too much from the old parameters θ i

old used
in sampling D, while the KL-divergence penalty makes θ i

within the trust region around the metaparameters θ i
meta. The

parameter of inner policy θ i for agent i in meta-MAPPO can
be updated iteratively by

θ i ← θ i + α∇θ i Ji (θ
i). (15)

For a task ω sampled from �, we denote μω,K as the result
of K updates by (15), where μω,0 = μmeta. Given H tasks,
the metaparameter μmeta is updated by

μmeta ← μmeta + ξ
1

H

H	
h=1

(μh,K − μmeta) (16)

where μh,K is short for μωh ,K . The steps of meta-MAPPO are
shown in Algorithm 3.

Algorithm 3 Meta-MAPPO
Phase 1: meta-learning
1: Initialize parameters of meta-policy and critic networks

μmeta = (θ0, φ0), composed of each node’s policy para-
meter θ i

0 and the value function parameter φ0.
2: for l = 1, 2, 3, . . . , L do
3: for h = 1, 2, 3, . . . , H do
4: Sample task ωh from the task distribution �.
5: Initialize μh,0 = μmeta.
6: for k = 0, 1, 2, . . . , K − 1 do
7: Collect set of trajectories Dh,k = {τ } with μh,k .
8: Compute the rewards-to-go Ĝt on Dh,k by Equa-

tion (7) and update the critic parameter φh,k+1 by
Equation (13).

9: Compute the advantage estimates Ât on Dh,k by
Equation (8) and update the policy parameter θ i

h,k+1
of each agent i by Equation (15).

10: end for
11: end for
12: Update μmeta by Equation (16).
13: end for
Phase 2: fine-tuning

For the task ω with current TM η, update the parameter μ

using MAPPO with initial parameter μmeta.

Like Reptile in [45], (16) actually utilizes the second-order
gradient information of θmeta to update the metapolicy
for K ≥ 2. Thus, meta-MAPPO can be adapted to new
tasks faster than joint-MAPPO. Moreover, the KL-divergence
penalty in (14) makes μω,K never leave a sufficiently small
neighborhood of μmeta, avoiding a sudden deterioration in
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the performance of the updated metapolicy. After the fine-
tuning, we get an explicit routing with minimum delivery
delay ζmin(η) for the current TM η. If the real-time TM does
not change significantly, the expected delivery time of packets
generated within a sampling period is ζmin(η).

In the implementation of both joint-MAPPO and
meta-MAPPO for packet routing with dynamic TM, a key
issue is how to trigger the fine-tuning. A event-triggered
mechanism is used in this article. The event-triggered
condition is designed based on the delivery time ζ .
Regardless of whether the traffic demand varies gradually or
abruptly, as long as the average delivery time ζ̄ of several
consecutive sample periods in the execution stage deviates
from the expected value ζmin(η) by more than 5%, a new
fine-tuning process will be triggered.

VI. SIMULATION RESULTS

In this section, we present simulation results of our routing
schemes in four networked multiagent environments. For the
network setting shown in Fig. 2, we first perform comparisons
among MAPPO, SPR, Q-routing [17], QELAR [20], and
DQRC [33] in an ideal environment with fixed but unknown
TM. Then, we examine the performance of both delivery
delay and energy consumption in noisy environments where
the transmission attempt may fail and the energy efficiency
is also a major design concern, such as WSNs described
in Fig. 1. The effectiveness of meta-MAPPO is also evaluated
in networks with dynamic TM. Finally, we show the network
throughput performance of our algorithms in a real ISP net-
work topology-Sprintlink network [48].

To represent each node’s policy in our algorithms, we use
a two-hidden-layer neural network with 32 units in each fully
connected layer with a tanh nonlinearity and adopt the softmax
activation function in the output layer. The global critic neural
network is composed of two fully connected hidden layers
with 64 units and a rectified linear unit (ReLU) nonlinearity,
following a linear layer as the output layer. We use the adaptive
moment estimation (Adam) optimizer with a learning rate
of 0.003 for all of our experiments (i.e., α = β = ξ =
0.003). The GAE in (8) uses γ = 0.99 and λ = 0.95.
The meta-MAPPO uses H = 5 sampled tasks and K = 2
adaptations in each iteration.

A. Ideal Environment With Fixed Traffic Demand Matrix

First of all, we consider an ideal network scenario where
there is no packet loss and assume that the unknown traffic
demand matrix is fixed over a long period time. Given the fixed
TM η0=diag{10, 10, 10}, the proposed algorithm MAPPO is
used to search for the optimal routing scheme, with Q-routing,
QELAR, and DQRC as baselines which are distributed rout-
ing polices based on RL. The minimum delivery delay ζmin

during the training stage is the major design concern in the
experiment.

The variation trend of cumulative reward (return) of
MAPPO along with the training episode is shown in Fig. 3(a),
where the actual reward value is multiplied by a scale factor
to make it near 1 to speed up the convergence. We can

Fig. 3. (a) Return of MAPPO for η1 and (b) delivery delay of five routings
for η1 in the training stage: SPR, Q-routing, QELAR, DQRC, and MAPPO.

clearly see that the reward converges to a stable value after
a considerable decrease in the first 100 training episodes.
Fig. 3(b) shows the minimum delivery delay ζmin of five
routing schemes, i.e., SPR, Q-routing, QELAR, DQRC, and
MAPPO, with respect to the episode of training, where ζmin is
the minimum value of all delivery delays currently obtained
during the training process. The delay of RL-based routing
schemes drops sharply to a level below the SPR method in
the first few episodes, and then gradually converges to a lower
value. Though the delay of MAPPO grows down most slowly
among these routing policies, MAPPO can reach the lowest
delay ζmin, which means that it obtains the best explicit rout-
ing. Q-routing achieves higher performance due to its better
greedy exploration than its variant QELAR, which is mainly
optimized for packet loss and energy consumption. As shown
in Fig. 3(b), DQRC shows a comparable performance on ζmin

as Q-Routing in our network scenarios, although it utilizes
richer real-time information for decision-making.

B. Noisy Environment With Energy Constrain

In order to showcase the flexibility and universality of
MAPPO, we evaluated both delivery delay and energy con-
sumption of various routing algorithms in a noisy environment,
where links have heterogeneous channel quality and nodes
have unbalanced initial energy distribution.

For the topology shown in Fig. 1, we assume that the
packet loss rate of link �n2, n4� is 0.8, while other links are
0.05, and the initial residual energy of node n1 is 6000 units,
while others are 12 000 units. When a node transmits and
receives a packet and standby, it consumes 10 units, 3 units,
and 0.03 unit of energy. Note that this energy consumption
setting is consistent with the simulation in [20], in order
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Fig. 4. (a) Delivery delay in the training stage and (b) residual energy in
the packet forwarding stage of SPR, QELAR, MAPPO-I, and MAPPO-II.

to facilitate comparison with QELAR. To simultaneously
optimize the energy consumption, we integrate the minimum
residual energy emin of all nodes into the global reward
function rt = �

i∈N r i
t − keemin, where ke is the weight

coefficient and equal to 1 by default. We call the variant
MAPPO-II for short and denote the routing scheme with global
reward rt =�

i∈N r i
t in Section IV as MAPPO-I.

Fig. 4 shows the results of delivery delay and residual
energy of the best trajectory of SPR, QELAR, MAPPO-I,
and MAPPO-II. To simplify the description, we only consider
the traffic flow between one source–destination pair (n13, n15)
and set the total traffic volume κ = 300 here. ζmin at the
current time step is the minimum value of all delivery delays
already obtained during the training process. One can see
that both MAPPO-I and MAPPO-II have the lowest delivery
delay in Fig. 4(a), while QELAR is better than SPR due to
its multipath characteristic. However, as shown in Fig. 4(b),
MAPPO-I has the lowest minimum residual energy among
these routing schemes as it does not make special adjustments
to optimize energy consumption. MAPPO-II is energy-efficient
and can achieve a longer network lifetime without sacrificing
the packet delivery time. Note that the reason why SPR also
has good performance is that the shortest path between n13 and
n15 is (n13, n2, n4, n15), just bypassing the noisy link �n2, n4�
and the node n1 with lower residual energy.

To further illustrate the performance differences of these
algorithms, we show the traffic load ratio at some key nodes in
packet forwarding stage. We denote ld

i, j as the traffic load ratio
at link �ni , n j � for the traffic flow destined to node nd , which
is slightly different from the traffic split ratio yd

i, j defined
at Section IV as ld

i, j is the traffic load of link divided by
the overall traffic volume. From Fig. 5(a), one can see that

Fig. 5. Traffic load ratio at key nodes of SPR, QELAR, MAPPO-I, and
MAPPO-II for the traffic flow between source–destination pair (n13, n15) in
the packet forwarding stage. (a) Node n2. (b) Node n7.

Fig. 6. Delivery delay of joint-MAPPO, reptile-MAPPO, and meta-MAPPO
for randomly sampled traffic matrices in the joint-training phase.

QELAR, MAPPO-I, and MAPPO-II bypass the noisy link
�n2, n4� at node n2, while MAPPO-I and MAPPO-II retain
very litter traffic flow on �n2, n4� as its packet loss rate is
not equal to 1. Both MAPPO-I and MAPPO-II make the
traffic between �n2, n5� and �n2, n7� more balanced, resulting
in lower delivery delay. From Fig. 5(b), the traffic load ratio
of MAPPO-II on link �n7, n1� is 0.0%, which means that
MAPPO-II can bypass the node n1 with low residual energy.
However, the traffic load ratio of MAPPO-I on �n7, n1� is
38.0%, which increases the energy consumption of n1.

C. Ideal Environment With Dynamic Traffic Demand Matrix

Then, we consider the network scenario where the traffic
demand matrix is dynamic and random. For the time-varying
TM, we want the routing strategy to be tuned to the opti-
mal state as quickly as possible. The joint-MAPPO and
meta-MAPPO methods are applied in the scenario. Q-routing
is chosen for performance comparison as it is superior
to QELAR and DQRC in ideal environments, as shown
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Fig. 7. Delivery delay of various routing schemes for four typical traffic matrices. (a) η1. (b) η2. (c) η3. (d) η4.

in Fig. 3(b). The dynamic TM η is chosen randomly while
satisfying

�
i, j ηi j=κ=300 in each training epoch. By using

the joint-training framework, a good initial parameter μ =
{θ , φ} can be obtained. Fig. 6 shows the delivery delay ζ
of joint-MAPPO, reptile-MAPPO, and meta-MAPPO in the
joint-training phase, where we define the delivery delay of
each time step as the same as that of the sampling period
to which the time step belongs. The solid line is the aver-
age delivery delay of eight joint-training simulations and
the bounds of the shaded region indicate the maximum and
minimum values. The delay decreases along with the training
time step, while the joint-MAPPO is the fastest among them.
The reptile-MAPPO converges very slowly due to perfor-
mance deterioration caused by overestimated metagradient
in (1). By considering the KL-divergence penalty in (15),
meta-MAPPO converges much faster than reptile-MAPPO.

After joint-training with randomly sampled traffic matrices,
the fine-tuning is used to adapt to a specific TM. We examined
several representative traffic matrices with the same total traffic
volume κ = 300, i.e.,

η1 = diag{15, 270, 15}, η2=
⎡
⎣ 0 0 0

100 100 100
0 0 0

⎤
⎦

η3 =
⎡
⎣100 0 0

100 0 0
100 0 0

⎤
⎦, and η4=

⎡
⎣40 30 30

30 40 30
30 30 40

⎤
⎦

where η1 means the network scenario where most of the
traffic is between one node pair, η2 represents that all packets
are generated at the same source node, η3 represents that all
packets have the same destination node, and η4 is on behalf
of the uniform packet flow. Fig. 7 shows the performance
comparison of MAPPO, joint-MAPPO, meta-MAPPO, and

Fig. 8. (a) Topology of Sprintlink and (b) normalized throughput using
meta-MAPPO under different traffic matrices.

Q-routing in terms of adaptation to different traffic demand
matrices. The average value and maximum and minimum of
the delivery delay ζmin are depicted by the solid line and
the bounds of the shaded region around, respectively. One
can see that meta-MAPPO has best performances on both
convergence speed and final minimum delivery delay for η1,
η2, and η3. Moreover, the width of the shaded region of
meta-MAPPO is the narrowest, meaning that it is more robust
to random traffic demand. Note that joint-MAPPO converges
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faster than meta-MAPPO for η4 because the joint-training
of joint-MAPPO with randomly sampled traffic matrices is
partially equivalent to fine-tuning for the uniform packet
flow η4.

D. Network Throughput Optimization by Meta-MAPPO

To illustrate the wide applicability of the proposed algo-
rithms, the network throughput performance of meta-MAPPO
in a real ISP network topology-Sprintlink network is shown
in Fig. 8. The topology of Sprintlink provided by the Rock-
etfuel [48] has 44 nodes and 166 directed links. We use the
gravity model [49] to generate 100 synthetic traffic matrices
to evaluate the throughput performance of the algorithm. The
resulted throughput is normalized by the optimal explicit
routing described in [14]. One can see that the network
normalized throughput of meta-MAPPO is 0.8 on average,
which is the same as the OLW [13] and Static GDMR reported
in [14], although it does not achieve the optimal solution. It can
be further optimized, but a more in-depth discussion is beyond
the scope of this article.

VII. CONCLUSION

We have modeled packet routing as a multiagent learning
problem and proposed two novel routing algorithms and their
distributed implementations, i.e., MAPPO and meta-MAPPO,
based on MARL and metalearning. As shown by the results
of the experiments, agents can learn adaptive routing policies
in unknown environments and the packet delivery delay and
energy consumption can be improved significantly, through
interactions with the environment by MAPPO. With meta-
MAPPO, the routing can maintain desirable performance
under varying traffic demand matrices. By considering various
techniques in deep RL, in our future work, we will further
improve the performance of the proposed algorithms.
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