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Abstract— The multi-hop unmanned aerial vehicle (UAV) net-
work can serve as data relays where ground users (GUs) do not
have reliable direct connections to the base station (BS). Existing
works mainly focus on simple dual-hop system. In this paper,
we investigate the packet routing problem in a multi-hop UAV
relay network to minimize the data transmission time and enhance
the network throughput. However, the dynamic network topology
due to UAV mobility makes the packet routing challenging since
the limited communication range of each UAV leads to volatile
wireless connection. Moreover, the line-of-sight communication
links may cause strong interference among UAVs. Towards this
end, we propose a novel multi-agent deep reinforcement learning
based algorithm, named as multi-agent QMIX (MAQMIX) to: 1)
design proper UAVs’ trajectories to serve the moving GUs while
maintaining the network connection; 2) allocate frequency resource
properly among UAVs to alleviate the impact of interference; and
3) choose a proper next hop UAV for each data packet to reduce
the transmission time and probability of network congestion. The
proposed MAQMIX has two novel training mechanisms, i.e., intra-
UAV and inter-UAV training mechanisms, which can tackle the
large action space issue and coordinate the training among UAVs in
the multi-hop UAV relay network. Simulation results demonstrate
that the MAQMIX outperforms baseline schemes in terms of the
network congestion avoidance, throughput, and transmission time.

Index Terms—Multi-agent reinforcement learning, multi-hop
UAV relay network, resource allocation, trajectory design,
interference mitigation.
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I. INTRODUCTION

R ECENTLY, unmanned aerial vehicle (UAV)-assisted com-
munication has attracted increasing attention from both

industry and academia due to its multi-fold advantages [2]–[5].
UAVs can be deployed flexibly for on-demand wireless com-
munication systems due to their high manoeuvrability [6]–[8].
UAVs can also provide line-of-sight (LOS) links to ground
users (GUs), which can improve the performance of commu-
nication systems [9]–[11]. In addition, the UAVs can act as the
complement of terrestrial networks to serve the heavy traffic
loads in hotspot areas, such as large-scale sport or musical
events [12]–[14].

Existing researches on UAV-assisted communication mainly
focus on two research directions. First, UAVs can serve as aerial
base stations (BSs) to provide efficient and reliable temporary
wireless communication services for GUs in emergency situa-
tions [15]–[19]. In [15] and [16], Zeng et al. derive mathematical
models on the propulsion power of UAVs and then optimize
UAVs’ trajectories to facilitate energy-efficient communication
services. In [17], the orthogonal multiple access (OMA) and
non-orthogonal multiple access (NOMA) schemes in the UAV
communication system are investigated. The minimum average
rate among GUs is maximized through joint UAV trajectory de-
sign and resource allocation. In [18], an air-ground coordinated
communication system is studied, where the multi-user access
control policy and UAVs’ trajectories are jointly optimized to
improve the overall throughput while guaranteeing the fairness
among GUs. Second, UAVs can be deployed as relays between
GUs and BSs [20]–[22] or between two user groups [23]–[25].
Compared with fixed relay station, the UAV-aided relay network
can provide flexible relay services for mobile GUs due to UAV
manoeuvrability. In [20], the UAV acts as an amplify-and-
forward relay between a BS and GUs, and the trajectory as well
as the transmit power of the UAV are optimized to minimize the
outage probability of the relay network. In [21], Zhang et al. con-
sider a UAV-assisted decode-and-forward relay communication
system in a downlink maritime communication, and optimize the
placement of UAV to improve the capacity of wireless backhaul
links between the BS and the UAV. The UAV’s trajectory and
the transmit powers of UAV and BS are jointly optimized to
maximize energy efficiency [22]. In [23], the UAV trajectory and
time scheduling are jointly optimized to maximize the minimum
secrecy rate in the UAV-relayed wireless networks. In [24], a
UAV is employed as a full-duplex relay to assist the underlaid
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device-to-device (D2D) communications. The sum throughput
is maximized under the transmit power budget and UAV trajec-
tory constraints. In [25], the signal-to-interference-ratio (SIR)
of the system is maximized to enhance the throughput between
a transmitter and receiver pair through UAV position planning.
However, the existing works on UAV-aided relay network focus
on the simple dual-hop system with only one UAV [20]–[24],
i.e., the transmitter-to-UAV hop and UAV-to-receiver hop.

Our work belongs to the second research direction. In this
paper, we aim to facilitate communication services in the areas
where GUs do not have reliable direct connections to the BS. To
serve these mobile GUs, UAVs can be deployed as data relays
for establishing network connections between the GUs and the
BS. We investigate the packet routing problem in the multi-hop
UAV relay network, in which the GUs generate data packets and
then multiple UAVs transmit them to a faraway BS hop by hop.
However, the packet routing in the multi-hop UAV relay network
faces some challenges. The mobility of UAVs leads to the
dynamic network topology. Due to the limited communication
range, the connection between UAVs can be unreliable, and the
candidate next hop UAVs keep changing. Also, the movement
of UAVs can affect the subsequent topology of the multi-hop
UAV relay network. As a result, the UAV trajectories and the
next hop selection need to be well designed. In addition, since
there is strong interference among UAVs due to the LOS links,
frequency resource allocation should be considered to mitigate
the interference. The packet routing problem in the multi-hop
UAV relay network is a sequential decision-making problem,
since the trajectories of UAVs, frequency resource allocation,
and next hop selection should be properly designed sequentially
during the flight. There are many decision variables to optimize,
which makes the problem intractable.

Deep reinforcement learning (DRL) including multi-agent
DRL (MADRL) is a potential solution for such sequential
decision-making problem [26], [27]. The learning agent can
choose actions based on the current state, and then the network
environment turns into the next state and returns a reward to the
agent [28]. The objective of DRL is to maximize the cumulative
reward [29], which means, the subsequent effects of the current
action can be considered. Due to its superior performance, DRL
has been widely used in UAV-assisted communications, such as
UAV trajectory design [30], [31], and the resource allocation for
UAV networks [32].

In this paper, we study the packet routing problem in a
multi-hop UAV relay network, where multiple UAVs transmit
the data packets generated from GUs to a faraway BS hop
by hop. The objective is to minimize the transmission time of
the data packets while maintaining the network connection and
avoiding network congestion through determining three types
of decisions, i.e., UAV trajectory design, frequency resource
allocation, and the next hop selection. However, there are some
issues when applying MADRL to the multi-hop UAV relay
network. First, each UAV needs to make the three types of
decisions at the same time, leading to large action space. The
total action space size is the product of all the candidates of
the three types of decisions. When the network scale increases,
the action space will be extremely large and thus difficult to
tackle. Second, the objective of the packet routing problem is

to minimize the transmission time for each packet, which is
determined by all the UAVs along the packet transmission path.
However, the objective of traditional DRL or MADRL is to
maximize the cumulative reward of each agent. In other words,
the optimization targets of packet routing problem and tradi-
tional DRL are different. Such objective inconsistency cannot be
solved by simple reward shaping mechanism. In order to tackle
these issues, we propose a new MADRL algorithm, named as
multi-agent QMIX (MAQMIX), which has two novel training
mechanisms, intra-UAV and inter-UAV training mechanisms, to
tackle the large action space issue and coordinate the training
among UAVs, respectively.

The main contributions of this paper are summarized as
follows:
� We formulate the packet routing problem in a multi-hop

UAV relay network, in which the objective is to design
UAV trajectories, allocate frequency resource, and select
the next hop UAV to minimize the transmission time of the
data packets while maintaining the network connection and
avoiding network congestion through determining three
types of decisions.

� We design an intra-UAV training mechanism where each
UAV is decomposed into three subagents responsible for
UAV trajectory design, frequency resource allocation, and
the next hop selection, respectively. Each UAV runs the
multi-agent DRL algorithm, QMIX [33], to train the three
subagents. The decomposition of UAV agent can reduce the
action space significantly, thereby simplifying the training
process.

� We further design a novel inter-UAV training mechanism,
where each UAV agent uses the state-action value of the
next hop UAV to update its own value function, such that
the value function of each UAV agent can estimate the
remaining transmission time required for each packet to be
transmitted to the destination. With the inter-UAV training
mechanism, the training among UAVs can be coordinated.

The remainder of this paper is organized as follows. Section II
introduces the system model in detail and presents the formu-
lated optimization problem. Section IV presents the details of the
proposed MAQMIX algorithm. Simulation results are provided
in Section V, followed by the conclusion in Section VI.

Notations: Scalars are denoted by lower-case letters, vectors
are denoted by boldface letters, and matrixes are denoted by
capital letters.Ai,j denotes the element in the i-th row and j-th
column of matrixA. The Euclidean norm of vector a is denoted
by ‖a‖. RM denotes the space of M -dimensional real vectors.
Eπ[·] denotes the expectation of a random variable following
policy π.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the network model, the transmis-
sion model between a GU and a UAV, the transmission model
between UAVs, and then formulate the problem.

A. Network Model

As shown in Fig. 1, we consider a multi-hop UAV relay
network, in which GUs do not have reliable direct connections
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Fig. 1. A UAV relay network. Each GU transmits data packets to a selected
UAV, and the UAVs formulate a multihop network to forward the data packets
to the BS.

to a BS, and multiple UAVs act as the relays between GUs and
the BS. The multi-hop UAV relay network consists of M UAVs,
whose index set is denoted byM = {1, 2, . . . ,M}. We consider
a square area with a side length of Ls km, and the BS is located
at the edge of the considered area. The UAV M hovers near the
BS and keeps connecting to the BS, which is the destination
UAV of the multi-hop UAV relay network. All the UAVs fly at
an altitude H with fixed speed V u, and the horizontal location
of UAV m at time t is denoted by wu

m(t) ∈ R2×1, 0 ≤ t ≤ T ,
where the superscript ‘u’ in this paper means the ‘UAV’ and T
is the total service time for the multi-hop UAV relay network.
There are K GUs in the network, whose index set is denoted by
K = {1, 2, . . . ,K}, which move with speed V g and generate
data packets to be transmitted to the BS through UAV relays.
The superscript ‘g’ means the ‘GU’. The horizontal location of
GU k is denoted by wg

k(t) ∈ R2×1. The system is assumed to
work in a time slotted manner, i.e., T = {1, 2, . . . , T}, and the
duration of each time slot δt is sufficiently short such that the
moving directions of UAVs and GUs keep unchanged within a
time slot. The movement of the UAVs and GUs can be expressed
via

wu
m(t+ 1)−wu

m(t) = V uδte
u
m(t), ∀m ∈ M, (1a)

wg
k(t+ 1)−wg

k(t) = V gδte
g
k(t), ∀k ∈ K, (1b)

where eum(t) and egk(t) are the directions of UAV m and GU
k at time slot t. Since the locations and the directions are
linear with each other, the optimization of UAV trajectories
{wu

m(t)}m∈M,t∈T is equivalent to the optimization of UAV
flying directions {eum(t)}m∈M,t∈T .

B. Transmission Model Between GUs and UAVs

At the beginning of each time slot, each GU is associated
to the UAV with the strongest received signal strength (RSS),
which would transmit a newly generated packet. The associated
UAV for GU k is denoted by χg

k(t) and is the source UAV of
the newly generated packet in the multi-hop UAV relay network.
We introduce a binary variable μg

k,m(t) to indicate whether GU
k is associated to UAV m at time slot t, i.e., μg

k,χg
k(t)

(t) = 1.

Otherwise, μg
k,m(t) = 0, ∀m �= χg

k(t). Thus we have

∑
m∈M

μg
k,m(t) = 1, (2)

and the number of GUs served by UAV m is represented by
Ng

m(t) =
∑

k∈K μg
k,m.

Due to the high probability of the line-of-sight (LOS) links,
the air-to-ground (A2G) channel is different from the terrestrial
channel. In addition to free space pathloss, the existence of
buildings, trees, and other physical objects can bring excessive
pathloss [34]. Taking the occurrence of LOS and non-LOS
(NLOS) links into account, we adopt the probabilistic pathloss
model for the communication link, where the probability of the
LOS link between GU k and UAV m at time slot t can be
approximated by a simple modified sigmoid function:

PrLOS
k,m (t) =

1

1 + η1 exp
(
−η2

(
arcsin

(
H

dk,m(t)

)
− η1

)) .
(3)

Here, η1 and η2 are two parameters related to the communica-
tion scenario, and dk,m(t) =

√
‖wu

m(t)−wg
k(t)‖2 +H2 is the

distance between GU k and UAV m. Moreover, the probability
of the NLOS links is given by

PrNLOS
k,m (t) = 1 − PrLOS

k,m (t). (4)

Then, the average A2G pathloss between GU k and UAV m
at time slot t can be modeled as

PLk,m(t) = PLFS(t) + PrLOS
k,m (t)× ηLOS

+ PrNLOS
k,m (t)× ηNLOS , (5)

where PLFS(t) = 20 log dk,m(t) + 20 log fc + 20 log
(4π/V l) is the free space pathloss, in which fc and V l denote
the carrier frequency and the speed of light, respectively.1

Furthermore, ηLOS and ηNLOS are the mean values of
excessive pathloss in the LOS and NLOS links.

Each UAV serves its covered GUs in a frequency division
multiple access (FDMA) mode, and the frequency bands of
UAVs are orthogonal to each other. We assume that each UAV
has the same amount of bandwidth Bg to serve GUs. Let P g

denote the transmission power of GUs, and the SNR at UAV m
from GU k can be expressed as

αg
k,m(t) =

P g

hg
k,m(t)n0

Bg

Ng
m(t)

, (6)

where hg
k,m(t) = 10PLk,m(t)/10, and n0 is the noise power spec-

tral density. Then the achievable transmission rate between GU
k and UAV m at time slot t is

ζgk,m(t) =

{
μg
k,m(t) Bg

Ng
m(t)

log2(1 + αg
k,m(t)), if Ng

m(t) > 0;

0, otherwise.
(7)

The data size of packet of each GU is generated from a Poisson
distribution with parameter λ. At time slot t, GU k generates a
packet with a data size of σg

k(t) and then transmits it to UAV
χg
k(t). The transmission time of the data packet is

τgk =
σg
k(t)

ζg
k,χg

k(t)
(t)

. (8)

1The above pathloss expressions are in unit of dB.
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Each UAV maintains a buffer to cache the received data packets,
which follows the first-in-first-out rule. The remaining buffer
size of UAV m is denoted by lm(t). When GU k chooses UAV
m to transmit its newly generated data packet and lm(t) ≥ σg

k(t),
UAV m will immediately reserve the space in its buffer for the
packet, i.e., lm(t+ 1) = lm(t)− σg

k(t).
2 Otherwise, the packet

will be dropped due to insufficient remaining buffer size trigger-
ing a network congestion event.

C. Transmission Model Between UAVs

Since the distance between a source UAV and the destination
UAV M may exceed the direct communication range dc, each
packet would be transmitted through multiple hops until it
reaches the destination UAV M . Let ξ = {m0,m1, . . . ,mNu

σ
}

denote the transmission path with Nu
σ hops connecting the

source UAV and the destination UAV, where mn represents
the index of the n-th hop UAV on path ξ. Note that we have
mNu

σ
= M .

The communication links between UAVs can be assumed to
be LOS links, since there is negligible blockage in the sky. The
channel gain between UAV m and UAV m′ follows the free
space pathloss model:

‖hu
m,m′(t)‖2 =

ρ0

‖wu
m(t)−wu

m′(t)‖2
, (9)

where ρ0 denotes the channel gain at a reference distance of 1
m. All UAVs have the same transmission power Pu, and the
received power of UAV m′ from UAV m is represented by

P r
m,m′(t) = Pu‖hu

m,m′(t)‖2. (10)

Each UAV will choose the next hop UAV and the transmis-
sion band for every packet cached in its buffer. There are NB

orthogonal frequency bands with equal amount of bandwidth,
whose index set is denoted by B = {1, . . . , b, . . . , NB}, for
UAVs to choose to forward data packets. The bandwidth of each
band is Bu. The index of the chosen frequency band of UAV
m is denoted by bm(t), and we introduce a binary indicator
μB
m,b(t) to indicate whether UAV m chooses frequency band

b. Thus μB
m,bm(t)(t) = 1, and μB

m,b(t) = 0 for b �= bm(t). Since
the UAVs working in the same frequency band can interfere
with each other within the communication range, the signal-to-
interference-plus-noise ratio (SINR) at UAV mn+1 from UAV
mn can be expressed as (11)

αu
mn,mn+1

(t)

=
P r
mn,mn+1

(t)∑
i∈M\mn+1

μB
i,bmn (t)(t)μ

c
i,mn+1

(t)P r
i,mn+1

(t) + n0Bu

(11)

where μc
i,mn+1

(t) ∈ {0, 1} is the communication range indica-
tor. Specifically, μc

i,m(t) = 1 indicates that UAV i is within the
communication range of UAV m, otherwise μc

i,m(t) = 0. Then
the transmission rate from UAV mn to UAV mn+1 is

Ru
mn,mn+1

= Bu log2(1 + αu
mn,mn+1

(t)). (12)

2If one UAV receives the data packets from multiple GUs at the same time,
we have lm(t+ 1) = lm(t)−

∑
k∈K μg

k,m
(t)σg

k
(t).

TABLE I
NOTATIONS OF THE TRANSMISSION MODEL

At each time slot, each UAV forwards the first data packet
cached in its buffer list. Taking a data packet of size σu at UAV
mn as an example,3 UAV mn+1 will reserve the corresponding
buffer size for this packet, i.e., lmn+1(t+ 1) = lmn

(t)− σu.4

The network congestion occurs when lmn+1(t) < σu. The trans-
mission time τumn,mn+1

for the packet in this hop is calculated
as

τumn,mn+1
=

σu

Ru
mn,mn+1

. (13)

And the overall transmission time along the path is

t =

n=Nu
σ−1∑

n=0

τumn,mn+1
. (14)

The notations of the transmission model are listed in Table I.

D. Problem Formulation

We aim to minimize the transmission time of each packet
and avoid the network congestion via optimizing UAV tra-
jectories {wu

m(t)}m∈M,t∈T , frequency resource allocation
{bm(t)}m∈M,t∈T , and the transmission path ξ. Thus the problem
can be formulated as:

min
wu

m,bm,ξ

n=Nu
σ−1∑

n=0

τumn,mn+1
(15a)

s.t. ‖wu
m(t+ 1)−wu

m(t)‖ = V uδt, ∀m ∈ M, (15b)

‖wu
mn

(t)−wu
mn+1

(t)‖ ≤ dc, ∀mn ∈ ξ, (15c)

lmn+1(t) ≥ σu, (15d)

lm(t) ≥ σg
k(t), (15e)

3There is no subscript and suffix σu because once the packet is transmitted
to the multi-hop UAV relay network, it does not matter that when was the data
packet generated by which user.

4If UAV mn+1 is chosen as the next hop UAV for multiple packets from
multiple UAVs, then it will immediately reserve the corresponding buffer for all
the incoming packets.
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wu
m(0) = w0

m, (15f)

ψl ≤ wu
m(t) ≤ ψu,

5∀m ∈ M, (15g)

where w0
m is the initial location of UAV m, and ψl and ψu

denote the lower and upper boundary coordinates of the consid-
ered area, respectively. The constraint (15b) is the UAV speed
constraint, and (15c) means that the next hop UAV should be
within the communication range of the current UAV, otherwise
a service outage event occurs. The constraints (15d) and (15e)
indicate that the UAV should have sufficient remaining buffer
size for the incoming packets. The UAVs are restricted in the
considered area, as indicated by (15g).

According to (1a), sincewu
m(t) and eum(t) have a one-to-one

correspondence, the trajectory variables wu
m(t) in (15a) can be

replaced by flying direction variables eum(t). This replacement
makes the constraint (15b) negligible, which simplifies the op-
timization problem. Hence, problem (15) can be rewritten as:

min
eu
m,bm,ξ

n=Nu
σ−1∑

n=0

τumn,mn+1
(16a)

s.t. ‖wu
mn

(t)−wu
mn+1

(t)‖ ≤ dc, ∀mn ∈ ξ, (16b)

wu
m(0) = w0

m, (16c)

lmn+1(t) ≥ σu, (16d)

lm(t) ≥ σg
k(t), (16e)

ψl ≤ wu
m(t) ≤ ψu, ∀m ∈ M. (16f)

However, problem (16) is still challenging to be solved. The
reason is four-fold: (1) This is a sequential decision-making
problem; (2) UAVs need to make decisions on their trajectories,
frequency resource allocation and the next hop UAV at the same
time. Hence the action space of each UAV is very large such that
it is difficult to search an optimal policy; (3) These three types of
decisions are coupled each other, which further complicates the
joint decision making process. For example, the flying directions
determine the next available hop UAVs, since the next hop UAV
should be in the communication range of the current UAV;
(4) In addition, the objective of problem (16) is dedicated for
each data packet, which is determined by all the UAVs along
the packet transmission path. While the objective of traditional
DRL is to maximize the cumulative reward of each agent. Since
the decision-making agents are the UAVs, this inconsistency
cannot be solved by simple reward shaping, and maximizing the
cumulative reward can not solve the problem (16) directly.

III. PRELIMINARIES

In a single-agent DRL algorithm [35], the agent observes the
environment state s(t), executes action a(t), and then receives
reward r(t). The goal of DRL is to find a policy π(a|s) that
maps a state to an action for maximizing the expected discounted

5The inequality symbols between two vectors indicate that each element at the
corresponding position in the two vectors satisfies the inequality relationship.

cumulative reward Eπ[
∑T

i γir(t)], where γ ∈ (0, 1) is the dis-
count factor. The state-action value function is defined as

Q(s(t), a(t)) = Eπ

[
T∑
i=0

γir(t+ i+ 1)

∣∣∣∣∣s(t), a(t)
]
, (17)

which is the expectation of the discounted cumulative reward.
Then the greedy policy is π(a|s) = argmaxa Q(s, a).

Take the deep Q network (DQN) [36] as an example. The
DQN uses a deep neural network (DNN) to approximate the
state-action value function, i.e., Q(s(t), a(t); θ), where θ is the
weight of the DNN. However, DNN can cause instability and
divergence issues when applied in DRL. Experience replay and
target network are often used to tackle the issues. Specifically,
the experience replay buffer C stores the state transition samples
(s(t), a(t), r(t), s(t+ 1)), and DRL samples a mini-batch to
break the correlation between sequential samples. The target
network θ′ has the same architecture as the origin DNN θ, and
copies the weights of θ every Nu steps. The network weights
remain unchanged between two updates to break the correlation
between training target and the original DNNs. The DNN is
trained via minimizing the loss function, i.e.,

L(θ) =
1
Ns

∑
i

[y(i)−Q(s(i), a(i); θ)]2, (18)

where

y(i) = r(i) + γQ′(s(i+ 1), π(a|s(t+ 1)); θ′), (19)

is the training target, and Ns is mini-batch size.
When considering multi-agent scenarios withNa agents, each

agent has its own state-action value function Qi(oi, ai; θi).6

QMIX [33] proposes a joint action-value function Qtot(o,a),
whereo anda are the joint observations and actions of all agents,
i.e., the joint action-value function ensures that a global argmax
operation performed on Qtot yields the same result as a set of
individual argmax operations performed on each Qi, i.e.,

argmax
a

Qtot(o,a) =

⎛
⎜⎜⎜⎝

argmax
a1

Q1(o1, a1)

...
argmax

aNa

QNa
(oNa

, aNa
)

⎞
⎟⎟⎟⎠ , (20)

which means the choice of greedy action for each agent in
a decentralized way can lead to the greedy joint actions. In
order to satisfy (20), monotonicity should be enforced through
a constraint on the relationship between Qtot and each Qi [33]:

∂Qtot

∂Qi
≥ 0, ∀i ∈ {1, 2, . . . , Na}. (21)

In order to guarantee the monotonicity, QMIX uses a mixing
network that inputs the state-action value of each agent Qi and
outputs Qtot. The weights (excluding the bias) of the mixing
network are produced by separate hypernetworks [37] and are
restricted to be non-negative. The nonnegativity can be obtained
by absolute activation function.

6In multi agent scenarios, the agents usually cannot observe the entire envi-
ronment state. Each agent can only have local observation based on the state
oi(t) = fi(s(t)), where fi(·) is the observation function.
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Fig. 2. Illustration of the MAQMIX algorithm. Each agent runs the multi-agent algorithm QMIX to tackle large action space issue, while the Q network is trained
by the designed inter-UAV training mechanism.

IV. MAQMIX ALGORITHM

In this section, we present the proposed MAQMIX. As shown
in Fig. 2, the MAQMIX has two designed mechanisms: an intra-
UAV training mechanism and an inter-UAV training mechanism.
Moreover, the the convolutional neural networks (CNNs) are
applied to extract feature of the user distribution. In the intra-
UAV training part, each UAV agent is decomposed into three
subagents which are responsible for trajectory design, frequency
resource allocation, and the next hop selection, respectively.
While in the inter-UAV training part, the training among UAVs
are coordinated. Specifically, each UAV uses the state-action
value of other agent to update its own state-action value, such that
the state-action value can estimate the remaining transmission
time for each packet.

The MAQMIX includes two phases: training phase and im-
plementation phase. In the training phase, the DNN is trained
offline, and the exploration is needed to search the optimal
policy. While in the implementation phase, DNN only needs

forward propagation, which consumes much less resources than
training. In addition, there is no need for exploration in the
implementation phase.

A. Key Elements of the Proposed DRL Algorithm

We first introduce the designed observation, action and reward
in the proposed algorithm.

1) Observation: The observation space of UAV agent m
om(t) consists of six components:
� The locations of all GUs {wg

k(t)}k∈K: According to
Section II-A, the GUs choose the UAV with the strongest
RSS to associate. Hence, the GUs distribution can affect
UAV trajectory design. For example, more UAVs are
needed to offload the data traffic where GUs are denser.
In order to better extract the distribution characteristics
of GUs, we map the GU locations {wg

k(t)}k∈K to a GU
distribution matrixW g(t) ∈ RNc×Nc such that the CNNs
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can be applied. Specifically, the considered area is equally
divided into 10 × 10 grids, and W g

i,j(t) represents the
number of GUs in the corresponding grid;

� The channel gain between UAV m and other UAVs
{‖hu

m,m′(t)‖2}m′∈M\{m};
� The UAVs’ locations {wu

m(t)}m∈M;
� The remaining buffer size of all UAVs {Lm(t)}m∈M;
� The number of UAVs that select each frequency band
{Nf

b }b∈B;
� The data size of the current data packet for transmission
σu.

2) Action: The action of each UAV am(t) consists of three
components am(t) = {afm(t), arm(t), ahm(t)}, which are re-
sponsible for UAV trajectory design, frequency resource allo-
cation, and the next hop selection, respectively.
� The flying direction afm(t) = eum(t): For simplicity,

the flying direction is discretized into five direc-
tions: left, right, forward, backward, and hover, i.e.,
{(−1, 0), (1, 0), (0, 1), (0, −1), (0, 0)};

� The frequency resource allocation arm(t) = bm(t): Each
UAV can choose its transmission frequency band bm(t) to
reduce the interference among UAVs;

� The next hop UAV ahm(t) = mn+1: In our problem, the
UAV chooses proper next hop to minimize the transmission
time.

The action space has a cardinality of 5 ×NB × (M − 1),
which is extremely large and thus difficult to tackle as the number
of UAVs increases.

3) Reward: The reward of each UAV consists of the follow-
ing five components:
� The transmission time of the current hop τumn,mn+1

, which
follows the objective function (16a). Since the objective of
DRL is to minimize the transmission time, the reward can
be defined as the opposite value of the transmission time;

� The constant penalty for flying out of the considered area is
denoted by rsm. The constant penalty rsm restricts the UAV
to the considered area, which reflects the constraint (16f);

� The constant penalty rem for the network congestion that
occurs at the next hop (16d);

� The congestion penalty for the congestion caused by the
packets from GUs, which means the constraint (16e) is
violated. If the packet generated from GU k exceeds the
remaining buffer size of UAVm, i.e., UAVm is overloaded,
the UAVs within the distance dφ from GU k will receive a
penalty {rφi }i∈M\m, whose value is based on the distance
between UAVs and GU k, while the UAVs beyond dφ will
not be punished. The UAVs within the communication
range get penalty because the congestion caused by the
packet from GU means that areas near this GU need more
UAVs to serve. UAVs outside the range are not punished
because they are too far away from the current area with
high user density, and there is no need for these UAVs to
serve this area. Note that {rφi }i∈M\m is for UAVs other
than m, and can be specifically defined as

rφi = rβ − μd
i,kκd‖wu

i −wg
k‖. (22)

Here, rβ is the bonus for encouraging UAVs to fly close
to the overloaded UAV to offload data traffic, and κd is
a positive weight for balancing reward and distance. μd

i,k

is the range indicator, with μd
i,k = 1 indicating that the

distance between UAV i and GU k is within dφ, and μd
i,k =

0 otherwise;
� The outage penalty for the selected UAV exceeding the

communication range rcm. The outage penalty rcm prevents
the UAV from violating the constraint (16b).

The overall reward of UAV m is defined as

rm = −κtτ
u
m,m′ + μs

mrsm + μe
mrem + rφm + μc

mrcm, (23)

where κt is a positive adjusting weight, while μs
m, μe

m and μc
m

indicate whether UAVmflies out of the considered area, chooses
the next hop UAV that occurs congestion, and chooses the next
hop UAV out of the communication range, respectively. Note
that rφm comes from other agents, whose remaining buffer size
is insufficient for receiving the packets from GUs.

B. Intra-UAV Training Mechanism

To tackle large action space issue, each UAV agent runs the
MADRL algorithm QMIX. Specifically, we assume that each
UAV consists of three subagents, i.e., trajectory design subagent,
frequency resource allocation subagent, and the next hop se-
lection subagent, being responsible for three actions defined in
Section IV-A2. As such, the large action space is decomposed
into three small action space. The decomposition reduces the
action space from 5 ×NB × (M − 1) to 5 +NB + (M − 1),
which significantly reduces the training complexity. The greedy
policy of UAV agent m is

πm(am|om) = { argmax
af
m

Qf
m(om, afm), argmax

ar
m

Qr
m(om, arm),

argmax
ah
m

Qh
m(om, ahm)}, (24)

where Qf
m(·), Qr

m(·), and Qh
m(·) are the state-action value func-

tions of the subagents for trajectory design, frequency resource
allocation, and the next hop selection, respectively. According
to (20), we have

argmax
a

Qtot
m (om, a) = πm(am|om). (25)

C. Inter-UAV Training Mechanism

Although each UAV is decomposed into three subagents, the
mixing network can still output a state-action valueQtot

m . Hence,
we can treat each UAV as one agent in the inter-UAV training
process.

Let us modify the training target defined in (19) and use
the state-action value of the next hop UAV to calculate the
training target, which is easy to obtain through information
exchange among UAVs [38]. The training target defined in (19)
is converted to

ym(i) = rm(i) + γQtot
m′

(
om′(i), πm′(am′ |om′); θQm′

)
. (26)
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Using the state-action value from other agents to calculate the
training target can break the correlation between the target and
the origin DNN. As a result, the separate target network is not
required in the MAQMIX.

Note that after sufficient training, the agents hardly receive
the penalties defined in Section IV-A3. The state-action value of
each agent Qtot

m can be regarded as the estimated opposite value
of the subsequent transmission time of the current data packet.
For example, if UAV mn connects to the destination UAV, the
reward of UAV mn is the opposite value of the transmission
time between UAV mn and the destination UAV, and then the
state-action value Qtot

mn
can be regarded as the estimation of

the opposite value of the transmission time from UAV mn to
the destination UAV. UAV mn−1 chooses UAV mn as the next
hop UAV, and then the training target in (26) becomes rmn−1 +
Qtot

mn
, where rmn−1 is the opposite value of the transmission time

between UAV mn−1 and UAV mn, and Qtot
mn

is the estimation
of the opposite value of the transmission time from UAV mn

to the destination UAV. Thus, Qtot
mn−1

can be regarded as the
estimation of the opposite value of transmission time from UAV
mn−1 to the destination UAV. Similarly, we can infer that the
state-action valueQtot

m can be regarded as the estimated opposite
value of the transmission time from UAV m to the destination
UAV. Maximizing the state-action value is equal to minimizing
the transmission time.

D. Network Architecture

As shown in Fig. 2, each UAV agent has three subagents. In
each subagent, the GU distribution matrix in the observation is
first input into the feature extraction. Then the extracted features
and the remaining observations are input to a multilayer percep-
tron (MLP) that consists of multiple fully connected layers and
ReLU activation layers. The MLP outputs the state-action values
of all possible actions. The subagents choose actions using
ε-greedy policy. Specifically, the subagent chooses a random
action with probability εor chooses the action with the maximum
value with probability 1 − ε.

The mixing network inputs the three chosen state-action value
and outputs the total value Qtot

m . The weights of the mixing
network are produced by the hypernetwork. Similarly, the hy-
pernetwork first extracts features of the GU distribution matrix,
and then the features as well as other observations are input
into the MLPs. The outputs of the MLPs are activated by the
absolute activation function and are considered as the weights
of fully connected layers of the mixing network.

E. Training Algorithm

The proposed MAQMIX algorithm is episodic with episode
length T . At the beginning of each episode, the UAVs and GUs
are randomly distributed in the considered area.

The GUs generate data packets and send them to the UAVs
with the strongest RSS. After the last data transmission, the
UAV m gets the observation, inputs om(t) to three subagents,
and outputs corresponding state-action values. In the training
phase, the subagents choose actions based on ε-greedy pol-
icy, which encourage the exploration to prevent the agents

Algorithm 1: Training Phase of the MAQMIX.
1: Architecture of each UAV state-action value network

that includes three subagents and a mixing network,
UAV to GU frequency band Bg, UAV frequency bands
Bu, experience replay buffer C, episode length T , batch
size Ns, UAV-BS speed V , the number of UAVs M and
the number of GUs K;

2: Well-trained network parameters of all UAVs;
3: The networks of all UAV agents are all randomly

initialized. The weights of the mixing network is
produced by separate hypernetworks and restricted to be
non-negative;

4: Initialize the experience replay buffer;
5: for each episode do
6: Initialize locations of UAVs and GUs;
7: for each time slot t do
8: The GUs generate data packets and transmit them to

the corresponding UAVs;
9: for each UAV m do

10: The agent m gets the observation om(t);
11: The three subagents take the observation as input,

and output the flying direction, frequency resource
allocation, and the next hop UAV via ε-greedy
policy;

12: end for
13: All agents take actions;
14: The agents obtain the rewards {rm(t)}m∈M and the

next observations {om(t+ 1)}m∈M;
15: Store ({om(t)}m∈M, {am(t)}m∈M, {rm(t)}m∈M,

{om(t+ 1)}m∈M) in experience replay buffer;
16: end for
17: Sample several random minibatches of Ns

experience tuples from replay buffer;
18: for each agent m do
19: Calculate the target according to (19);
20: Update the network by minimizing the loss (18);
21: end for
22: end for

from local optimum. In the implementation phase, the explo-
ration is not required, since the DNNs have been well-trained.
Then the environment proceeds with agents taking the selected
actions {am(t)}m∈M, and transitions to the next state. The
agents obtain their rewards {rm(t)}m∈M and the next obser-
vations {om(t)}m∈M. The experience replay buffer stores the
experience tuple ({om(t)}m∈M, {am(t)}m∈M, {rm(t)}m∈M,
{om(t+ 1)}m∈M). When the buffer is full, batches of experi-
ence tuples are randomly sampled and the DNNs of agents are
trained via minimizing the loss (18). The proposed MAQMIX
algorithm is summarized in Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate
the proposed MAQMIX algorithm.
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TABLE II
COMMUNICATION RELATED PARAMETERS

TABLE III
DETAILED MLP ARCHITECTURES OF THE THREE SUBAGENTS

A. Simulation Settings

We set the side length of the square area as Ls = 1 km, where
all GUs and UAVs are restricted to the considered area. There
are K = 50 GUs in this area. The episode length is T = 1, 000.
UAVs fly at an altitudeH = 300 m. The communication range of
each UAV is dc = 400 m. Taking the coverage of the considered
simulation area and the communication range of UAVs into ac-
count, the number of UAVs is set toM = 10, such that the UAVs
can cover the entire area even in some extreme cases. The speed
of UAVs and GUs are V u = 10 m/s, V g = 5 m/s, respectively.
The data size of the generated packet is sampled from a Poisson
distribution with parameter λ = 20. The communication related
system parameters are summarized in Table II.

In the proposed MAQMIX algorithm, we divide the consid-
ered area into 10 × 10 girds whose side length is Lg = 100
m. Each subagent has a CNN with two convolutional layers
to extract the feature of user distribution. The input channel and
output channel of each layer is set to 1. The kernel size, stride,
and padding of both layers are set to 3, 2, and 1, respectively.
Each subagent also has a MLP to output the state-action values,
and each hidden layer is activated by ReLU function. The
detailed architectures are shown in Table III. The mixing net-
work has one convolutional layer to extract the features of user
distribution and then has a MLP to output the total state-action
value. The MLP has one hidden layer with 64 neurons. The
input size is 3, which represents the state-action value of the
three subagents. Note that the weights of the mixing network
are produced by the hypernetworks. The hypernetworks take
the state as input, and output weights of the mixing network,
which is activated by absolute function.

TABLE IV
FLOPS OF THE THREE SUBAGENTS

TABLE V
REWARD PARAMETERS

The parameters of reward in (23) are listed in Table V. We
set the random exploration possibility ε = 0.1, and adopt the
ADAM optimizer [40] with the starting learning rate Lr =
0.001. For each learning step, each agent randomly samples
Ns = 32 experiences from the experience replay buffer for
training. The capacity of the experience replay buffer is set to
15,000.

B. Complexity Analysis

The computational complexity has been analyzed in terms
of floating operations (FLOPs) [41]. For convolutional layers,
FLOPs can be calculated as

FLOPs = 2HinWin(CinK
2 + 1)Cout, (27)

where Hin, Win and Cin are the height, width and the number
of channels of the input feature map, K is the kernel size, and
Cout is the number of output channels.

For fully-connected layers, FLOPs can be calculated as

FLOPs = (2Nin − 1)Nout, (28)

whereNin is the number of input neurons andNout is the number
of output neurons.

Considering the neural network architecture of each subagent,
the FLOPs of the three subagents are calculated and listed in
Table IV. The difference in FLOPs among the three subagents
is caused by the difference of the output layers. Note that the
three subagents can make decisions in parallel.

C. Simulation Results

We compare the proposed MAQMIX algorithm with the
baseline algorithm AODV [42]. AODV is a well-known ad hoc
routing algorithm, which is based on the shortest path principle.
In the AODV algorithm, the locations of all UAVs are fixed,
and frequency resources are randomly allocated. In addition, in
order to verify the effectiveness of each subagent, we propose
three other benchmarks which remove one of the three subagents
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Fig. 3. Cumulative reward performance of all agents with respect to episodes.

respectively and only optimize the other two subagents. These
benchmarks are detailed as follows:
� MAQMIX-NM: In the MAQMIX-NM, the trajectory de-

sign subagent is ignored, and the locations of all UAVs
are fixed. The other two subagents, frequency resource
allocation and the next hop selection subagents, are trained
by MAQMIX.

� MAQMIX-NF: The frequency resources are randomly
allocated, while the other two subagents are trained by
MAQMIX.

� MAQMIX-NH: Each UAV chooses the shortest path as the
alternative of next hop selection subagent, while the other
two subagents are trained by MAQMIX.

We first investigate the cumulative reward of all agents in
each episode to verify the effectiveness of the proposed al-
gorithm. As shown in Fig. 3, the cumulative reward shows
the tendency of increment with the training process, which
reveals the effectiveness of the MAQMIX. With all the three
subagents, the MAQMIX algorithm achieves the best perfor-
mance by the end of training, and all the three benchmarks
simplified from MAQMIX outperform the baseline AODV. At
the beginning of the training process, the cumulative rewards
of the MAQMIX-NF and MAQMIX-NH are much lower than
that of the MAQMIX-NM. This is because at the beginning, the
UAVs fly randomly due to the trajectory design subagent, which
results in volatile connections among UAVs. The packets are
frequently dropped due to the disconnection of the chosen next
hop UAV, leading to the penalty. The MAQMIX-NM converges
much faster than others and the cumulative reward is much more
stable after convergence. The reason is that the frequency re-
source allocation and the next hop selection subagents are much
easier to train compared with trajectory design subagent. This
is also the reason why the cumulative reward of the MAQMIX
in the first 1,000 episodes rises rapidly despite the trajectory
design subagent. Moreover, the lack of trajectory subagent in
the MAQMIX-NM leads to the stability, since the network
topology is static. The cumulative reward of the MAQMIX-NH
is lower than that of the MAQMIX-NM and MAQMIX-NF after

Fig. 4. Probability of network congestion and outage of the proposed
algorithm.

convergence, because the dynamic network topology caused by
trajectory design subagent deteriorates the performance of the
shortest path routing protocol.

One of a major purpose is to prevent exceptional circum-
stances such as network congestion and outage event.7 As shown
in Fig. 4, the probability of outage event decreases drastically
in the first 1,000 episodes, which illustrates that the agents have
learned how to choose UAVs within their communication range.
However, the probability of network congestion shows a trend
of rising at the beginning and then decreases after about 1,000
episodes. The reason is that whether the network congestion oc-
curs can be counted only when the packets are transmitted to the
UAV within the communication range. At the beginning, most
UAVs cannot choose the next hop UAVs within their commu-
nication range properly, and thus there is almost no congestion.
As the training process, more packets can be transmitted to the
UAVs within the communication range, and the network starts
to get congested. Then UAVs learn experience from congestion
transitions via experience replay to avoid network congestion,
such that the probability of congestions decreases to about 0
afterwards.

We plot trajectories of UAVs and GUs in Fig. 5. The GUs are
divided into 3 different groups and move towards 3 different
directions, and the destination UAV M hovers at coordinate
of (950, 950). Although the trajectories of UAVs have some
randomness, the UAVs exhibit the tendency of moving along
with the GUs. The explanation of this phenomenon is that UAVs
can achieve higher transmission rate due to the closer distance.
In addition, UAVs hovering around cluster of GUs could provide
more choices for GUs, and thus prevent the network congestion.
For example, UAV0 in Fig. 5 flies towards the cluster of GUs at
the beginning. This is because all GUs gather inside the lower
left grid and the UAVs should fly towards the GUs to offload the
data traffic. Then UAV0 moves along with a cluster of GUs, and
hovers around the coordinate of (800, 400) at the end of episode.

7The outage event means the chosen next hop UAV that is out of its commu-
nication range.

Authorized licensed use limited to: University of Waterloo. Downloaded on November 22,2022 at 21:39:05 UTC from IEEE Xplore.  Restrictions apply. 



DING et al.: PACKET ROUTING IN DYNAMIC MULTI-HOP UAV RELAY NETWORK: A MULTI-AGENT LEARNING APPROACH 10069

Fig. 5. Trajectory of UAVs. The UAVs exhibit the tendency of moving along
with the GUs, and keep connected to each other.

Fig. 6. Probability of network congestion versus the number of GUs.

For UAVs initialized around the destination, their cached data
packets are mainly from other UAVs and do not need to provide
service for GUs directly. Hence, these UAVs hovers around the
initial locations and have no obvious moving tendency.

Figure 6 illustrates the impact of the number of GUs on the
probability of network congestion. It can be observed that in the
MAQMIX algorithm, the probability of congestion increases
monotonically from 0% to 7.05% as the number of GUs in-
creases from 20 to 70. This is because more GUs generate more
data packets, leading to higher network congestion probability.
In addition, the MAQMIX reduces 91.88% network congestion
compared with AODV when the number of GUs is K = 50, and
all the other algorithms derived from the MAQMIX can also
effectively reduce the congestion probability. This is because
AODV is a routing protocol using the shortest path criterion,
while the MAQMIX can learn from the historical experience
to avoid network congestion by choosing the transmission path
properly. We can also observe that the MAQMIX-NF achieves
similar network congestion reduction as the MAQMIX. This is
because the network congestion is mainly affected by the next

Fig. 7. Network throughput performance versus the number of GUs.

Fig. 8. Average transmission time of each hop versus the value of λ.

hop selection and trajectory design rather than the frequency
resource allocation.

As shown in Fig. 7, the MAQMIX achieves the high-
est throughput compared with all benchmarks, and increases
60.87% total throughput of the whole system compared with
AODV. We can observe that the throughput of the system first
increases and then decreases as the number of GUs increases.
The explanation is that when there are less GUs, the network
is relatively idle. The increase in the number of GUs can
result in the increase in network throughput. However, once
the throughput reaches the network capacity, the increase in
the number of data packets leads to a higher probability of
network congestion, more data packets are dropped, and thus the
network throughput decreases. Another notable phenomenon is
that there is no significant difference between the throughput
of the MAQMIX and that of the MAQMIX-NF algorithm. This
can be explained by Fig. 6, since the two algorithms do not have
significant difference in the probability of network congestion.

According to definition of Poisson distribution, the increment
of parameter λ leads to the increment of average packet size. In
Fig. 8, we can observe that the average transmission time of
each hop increases monotonically with the increment of λ. In
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Fig. 9. Network throughput performance versus the value of λ.

the MAQMIX algorithm, the average transmission time reduces
by 20.76% compared with AODV. We can observe an interesting
phenomenon that the MAQMIX-NF has no significant reduction
in average hop time compared with AODV, while the other two
MAQMIX derived algorithms can get a relatively large reduc-
tion. This is because the frequency resource allocation subagent
can reduce the interference among UAVs. According to (11), the
reduction of interference leads to higher transmission rate, which
in turn reduces the transmission time of each hop. Moreover,
since the transmission rates among UAVs are also affected by
UAV locations, the trajectory design subagent can also improve
the transmission rate and bring the better performance of the
MAQMIX compared with the MAQMIX-NM.

Fig. 9 reflects the impact of λ in terms of the network through-
put. As illustrated in this figure, the MAQMIX-NF achieves the
best performance in all three benchmark algorithms, since the
frequency resource allocation action has negligible influence
on the network throughput. The MAQMIX-NH has the worst
performance in the three benchmark algorithms, and the reason
is that the shortest path criterion under the dynamic network
topology leads to higher possibility of outage event brought by
the trajectory design subagent. This figure also illustrates that
the throughput of all algorithms increases monotonically with
the increment of λ. While the increment of the throughput in the
MAQMIX tends to be flat when λ becomes large. The reason is
that when the packets size is relatively small, the bottleneck of
network throughput is the data packet size. Thus the increase of
λ brings the linear increase of network throughput. However, the
larger packet size also leads to the higher possibility of network
congestion, which in turn reduces the network throughput.

VI. CONCLUSION

In this paper, we have investigated the packet routing prob-
lem in the multi-hop UAV relay network. We have proposed
a novel MAQMIX algorithm, which leverages intra-UAV and
inter-UAV training mechanisms to tackle the large action space
issue and coordinate the training among UAVs, respectively.
Simulation results have shown that the MAQMIX can enhance

the network throughput, reduce the network congestion proba-
bility, and shorten the transmission time. The intra-UAV training
mechanism can be applied to tackle the problems with large
action space, and the inter-UAV training mechanism can solve
problems whose objectives are determined by multiple agents.
For future work, we will investigate the store-carry-forward
routing problem in the multi-hop UAV relay network.

REFERENCES

[1] J. Chen, R. Ding, W. Wu, J. Liu, F. Gao, and X. Shen, “Multi-agent learning
based packet routing in multi-hop UAV relay network,” in Proc. Int. Conf.
Commun., 2022, pp. 1–5.

[2] X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic network
virtualization and pervasive network intelligence for 6G,” IEEE Commun.
Surv. Tuts., vol. 24, no. 1, pp. 1–30, Jan.–Mar. 2021.

[3] N. Kato, B. Mao, F. Tang, Y. Kawamoto, and J. Liu, “Ten challenges
in advancing machine learning technologies toward 6G,” IEEE Wireless
Commun., vol. 27, no. 3, pp. 96–103, Jun. 2020.

[4] S. Chandrasekharan et al., “Designing and implementing future aerial
communication networks,” IEEE Commun. Mag., vol. 54, no. 5, pp. 26–34,
May 2016.

[5] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with un-
manned aerial vehicles: Opportunities and challenges,” IEEE Commun.
Mag., vol. 54, no. 5, pp. 36–42, May 2016.

[6] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient de-
ployment of multiple unmanned aerial vehicles for optimal wire-
less coverage,” IEEE Commun. Lett., vol. 20, no. 8, pp. 1647–1650,
Aug. 2016.

[7] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-D place-
ment of an unmanned aerial vehicle base station (UAV-BS) for energy-
efficient maximal coverage,” IEEE Wireless Commun. Lett., vol. 6, no. 4,
pp. 434–437, Aug. 2017.

[8] J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, “Placement optimization of
UAV-mounted mobile base stations,” IEEE Commun. Lett., vol. 21, no. 3,
pp. 604–607, Mar. 2017.

[9] R. Ding, F. Gao, and X. Shen, “Deep reinforcement learning based 3D
UAV trajectory design and frequency band allocation,” in Proc. IEEE Glob.
Commun. Conf., 2020, pp. 1–6.

[10] J. Zhao, F. Gao, L. Kuang, Q. Wu, and W. Jia, “Channel tracking with
flight control system for UAV mmWave MIMO communications,” IEEE
Commun. Lett., vol. 22, no. 6, pp. 1224–1227, Jun. 2018.

[11] W. Wu et al., “Dynamic RAN slicing for service-oriented vehicular net-
works via constrained learning,” IEEE J. Sel. Areas Commun., vol. 39,
no. 7, pp. 2076–2089, Jul. 2021.

[12] F. Cheng et al., “UAV trajectory optimization for data offloading at the edge
of multiple cells,” IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 6732–6736,
Jul. 2018.

[13] J. Zhao, F. Gao, G. Ding, T. Zhang, W. Jia, and A. Nallanathan, “Inte-
grating communications and control for UAV systems: Opportunities and
challenges,” IEEE Access, vol. 6, pp. 67519–67527, 2018.

[14] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, “Energy-efficient
UAV-assisted mobile edge computing: Resource allocation and trajectory
optimization,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3424–3438,
Mar. 2020.

[15] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with tra-
jectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3747–3760, Jun. 2017.

[16] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless commu-
nication with rotary-wing UAV,” IEEE Trans. Wireless Commun., vol. 18,
no. 4, pp. 2329–2345, Apr. 2019.

[17] F. Cui, Y. Cai, Z. Qin, M. Zhao, and G. Y. Li, “Multiple access for mobile-
UAV enabled networks: Joint trajectory design and resource allocation,”
IEEE Trans. Commun., vol. 67, no. 7, pp. 4980–4994, Jul. 2019.

[18] R. Ding, Y. Xu, F. Gao, and X. Shen, “Trajectory design and access
control for air-ground coordinated communications system with multi-
agent deep reinforcement learning,” IEEE Internet Things J., vol. 9, no. 8,
pp. 5785–5798, Apr. 2021, doi: 10.1109/JIOT.2021.3062091.

[19] W. Shi et al., “Multi-drone 3-D trajectory planning and scheduling in
drone-assisted radio access networks,” IEEE Trans. Veh. Technol., vol. 68,
no. 8, pp. 8145–8158, Aug. 2019.

Authorized licensed use limited to: University of Waterloo. Downloaded on November 22,2022 at 21:39:05 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/JIOT.2021.3062091


DING et al.: PACKET ROUTING IN DYNAMIC MULTI-HOP UAV RELAY NETWORK: A MULTI-AGENT LEARNING APPROACH 10071

[20] S. Zhang, H. Zhang, Q. He, K. Bian, and L. Song, “Joint trajectory and
power optimization for UAV relay networks,” IEEE Commun. Lett., vol. 22,
no. 1, pp. 161–164, Jan. 2018.

[21] J. Zhang, F. Liang, B. Li, Z. Yang, Y. Wu, and H. Zhu, “Place-
ment optimization of caching UAV-assisted mobile relay maritime
communication,” China Commun., vol. 17, no. 8, pp. 209–219,
Oct. 2020.

[22] S. Ahmed, M. Z. Chowdhury, and Y. M. Jang, “Energy-efficient UAV
relaying communications to serve ground nodes,” IEEE Commun. Lett.,
vol. 24, no. 4, pp. 849–852, Apr. 2020.

[23] F. Cheng, G. Gui, N. Zhao, Y. Chen, J. Tang, and H. Sari, “UAV-relaying-
assisted secure transmission with caching,” IEEE Trans. Commun., vol. 67,
no. 5, pp. 3140–3153, May 2019.

[24] H. Wang, J. Wang, G. Ding, J. Chen, Y. Li, and Z. Han, “Spectrum
sharing planning for full-duplex UAV relaying systems with underlaid
D2D communications,” IEEE J. Sel. Areas Commun., vol. 36, no. 9,
pp. 1986–1999, Sep. 2018.

[25] S. Hosseinalipour, A. Rahmati, and H. Dai, “Interference avoidance
position planning in dual-hop and multi-hop UAV relay networks,”
IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7033–7048,
Nov. 2020.

[26] N. Kato et al., “Optimizing space-air-ground integrated networks by arti-
ficial intelligence,” IEEE Wireless Commun., vol. 26, no. 4, pp. 140–147,
2019.

[27] X. Shen et al., “AI-assisted network-slicing based next-generation wire-
less networks,” IEEE Open J. Veh. Technol., vol. 1, no. 1, pp. 45–66,
Jan. 2020.

[28] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” in Proc. Int. Conf. Learn. Representations, pp. 1–14, 2016.

[29] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Başar, “Fully decentralized
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