
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 8, AUGUST 2023 2547

Semantic Communications for Wireless Sensing:
RIS-Aided Encoding and Self-Supervised Decoding
Hongyang Du , Graduate Student Member, IEEE, Jiacheng Wang, Dusit Niyato , Fellow, IEEE, Jiawen Kang ,

Zehui Xiong , Member, IEEE, Junshan Zhang , Fellow, IEEE, and Xuemin Shen , Fellow, IEEE

Abstract— Semantic communications can reduce the resource
consumption by transmitting task-related semantic information
extracted from source messages. However, when the source
messages are utilized for various tasks, e.g., wireless sensing
data for localization and activities detection, semantic commu-
nication technique is difficult to be implemented because of the
increased processing complexity. In this paper, we propose the
inverse semantic communications as a new paradigm. Instead of
extracting semantic information from messages, we aim to encode
the task-related source messages into a hyper-source message for
data transmission or storage. Following this paradigm, we design
an inverse semantic-aware wireless sensing framework with three
algorithms for data sampling, reconfigurable intelligent surface
(RIS)-aided encoding, and self-supervised decoding, respectively.
Specifically, on the one hand, we propose a novel RIS hard-
ware design for encoding several signal spectrums into one
MetaSpectrum. To select the task-related signal spectrums for
achieving efficient encoding, a semantic hash sampling method
is introduced. On the other hand, we propose a self-supervised
learning method for decoding the MetaSpectrums to obtain the
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original signal spectrums. Using the sensing data collected from
real-world, we show that our framework can reduce the data
volume by 95% compared to that before encoding, without
affecting the accomplishment of sensing tasks. Moreover, com-
pared with the typically used uniform sampling scheme, the
proposed semantic hash sampling scheme can achieve 67%
lower mean squared error in recovering the sensing param-
eters. In addition, experiment results demonstrate that the
amplitude response matrix of the RIS enables the encryption
of the sensing data. The code for this paper is available at
https://github.com/HongyangDu/SemSensing.

Index Terms— Semantic communications, reconfigurable intel-
ligent surface, wireless sensing, self-supervised learning.

I. INTRODUCTION

WITH the evolution of the next-generation Internet and
the proliferation of wireless applications, the demand

of network resources for data transmission, storage, and
computation has been increasing rapidly. Specifically, the
advancement of technologies like extended reality and dig-
ital twins is driving the development of the Metaverse and
Web 3.0 concepts [1]. As a result, there is an increasing
demand for robust communication and computing support.
To address the strict requirements of next-generation Inter-
net applications, such as low latency, high reliability, and
immersive experiences, semantic communication has been
proposed as a key approach in the context of sixth-generation
wireless communications [2]. By transmitting only task-related
semantic information extracted from source messages, seman-
tic communications are believed to extend the conventional
Shannon communication paradigm and bring higher quality
of experience to users [3], [4].

While semantic communication techniques have demon-
strated their significant effectiveness in processing source data
across multiple modalities [5], such as audio [6], image [7],
video [8], and text [9], the application of semantic communica-
tions to wireless sensing data processing remains a promising
area with limited exploration thus far [4]. The sensing data
is important because that wireless signals are ubiquitous in
our daily life, and can be used to accomplish various tasks
requested by service providers. Specifically, wireless signals
not only help users access the Internet more efficiently, e.g.,
Metaverse, but also enable indoor positioning and activities
detection more effectively. The wireless sensing data also
facilitates the construction of virtual worlds such as digital
twins. Unlike on-body sensor-based solutions [10], wireless
sensing does not require the user to carry any devices and
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Fig. 1. The ideas of conventional, semantic, and inverse semantic communications. Motivated by the inverse semantic-aware communication, we propose an
inverse semantic-aware encoding and decoding framework and show the results. Specifically, we select 10 original signal amplitude/phase spectrum (Part I) by
using our proposed Algorithm 2, and encode them into one MetaSpectrum by using the RIS and Algorithm 1. After wireless transmission, the reconstruction
results (Part II) are obtained by decoding the MetaSpectrum using Algorithm 3. The sensing data is collected by real experiments with an IEEE 802.11ax
based test platform [15].

equipment, which is more practical and convenient. Addi-
tionally, the wireless sensing method is more robust than
camera-based methods particularly in cases of occlusion or
inadequate illumination, while causing fewer privacy issues.

However, the wireless sensing technique has one major
limitation. The transmission and storage of the sensing data,
such as signal amplitude and phase spectrums, consumes a
large number of resources [11]. In particular, the develop-
ment of communication technologies such as multiple-input
multiple-output and orthogonal frequency-division multiplex-
ing (OFDM) improve the sensing resolution in the spatial and
time-frequency domains, which, however, further increases the
sensing data volume. Therefore, the semantic communication
technique is expected to achieve efficient sensing data trans-
mission or storage while achieving sensing tasks. This vision
is more meaningful for applications that require long-term
storage of sensing data, such as incremental learning for recog-
nition [12], healthcare services [13] and Internet-of-Things
(IoT) applications [14]. The reason that semantic communi-
cations “exceed” the Shannon limit is the “impairment” of the
transmitted data, i.e., an effective semantic encoder extracts

only task-independent semantic information from the source
messages. However, a potential pitfall is that the well-trained
semantic encoding and decoding models for one specific task
may fail when the source messages are needed to accomplish
several different tasks. As shown at the top of Fig. 1, instead of
transmitting an image, the semantic encoder can extract sen-
tences describing the image. This greatly reduces the number
of bits that are required to be transmitted. However, semantic
communications would not work well when the task is not
only to know the type and number of fruits, but also to know
the spatial location. In this case, updated semantic models are
required to be re-trained. In a word, semantic communications
achieve efficiency transmission while introducing limitations.
For the wireless sensing data, if we extract only the semantic
information used for localization, the gesture detection task
might not be accomplished.

To fill this gap in semantic communications, we propose
an inverse semantic-aware approach by treating the source
messages as semantic information of a hyper-source message.
As shown in Fig. 1, the “inverse” means that the processing of
source messages is no longer to extract semantic information,
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but to combine multiple source messages (Part I) into one
hyper-source message (Part III) for transmission or storage.
Subsequently, by decoding, the semantic information of the
hyper-source message (Part II), i.e., source messages, can be
obtained to support multiple different tasks. Using the inverse
semantic-aware approach, we reduce the data volume for trans-
mission or storage, while avoiding the task limitations brought
by semantic communications. For the wireless sensing, the
source messages are signal amplitude and phase spectrums,
and we call the hyper-source messages as amplitude and phase
MetaSpectrums, respectively. We use the reconfigurable intel-
ligent surface (RIS) to ensure efficient inverse semantic-aware
encoding and decoding.1 With the RIS’s superior ability to
modulate signals, our scheme can be implemented effectively
by modifying a small number of elements on the RIS without
affecting the RIS-aided communications. Unlike most RIS
research works that consider only the phase response matrix
of RIS, to the best of our knowledge, this is the first paper to
make full use of the amplitude response matrix of RIS to help
the system design for wireless sensing. The amplitude response
matrix is not only used to reduce the sensing data volume
significantly, but also to encrypt the sensing data because
the amplitude response matrix is inevitable in the decoding
process. Visual representation of the contributions of this paper
is shown in Fig. 1, which are summarized as follows:
• We propose a novel RIS hardware design follow-

ing the paradigm of inverse semantic communications.
The design features L-shaped active sensors placed
behind transmissive elements in RIS, enabling inverse
semantic-aware wireless sensing that significantly reduces
the sensing data volume to 5% of the original data
volume, leading to improved efficiency and resource
utilization.

• We develop the inverse semantic-aware encoding and
decoding methods that leverage the amplitude response
matrix of the RIS to embed prior knowledge in the sens-
ing signals. The self-supervised learning-based decoding
method requires no pre-training resource consumption
and allows for the recovery of source messages to sup-
port multiple different tasks, overcoming the limitations
encountered in semantic communications.

• We introduce an effective semantic hash sampling
algorithm for selecting task-related sensing signal spec-
trums for decoding. Our approach achieves a mean
squared error (MSE) between the ground truth and the
2D angles-of-arrival (AoA) estimation results that is
67% lower than that of typically used uniform sampling
schemes, and enhances security by utilizing the amplitude
response matrix of the RIS for data encryption.

• We build an IEEE 802.11ax based test platform [15] to
collect real-world sensing data and perform experiments
to show the effectiveness of our proposed framework.

The remainder of the paper is organized as follows.
In Section II, we review the related work in the literature.
Section III introduces the system model, which contains the
novel RIS hardware and the sensing signal model. The inverse
semantic-aware encoding and decoding methods are proposed

1Our scheme can alternatively be achieved by using active antennas and
processors [16] to simulate the same signal processing as the RIS. However,
higher hardware costs are introduced compared to the scheme using RIS.

in Section IV and Section V, respectively. Section VI presents
the experiment results. In Section VII, we present the conclu-
sion and discuss some potential research directions.

II. RELATED WORK

In this section, we provide a brief review of three related
techniques, i.e., wireless sensing, RIS, and spectral snapshot
compressive imaging.

A. Wireless Sensing

Wireless signals, such as WiFi [17], have been widely used
for sensing tasks ranging from large-scale intrusion detection
to small-scale gesture recognition and breathing monitoring.
With the rapid advancement of wireless sensing techniques,
next-generation internet service providers can construct digital
models of the physical world (for digital twin service) or con-
duct analysis of users’ behaviors (for Metaverse services) [13],
[18], [19]. Wireless IoT devices collect the sensing data and
use channel state information (CSI), which can be obtained
as a sampled channel frequency response (CFR), for sensing
tasks such as human activities detection [20] and passive
localization [21]. The CFR can be expressed as a complex
matrix and decomposed into an amplitude spectrum and a
phase spectrum for easy transmission and storage. With a
three-dimensional multiple signal classification (3D-MUSIC)
algorithm, the 3D spectrum can be obtained using the ampli-
tude and phase spectra, which contain the time of flight (ToF)
information. The obtained 3D spectrum can achieve several
purposes, such as user localization [22] or activity detection
in the physical world. A challenge in this process is that the
storage or transmission can cause excessive network resource
consumption due to a large amount of sensing data.

B. Reconfigurable Intelligent Surface
Significant developments in RIS-aided wireless communica-

tions have been witnessed over the past 3 years, from hardware
and algorithms design to deep integration with various tech-
nologies [23], [24]. One of the most important application
scenarios is to enhance wireless sensing [25], such as indoor
localization [26] and direction-of-arrival estimation [27]. How-
ever, the existing methods typically aim to improve the
sensing accuracy through signal enhancement by the RIS.
The signal control capability of the RIS is not fully utilized,
and most literature is limited in the study of reflective RIS
that cannot achieve complete coverage. As our understanding
of reconfigurable intelligent surface (RIS) hardware deepens,
there has been a growing focus on transmissive and refractive
RISs in the research community [28], [29], [30]. Recently,
novel RIS architectures such as simultaneously transmitting
and reflecting (STAR) RIS [29] and intelligent omni-surface
(IOS) [30] have been proposed to facilitate full-dimensional
communications. We believe that the implementation of STAR
RIS or IOS has the potential to significantly enhance wire-
less sensing capabilities. In addition to the direct benefit of
improving sensing performance through signal enhancement,
the ability to adjust the amplitude of transmissive signals can
be leveraged as prior knowledge for the efficient compression
of wireless sensing data. This paper will delve further into this
concept and its implications for the field of wireless sensing.
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C. Spectral Snapshot Compressive Imaging
Capturing high dimension (HD) data is a long-term chal-

lenge in signal processing and related fields [31]. With
theoretical guarantees, snapshot compressed imaging (SCI)
uses two-dimensional (2D) detectors to capture HD, e.g., 3D,
data in snapshot measurements using novel optical design.
Then, reconstruction algorithms are applied to obtain the
required HD data cubes [32], [33]. SCI has been used in
many fields such as hyper-spectral imaging, video, holography,
tomography, focal depth imaging, polarization imaging, and
microscopy [34]. However, there is no prior work discussing
how to apply SCI to compressed sensing signals in the time
dimension. The reason is that the highly dynamic nature of
sensing signals brings difficulties to detector hardware design,
coded aperture structure, and decompression algorithms. To fill
this gap, in Section IV-A, we use the novel RIS hardware to
perform one kind of special SCI to the sensing data. Using
our proposed inverse semantic-aware encoding and decoding
methods, the compression and self-supervised decompression
of the sensing data can be achieved on time scale. Note that
our design is different from compressive sensing (CS) methods
in wireless sensing, and in fact can be used to further improve
the performance of wireless CS systems.

One primary objective of this study is to solve an important
problem of overwhelming storage or transmission resources
consumption in the wireless sensing. Inspired by the SCI
system, we propose an encoding and decoding framework
using the RIS to achieve inverse semantic-aware sensing,
which significantly reduces the data volume and does not affect
the accomplishment of various sensing tasks.

III. SYSTEM MODELS

Wireless signals contain user information such as activities
and walking trajectories, and can preserve user privacy better
than camera-based methods. Thus, mobile application SPs
can use wireless signals to provide better services to users.
For example, healthcare SPs can provide medical advice by
analyzing the user’s sleeping postures, and Metaverse SPs can
customize virtual traveling scenes by positioning the users.
To meet the needs of ubiquitous sensing data collection,
we consider a 3D wireless indoor communications scenario
as an example. As shown in Fig. 2 (Part I), a multi-antenna
transmitter, e.g., IoT devices or WiFi router, transmits signals
to multiple users with the help of an RIS. Different from the
conventional scheme that uses RIS to improve sensing accu-
racy by enhancing signal strength, in this section, we propose a
novel RIS hardware design to enable RIS with wireless sensing
capability. Then, we analyze the mathematical formulas of the
received sensing signals.

A. Novel Hardware of Reconfigurable Intelligent Surface
To enable RIS to sense the environment, a widely used

solution is to replace some reflecting elements on the RIS
with active sensors, e.g., for channel estimation using CS [35].
Thus, a part of the RIS elements can switch between two
operation modes, i.e., i) channel sensing mode that is used
to estimate the channels, ii) reflection mode that reflects the
signal. However, we see that the RIS cannot assist communica-
tions in mode 1. We do not adopt directly the aforementioned

Fig. 2. The framework of the proposed inverse semantic-aware wireless
sensing system.

solution since our goal is not merely to estimate the channel,
but also constantly to sense the environment for localizing and
detecting user activities. To facilitate the sensing capabilities
of the RIS without compromising its auxiliary communication
functions, we initially integrate the RIS with a limited number
of simultaneous transmitting and reflecting patches [29], which
are called transmissive elements in this paper for convenience.
Specifically, as shown in Fig. 2 (Part II), the RIS is equipped
with L-shaped (M +N +1) transmissive elements, and active
sensors are strategically positioned behind them to receive
signals modulated by the RIS.

Remark 1: The reason for using the L-shaped array is that
such a structure has more accurate 2D AoA estimation results
than other structures, e.g., cross, linear, and rectangular
arrays. This conclusion can be obtained by comparing the
Cramer-Rao Bound metrics of different structures [36], [37].

Accordingly, the signal incident on the qth transmissive
element can be transmitted and reflected as [29]

βi,qexp(jδi,q), i ∈ {T, R} , (1)

where i = T is for transmission coefficients and i = R is
for reflection coefficients. Note that, for each element, the
responses of the RIS for transmission and reflection modes
can be designed independently from each other [38]. In the
following, we focus on the sensing function that only uses the
transmitted signals. The reflection coefficients can be designed
independently, which is outside the scope of this paper. Thus,
after one path signal penetrates the qth transmissive element
on the RIS, the amplitude of the signal is multiplied by βT,q ,
and the phase is added by δT,q .

A common assumption in much of the existing literature is
that the amplitude and phase response of each element on the
RIS remains constant throughout the signal bandwidth [39],
[40]. While this assumption is generally acceptable for narrow
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bandwidths, it may become less accurate when dealing with
multiple sub-carriers at varying frequencies within a broader
range [39], [41]. In our system model, we consider that the
transmitter sends the wireless signals modulated by OFDM
technology into K sub-carriers.2 Because that K might be
large, e.g., 2048 OFDM sub-carriers are used to transmit data
in the IEEE 802.11ax protocol, we consider the practical case
in which the element on the RIS has different responses to
signals with different frequencies. Thus, the amplitude and
phase response matrices of the L-shaped transmissive elements
to K sub-carriers at time t can be expressed as

Φ(t)
A =


β

[1,0]
f1
· · · β[M,0]

f1
β

[0,0]
f1

β
[0,1]
f1
· · · β[0,N ]

f1
...

. . .
...

...
...

. . .
...

β
[1,0]
fK
· · · β[M,0]

fK
β

[0,0]
fK

β
[0,1]
fK
· · · β[0,N ]

fK

 , (2)

and

Φ(t)
P =


δ
[1,0]
f1
· · · δ[M,0]

f1
δ
[0,0]
f1

δ
[0,1]
f1
· · · δ[0,N ]

f1
...

. . .
...

...
...

. . .
...

δ
[1,0]
fK
· · · δ[M,0]

fK
δ
[0,0]
fK

δ
[0,1]
fK
· · · δ[0,N ]

fK

 , (3)

respectively, where fi denotes the frequency of the ith sub-
carrier, and [x, y] denotes the location of the activate element.
As shown in Fig. 2 (Part I), 0 ⩽ x ⩽ M and 0 ⩽ y ⩽ N
indicate the locations of transmissive elements that are in the
X-direction and Y -direction of the L-shape array, respectively.
In the following, we analyze the sensing signal model, and
propose the amplitude and phase response matrices design.

B. Sensing Signal Model
To better understand the phase differences of the incident

signals from different directions, we analyze the signals that
impact the transmissive elements at different positions sepa-
rately, i.e., the origin, the X-direction, and the Y -direction
elements. At time t, the CFR of the multipath signals cor-
responding to the k-th OFDM sub-carrier obtained by the
transmissive element located at the origin of the L-shaped
array, can be expressed as

h
[0,0]
fk

(t) =
I∑

i=1

α
[0,0]
i e−j2πfkτi , (4)

where [0, 0] represents the origin point, αi and τi are the
complex signal amplitude attenuation and time delay of
the i-th propagation path, respectively, fk is the frequency of
the k-th sub-carrier, and I is the total number of multipaths.
Since different elements are placed at different positions in
L-shaped array, the signal needs to travel different distances
to arrive each transmissive element. Taking h

[0,0]
fk

as a refer-
ence, therefore, the CFR obtained by the m-th X-direction
transmissive element can be expressed as

h
[m,0]
fk

(t) =
I∑

i=1

α
[m,0]
i e

−j2πfk

(
τi+m

d cos(θi) sin(φi)
c

)
, (5)

where α
[m]
i is the signal amplitude attenuation, d is the ant-

enna spacing equals half wave length, θi and φi represent the

2The OFDM is a widely used modulation method, which makes our analysis
general. Moreover, OFDM can provide multi-carriers information, which is
useful for signal parameters estimation.

elevation angle and azimuth angle of the incident signal,
respectively, as shown in Fig. 2 (Part I), and c is the signal
propagation speed in the air. Similarly, we can obtain the CFR
of the n-th Y -direction transmissive element as

h
[0,n]
fk

(t) =
I∑

i=1

α
[0,n]
i e

−j2πfk

(
τi+n

d sin(θi) sin(φi)
c

)
. (6)

Therefore, at time t, the overall CFR obtained by the L-shaped
transmissive element array on the RIS can be expressed as a
CFR matrix as follows:

H(t)
xoy =

[
H(t)

x H
(t)
0 H(t)

y

]

=


h

[1,0]
f1
· · · h[M,0]

f1
...

. . .
...

h
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fK
· · · h[M,0]

fK︸ ︷︷ ︸
Hx

h
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f1
...

h
[0,0]
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H0

h
[0,1]
f1
· · · h[0,N ]

f1
...

. . .
...

h
[0,1]
fK
· · · h[0,N ]

fK︸ ︷︷ ︸
Hy


. (7)

Note that H(t)
xoy is the original sensing data that can support

various sensing tasks. Because of the high available sampling
frequency of the sensing device, e.g., 300 times in one
second [19], and novel services that require long-term sensing,
a large amount of H(t)

xoy would be collected. To reduce the
resources costed to store and transmit H(t)

xoy , we propose the
inverse semantic-aware encoding and decoding methods in the
following sections, respectively.

IV. INVERSE SEMANTIC-AWARE ENCODING

In this section, we introduce the inverse semantic-aware
RIS-aided encoding method to compress multiple signal
spectrums into one. Two steps, i.e., differential encoding
and shifting addition compression, are discussed. Moreover,
we propose a semantic hash sampling method to select the
task-related signal spectrum to record.

A. Encoding Method
One can observe from (7) that every element in the CFR

matrix is a complex number, which denotes the amplitude and
phase of the CFR. Taking H(t)

x as an example, it can be further
decomposed into the amplitude and phase spectrums as

H(t)
x →

{
H(t)

xa
, H(t)

xp

}

=




∥∥∥h
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f1

∥∥∥ · · · ∥∥∥h
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∥∥∥
...

. . .
...∥∥∥h
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∥∥∥ · · · ∥∥∥h
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∥∥∥


︸ ︷︷ ︸

amplitude matrix

,


∠h

[1,0]
f1
· · · ∠h

[M,0]
f1

...
. . .

...
∠h

[0,1]
fK
· · · ∠h

[M,0]
fK


︸ ︷︷ ︸

phase matrix


,

(8)

where · → · denotes the amplitude and phase extraction oper-
ation, {·} represents the set of matrices, ∥·∥ is the Euclidean
norm operator, and ∠h

[m,0]
fk

denotes the signal phase of h
[m,0]
fk

.
Through the same way, H0 and Hy can be expressed as
amplitude and phase spectrums, respectively. Hence, the CFR
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Fig. 3. The process of modulating the amplitude and phase spectrums through
RIS, and then performing differential encoding and shifting addition.

extracted from the L-shaped transmissive element array on the
RIS can be expressed as

H(t)
xoy =

[
H(t)

x H(t)
0 H(t)

y

]
→

{
H(t)

A ,H(t)
P

}
, (9)

where H(t)
A =

[
Hxa H0a Hya

]
and H(t)

P =
[
HxpH0p

Hyp

]
denote the overall amplitude and phase at time t,

respectively. As shown in Fig. 3 (Parts I and II), after being
modulated by the transmissive elements, we can express T
received amplitude and phase spectrums by the L-shaped
active sensor array in two sets as

Y A =
{

H
(1)
A ◦Φ

(1)
A , . . . ,H

(T )
A ◦Φ(T )

A

}
, (10)

and

Y P =
{

H
(1)
P + Φ(1)

P , . . . ,H
(T )
P + Φ(T )

P

}
, (11)

respectively, where ◦ is the Hadamard product calculator,
a.k.a., element-wise product. In the following, we encode the
3D data Y A and Y P onto 2D measurements, respectively. The
encoding idea is inspired by the SCI system that compresses
several optical spectrums of an object over multiple wave-
lengths into one spectrum, or several frames of a high-speed
video into one frame. Specifically, the 3D data is first modu-
lated by a coded aperture, and then spectrally dispersed by the
dispersing element, and finally integrated across the spectral
dimension to a 2D measurement. For the 3D sensing data
Y A and Y P , although the spectral dispersion process can be
performed by low-power computing elements, there are several
difficulties in adopting the compression scheme as in the SCI
system:
D1) The fixed coded aperture in the SCI system is hard to

be used in encoding signal spectrums that change dra-
matically on the time scale. However, the time-varying
coded aperture scheme [42] increases the hardware cost
and consume more storage space to record the patterns.

D2) It is difficult for system designers to strike the balance
between decoding performance and resource consump-
tion. The inverse decoding problem is hard to be solved
by traditional methods. The deep learning approach,
such as convolutional neural networks, necessitates the
use of extensive, well-labeled datasets and prolonged

training periods [43], which restricts the frequency of
aperture pattern updates.

D3) Signal spectrums are more sensitive than spectral images
or video frames. We find from the experiments that the
decoded sensing signal spectrums may lead to errors
when performing some sensing tasks that are sensitive
to the deviations in signal phase values, e.g., localization.

To overcome the aforementioned difficulties, we rethink the
SCI system from hardware design to software algorithms. For
(D1) and (D2), we can observe from (10) that the amplitude
response matrix of the RIS has potential to perform a similar
function as the coded aperture in the SCI system. It has been
shown that the reconfiguration time for the RIS to change the
response matrix is around 33 ns [44]. Therefore, by changing
the response matrix over time, the low-cost transmissive ele-
ments on the RIS can encode the sensing signals. In addition,
the response values can be obtained from the hardware design
parameters. This saves the storage resources to record a large
number of original response values. Moreover, the amplitude
and phase response values are discrete numbers, which can be
determined by the number of coding bits. For example, 4-bit
coding bringse 16 different available response values. Follow-
ing that, we propose a self-supervision decoding algorithm
for arbitrary RIS response matrices, which is discussed in
Section V. Error negligible decoding results are achieved
without pre-training resource consumption.

To solve (D3), we compress the differential matrices of
the amplitude and phase spectrums instead of the original
spectrums to ensure the sensing performance. Unlike channel
estimation, which focuses on accurately obtaining the CSI to
better perform channel equalization, wireless sensing focuses
on extracting information describing the physical environment
from the CSI, e.g., 2D AoA and time of flight. This informa-
tion is hidden in the value difference of amplitude and phase
spectrums obtained by the sensors at different locations. For
example, the phase difference between active sensors supports
the signal AoA estimation. Another advantage to encode the
differential spectrum is that the differential spectrum tends to
be smoother than the original spectrum, due to the existence
of correlation. This results in improved decoding performance.
We show that real images can also benefit from the differential
encoding in Fig. 10 using the dataset [45].

The differential encoding and shifting addition compression
methods are presented in the following.

1) Differential Encoding: We first focus on the amplitude
spectrum set Y A. Let Y A {i} denote the ith matrix in Y A.
Each column in Y A {i} represents the amplitude values of
received signals at different frequencies by an active sensor,
after amplitude modulation by the transmissive element on
the RIS. Let Y A′ {i} denote the Y A {i} after the differential
encoding. Specifically, we let the jth column in Y A′ {i} store
the difference values of the jth column and (j − 1)th column
in Y A {i} as

Y A′ {i} [j, :] = Y A {i} [j, :]− Y A {i} [j − 1, :] , (12)

where j = 2, . . . , L. The first columns in Y A′ {i} and Y A {i}
are the same. Then, we have

Y A′ {i} [1, :] = Y A {i} [1, :] . (13)
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Similar differential encoding method can be used for the
received phase spectrum set Y P . For the ith matrix in
Y P , i.e., Y P {i}, we obtain the differential encoded matrix
Y P ′ {i} by

Y P ′ {i} [j, :] = Y P {i} [j, :]− Y P {i} [j − 1, :] , (14)

where j = 2, . . . , L. Considering that the phase response value
of the RIS is added to the signal phase value, we let the first
column in Y P ′ {i} be the first column in Y P {i} minus the
phase response of the first transmissive element as

Y P ′ {i} [1, :] = Y P {i} [1, :]−Φ(i)
P [1, :] . (15)

To use the amplitude response matrix of the RIS as the prior
knowledge, we multiply the amplitude response matrix of the
RIS at the ith moment and Y P ′ {i} by elements as

Y P ′ {i} = Y P ′ {i} ◦Φ(i)
A . (16)

In addition to the steps of (12), (13), (14), (15), and (16),
the transmissive elements on the RIS should be designed by
following Remark 2 to make the amplitude response matrix
of the RIS available as a special coded aperture, i.e., prior
knowledge used in decoding.

Remark 2: To achieve differential encoding, we should let
every transmissive element on the RIS have the same hardware
structure. Thus, different transmissive elements have the same
amplitude and phase response to the signals with the same
frequency, as shown in Fig. 3 (Part I). Specifically, every
column in (2) and (3) is the same. This ensures that each
column of Y A′ {i} can be represented as the signal amplitude
difference values multiplied by the amplitude response values
of the RIS as in (17).
Then, we can express Y A′ {i} and Y P ′ {i} as

Y A′ {i} = H
(i)
A′ ◦Φ(i)

A , (17)

and

Y P ′ {i} = H
(i)
P ′ ◦Φ(i)

A , (18)

where H
(i)
A′ and H

(i)
P ′ are the ith differential encoded ampli-

tude and phase spectrums, respectively, and Φ(i)
A can be

regarded as the corresponding codebook.
2) Shifting Addition: To replace the spatial shifting opera-

tion to the object spectrum that is performed by a dispersing
lens in the SCI system, we perform zero compensation pro-
cessing to the amplitude and phase spectrums as follows:

XA =


 Q1 (1)

Y A′ {1}
Q2 (1)

 , . . . ,

 Q1 (i)
Y A′ {i}
Q2 (i)

 , . . . ,

 Q1 (T )
Y A′ {T}
Q2 (T )

 ,

(19)

where Q1 (i) ∈ R(i−1)D×L, Q2 (i) ∈ R(T−i)D×L, XA ∈
R(D(T−1)+K)×L, every elements in both Q1 and Q2 is zero,
and D is the unit displacement step.

Thus, the amplitude MetaSpectrum, ZA, can be obtained
by

ZA =
T∑

i=1

XA {i}, (20)

Algorithm 1 The Algorithm for Inverse Semantic-Aware
Encoding

Input: The received amplitude and phase spectrums in the
active sensors: Y A and Y P

Output: The amplitude and phase MetaSpectrums: ZA and
ZP

1: ## Achieve differential encoding
2: for Every Y A {i} in Y A do
3: Obtain Y A′ {i} according to (12) and (13)
4: for Every Y P {i} in Y P do
5: Obtain Y P ′ {i} according to (14), (15), and (16)
6: ## Achieve shifting addition compression
7: Use Y A′ to obtain XA according to (19)
8: Use Y P ′ to obtain XP according to (22)
9: Obtain amplitude MetaSpectrum ZA according to (20)

10: Obtain phase MetaSpectrum ZP according to (21)
11: return ZA and ZP

where ZA ∈ R(K+(T−1)D)×L can be transmitted or stored.
Similarly, the phase MetaSpectrum, ZP , can be expressed as

ZP =
T∑

i=1

XP {i}, (21)

where

XP =


 Q1 (1)

Y P ′ {1}
Q2 (1)

 , · · · ,

 Q1 (i)
Y P ′ {i}
Q2 (i)

 , · · · ,

 Q1 (T )
Y P ′ {T}
Q2 (T )

 .

(22)

The overall RIS-aided encoding method is in Algorithm 1,
which has polynomial complexity. After the RIS-aided encod-
ing, we observe that the sensing data volume is significantly
reduced. To demonstrate the efficiency of the inverse semantic
communications approach, we define the data compression
ratio, i.e., ρ, as the ratio between the number of elements in
the received amplitude and phase spectrums and the number of
elements in the coded MetaSpectrums. We provide the analysis
of ρ in Proposition 1.

Proposition 1: The data compression ratio ρ of our pro-
posed inverse semantic-aware coding method is approximately
1/T . Proof: The total number of elements in the T
recorded signal amplitude and phase spectrum is 2KLT .
Meanwhile, the total number of elements in ZA and ZP is
2(K + (T − 1) D)× L. As a result, ρ can be calculated as:

ρ =
2(K + (T − 1) D)× L

2KLT
=

1
T

+
(

1− 1
T

)
D

K
. (23)

Given that D is generally small compared to K, for instance,
D = 1 in [33] and K = 2048 in the IEEE 802.11ax protocol,
the term

(
1− 1

T

)
D
K in (23) can be negligible. Consequently,

the value of ρ is approximately 1/T , which completes the
proof.

Note that we encode T amplitude or phase spectrums into
one spectrum. However, the T spectrums does not need and
should not be sensed continuously in time. The reason is
that the wireless channel remains stable during the channel
coherence time. Specifically, as the moving or action speed of
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people is limited, the CSI within the channel coherence time
can be considered as constant without loss of precision [46].
Considering that the available maximal sensing frequency of
the active sensors is much higher than the required frequency,
we next propose a sampling scheme that selects the most
relevant spectrum for the completion of sensing tasks over
the channel coherence time for recording and encoding.

B. Semantic Hash Sampling

We divide the time into segments. Without loss of generality,
we consider that the active sensors can perform TN times
sensing in one time segment. From each time segment, one
pair of amplitude and phase spectrums is selected to record.
In the ith time segment, we express TN received amplitude and
TN phase spectrums as two sets, i.e., SAi

=
{

H
(k)
Ai
◦Φ(k)

Ai

}
(k = 1, . . . , TN ) and SPi

=
{

H
(k)
Pi
◦Φ(k)

Pi

}
, respectively.

The recorded amplitude and phase spectrums that are selected
from the ith time segment are Y A{i} (i = 1, . . . , T ) and
Y P {i}, respectively.

To remove information that is not relevant to the task, the
traditional method is uniform sampling that selects the first
pair of amplitude and phase spectrums in each time segment
to record. However, we cannot guarantee that the first pair in
every segment is always the most informative pair. Therefore,
a better solution is to use one indicator to judge the semantic
information richness of the pair of spectrums. As we discussed
in Section IV-A, the information related to sensing tasks is
contained in the changes of amplitude and phase spectrums.
Therefore, we can select the pair of spectrums that has the
largest change compared to the previous signal spectrums in
each time segment. Note that the mean square error (MSE)
is not recommended to be used as the indicator to compare
the difference between spectrums. The reasons are given as
follows:
• The MSE is calculated using the absolute values of the

signal amplitude. However, the absolute values are not
important for sensing tasks. The critical information is
in the changing process of the signal amplitude over
time [17].

• The results of MSE may be affected by several outliers,
i.e., signal amplitude fluctuation at a certain time caused
by the interference.

• Because the number of elements in the signal spec-
trum is large, calculating MSE brings large resource
consumption.

Therefore, we have to propose a new indicator to characterize
the semantic information richness in signal spectrums. Consid-
ering the success of the perceptual image hashing method [47]
in the field of image retrieval, we aim to use a string of
characters, i.e., fingerprints, to characterize the amplitude and
phase spectrums. Perceptual image hashing [47] is a family
of algorithms that generate content-based image hash finger-
prints. Then, the Hamming distance between two fingerprints
can be used to quantify the similarity of two images. The
larger the Hamming distance is, the smaller the similarity
of the images have. Although the hash fingerprints can be
calculated efficiently with low energy cost, it cannot be applied
directly to the similarity detection of sensing data. The reason

Fig. 4. The process of generating the resized matrices from the amplitude
and phase spectrums, and then obtaining the semantic hash fingerprint.

is that, at each moment, we have one amplitude spectrum
and one phase spectrum as shown in Fig. 4, which are both
required to achieve sensing tasks. Thus, we propose a novel
four-level semantic hash sampling method in Algorithm 2 to
select task-related signals spectrums for encoding, which is
used before Algorithm 1.

As shown in Algorithm 2, to obtain the semantic hash
matrices, the first step is to resize the TK amplitude and phase
spectrums. The purpose is to produce a small data size, which
hastens the processing time [48] and preserves the features
of the spectrums. Similar to the image pHash method [49],
we calculate the average values of the resized amplitude and
phase matrices. Different from the conventional hash method,
we define four values, i.e., 0, 1, 2, and 3, as values in the
hash fingerprints. Thus, we perform the operations as shown
in lines 8 − 15 of Algorithm 2 to convert the spectrums
to semantic hash fingerprints in polynomial complexity. For
the kth pair of amplitude and phase spectrums, we use the
Hamming distance, which measures the number of different
values, between the kth hash fingerprint and the (k − 1)th

one to indicate the semantic information richness of the kth

spectrums. Therefore, we can record the pair of spectrums
that have the largest Hamming distance to the previous pair
of spectrums. The complexity analysis for each step in our
proposed algorithm is as follows:

• Obtaining the semantic hash matrix set: The resizing
operation [49] has a complexity of O(RxRy) per matrix.
Therefore, the complexity of obtaining the semantic hash
matrix set for TK spectrums is O(TKRxRy).

• Calculating the Hamming distance: The complexity con-
sists of O(1) for creating the vector D, O(TK) for the
outer loop iterating through Hi, and O(RxRy) for the
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inner loop iterating through Hi{k}. This results in a total
complexity of O(TKRxRy).

• Selecting the spectrum and recording the information
richness: The complexity is dominated by the linear
search to find kmax, which maximizes D(k). As the
vector is unsorted, the complexity is O(TK).

These steps are performed sequentially, leading to the total
complexity of O (TK (2RxRy + 1)). Since the constant terms
do not significantly affect the growth rate, the total complexity
of Algorithm 2 simplifies to O(TKRxRy).

V. INVERSE SEMANTIC-AWARE DECODING

In this section, we propose the inverse semantic-aware self-
supervised decoding method. We also introduce how to use the
recovered signal spectrums for 2D AoA and ToF estimation,
which supports various sensing tasks.

A. Objective Function
We first rewrite the amplitude and phase MetaSpectrums

ZA and ZP in the vectorized formulations, respectively.
Let vec (·) denote the matrix vectorization operation that
concatenates columns into one vector, and diag (a) denote the
operation of converting the vector a into a diagonal matrix
where the diagonal element is a. As such, we rewrite the
matrix formulations (20) and (21) as

zA = ΦxA, (24)

and

zP = ΦxP , (25)

respectively, where zA = vec (ZA), zP = vec (ZP ), zA and
zP ∈ R(K+(T−1)D)L×1, xA =

[
xT

1,A · · ·xT
i,A · · ·xT

T,A

]T
,

xP =
[
xT

1,P · · ·xT
i,P · · ·xT

T,P

]T
, xi,A = vec

(
H

(i)
A′

)
, xi,P =

vec
(
H

(i)
P ′

)
, xA and xP ∈ RTKL×1,

Φ =

 Q3 (1) · · · Q3 (i) · · · Q3 (T )

ϕ
(1)
A

. . . ϕ
(i)
A

. . . ϕ
(T )
A

Q4 (1) · · · Q4 (i) · · · Q4 (T )

 , (26)

Q3 (1) ∈ R(i−1)DL×KL, Q4 (1) ∈ R(T−1)DL×KL, every ele-
ment in both Q3 and Q4 is zero, ϕ

(i)
A = diag

(
vec

(
Φ(i)

A

))
,

ϕ
(i)
A ∈ RKL×KL, and Φ ∈ R(K+(T−1)D)L×TKL.
Note that Φ can be obtained using (26) and the prior

knowledge, i.e., the amplitude response matrices of the RIS,
and zA and zP are the known vectorized amplitude and phase
MetaSpectrums, respectively. Our goal is to decode xA and xP

from zA and zP , respectively. Although this problem is related
to CS, most theories that are developed for CS cannot be used
because that the matrix Φ follows a very specific structure
as (26). Fortunately, solid theoretical proof has shown that
both xA in (24) and xP in (25) can be recovered even when
T > 1 [50].

The decoding objective function can be formulated as

min
xA,xP

α1 ∥zA −ΦxA∥2 + α2 ∥zP −ΦxP ∥2 , (27)

where α1 and α2 are the balance parameters that can be
selected according to the specific wireless sensing task.

Algorithm 2 The Algorithm for Semantic Hash Sampling
Input:
• The received amplitude and phase spectrums sets in the

ith time segment: SAi
and SPi

• The dimensions of the resized matrices: Rx and Ry

Output: The selected amplitude and phase spectrums: Y A{i}
and Y P {i}

1: ## Obtain the semantic hash matrix set
2: Create an empty matrix set Hi ∈ RRx×Ry×TK to record

the semantic hash values
3: for Every SAi{k} in SAi do
4: Obtain amplitude and phase spectrums H

(k)
Ai

and H
(k)
Pi

with the prior knowledge Φ(k)
Ai

and Φ(k)
Pi

, respectively
5: Resize H

(k)
Ai

and H
(k)
Pi

into small matrices h
(k)
Ai
∈

RRx×Ry and h
(k)
Pi
∈ RRx×Ry , respectively

6: Calculate the average values of h
(k)
Ai

and h
(k)
Pi

, denoted
as h

(k)
Ai

and h
(k)
Pi

, respectively
7: for Every element pair in h

(k)
Ai

and h
(k)
Pi

do
8: if h

(k)
Ai

[x, y] ⩾ h
(k)
Ai

and h
(k)
Pi

[x, y] ⩾ h
(k)
Pi

then
9: Let Hi{k} [x, y]← 3

10: else if h
(k)
Ai

[x, y] ⩾ h
(k)
Ai

and h
(k)
Pi

[x, y] < h
(k)
Pi

then
11: Let Hi{k} [x, y]← 2
12: else if h

(k)
Ai

[x, y] < h
(k)
Ai

and h
(k)
Pi

[x, y] ⩾ h
(k)
Pi

then
13: Let Hi{k} [x, y]← 1
14: else
15: Let Hi{k} [x, y]← 0
16: ## Calculate the Hamming distance
17: Create an empty vector D ∈ R1×TK to record the

Hamming distance values
18: for Every Hi{k} in Hi do
19: Create a temporary variable d
20: for Every element in Hi{k} do
21: if The element value is different from the element

value in the same position in Hi{k − 1} then
22: d← d + 1
23: D (k)← d.
24: ## Select the spectrum and record the information richness
25: Find kmax that maximizes D (k), i.e., D (kmax) =

max {D}
26: Record the value of D (kmax)
27: Let i = kmax

28: return Y A{i} and Y P {i}

For example, heartbeat and breath detection requires higher
accuracy for the phase spectrum [19], and the amplitude
spectrum is more significant in sensing tasks such as
intrusion or fall detection [18]. We propose the algorithm for
solving (27) as follows.

B. Self-Supervised Decoding Method

To solve (27), although different hand-crafted priors, e.g.,
total variation and sparsity, can be added as the regularization
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term to improve the decoding performance, it is hard to choose
a suitable prior that fits the differential encoded amplitude and
phase spectrums xA and xP . Motivated by the success of deep
convolutional neural networks (ConvNets) in inverse problems
such as single-image super-resolution [51] and denoising [52],
we use the implicit prior captured by the ConvNets, e.g., deep
image prior [53], [54], to achieve self-supervised decoding.3

By considering that the unknown amplitude and phase
spectrums are the outputs of neural networks, i.e., T ΘA

(e)
and T ΘP

(e), respectively, the decoding problem (27) can be
re-written as

min
ΘA,ΘP

α1 ∥zA −ΦT ΘA
(e)∥2 + α2 ∥zP −ΦT ΘP

(e)∥2 ,

s.t. x̂A = T ΘA
(e),

x̂P = T ΘP
(e), (28)

where ΘA and ΘP are the parameters of networks to be
learned, and e is a random vector. Since the training of ΘA

and ΘP is part of the decoding process, this procedure is
self-supervised and no pre-training process is required.

To solve the problem (28), we introduce two auxiliary
variables t1 and t2 ∈ RTKL, and corresponding weight
parameters β1 and β2. Then, the constraints can be turned into
penalty terms using the augmented Lagrangian method [55] as

min
ΘA,ΘP ,xA,xP

F1 (ΘA, xA) + F2 (ΘP , xP ) , (29)

where

F1 =α1

(
∥zA−ΦT ΘA

(e)∥2+β1 ∥xA − T ΘA
(e)−t1∥2

)
,

(30)

and

F2 =α2

(
∥zP−ΦT ΘP

(e)∥2+β2 ∥xP−T ΘP
(e)−t2∥2

)
.

(31)

With the help of the alternating direction method of mul-
tipliers (ADMM) [56], the problem (29) can be solved by a
sequential update of the six variables, i.e., ΘA, ΘP , xA, xP ,
t1, and t2.

1) The update of ΘA while fixing other variables:

min
ΘA

∥zA −ΦT ΘA
(e)∥2 + β1 ∥xA − T ΘA

(e)− t1∥2 ,

(32)

which can be solved using the steepest descent and
back-propagation optimization methods [53]. Note that
β1 ∥xA − T ΘA

(e)− t1∥2 in (32) can be regarded as the
denoising of xA − t1, which also serves as a proximity
regularization that forces T ΘA

(e) to be close to xA−t1. This
second term provides additional stabilizing and robustifying
effect to the back-propagation method.

2) The update of xA while fixing other variables:

min
xA

∥xA − T ΘA
(e)− t1∥2 , (33)

3Another solution is to design a suitable explicit regularization term for
decoding sensing signal spectrums and use the explicit and implicit priors
jointly [54]. This is left for the future work.

which can be regarded as a denoising problem for T ΘA
(e)+

t1. Thus, we have

x̂A = D (T ΘA
(e) + t1) , (34)

where D (·) represents the denoising operator that could
be well-studied plug-and-play algorithms [57] or a simpler
steepest-descent (SD) operator. We present the update equation
for SD method as

x
(j+1)
A = x

(j)
A −s

(
x

(j)
A − T ΘA

(e)− t1

)
, (35)

where s is the steepest-descent step size, and j is the inner
loop iteration number.

3) The update of t1 while fixing other variables: Because
t1 can be regarded as the Lagrange multipliers vector,
t1 can be updated according to the augmented Lagrangian
method [55] as

t
(k+1)
1 = t

(k)
1 + T

Θ
(k)
A

(e)− x(k)
A , (36)

where k denotes the outer loop iteration number.
4) The update of ΘP while fixing other variables: Because

the network with parameter ΘP is trained independently,
we can update ΘP by solving

min
ΘP

∥zP −ΦT ΘP
(e)∥2 + β2 ∥xP − T ΘP

(e)− t2∥2 ,

(37)

with the same method as in (32).
5) The update of xP while fixing other variables: To

minimize the difference between xP and T ΘA
(e)+t1, we can

update xP as

x̂P = D (T ΘP
(e) + t2) . (38)

where D is the same kind of denoising operator as (34).
6) The update of t2 while fixing other variables: According

to the augmented Lagrangian method [55], t2 can be updated
as

t
(k+1)
2 = t

(k)
2 + T

Θ
(k)
P

(e)− x(k)
P . (39)

Algorithm 3 summarizes the steps to perform the afore-
mentioned decoding methods, and then recover the original
amplitude and phase spectrums. Specifically, after decoding,
we obtain the estimated HA′ {i} and HP ′ {i}. Let the first
column in HA {i} and HP {i} be the same as that of HA′ {i}
and HP ′ {i} as

HA {i} [1, :] = H ′
A {i} [1, :] , (40)

and

HP {i} [1, :] = HP ′ {i} [1, :] . (41)

For the second to the last columns (j = 2, . . . , L), we
have

HA {i} [j, :] = HA′ {i} [j − 1, :] + HA′ {i} [j, :] , (42)

and

HP {i} [j, :] = HP ′ {i} [j − 1, :] + HP ′ {i} [j, :] . (43)

Note that because of the independent iterative training of the
two networks and the use of the ADMM method, α1 and
α2 have no effect on the objective function. The running time
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Algorithm 3 The Algorithm for Inverse Semantic-Aware
Decoding
Input:
• The weight parameters: β1 and β2

• The number of inner iterations of the denoising operator
for updating xA and xP : NJ

• The steepest-descent parameters for updating ΘA and
ΘP , respectively

Output: The original amplitude and phase spectrums, i.e.,
H(i)

A and H(i)
P (i = 1, . . . , T )

1: ## Reconstruction of the xA and xP

2: Initialize the iteration number k = 0
3: Set ΘA and ΘP randomly
4: while Not converged do
5: Update ΘA by solving (32) using steepest descent and

back-propagation methods
6: Update xA according to (34)
7: Update t1 according to (36)
8: Update ΘP by solving (37) using steepest descent and

back-propagation methods
9: Update xP according to (38)

10: Update t2 according to (39)
11: Let k ← k + 1
12: Record xA and xP after converged
13: ## Differential decoding
14: Recover HA′{i} and HP ′{i} (i = 1, . . . , T ) according to

the definition of xA and xP , i.e., (24) and (25)
15: for Every HA′{i} and HP ′{i} do
16: Create empty HA {i} and HP {i} to record the

decoded results
17: Obtain HA {i} and HP {i} according to (40), (41),

(42), and (43)
18: return HA{i} and HP {i} (i = 1, . . . , T )

is mainly taken in updating ΘA and ΘP since the inner
denoising operators work efficiently. In Section VI, we set
the inner iteration numbers of the denoising operators for
updating xA and xP to be both 600, and the outer loop
maximal iteration number is 18, i.e., 18 ADMM iterations. The
average running time for decoding one MetaSpectrum, which
is obtained by encoding 20 original amplitude spectrums,
is about 1 minute with the experiment setting in Section VI.
While the self-supervised decoding approach may not be
optimal for high real-time decoding of sensing signal data,
our proposed method can be effectively applied to sensing
tasks that require large amounts of historical data storage
for analysis, such as healthcare monitoring, sleeping posi-
tion detection, and historical intrusion or walking behavior
analysis.

With the decoded HA{i} and HP {i} (i = 1, . . . , T ), the
original signal at each moment can be recovered to the form of
complex matrices. Then, the 2D AoA and ToF can be jointly
estimated [36], which can be used to complete a series of
sensing tasks. Thus, the steering matrices of L-shaped array
in the x and y directions, which describe how the sensor array
uses each individual element to select a spatial path for the

transmission, can be expressed as

Ax =


1 · · · 1

e−j2πfkd cos(θ1) sin(φ1) · · · e−j2πfkd cos(θI) sin(φI)

...
...

...
e−j2πfkmd cos(θ1) sin(φ1) · · · e−j2πfkmd cos(θI) sin(φI)

 ,

(44)

and

Ay =


1 · · · 1

e−j2πfkd sin(θ1) sin(φ1) · · · e−j2πfkd sin(θI) sin(φI)

...
...

...
e−j2πfknd sin(θ1) sin(φ1) · · · e−j2πfknd sin(θI) sin(φI)

 ,

(45)

respectively. Inspired by [58], here, we take multiple subcarri-
ers into consideration and extend the 2D AoA estimation into
three dimensions, to acheive joint 2D AoA and ToF estimation
via the following Proposition 2:

Proposition 2: The signal 2D AoA and ToF at time t can
be estimated using

P3D (θ, φ, τ, t) =
1

AH
0x′y′EN (t)EH

N (t)A0x′y′
, (46)

where P3D describes the signal magnitude for a given set of
(θ, φ, τ), the superscript H is the conjugate transpose opera-
tor, EN (t) is the noise subspace obtained by decomposing the
auto-correlation matrix of the smoothed original signal at time
t [58], A0x′y′ is the steering matrix that is obtained using (44)
and (45) 0 < k′ < K, 0 < m′ < M , and 0 < n′ < N .
Equation (47), as shown at the bottom of the next page.

Thus, we complete all the processes of the inverse
semantic-aware wireless sensing framework. Specifically,
we use Algorithm 2 to sample the task-related signal spec-
trums. With the RIS, Algorithm 1 can encode the sensing
data, thus greatly reducing the data volume to be stored or
transmitted. We use the self-supervised decoding Algorithm 3
to recover the original sensing data. Finally, with the help of
Proposition 2, various sensing tasks can be performed. For
example, intrusion detection can be achieved by detecting
the change of estimated 2D AoA, and the human walking
trajectory can be tracked by estimating the 2D AoA and the
ToF of the signals.

VI. EXPERIMENTS RESULTS

Since the key contribution of this paper is to achieve the
inverse semantic-aware encoding and decoding of the sensing
data with the help of RIS, we aim to answer the following
research questions via experiments:
Q1) Can the proposed self-supervised decoding scheme

recover the original signal spectrums and ensure the
accomplishment of sensing tasks?

Q2) Can the amplitude response matrix of RIS, i.e., code-
book, encrypt the sensing data?

Q3) Compared with the existing uniform sampling method,
can the proposed semantic hash sampling method help to
achieve more accurate completions of the sensing tasks?

We first present the experimental platform and the parameter
setting of our proposed algorithms, and then answer the above
questions through experimental evaluations.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 20,2023 at 10:01:52 UTC from IEEE Xplore.  Restrictions apply. 



2558 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 8, AUGUST 2023

Fig. 5. Test scenario and hardware of the receiver.

A. Experiments Setting

To collect sensing data from the real-world scenario, we use
three access points (APs) based on the IEEE 802.11ax protocol
to build a test platform [15]. The collected sensing data is
used to conduct a comprehensive evaluation of our proposed
algorithms. The specific experimental scenario and hardware
equipment are shown in Fig. 5. Specifically, the test scenario is
a conference room with tables and chairs. Inside the room, one
AP acts as a transmitter to send OFDM wireless signals with
the total bandwidth of 160 MHz and 2048 sub-carriers. The
center frequency of the sub-carriers is 5.805 GHz. As shown
in Fig. 5 (Part II), the other two APs form an receiver with
L-shaped active sensor array via a power splitter to receive
signals. Since the investigation of STAR-RIS hardware is still
at a very early stage, we simulate the amplitude and phase
response matrices of the transmissive elements using a signal
processor [28], [29], [38]. During the experiment, the data
packet transmission rate, i.e., transmission frequency, is 100
Hz, which means 100 packets are transmitted per second. The
human target walks along the preset trajectory to complete the
data collection.

The experimental platform for running our proposed algo-
rithms is built on a generic Ubuntu 20.04 system with an
AMD Ryzen Threadripper PRO 3975WX 32-Cores CPU and
an NVIDIA RTX A5000 GPU. In the self-supervised decoding

Algorithm 3, two U-net without the skip connections [53]
are used as the self-supervised neural networks, i.e., T ΘA

(e)
and T ΘP

(e). The input to the network, i.e., e, is a random
vector that has the same size as xA and xP to be recovered.
During the decoding of one MetaSpectrum, e is fixed in each
ADMM iteration. In addition, to avoid the local minimum that
the networks stuck in the last iteration, ΘA and ΘP are set to
zero when each ADMM iteration is finished. In other words,
both ΘA and ΘP are re-trained in each iteration.

B. Experiments Performance Analysis

1) Effectiveness and Efficiency of the Proposed Inverse
Semantic Decoding Method (Q1): We first set the data
compression ratio as 10%. As shown in Fig. 1 (Part I),
starting from 3 seconds, we select one pair of amplitude and
phase spectrums in each 0.1 second time segment by using
Algorithm 2, for RIS-aided encoding. Using the encoding
Algorithm 1 presented in Section IV-A, we can obtain one
amplitude MetaSpectrum and one phase MetaSpectrum as
shown in Fig. 1 (Part III) for every 10 pairs of signal
spectrums. The decoded results after 15 iterations of the
outer loop are shown in Fig. 1 (Part II). For both ampli-
tude and phase spectrums, we observe that the difference
between the decoded and the original spectrums is basically
negligible. We present a detailed comparison of the decoded
and the original amplitude spectrums in Fig. 1 (Part IV).
This proves the effectiveness of our encoding and decoding
methods.

In addition to the visual contrast, we show in Fig. 6 how
the proposed semantic hash matrix changes with the number of
outer loop decoding iterations. We set the data compression
ratio as 5%. We observe that, as the number of outer loop
iterations increases, both the decoded amplitude and phase
spectrums at time 4.5 seconds are gradually close to the ground
truth spectrums. Moreover, the Hamming distance between the
semantic hash matrices of the decoded pair of amplitude and
phase spectrums and that of the original signal spectrums is
gradually reducing. Specifically, we can see that 12 iterations
can make the Hamming distance only 2, which takes about
40 seconds on average. Furthermore, the estimated 2D AoA
values using the decoded spectrum after 12 iterations are very
close to the true values, which basically has no effect on

A0x′y′ = [A0Ax′Ay′ ]T =



1
...
1
...
1
...
1︸︷︷︸
A0

e−j2πf1d cos(θ) sin(φ)

...
e−j2πfk′d cos(θ) sin(φ)

...
e−j2πf1(m′−1)d cos(θ) sin(φ)

...
e−j2πfk′(m′−1)d cos(θ) sin(φ)︸ ︷︷ ︸

Ax′

e−j2πf1d sin(θ) sin(φ)

...
e−j2πfk′d sin(θ) sin(φ)

!
...

e−j2πf1(n′−1)d sin(θ) sin(φ)

...
e−j2πfk′(n′−1)d sin(θ) sin(φ)︸ ︷︷ ︸

Ay′



T

(47)
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Fig. 6. The variation of the decoded amplitude and phase spectrums at time 4.5 s in the experiment, the corresponding semantic hash matrix, the estimated
2D AoA spectrum by Proposition 2 with the number of outer loop decoding iterations, where the data compression ratio is 5%.

Fig. 7. The PSNR values versus the number of outer loop decoding iterations
with or without codebook.

Fig. 8. Comparison between different sampling methods and ground truth
in terms of 2D AoA changes with movement of human.

the practical sensing tasks. This proves the efficiency of our
encoding and decoding methods.

Fig. 9. Comparison of azimuth AoA estimation results that are obtained by
using the original and decoded signals, respectively.

2) Effectiveness of Using the Amplitude Response Matrix
of the RIS as the Codebook (Q2): Figure 7 depicts the aver-
age peak signal-to-noise ratio (PSNR) values 10 experiments
versus the number of outer loop decoding iterations, with
or without the codebook Φ(i)

A . If the codebook is available,
we observe that the PSNR values of both the amplitude
and phase spectrums are increasing as the number of iter-
ations increases, and gradually reach a plateau after about
10 iterations. Although minor fluctuations occur at higher
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Fig. 10. Early-stop decompress results the real video frames in [45] using the method proposed in [25] and our method, respectively. Six images are
compressed into one image.

iteration steps because of the dynamic nature of the decoding
process, the overall trend demonstrates the effectiveness of
our self-supervised decoding scheme in recovering the original
signal spectrums. However, if no codebook is available or the
codebook is wrong, the PSNR values decrease as the number
of iterations increases. The reason is that the parameters of two
decoding network, i.e., ΘA and ΘP , are learned according to
a wrong objective function.

3) Effectiveness of the Proposed Semantic Hash Sampling
Method (Q3): Based on the sensing data extracted via two
different sampling methods, i.e., red line for the uniform
sampling and black line for the semantic hash sampling
methods, Fig. 8 displays estimated elevation and azimuth AoA
changes over time. Note that the estimation results under two
sampling schemes are obtained using the decoded amplitude
and phase spectrums with the data compression ratio as 5%.
First, we observe that the both elevation and azimuth AoA at
every moment can be accurately estimated using the decoded
data. This further validates the effectiveness of our proposed
encoding and decoding algorithms (for Q1). Furthermore,
by comparing the black and red lines, it can be seen that
the proposed semantic hash sampling method is more efficient
and effective than uniform sampling in describing the details of
AoA changes, as shown in the enlarged part in Fig. 8. Because
these changes are typically more informative, this shows the
effectiveness of our proposed semantic hash sampling method.
To compare the two schemes numerically, we consider the
MSE between the ground truth and the 2D AoA estimation
results after interpolation. By calculating, we obtain that the
estimation error of the semantic hash sampling is 0.89, which
is 67% lower than that of uniform sampling scheme whose
estimation error is 2.7.

In addition to the walking human, stationary objects such as
tables and chairs in the conference room also reflect wireless
signals. Thus, the information that can be extracted from the
signal spectrums at one certain moment is rich. Taking the
azimuth AoA as an example, Fig. 9 shows the comparison
of the azimuth AoA estimation results that are obtained by
using the original and decoded signals, respectively, with
a data compression ratio of 5%. The results demonstrate
that our encoding and decoding methods effectively preserve
the semantic information related to the sensing tasks, which
is evident from two aspects: First, the relative magnitude
characteristics among different azimuth AoA estimated from
the decoded signals are consistent with the ground truth, i.e.,

the azimuth AoA estimated from the original signals. For
instance, the ground truth indicates that the stronger signals’
azimuth AoA are in the range of 10◦− 40◦ and 110◦− 150◦,
as marked by the red and black boxes, respectively. In addition,
the signals with AoA in 40◦−110◦ are weaker. These features
are almost entirely preserved in the estimation results obtained
using the decoded data. Second, we observe that the AoA
estimation results of the first several strongest signals are
almost unchanged before and after the inverse semantic-aware
encoding and decoding, e.g., the signals marked by the red
and black boxes in Fig. 9, respectively. This indicates that
our proposed algorithms can effectively preserve the phase
characteristics (for Q1).

VII. CONCLUSION AND FUTURE DIRECTIONS

We have designed an inverse semantic-aware wireless sens-
ing framework. The amplitude response matrix of the RIS
can be effectively used to generate the codebook as prior
knowledge for decoding. We have shown that our proposed
RIS-aided encoding method can achieve effective data com-
pression. When selecting the signal spectrums to be encoded,
our proposed semantic hash sampling method is significantly
better than the widely used uniform sampling method. More-
over, the self-supervised decoding method can recover signal
amplitude and phase spectrums to achieve various wireless
sensing tasks without affecting the performance. Since the
decoding method does not require any pre-training, it can
greatly save network resources. As the demand for sensing
data increases, our proposed framework can contribute to
building a resource-friendly next-generation Internet.

There are two potential future research directions.
• Inverse Semantic-aware Transmission of Images. We can

explore the application of inverse semantic-aware encod-
ing and decoding for images or audio. In the context
of surveillance services, for example, a camera captures
a bay to detect boats. The surveillance videos require
significant storage resources. The goal is to compress
multiple video frames, such as the six frames depicted
in Fig. 10, into a single frame. The original frames can
then be reconstructed using the proposed self-supervised
decoding algorithm.

• Cantor or Szudzik Pairing Compression. In this paper,
we encoded the amplitude and the phase spectrum sep-
arately. A possible improvement is to use the pairing
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functions, e.g., cantor [59] or szudzik [60] pairing func-
tions, to combine the two spectrum into one. As shown
in Fig. 1, the pairing compression can be used as an
operation after obtaining amplitude and phase spectrums
to further compress the sensing data.
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