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Abstract—As the computing paradigm shifts from cloud com-
puting to end-edge-cloud computing, it also supports artificial
intelligence evolving from a centralized manner to a distributed
one. In this paper, we provide a comprehensive survey on the
distributed artificial intelligence (DAI) empowered by end-edge-
cloud computing (EECC), where the heterogeneous capabilities
of on-device computing, edge computing, and cloud computing
are orchestrated to satisfy the diverse requirements raised by
resource-intensive and distributed AI computation. Particularly,
we first introduce several mainstream computing paradigms and
the benefits of the EECC paradigm in supporting distributed
AI, as well as the fundamental technologies for distributed
AI. We then derive a holistic taxonomy for the state-of-the-art
optimization technologies that are empowered by EECC to boost
distributed training and inference, respectively. After that, we
point out security and privacy threats in DAI-EECC architec-
ture and review the benefits and shortcomings of each enabling
defense technology in accordance with the threats. Finally, we
present some promising applications enabled by DAI-EECC and
highlight several research challenges and open issues toward
immersive performance acquisition.
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I. INTRODUCTION

AS WE step into the Internet of Things (IoT) era, the num-
ber of mobile devices is growing exponentially, leading

to massive amounts of generated data. According to recent
analytics reports, there will be 30.9 billion connected IoT
devices in 2025 [1], and the size of data is expected to reach
nearly 79.4 Zettabytes (ZB) [2]. Meanwhile, cloud comput-
ing has developed as a dominating computing paradigm that
can provide on-demand and powerful computing capabilities
for different applications. The increase in data and comput-
ing capabilities consequently boosts the rapid development of
artificial intelligence (AI) during the past decade [3]. Besides,
powered by advanced algorithms, especially deep learning
(DL) algorithms, AI has achieved unprecedented success in
many aspects, e.g., image processing, natural language pro-
cessing, data analytics, and other intelligent services [4], with
the support of cloud computing.

However, with the ever-increasing amounts of data, cloud AI
is facing significant challenges to meet the delay and privacy
requirements in real-time applications, such as autonomous
driving, real-time video analysis, remote healthcare, etc [5].
Sending all the data to the cloud for training or inference
not only incurs uncontrollable delay for data transmitting and
processing, but also intensifies the risk of privacy leakage [6].
These concerns call for distributed artificial intelligence (DAI),
where model training and inference can be performed in a
distributed manner nearby the data sources. The application
requirements also drive the computing paradigm evolving in
the same way towards a new computing paradigm, named end-
edge-cloud computing (EECC), as shown in Fig. 1. EECC
is built on a hierarchical computing architecture consisting
of massive distributed end devices and edge servers, as well
as central cloud servers. By orchestrating the distributed and
heterogeneous computing resources, it offers new enabling
technologies to support distributed AI to provide distributed,
low-latency, and reliable intelligent services. To be specific,
the main benefits of EECC are five folds [7], [8]: 1) powerful
resource supports; 2) fast service responses; 3) on-demand dis-
tributed AI computing; 4) secure data intelligence; and 5) rich
applications. Besides, AI can also assist EECC to achieve
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Fig. 1. The DAI-EECC architecture.

more optimal resource allocation by learning interactions with
the wireless environment.

Although EECC has many benefits, there are some chal-
lenges when we use EECC to achieve distributed AI. First,
frequent model parameters exchange across nodes in dis-
tributed training may lead to high latency, tremendous network
resource costs, and privacy issues. How to achieve efficient dis-
tributed training empowered by EECC is a challenge. Second,
it is difficult for end devices to complete highly complex
model inference tasks due to constrained resources. Therefore,
how to conduct distributed collaborative inference that can
satisfy both model performance and communication require-
ments is also a challenge. Third, the EECC architecture is
an open system in which heterogeneous end devices are con-
nected to edge servers and cloud data centers. It brings a
variety of security and privacy threats in terms of data stor-
age, computing, transmission, and system management. How
to design corresponding defense technologies remains to be
explored. Finally, the EECC paradigm continues to have a
profound impact on a wide range of intelligent applications,
improving the quality of daily life and economic growth. How
to deploy DAI-EECC-assisted systems in rich applications is
challenging.

In this paper, we provide a comprehensive survey on
the state-of-the-art distributed AI technologies empowered by
EECC. Since distributed AI is based on the advance in AI
technologies, we first introduce several computing paradigms
and present an overview of artificial intelligence and deep
neural networks. Then, we derive a holistic taxonomy for the
optimization technologies of distributed AI that focus on lever-
aging EECC to address the challenges in distributed model
training and inference, respectively. Moreover, we take the
first attempt to summarize the security and privacy threats, as
well as the corresponding defense technologies in DAI-EECC.
Finally, we review some promising applications enabled by

DAI-EECC and envision some future research directions in
this promising and fast-developing field.

A. Comparison and Our Contribution

There have been some surveys investigating AI-powered
cloud-edge orchestration [5], [6], [8], [9], [10], edge intel-
ligence [12], [13], [14], [15], end-edge-cloud orchestra-
tion [7], [11], AI/ML for wireless edge network [16], [17], and
privacy and security for distributed learning [18]. For exam-
ple, Chang et al. [5] provided a survey of recent advances
in edge computing powered by Artificial Intelligence & the
Internet of Things (AIoT). They emphasized several repre-
sentative AIoT applications and enabling technologies in an
edge-cloud cooperation mode. Wu [6] investigated the state-of-
the-art works on AI-powered cloud-edge orchestration for the
IoT. Wang et al. [9] reviewed the techniques for the integration
of DL and edge computing from networking, communication,
and computations perspectives. Yao et al. [8] focused on cloud-
edge polarization and collaboration types, including privacy-
primary collaboration and efficiency-primary collaboration for
personalization. Deng et al. [12] introduced edge intelligence
from two aspects, i.e., AI for edge and AI on edge. The ref-
erences [13], [14] provided overviews of the architectures and
several key technologies for DL model computation at the
network edge. Ren et al. [7] mainly discussed EECC orchestra-
tion from the perspectives of computation offloading, caching,
security, and privacy. We compare this paper with the existing
works in Table I, and the main differences are summarized as
follows. (1) Most existing surveys focus on either the EECC
orchestration or edge-cloud intelligence, while the investiga-
tion on EECC-powered distributed AI is still at its infancy
stage. (2) The fundamentals summary about distributed AI
computing has not been well established. (3) The privacy and
security threats for distributed AI-empowered EECC are not
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TABLE I
COMPARISON WITH RELATED WORKS

comprehensively summarized. (4) Most existing works mainly
focus on applications with two-tiers architecture (e.g., cloud-
edge, edge-end), and more research endeavors are needed to
support the EECC-empowered applications. Therefore, in this
paper, we aim to fill this gap by comprehensively discussing
distributed AI architecture/algorithms, summarizing security
and privacy threats and defenses, and introducing some repre-
sentative distributed AI systems/applications. We believe that
it can help researchers to quickly grasp an overview of the
recent advances and find some valuable research insights in
this field of study. The key contributions of this paper are
highlighted as follows:

• We present an overview of preliminaries on DAI-EECC in
terms of AI and DNNs, distributed learning algorithms,
frameworks, modes, mainstream computing paradigms,
and the benefits of the EECC paradigm in supporting
distributed AI.

• We derive a holistic taxonomy for the state-of-the-art
optimization technologies to conduct distributed training
and inference, respectively, and present to the readers
a comprehensive description and discussion of existing
solutions explored in the distributed AI literature, as well
as several lessons learned.

• We justify security and privacy threats in DAI-EECC
architecture in categories and summarize the benefits
and shortcomings of each enabling defense technology
in accordance with the threat. We also point out some
lessons learned.

• We review some promising applications in DAI-EECC
with a variety of domains, such as the smart indus-
try and manufacturing, intelligent transportation, smart
grid, smart healthcare, and real-time video analytics. Two
lessons learned are presented.

• We highlight several research challenges and open issues
toward the better performance of the integration of the
distributed AI and EECC paradigm to pave the way for
future research on DAI-EECC and its applications.

B. Structure of the Survey

The remainder of this paper is organized as follows
(illustrated in Fig. 2). We elaborate on fundamental technolo-
gies related to distributed AI, discuss the evolution of the
computing paradigm, and present the EECC architecture and
its benefits in Section II. In Section III, we derive a taxonomy
for the state-of-the-art optimization technologies in distributed
training and inference empowered by EECC, respectively. In
Section IV, the security and privacy threats are identified and
the corresponding defense technologies are summarized. After
that, several promising applications based on DAI-EECC are
introduced in Section V. Finally, we highlight some poten-
tial research directions in Section VI and conclude this paper
in Section VII. The common abbreviations are presented in
Table II.

II. COMPUTING PARADIGMS AND FUNDAMENTALS

OF DISTRIBUTED AI

A. Computing Paradigms

We firstly introduce several main computing paradigms
emerging in recent years.

1) Cloud Computing: Cloud computing (CC) [19] is a
representative centralized computing paradigm, which was
proposed in 2006 by Google. By deploying large data centers
that comprise thousands of server units, users can access suf-
ficient computation resources online and only need to pay for
the cloud services on demand. Due to the powerful computing
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Fig. 2. The overview of paper organization.

TABLE II
LIST OF COMMON ABBREVIATIONS

capabilities of cloud servers, model training is usually per-
formed in the cloud. In the past few years, CC lays the founda-
tion for the development and popularization of AI applications,
and cloud intelligence has attracted much attention from

many cloud service providers, e.g., Amazon, Google, IBM,
Microsoft, etc. CC empowers many famous AI projects such as
Amazon Recognition, Google Cloud Vision, IBM Watson, and
Microsoft Cognitive Services. However, cloud-based services
are typically time-consuming and resource-demanding due to
the transmission of massive data from the end to the remote
cloud.

2) Edge Computing: With the development of CC, send-
ing data to the cloud was a prominent trend in the past
decades. However, the dramatically-increasing devices and
data traffic in the IoTs era are posing severe burdens on
the capacity-limited Internet, leading to uncontrollable ser-
vice latency. It becomes difficult to meet the delay-sensitive
and context-aware service requirements with CC alone. Facing
these challenges, the computing paradigm is shifting from
the centralized CC to distributed edge computing (EC). EC
leverages the distributed resources at the network edge (e.g.,
router, network gateway, and base station) to deliver timely
and context-aware services, providing a complement for CC
to make it only responsible for delay-insensitive, resource-
intensive, or computationally-complex tasks. EC improves user
experiences, reduces network latency, and alleviates the load
over the core network.

More recently, the concept of EC extends to cloudlet, fog
computing [20] and mobile edge computing [21]. And there
is an urgent need to fuse AI and EC to fully unleash the
potential of edge big data. To meet this demand, edge intelli-
gence (EI) has been widely recognized as a promising solution.
EI aims to fully exploit the available resources across mobile
terminals and edge nodes to perform model training and infer-
ence, providing timely and resource-efficient services for AI
applications. Yet, compared to CC, edge nodes still have
limitations on achieving real-time intelligent services due to
limited resources and functional scalability. Therefore, the EC
and CC are simultaneously required for a better quality of
services in various AI application scenarios.
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3) End-Edge-Cloud Computing: Motivated by the
advances of emerging EC, we are expecting a hierarchical
computing architecture, i.e., EECC, which can revolutionize
the existing computing paradigms. As shown in Fig. 1, EECC
integrates central cloud servers, numerous edge servers, and a
huge number of distributed end devices, fully exploiting the
differentiated capabilities of heterogeneous devices/facilities
to meet the different service requirements [22]. With the
support of EECC architecture, distributed AI has developed
rapidly and is widely applied in various fields. In DAI-EECC
architecture, from bottom to top are the end layer, edge layer,
and cloud layer, where each layer is responsible for different
AI tasks. The end layer can collect, pre-process or analyze
data and make early decisions. The pre-processed data from
the end layer can be aggregated in the edge layer for deep
analysis and decision, and the cloud layer can coordinate the
end layer and the edge layer.

- End Layer includes millions of widely deployed sensors,
mobile devices, smartphones, and actuators, which typically
have certain computing and storage capacities. End devices
can be equipped with not only basic functions (such as
perception and data collection) but also intelligent opera-
tions, e.g., data pre-processing and local deep neural network
(DNN) inference. With local processing, only compact pro-
cessed data needs to be transmitted to the upper computing
devices (edge or cloud nodes). This can significantly reduce
latency and network costs, which is critical for data-intensive
distributed AI applications. Due to the computing and stor-
age resource limitations, only shallow DNN models can be
executed on end devices. Thus, model compression and accel-
eration technologies for resource-constrained devices have
attracted much attention, which will be reviewed in Section
IV-C. For computation-intensive tasks, the end devices need
to resort to edge and cloud resources for further processing.

- Edge Layer is the bridge that connects the end layer
and cloud layer, including base stations, routers, IoT gateways,
access points, etc [23]. The edge layer is mainly responsible
for functions such as authentication, edge inference, model
selection, and request forwarding. Specifically, it will authen-
ticate and authorize the trusted device for security cooperation.
The edge nodes can receive and store the data from end
devices, conduct edge training or inference, and deliver the
final results to the end devices or offload the intermediate
results to the cloud servers. Since the edge nodes are closer to
data sources than the cloud data centers, edge processing can
reduce the service latency and provide auxiliary computing
resources for computation-intensive intelligent applications.

- Cloud Layer is equipped with powerful computing capa-
bilities and abundant storage resources, cloud data centers
can provide on-demand services to empower various intel-
ligent applications. Generally, the cloud layer is responsible
for data storage, device management, controlling, complicated
model training, etc. Particularly, the cloud layer can train AI
models with high accuracy due to the sufficient data and
resources. Moreover, the cloud layer can coordinate the end
layer and edge layer. It receives data or intermediate results
from end layer and edge layers, empowers efficient distributed
AI computing, and provides powerful resource supports.

Fig. 3. The example of DNN computation.

However, traditional distributed AI algorithms have dif-
ficulties satisfying the high requirements for real-time data
processing due to high communication latency. Meanwhile, the
direct integration of distributed AI and EECC is not straight-
forward since heterogeneous resource orchestration is not
considered in traditional distributed AI. Therefore, it motivates
us to design new collaborative training and inference schemes
that can adaptively incorporate heterogeneous resources of
diverse compute nodes, so as to offer flexible communication
and computing services in an efficient manner.

B. Artificial Intelligence and Deep Neural Networks

Artificial Intelligence (AI) is a general term that implies the
use of a computer to model intelligent behaviors with mini-
mal human intervention. Deep neural networks (DNNs), also
referred to deep learning (DL), are a representative part of the
broad field of AI, which has the ability to automatically dis-
cover and learn effective features from raw data. Nowadays,
DL has been extensively applied in many applications such
as computer vision, natural language processing, and speech
recognition [24]. A conventional DL model is composed of
three layers: input layer, hidden layer, and output layer. Fig. 3
shows a simple DL network example. The neurons in the
input layer receive some values and feed-forward them to
the neurons in the hidden layer, the weighted sums from one
or more hidden layers are ultimately propagated to the out-
put layer, which presents the final outputs of the network
to the user [25]. At each layer, the general computation is
yj = f (

∑n
i wij×xi+b), where wij , xi and yj are the weights,

input activations and output activations, respectively, f (·) is a
non-linear function, and b is the bias term. Some activation
functions include the ReLu and Softmax functions. Finally, the
errors that are derived by loss function and label backpropagate
through the network for weight update w t+1

ij = w t
ij − α ∂L

∂wij

in the next iteration t + 1, where α is the learning rate.
DNN model learning involves two stages, i.e., training and

inference. The objective of the training is to optimize the
weights of the network such that the loss function is min-
imized. During training, the weights are calibrated through
stochastic gradient descent (SGD). After training, running
the program with these weights is referred to as inference.
With the rapid development of DL, a large number of new
models and architectures have emerged, e.g., convolutional
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ΔW

Fig. 4. Synchronous SGD.

neural network (CNN), recurrent neural network (RNN), auto-
encoder, capsule network, transfer learning, and generative
adversarial network (GAN).

C. Distributed Learning Algorithm

For most DL applications, given a dataset X = {xi : i =
1, . . . , |X |}, the goal is to learn the parameters θ of a model
with respect to an empirical loss function f, defined as f (θ) �
1
X

∑|X |
i=1 F (xi ; θ), where F (xi ; θ) is the loss with respect to a

datapoint xi and the model θ. However, considering the limited
resources such as computing power, memory, and storage of
a single device, the data samples or DNN model is first split
into several parts before training. Particularly, in distributed
AI training process, N worker machines are used to be in
charge of computing stochastic gradients, and then are sent to
the parameter server j for distributed stochastic optimization.
Each parameter server j is responsible for storing a subset
θ[j ] of the model, and performing updates on θ[j ] [26]. All
worker machines compute in a parallel manner. In general,
there are three main parallelism technologies, i.e., data paral-
lelism, model parallelism, and hybrid parallelism, which will
be introduced in detail in Section II-E. The training algorithms
are introduced in the following, including synchronous SGD,
asynchronous SGD, and gossip SGD.

- Synchronous SGD (Sync-SGD): Fig. 4 shows the Sync-
SGD setting, where all computing nodes wait for other nodes
to complete the gradient computation in each round during
training. Then the PS accumulates gradients and generates a
new global parameter update. Finally, the computing nodes
download the updated model and begin the next iteration.

Although the Sync-SGD can guarantee convergence, due to
the tightly coupled nature of the nodes, the computing speed
will be slowed down by the stragglers, resulting in a long
convergence time [27]. To address this problem, one possi-
ble solution is to aggregate partial gradients. Chen et al. [26]
proposed a distributed training acceleration scheme called syn-
chronous optimization with backup workers. It only aggregates
a subset of gradients during the process of gradient aggregation
to prevent the stragglers from slowing down the overall com-
putational efficiency, while using backup workers to avoid any
staleness in gradients. However, this method is not efficient if
existing persistent stragglers, as a portion of data will be lost.
To enhance robustness to persistent stragglers, instead of dis-
carding the stragglers, Ferdinand et al. [28] fixed the duration
of the computational epoch, and weighted each update by the
amount of work that is finished at the end of each epoch. The

ΔW

Fig. 5. Asynchronous SGD.

Algorithm 1: The Pseudocode of Asyn-SGD
Input: Data set X , mini-batch size B, learning rates

γ0, γ1, . . . ; decay rate α; number of mini-batches
to aggregate N; model initialization θ(0).

1 // [worker k]
2 while True do
3 Read θ̂k = (θ[0], . . . , θ[M ]) from PS

4 G
(t)
k

:= 0
5 for i = 1, . . . ,B do
6 Sample data point x̃i from X
7 G

(t)
k ← G

(t)
k + 1

B∇F (x̃i ; θ̂k )
8 end

9 Send (G
(t)
k ) to parameter servers

10 end
11 // [parameter server j]
12 for t = 0, 1, . . . do
13 Wait for gradient G from any worker
14 θ(t+1)[j ]← θ(t)[j ]− γtG [j ]

15 θ̄(t)[j ] = αθ̄(t−1)[j ] + (1− α)θ(t)[j ]
16 end

global model is the weighted aggregation of each update. This
work is robust to both persistent and non-persistent stragglers,
and compared to [26], it has a faster convergence speed.

- Asynchronous SGD (Asyn-SGD): Asyn-SGD can improve
the iterative speed of distributed AI training by removing the
coupling relationship and reducing the dependence between
nodes. In the Asyn-SGD setting, as shown in Fig. 5, each node
independently computes gradients and updates the model. The
pseudocode for Asyn-SGD is given in Algorithm 1.

Compared to Sync-SGD, the asynchronous version is more
robust to the single point of failure, i.e., if the PS fails,
other nodes can continue to process and avoid the problem of
the synchronization barrier. Since there is no synchronization
between nodes when updating global model parameters, some
nodes might compute gradients using outdated global model
weights, making model convergence slow and unguaranteed.
Therefore, Asyn-SGD may have problems with stability and
accuracy due to the staled or delayed weight updates. To
address this problem, Zhang et al. [29] proposed a variant of
the Asyn-SGD algorithm where the learning rate is adjusted
according to the gradient staleness. Besides, Zheng et al. [30]
designed delay compensated Asyn-SGD, which leveraged
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Δ

Δ

Δ

Δ

Fig. 6. Several types of parallelism technologies.

Taylor expansion of the gradient function and efficient approx-
imation to the Hessian matrix of the loss function. Although
Asyn-SGD can accelerate the training speed by eliminating
costly synchronization, the current convergence of coordinate
descent algorithms is based on somewhat unrealistic assump-
tions. In particular, the age of the shared optimization variables
being used to update a block is assumed to be independent
of the block being updated. Sun et al. [31] proved the con-
vergence of asynchronous-parallel SGD under more realistic
assumptions, e.g., permitting both the deterministic cyclic and
random rules for block choices.

- Gossip SGD (GoSGD): Although Sync-SGD and Asyn-
SGD can achieve gradient exchange between distributed
nodes. The huge communication overhead hinders the scal-
ability of large-scale distributed training [32]. Inspired
by [33], a more communication-efficient distributed train-
ing approach based on a randomized gossip algorithm can
accelerate distributed training, which is called Gossip SGD
(GoSGD) [34]. GoSGD trains DNN models by exchanging
parameter information among multiple threads in a peer-to-
peer way. In particular, the GoSGD algorithm considers M
independent workers, each of them hosts a CNN of the same
architecture with a set of weights noted xi for worker i.
The GoSGD includes two steps: gradient update and mixing
update. At each iteration, every worker node performs SGD on
its data in the gradient update step, and then sends its weights
to other randomly chosen nodes in the mixing update step.
In GoSGD, each node can receive information from multiple
nodes but can only send its updates once. GoSGD can retain
the advantages of both Sync-SGD and Asyn-SGD by replac-
ing the all-reduce collective operation of Sync-SGD with the
gossip aggregation method [35].

To further improve the communication efficiency of
GoSGD, the authors realized [36] a linearly convergent gossip
algorithm with compressed communication. Chen et al. [32]
added periodic global averaging into GoSGD, to mitigate
the slow convergence rate in distributed training. Besides,
Assran et al. [37] combined GoSGD with stochastic gradient
updates. This method can accelerate the training of DNNs by
reducing communication overhead and mitigating the effects
of stragglers.

D. Distributed Learning Framework

Recently, some emerging distributed learning frame-
works are developed, making large-scale distributed AI

easy and flexible for developers and researchers. These
frameworks can be deployed in high-performance GPU-
based servers and extensively applied in various AI
applications. Table III summarizes mainstream distributed
AI training frameworks, including Tensorflow, Pytorch,
Keras, etc. These frameworks integrate different parallelism
mechanisms.

E. Distributed Learning Stages

Distributed learning includes two stages, i.e., training and
inference.

1) Training Stage: Distributed AI performs distributed
training by utilizing parallelism technologies, where learn-
ing agents may be located in different geographical locations.
Parallelism technologies enable the system to make full use of
all distributed computing resources. Each separated comput-
ing node executes parts of intelligent tasks, which is helpful
to achieve rapid analysis and computation. Compared to cen-
tralized AI, distributed AI has many intrinsic advantages:
1) multi-nodes collaboration for achieving rapid training pro-
cess of complex models; 2) strong scalability for complex
scenarios; and 3) avoiding a single point of failure. Thus,
distributed AI is suitable for IoT and mobile Internet applica-
tions. In the following, we introduce several main parallelism
technologies.

- Data Parallelism: For most DL applications, the data set is
too big to be computed on a single device. Data parallelism is a
feasible solution that partitions data and distributes each batch
to multiple distributed computing nodes, as shown in Fig. 6(a).
To achieve data parallelism, model averaging, Sync-SGD,
and Asyn-SGD algorithms have been widely used in training
large-scale DNNs. With data parallelism, data samples can be
assigned across the three-tiers architecture of the end devices,
edge servers and cloud server [53], thus the computation speed
of real-time applications can be accelerated.

- Model Parallelism: Compared to data parallelism, model
parallelism is more common in DAI-EECC. It is an approach
that splits the model into several sub-models and places them
on multiple nodes (or GPUs), where each node is responsible
for parts of the model training [54]. As depicted in Fig. 6(b),
different layers and neurons of the DNN model are deployed
in multiple GPUs. For model parallelism, each GPU cannot
update independently and needs to cooperate with other nodes.
According to the structural characteristics of neural networks,
model parallelism methods can be categorized into horizontal
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TABLE III
AN OVERVIEW OF POPULAR DISTRIBUTED LEARNING FRAMEWORKS

division by layer, vertical division by layer [55], and random
model division [56].

• Horizontal Division by Layer refers to the situation where
a working node is responsible for the computation of one
or multiple layers, and a computation mode pipeline is
formed between nodes to propagate errors and gradient
descent among neural network layers, e.g., GPU1 and
GPU3 in Fig. 6(b) are horizontal division. This type of
division is suitable for neural networks with many layers.

• Vertical Division by Layer is applicable to the situation
where there are many neurons in a single neural network
layer. Particularly, neurons at the same layer are assigned
to distributed working nodes, and a single node needs to
wait for the neighboring nodes to complete the compu-
tation and propagate gradient updates to each other, e.g.,
GPU2 and GPU4 in Fig. 6(b) are vertical division.

• Random Model Division. For large neural networks, the
communication cost of horizontal and vertical division
is very high, which causes a severe bottleneck for the
training acceleration. An attempt to address this problem
is random model division. The core idea is to select a

small-scale sub-network (called skeleton network) from
the original large-scale network, and then update the
nodes in the skeleton network according to the model
performance during the training process until conver-
gence, e.g., GPU1, GPU2, GPU3, and GPU4 in Fig. 6(b)
are random model division.

In the EECC architecture, a large DNN model can be
divided into several parts and executed across the mobile
devices, edge servers and cloud servers [57]. When training
the DL models in a distributed manner, the frequent gradi-
ent exchanges across the nodes inevitably consume tremen-
dous network resources. Thus, gradient compression can be
used to reduce communication costs, i.e., gradient sparsifica-
tion [58], [59] and gradient quantization [60], [61], [62].

- Hybrid Parallelism: Data parallelism and model par-
allelism are effective methods in distributed computing.
However, as the increasing sizes of the DNN model and the
available data set, the training process becomes more complex
and computationally intensive, which usually takes a longer
time to complete [63]. To this end, several research works
explored the hybrid parallelism approach by combining both
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Fig. 7. The main model inference modes.

data and model parallelism for efficient distributed training.
As depicted in Fig. 6(c), each data-parallel worker consists of
multiple devices to accelerate the training process by exploit-
ing model parallelism [64]. For example, Geng et al. [65]
incorporated vertical data parallelization and horizontal model
parallelization, and proposed a novel framework to achieve
higher performance and better scalability for large-scale dis-
tributed AI. Nowadays, hybrid parallelism has been applied
in a hierarchical AI learning framework, which can adap-
tively assign the DNN model layers and data samples across
three levels of the mobile device, edge server, and cloud data
center [53].

2) Inference Stage: To improve the performance of intel-
ligent applications, an effective approach is to conduct dis-
tributed inference through orchestrating cloud, edge, and end
resources. In this section, we discuss the distributed inference
driven by EECC, including the model inference modes, key
performance indicators, and several enabling technologies.

According to the position of DNN model inference, we
summarize several main inference modes as follows, which
is shown in Fig. 7.

- End Inference: Considering the communication latency
and privacy issues, DL inference at the end layer attracts much
attention. However, the end devices are typically resource-
constrained while the DL models with millions of parameters
require high-performance computing units, such as CPUs,
GPUs, and DSP. Therefore, it is necessary to optimize the
DNN models via model compression and acceleration, mak-
ing the trade-off between computing resource consumption and
model performance. In Section III-C, we will introduce the
optimization technologies for end inference.

- Edge Inference: In edge inference, devices send data to
the edge server, which then makes inference based on the
deployed DNN model. When the inference is done, the results
are returned to the devices. The edge inference can guaran-
tee the acceptable latency for real-time applications. However,
the inference performance depends on the network conditions
between devices and the edge server and the computing load
of the edge server.

- End-Edge Co-Inference: In the end-edge co-inference
mode, the device firstly divides the DNN model into multiple
parts and performs local model inference according to its
capabilities. The remaining parts and intermediate results are
offloaded to the edge server for further execution. Finally, the
edge server returns the results to the device. Compared with
the end or edge inference mode, this one is more flexible and
can exploit distributed resources to perform computation [66].

- End-Edge-Cloud Co-Inference: In this mode, the DNN
model is executed through end-edge-cloud synergy. The end

devices are responsible for input data collection and shal-
low DNN inference. For a given input, the edge node will
determine whether it can be successfully processed by the
DL model deployed on the resource-constrained edge device.
If not, it turns to the more powerful DL model deployed at
the cloud [67]. Compared to end-edge co-inference, moving
the inference to the cloud can access more computational
power. Thereby, the integration of edge and cloud computing
resources is essential [68], [69].

III. OPTIMIZATION OF END-EDGE-CLOUD

DISTRIBUTED LEARNING

In this section, we first introduce several key performance
metrics for evaluating the optimization performance of EECC
empowered distributed learning. Then, we present a holistic
taxonomy for the state-of-the-art optimization technologies to
conduct distributed training and inference, respectively.

A. Key Performance Metrics

We summarize several main metrics for optimization eval-
uation of end-edge-cloud distributed learning.

• Accuracy: refers to the ratio of the number of input sam-
ples that get the correct predictions from inference to the
total number of input samples. DNN inference accuracy
is affected by the model structure, the number of samples,
and the capability of devices.

• Latency: refers to the time consumption for the whole
inference process, including preprocessing, model infer-
ence, network transmission, and postprocessing. Some
real-time intelligent mobile applications usually have
stringent latency requirements. Basically, latency is
affected by many factors, including network conditions,
inference modes, the capability of computing devices, and
so on.

• Energy cost: is affected by the size of the DNN model
and computing resources. Particularly, the computation
and communication of DNN model inference bring a
large amount of energy consumption. Compared with the
edge server and the cloud data center, the end devices are
usually battery-limited.

• Communication cost: affects the inference performance
significantly. It is necessary to minimize the overhead
during the DNN model inference, especially the expen-
sive wireless area network bandwidth usage for the cloud.
Communication overhead mainly depends on the size of
DNN models.

• Memory footprint: A high-precision DNN model includes
millions of parameters and is hungry for hardware
resources. In mobile devices, CPUs and GPUs typically
compete for shared and scarce memory bandwidths. For
the optimization of the distributed inference, the memory
footprint is a nonnegligible indicator. Memory footprint
is mainly affected by the size of the original DNN model
and the way of loading the tremendous DNN parameters.

• Privacy: refers to the private information protection for
users. With the introduction of laws and regulations, such
as General Data Protection Regulation (GDPR), users are
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Fig. 8. Two different splitting computing approaches.

paying more and more attention to privacy. The degree of
data privacy protection in the distributed learning process
also becomes an important evaluation indicator.

B. Optimization Technologies for Distributed Training

1) Splitting Computing: Splitting computing (SC) divides
a large DNN into the head and tail models, respectively exe-
cuted across the mobile device and edge server or cloud
server. It can reduce data transfer delays by establishing
a task-oriented compression scheme in DNN training [70].
Existing SC approaches include two categories: (i) SC with-
out network modification and (ii) SC with bottleneck injection.
Fig. 8 provides an overview of the approaches.

- SC without network modification: In this class of
approaches, the architecture and weights of the head MH (·)
and tail MT (·) models are exactly the same as the first �
layers and last L − � layers of M(·). This category mainly
focuses on computer vision tasks such as image classification.
An inevitable problem for SC without network modification
is selecting an appropriate splitting point such that distributed
DNN training can meet various types of cost requirements. For
this problem, SC is firstly utilized in Neurosurgeon between
the cloud data centers and mobile edge, aiming to search
for the automatic layer partitioning strategy in the com-
puter vision DNN model [57]. Kim et al. [71] proposed to
split deep network (e.g., CNN model) into a tree of sub-
networks, which can enable straightforward model parallel
training across multiprocessors. Eshratifar et al. [72] consid-
ered the DNN splitting strategy under energy consumption
constraints of mobile devices, the cloud server load con-
straints, and the service quality requirements. Optimization
formulations of the forward and backward propagation were
provided at layer granularity for efficient DNN collaborative
computation.

More recently, Cohen et al. [73] designed a technique to
code the activations of split DNN layer, which is suitable for
object-detection and classification tasks across mobile phone
or edge devices and cloud. However, the key problem is that
naive SC approaches rely on the existence of natural bot-
tlenecks, i.e., intermediate layers whose output tensor size
is smaller than the input size. Without such natural bottle-
necks in the early layers of the model, such as ResNet [74],
InceptionNet [75], Faster R-CNN [76], etc., naive splitting

approaches would fail to improve performance for most
intelligent tasks.

- SC with bottleneck injection: To address the above issue,
it is feasible to introduce artificial bottlenecks to DNN models
by modifying their architecture. Particularly, this class of mod-
els consists of three parts:ME ,MD , andMT . The first two
sections of the modified model transform the input x into a
version of the output of the �-th layer via the intermediate
representation z. The model is split after the first section,
namely, ME is the head model, and the concatenation of
MD and MT is the tail model. The layer between ME and
MT is the injected bottleneck. The authors in [77] and [78]
firstly propose to alter existing DNN architectures by design-
ing relatively small bottlenecks at early layers in DNN models,
instead of applying compression technologies (e.g., quantiza-
tion and autoencoder) to the models. Following these studies,
Matsubara and Levorato [79] proposed to split the DNNs into
head and tail models and train on the mobile device and edge
server, respectively. Then, they introduced a bottleneck layer
in the early layers of the head model to achieve in-network
compression.

In summary, most of the existing SC approaches mainly
focus on exploring appropriate DNN model splitting points to
minimize the total delay of collaborative computing. However,
there are two limitations. On the one hand, SC methods are
only discussed for computer vision tasks while ignoring the
combination of multiple task models. On the other hand,
few studies consider the tradeoff between the accuracy of
distributed training and specific indicators (such as commu-
nication delay and energy consumption), which is important
in practical scenarios and deserves further study.

2) Compression: Compression is an effective optimization
technology during model training [98], [99], including gradient
sparsification, gradient quantization, weight pruning, model
quantization, automatic compression, and lightweight model
design. Particularly, gradient sparsification and quantization
are designed for reducing distributed communication costs and
the other technologies are used for on-device optimization.
We summarize some related works in Table IV and Table V,
which are categorized by gradient-based compression and
model-based compression.

Gradient Sparsification (GS): GS reduces communication
latency by selecting parts of gradients during aggregation,
which can achieve an arbitrary compression ratio [100].
However, the large gradients and time-consuming computation
limit the scalability of multi-node training. Deep gradient com-
pression (DGC) [58] was further proposed to reduce the com-
munication bandwidth consumption, by using Top-k sparsifi-
cation twice. Specifically, DGC randomly selects 0.1% - 1%
proportion of gradients greater than a certain threshold for
Top-k operation. However, DGC was proposed to adopt a
heuristic approach in terms of sparse threshold selection, and
the two Top-k operations are time-consuming.

To address the above issue, the authors [59] improved
the sparsity threshold selection strategy. It was assumed that
the gradient follows a Gaussian distribution, and then the
threshold was selected according to the certain compression
ratio. Compared to DGC, the time consumption in the sparse
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TABLE IV
OVERVIEW OF GRADIENT-BASED COMPRESSION

TABLE V
APPROACHES TO MODEL-BASED COMPRESSION

operation is significantly reduced. Yet, the strong prior condi-
tion that the gradient follows a certain Gaussian distribution
may not be satisfied, which leads to differences between the
actual compression ratio and the predetermined compression
ratio. Recently, Abdelmoniem et al. [101] proposed sparsity-
distribution-based compression, assuming that the gradient
corresponds to a sparsity distribution. Then a multi-stage
threshold estimation method was proposed to get the threshold
accurately.

Gradient Quantization (GQ): GQ reduces the communi-
cation bandwidth by replacing the float-point gradients with
low-precision values. Wen et al. [60] developed TernGrad
which uses ternary gradients quantization, i.e., three numerical
levels -1, 0, 1 to accelerate distributed DL. Inspired by stochas-
tic quantization and lossless code for quantized gradients,
Alistarh et al. [61] introduced quantized SGD to compress
gradient updates by smoothly trading off communication band-
width and convergence time. In [62], the authors leveraged
binary gradient quantization in the proposed digital SGD at the
wireless network edge to reduce the high dimension parame-
ters, so that the gradients can be transmitted under a limited
channel bandwidth.

Weights Pruning (WP): WP is a popular method for
model compression by removing redundant connections while
preserving accuracy. Fig. 9 shows a general framework for
weight pruning. The steps are: 1) training a neural network to
learn the important connections; 2) pruning the unimportant

Fig. 9. General framework for weight pruning.

neuron connections; and 3) retraining the network to fine-
tune the weights of the remaining connections. Particularly,
we can determine the pruning level based on different objec-
tives. The pruning criterias include absolute value, different
norms, linear discriminant analysis (LDA), cosine distance,
entropy [102], and correlation matrix. There are several prun-
ing algorithms such as removing neurons/synapses, searching,
etc [103]. Recently, weight pruning was used in achieving
real-time DNN inference on mobile devices [91], [92], [104].
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Model Quantization (MQ): MQ refers to replacing float-
point numbers with low-bit numbers, thus significantly reduc-
ing memory footprint and accelerating computation. Examples
of MQ include binary quantization [105] and ternary quanti-
zation [106]. However, using fixed number types may lead
to a sub-optimal result. To this end, Oh et al. [107] intro-
duced number abstract data type and proposed an automatic
quantization framework for DNN. Specifically, this framework
encapsulates the internal representation of a number and then
reconstructs a novel representation (type, bit width, and bias)
for the number. Compared to the 32-bit float-point numbers,
it can reduce the parameter size up to 16x with 1% loss of
accuracy. Since model quantization helps to reduce the model
size and computation latency, it has been successfully applied
in many applications of mobile phones [93] and embedded
devices [94]. However, due to the constraints of hardware
resources, delay, and energy consumption, it is difficult to
quickly determine the quantization bit accuracy of each layer
in mobile DL networks [95].

Co-Design and Automatic Compression: Although both
pruning and quantization methods are effective, sometimes
a single compression technique may not suffice to meet
the diverse requirements. Thus, the combination of different
compression technologies helps achieve a fast and accu-
rate DNN model for mobile applications, such as Deep
Compression [108], Octave Deep Compression [109], and
Joint Pruning & Quantization [110]. However, conventional
model compression technologies rely on hand-crafted heuris-
tics and rule-based strategies, requiring domain experts to
explore large design space, which is usually sub-optimal
and time-consuming. To this end, some researchers stud-
ied automated model compression strategies by leveraging
reinforcement learning, which can exceed the performance
of rule-based model compression methods [96], [111]. To
optimize compression and acceleration of DNN on mobile
devices and help users achieve local and efficient data pro-
cessing, Tencent designed PocketFlow [97], an automated DL
model compression framework, to support model pruning &
quantization co-design.

Lightweight Model Design: DNN usually improves DL
network performance by broadening network structure.
However, it leads to problems such as large demand for
memory and CPUs/GPUs, slow inference speed, and high
power consumption, making it difficult to apply to real-time
scenarios and mobile devices. For example, the slow running
speed of the neural network for autonomous driving may cause
accidents, and the high power consumption will deteriorate
the endurance of mobile terminals such as cars and mobile
phones. The lightweight neural network is a feasible solution
by designing DNN models with limited memory and compu-
tational complexity while guaranteeing high accuracy. There
are several mainstream models including MobileNet V1 [112],
V2 [113], V3 [114], SqueezeNet [115], ShuffleNet [116],
Xception [117], GhostNet [118] and PP-LCNet [119]. By
adopting state-of-the-art technologies, e.g., depth-wise sep-
arable convolution, point-wise group convolution, channel
shuffle, and fire module, these lightweight models significantly
promote efficient inference on-device [120].

Fig. 10. The taxonomy of FL with network architecture.

3) Federated Learning: Federated learning (FL) is a
promising technique to preserve data privacy when training
DL models on distributed clients [134], [135], [136], [137].
Rather than uploading the raw data to a central data center, FL
leaves local training data on edge devices (or mobile devices)
and learns a shared model by aggregating locally-computed
updates to a global DL model [138], [139], [140], [141].
Specifically, the communication process contains four steps:
(i) a fraction of selected devices download a global DL model
from the central server at the beginning of each round; (ii)
each client performs local computation based on the global
model and its own local data set; (iii) each client uploads the
updated parameters to the server; and (iiii) the central server
aggregates the client updates. This process repeats until the
model converges. From the network architecture perspective,
FL can be divided into two categories, i.e., centralized FL and
decentralized FL [142], as shown in Fig. 10. In this section, we
discuss the taxonomy of classical FL and summarize related
works in Table VI.

Centralized FL (CFL): CFL is the most commonly used
architecture in FL systems, including a centralized server
and a set of distributed clients to perform model training.
In the initial CFL, the cloud server acts as an aggrega-
tion node for coordinating the aggregation and distributing
the model updates to the clients. However, the communica-
tion between clients and the cloud server is high-latency and
unpredictable [134]. With the emergence of EC technologies,
edge servers can serve as parameter servers to provide stor-
age and computing resources for FL clients at the network
edge [143], which decreases communication costs and latency.
Nevertheless, one disadvantage is the limited number of partic-
ipant clients that each server can access, leading to inevitable
performance degradation.

It is necessary to investigate the orchestration of end
devices, edge servers, and the cloud center. Fig. 11 shows an
end-edge-cloud hierarchical FL paradigm, which has two main
benefits: (i) improving model performance by accessing lots of
training samples in the cloud server, and (ii) achieving efficient
communication with local clients via edge servers. Compared
with cloud-based and edge-based FL, hierarchical FL achieves
a good tradeoff between communication costs and model
training performance [121], [144], [145]. However, there are
still challenges in implementing a hierarchical FL system.
Specifically, the convergence guarantee of distributed algo-
rithms is unknown and needs to be further studied. In addition,
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THE TAXONOMY OVERVIEW OF FL

Fig. 11. The end-edge-cloud hierarchical FL architecture.

hierarchical FL involves multiple distributed heterogeneous
devices (or participants) with different computation capa-
bilities [123]. Given the multi-levels of model aggregation,
how to design the communication strategy (e.g., convergence
frequency) to achieve a tradeoff between model accuracy and
communication efficiency requires further investigation.

Facing these challenges, some researchers study communi-
cation optimization strategies and perform convergence anal-
ysis. An intuitive way to improve communication efficiency
is utilizing compression technologies such as sparsification,
quantization, and sketching [124]. However, gradient com-
pression may degrade the performance in terms of accuracy
and convergence speed due to the weighted distance between
the local distribution and global distribution. To address this
issue, Mhaisen et al. [125] attempted to equalize class dis-
tributions among edge devices, by exploiting the advantages
of both cloud and edge servers, i.e., frequent local aggrega-
tions at the edge servers and few aggregations in the cloud
server [126], [146]. Specifically, for the high-cost global aver-
aging, it is recommended to decrease the global averaging
frequency and increase the local averaging frequency [127].

Determining aggregation frequency at edge and cloud lev-
els in a three-layer FL system is also a crucial problem.
There are two qualitative guidelines: (i) frequent local model
averaging can reduce the number of local iterations, and (ii)
making the edge data set IID distributed can reduce the com-
munication overhead with the cloud [121]. Following [127],
Wang et al. [128] proposed a cluster-based FL mechanism,
which included intra-cluster communication in the same edge

clusters and hierarchical aggregation between a lead edge
node and a remote cloud parameter server. Deng et al. [129]
also considered exploiting edge aggregation to avoid frequent
communications with cloud servers. They proposed a method
to solve the cost minimization problem in HFL. Another
way to decrease communication costs is identifying irrelevant
updates and precluding them from being uploaded for reduced
network footprint. By avoiding uploading irrelevant updates to
the server, it can reduce the communication overhead while
guaranteeing the learning convergence [130].

Decentralized FL (DFL): Although CFL can preserve pri-
vacy without exporting data to third parties, it has the
drawbacks of single-point failure and scaling issues [131].
Different from CFL, DFL does not require central update
aggregations. DFL participants at all levels are connected in a
peer-to-peer (P2P) architecture. In each iteration, each client
performs training based on a local data set and then interacts
with adjacent clients via a consensus-based manner, where all
model parameters are encrypted. Due to the decentralized fea-
tures, DFL can be integrated with P2P-based blockchain to
build secure distributed systems. The blockchain network can
replace the centralized model exchange and aggregation due
to the distributed ledger technology [147]. Moreover, incentive
mechanisms can motivate users to participate in collabora-
tive training and upload model parameters [132]. To further
improve the FL system using blockchain, the authors of [133]
designed strategies to allow unsuspecting parties to partic-
ipate in privacy-preserving learning and sharing gradients.
However, due to the unique features of the blockchain, such
as decentralized architecture, privacy concerns, node resource
requirements, and multi-party consensus, the EECC architec-
ture faces many challenges when integrating blockchains, such
as trusted computing and transmission.

4) Few-Shot Federated Learning: Despite the existing
efforts to reduce communication overheads, current FL
approaches still use iterative optimization technologies, requir-
ing many rounds of communication between the devices
and the central servers to train a global model. Motivated
by the advances of meta-learning and few-shot learning,
iteration rounds can be further decreased. The authors of [148]
proposed a promising few-round learning for FL, where an ini-
tial model was prepared to limit the number of model exchange
rounds in FL to a fixed number R.
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To further reduce communication rounds, one-shot FL
becomes a solution that only needs a single round of com-
munication between the clients and central server [149]. In
one-shot FL, each client trains a local model and applies
ensemble methods to capture global information across the
device-specific models. Besides, the client-to-server communi-
cations can be controlled via specific protocols, such as setting
thresholds based on local validation errors. The one-shot FL
is commonly used in two settings, i.e., traditional supervised
learning and semi-supervised learning. Recently, DOSFL [150]
was proposed to combine data distillation and one-shot FL,
where each client distills its data and uploads learned synthetic
data, label, and learning rate to the server, instead of trans-
mitting bulky gradients or weights. Furthermore, the authors
of [151], [152] proposed Fusion Learning for hierarchical
client-edge-cloud architecture, which trains a DL model by
integrating both fusion and FL methods.

C. Optimization Technologies for Distributed Inference

1) Model Acceleration: Although model compression can
facilitate DNN inference on mobile devices, current solu-
tions to deploy DNNs on low-power and resource-constrained
mobile or edge devices (e.g., smartphones) are still inefficient.
To address the challenge, hardware-based optimizations are
proposed to reduce DNN inference costs. Next, we introduce
hardware acceleration, and software acceleration, along with
software and hardware co-design acceleration.

- Hardware Acceleration (HA): HA is the underlying
optimization mechanism that improves the model inference
efficiency by fully utilizing the computing abilities of hard-
ware. For most mobile devices, CPUs and GPUs are general-
purpose processors for model acceleration. Recently, Google
developed Tensor Processing Units (TPU) [153], a high-speed
custom machine learning (ML) chip that is 15-30 times faster
than standard CPUs and GPUs. Some other examples are
HiSilicon neural processing unit (NPU) [154], Qualcomm
Snapdragon Neural Processing Engine (SNPE), and field-
programmable gate array (FPGA) [155]. Next, we introduce
the related works about the CPU/GPU and the FPGA-based
acceleration technologies.

CPUs/GPUs: Mobile CPUs and GPUs are the most com-
mon hardwares for on-device or edge inference, and each
terminal device has different numbers of CPU and GPU
cores. Therefore, making full use of heterogeneous hard-
ware resources on the device can greatly reduce the delay
and energy consumption of DL model inference. However,
DL inference on mobile CPUs suffers from two issues:
poor performance scalability and energy inefficiency, due to
improper task partitioning, unbalanced task distribution, and
unawareness of model behavior. To address these issues, the
authors proposed AsyMo [156], with joint consideration of
model structures and hardware asymmetric characteristics of
the CPU. Compared with the CPU, the GPU has more power
and better energy efficiency. Yet, mobile GPUs also face
the inefficient issue resulting from the improper partition of
computing workload. Jiang et al. [157] proposed a heuristics-
based workload partitioning approach, considering both model

performance and computation overheads on mobile devices. In
addition, mobile GPUs suffer from significant kernel launch
overhead [158]. To maximize the utilization of mobile GPUs,
concurrent execution of heterogeneous operators [159] and
exploiting activation sparsity [160] are effective methods.
Leveraging the heterogeneous computing capabilities of CPUs
and GPUs, real-time multi-person pose estimation and mobile
action recognition could be deployed on mobile devices [161].

FPGA: The CPU-based and GPU-based solutions are
widely utilized in on-device and edge inference. However,
some state-of-the-art DNNs are designed to adopt network
sparsity and compact data types, introducing irregular par-
allelism and custom DNN structure. Due to the redundant
design of general-purpose processors [162], [163], it becomes
difficult to execute DNN models on GPUs. This dilemma
motivates the study of specialized accelerators tailored for neu-
ral networks. More recently, FPGA-based hardware is proved
to be well-suited for DNN acceleration architecture due to its
specific customizability. FPGA outperforms GPUs in through-
put, parallelism, and energy efficiency in edge computing
since it enables CNN acceleration with arbitrary convolution
window sizes [164]. Researchers designed customized FPGA
architecture for CNNs with different structures, including
regular ConvNet [165], FPGA-based overlay processor for
lightweight CNNs (e.g., MobileNet, ShffleNet) [166],
FPGA-based accelerator for deconvolutional neural
network.

- Software Acceleration (SA): Other than the hardware
acceleration, some researches provide software-based accel-
eration strategies. For example, Lane et al. [167] presented
DeepX, a software accelerator for DL. DeepX decomposes
DNNs into various types of unit blocks and allocates them
to local device processors (e.g., GPUs, LPUs, and CPUs).
The authors also designed two resource control algorithms
(i.e., Runtime Layer Compression and Deep Architecture
Decomposition) to perform principled resource scaling on
mobile platforms to maximize energy efficiency. In [168],
the heterogeneous computing framework RenderScript and
hardware on commodity android devices were combined to
accelerate the execution of DL models. With the Renderscript,
DeepAction [169] offloaded the image matcher execution to
the GPU for acceleration.

- Hardware/Software Co-design: There are a variety of HA
and SA technologies for accelerating DNN inference in mobile
and edge devices. Nonetheless, it is hard to strike a balance
between high model performance requirements and limited
hardware resources relying on the one-sided design. Thus, for
efficient DNN inference, it requires hardware and software
co-design (Co-HW/SW) [170]. We summarize some related
works in Table VII.

2) Model Partitioning: Uploading raw data to remote
servers leads to huge communication overhead and becomes
the bottleneck for DL inference. To reduce end-to-end latency
and improve energy efficiency, the DL models can be seg-
mented into multiple partitions and then allocated to dis-
tributed computation devices, e.g., local CPUs and GPUs, edge
nodes, and cloud servers, as illustrated in Fig. 12. The model
partitioning includes three types: partition between servers
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TABLE VII
HARDWARE/SOFTWARE CO-DESIGN

Fig. 12. Illustration for model partitioning in EECC.

and devices [57], [176], [177], the partition between devices
horizontally [178], [179] and vertically [180].

The challenge of model partitioning lies in how to select
optimal partition points of neural network layers. To address
this challenge, several key factors must be taken into con-
sideration: i) the resource capacity of the edge device; and
ii) the size of the intermediate data. Generally, partitioning at
lower layers may generate larger sizes of intermediate results,
leading to increased transmission latency. Wang et al. [181]
searched for model partitioning strategies based on rein-
forcement learning to adapt to resource capabilities of edge
platforms. To reduce the size of the transmitted intermediate
data while guaranteeing the model accuracy, knowledge dis-
tillation can be utilized to compress the subsets of DNN run
on the edge [182]. Besides, the model partitioning decision
may be affected by wireless channel conditions. In practice, it
is hard to predict the channel state information before model
partitioning.

For end-edge-cloud co-inference, it is not necessary to
download all the DNN layers. Banitalebi-Dehkordi et al. [183]
studied a joint optimization problem that included optimal
model placement and online model splitting for device-edge
co-inference. In [184], the optimal DNN partition was formu-
lated as a min-cut problem in a directed acyclic graph and the
authors proposed an execution latency measurement method
to estimate the inference latency. Besides, by exploiting the
strong sparsity and fault-tolerant characteristics of intermediate
features in DNN, BottleNet++ [185] was proposed to achieve
a high compression ratio. Recently, the model partitioning
technology has been applied in the industry products for
collaborative cloud-edge intelligent services [183].

3) Model Caching: Model caching is used to accelerate
model inference, i.e., achieving a good trade-off between
latency and prediction accuracy by caching the pre-trained
low-complexity models on end devices and high-complexity

Fig. 13. Illustration for model early exiting in EECC.

models on edge or cloud servers. Instead of splitting mod-
els, model caching relies on full models and decides caching
decisions at run-time based on computation capability of
local, edge, and cloud computing nodes and latency require-
ments [186], [187]. However, how to effectively manage
and utilize deep learning models at each edge location to
provide inference performance guarantees is a challenge.
EdgeServe [188] was proposed to adopt the term caching for
efficient DL model caching at the edge.

4) Model Early Exiting: Model early exiting provides a fast
solution to satisfy diverse requirements of inference by map-
ping sections of a DNN onto a distributed computing hierarchy
with multiple output nodes [189], [190], as shown in Fig. 13.
As long as the target accuracy threshold is met, the model
on the local device or edge device will return the results,
otherwise, the edge offloads the remaining inference tasks to
the cloud. With joint inference, model early exiting minimizes
communication and resource usage.

To increase the estimated accuracy and recognition robust-
ness on the edge, authors of [191] introduced expert side
branches trained on a particular network. Combining the early-
exiting mechanism and model partitioning can significantly
accelerate end-edge DNN co-inference while achieving high
accuracy [192], [193]. The integration of early exiting and
intermediate feature compression can also efficiently acceler-
ate end-edge co-inference [194]. Nevertheless, choosing the
optimal exit point is challenging as the delay and accuracy
of each point cannot be known in advance. Ju et al. [195]
used multi-armed bandits to learn the optimal exit point for
mobile-based DNN inference. Wang et al. [196] designed the
scheduling early exit algorithm based on dynamic program-
ming to make the optimal plan with polynomial computa-
tional complexity. Unlike existing efforts on offline searching,
Autodidactic Neurosurgeon [197] is based on a contextual
bandit learning algorithm that can automatically learn the
optimal partition point on the fly. However, most efforts have
focused on CNNs (e.g., object detection [198], visual object
tracker [192]), early exiting for other models (e.g., RNN,
GAN, seq2seq, and VAE) remains to be explored.

5) Model Multi-Tenancy: With the popularity of DL-based
applications, mobile devices such as smartphones, drones,
intelligent driving cars, and augmented-reality headsets may
run more than one DNN model simultaneously. For exam-
ple, augmented-reality headsets need to concurrently run DNN
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models for object detection, voice recognition, and action
recognition. These models compete for limited resources.
As a result, we need a model multi-tenancy technique to
dynamically allocate resources for those concurrent appli-
cations. Generally, AI multi-tenancy can be achieved by
utilizing concurrent model executions (CME) and dynamic
model placements (DMP) [199]. DMP allows the deployment
of DL models on GPUs and TPU resources of edge devices
to achieve AI multi-tenancy. CME supports the concurrent
execution of multiple DL models to improve the overall effi-
ciency of DL inference. NestDNN [200] was a resource-aware
multi-tenant on-device DL framework for continuous mobile
vision. It considers the dynamics of run-time resources and
provides a flexible resource-accuracy trade-off for each DL
model to adapt model resource requirements to the avail-
able run-time resources. HiveMind [201] was designed for
optimizing multi-model concurrent workloads, performing the
optimized directed acyclic graph on the GPU, and trying to
run concurrent workloads.

Different from NestDNN and HiveMind, MainStream [202]
was proposed to dynamically tune degrees of work-sharing
among concurrent applications. This sharing mechanism is
achieved by transferring learning from a common DNN
model, thus decreasing computing time. Furthermore, due
to limited runtime memory for wearable devices and edge
devices, DeepEye [203] used an inference software pipeline
that interleaves the execution of computation-sensitive convo-
lutional layers with the fully-connected layers. Beyond this,
the memory can be further minimized by a memory caching
scheme and model compression. In addition, the authors per-
formed experiments on a Kubernetes cluster to demonstrate the
feasibility of an edge cloud with multiple tenants and hosting
providers [204]. AI multi-tenancy technologies open up new
opportunities for flexible deployment of multiple DL services
on edge devices and AI accelerators.

D. Summary and Lessons Learned

In this section, we have reviewed several main optimization
technologies for distributed AI training and inference in
EECC. There are three lessons learned.

1) Metric-Aware Optimization Strategy Selection: For a
specific intelligent service in the end-edge-cloud distributed
AI, there are usually multiple technologies to optimize the ser-
vice. However, it may be difficult for us to choose the perfect
optimization technology for each service quality. Therefore,
we need to quantitatively analyze the factors affecting service
performance and resource constraints, and explore the trade-
offs between different metrics to help improve the efficiency
of intelligent service deployment.

2) Coordination of Different Optimization Strategy: These
optimization technologies are often used independently
to enable end-edge-cloud collaboration. However, most
optimization strategies can optimize only one single metric.
For some complex tasks, e.g., Metaverse and autonomous
driving, coordination of different optimization strategies
should be thought over to improve multiple metrics
concurrently.

3) Preferred Performance Metrics: Computation and com-
munication overheads have become essential metrics for evalu-
ating the utility of distributed AI. With increasing model depth,
the model accuracy is no longer an intractable problem of
distributed AI, instead, the increasing computing and com-
munication overhead is imposing a heavy burden on the
resources-constrained edge devices. As a result, most exist-
ing works for distributed training are exploring how to speed
up training and reduce communication costs. In addition, the
rise of FL has made privacy an important indicator, as it is
designed to break down data isolation while protecting data
privacy. It can also be combined with splitting computing or
gradient compression to reduce computation latency and com-
munication overhead. For example, end devices in FL with
weak computing capability can split the model and deploy part
of the model on edge devices to reduce the computing bur-
den. End devices can also use gradient compression to improve
communication efficiency by aggregating gradients.

IV. SECURITY AND PRIVACY IN DAI-EECC

The EECC architecture can take advantage of distributed
hierarchical structure to provide various computing services. In
this section, we firstly summarize the challenges in DAI-EECC
architecture from four aspects, i.e., data storage, computing,
transmission, and system management.

A. Key Challenges

1) Data Storage: In the EECC architecture, data is gener-
ated and stored in end devices and edge servers. Compared to
the powerful cloud data centers, the end layer and edge layer
have limited defense capability against attacks. In addition,
EECC architecture faces the device stability issue. Specifically,
edge nodes are susceptible to breakdown due to uncertain
external factors, resulting in data loss or tampering. Although
cloud services are usually securely maintained by third-party
service providers, unreliable cloud services may also exist due
to data poisoning. Therefore, guaranteeing the integrity and
availability of data at the cloud, edge, and end layer is a
challenge.

2) Computing: From the vertical perspective, devices at
different levels under the EECC architecture have their partic-
ular advantages, such as the location proximity benefit at the
edge layer and the elastic computing at the cloud layer. From a
horizontal perspective, the EECC system can provide efficient
computing services with multi-scene collaboration. However,
as the devices at all levels belong to different stakeholders, the
potential of collaborative computing cannot be fully exploited
due to distrust issues. Therefore, how to construct a trusted
computing framework to provide reliable and secure services
is an urgent problem to be solved.

3) Transmission: Compared to centralized CC, the EECC
service is provided by the cooperation of many nodes, and
data is distributed on different nodes, forming data islands.
Therefore, multi-party data sharing requires secure access con-
trol mechanisms to ensure privacy and security. However,
due to various attacks in the complex network environment,
the security of data transmission cannot be guaranteed. In
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Fig. 14. Illustration of data poisoning and model poisoning.

response to this, it is necessary to explore a safe and reliable
data transmission strategy, and design incentive mechanisms
to encourage data sharing among nodes, forming a trusted and
active data-sharing environment.

4) System Management: The EECC architecture is an open
system in which heterogeneous end devices are connected to
edge servers and cloud data centers. This unaudited device
access brings uncertainty and security risks to the system.
Therefore, device management in edge environments (such as
dynamic access, departure, and identity identification of IoT
devices) requires a secure management and audit approach.
Traditional centralized management architecture inevitably
faces the risk of central node failure. Therefore, designing
safe and reliable system supervision and equipment audit
mechanisms is worth studying.

Next, we will introduce in detail the threat sources that lead
to the above-mentioned security and privacy challenges and the
corresponding countermeasures.

B. Security Threats

The security threats include unauthorized access, mali-
ciously manipulating the global model, or reducing the model
performance. The distributed scenarios have higher security
risks than centralized learning because a large amount of
distributed end devices with limited computing and storage
resources are more vulnerable to attacks. Moreover, the global
model is a white box to the compromised devices, who
can observe the model structure, learning algorithm, hyper-
parameters, and so on. Thus, it is easy for the attackers to
manipulate the performance of the model via modifying the
training data or model parameters. The security threats exist
in both storage, computing, transmission, and management
phases. We introduce the typical attack methods for each
phase, respectively.

1) Data Security: Data poisoning is that attackers inject
malicious data into the training dataset to make the target
model less effective [205], [250] (e.g., label-flipping). As
shown in Fig. 14, the attacker replaces the target label with
an incorrect one. In distributed training (e.g., FL), attackers
can collude with each other and inject malicious samples into
their local models, resulting in great catastrophe in the global

model aggregation at the edge or in the cloud [251]. In addi-
tion, the attacker can also generate fake samples similar to the
target data through the GAN [252].

2) Model Security: Unlike data poisoning, model poison-
ing directly changes the local model parameters or gradient
update, making the global model deviate from the correct
direction to the greatest extent [208], [215]. Model poisoning
can be divided into untargeted attacks and targeted attacks.

- Untargeted Attacks: The untargeted attack is similar to
the Byzantine attack, in which the malicious workers destroy
the global model by arbitrarily modifying data or model
parameters.

- Targeted Attacks: This type of attack is also known as
backdoor attack, in which the attacker signs targeted labels
to the samples that have some specific attributions or fea-
tures, and then trains a backdoor model with these backdoor
data sets [214], [216]. A trained backdoor model can correctly
predict samples, but once encountering the trigger data, it will
output wrong results, e.g., identifying all the green cars as
birds [216].

3) Network Security: Distributed AI relies on the network
layer to connect a large number of terminal devices and
edge devices. As the increasing number of devices, the scale
and number of networks also increase, and the security
problem becomes more serious. The common network attacks
include physical attacks [218], distributed denial of service
(DDoS) [219], and Man-in-the-Middle [220]. In the distributed
environment, these attacks are easier to achieve since a large
number of devices have dense geographical distribution and
limited computing resources. For example, in the computation
offload tasks, an attacker can offload the data packets contain-
ing malicious codes to other terminals. As a result, the receiver
cannot provide computing services and continue to send the
data packets to other devices, eventually resulting in the whole
network breakdown.

4) Access Security: In the traditional computing environ-
ment, data is stored in a central server, user information and
access services are within the trusted boundaries of the enter-
prise. However, in a distributed architecture, data is stored on a
large number of decentralized nodes. The external adversaries
can easily usurp their legal identities by phishing, password
guessing, or cross-site scripting attacks. Moreover, the adver-
sary can also penetrate the central server to tamper with the
access control mechanism. In the centralized distributed AI
system, once the central server is compromised, the system
cannot prevent illegal access. Thus, the system must have
a trustworthy access control mechanism that is fault-tolerant
and tamper-proof to guarantee the confidentially, integrity, and
availability of data [223].

C. Security Defense Technologies

We introduce several security defense technologies to tackle
data poisoning, model poisoning, and untrusted threats.

1) Defenses for Data Poisoning: To defend against data
poisoning, Xie et al. [253] focused on the defense in local
SGD, i.e., robust aggregation and moving averaging. Robust
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aggregation uses trimming averages to filter out the poi-
soned model. The moving averaging reduces the extra vari-
ance/error caused by robust aggregation and data poisoning.
Besides, Fung et al. For the GAN-based data poisoning,
Zhang et al. [252] found that pivotal training is a poten-
tial defense in the FL setting. This method distinguishes the
received local gradients by creating an extra predictive model
to infer which participant a certain gradient belongs to, thus
preventing the discriminating behavior and eliminating the
influence of poisoned local updates.

2) Defenses for Model Poisoning: Robust aggregation is
the most effective method to resist model poisoning attacks.
For the untargeted poisoning attacks, several Byzantine-robust
aggregation algorithms methods have been proposed, such as
Krum [209], Bulyan [211], and Trimmed-mean [210]. They
eliminated incorrect local updates caused by Byzantine errors
by minimizing the Euclidean distances between selected local
models. However, these methods are less effective when a
large number of Byzantine adversaries exist in the system.

For the targeted poisoning attacks, some behavior-based
aggregation methods are proposed, which remove the poten-
tial malicious gradients and average the remaining subset by
measuring the behavioral difference between honest and mali-
cious workers. For example, Muñoz-González et al. [213]
proposed adaptive federated averaging (AFA), which calcu-
lated cosine-similarities between local gradients and discarded
the gradients whose statistical characteristics of similarities
(i.e., mean, median, and standard deviation) were out of
range. Similarly, Fang et al. [207] computed a score for each
gradient and remove the gradients with the lowest scores.
However, Awan et al. [212] found that these methods had
poor performances on non-IID data since the gradients from
different distributions of honest workers were quite differ-
ent. To solve this problem, they extended the AFA in a
non-IID setting. Specifically, they found that the pairwise
cosine similarity between any two malicious clients is always
smaller than that between a malicious and an honest client and
that between any two honest clients. Namely, if two clients
have high-level similarities, they are suspicious to be mali-
cious. In this case, they will reduce the learning rate and
the probability of being selected of the suspicious clients.
Besides the robust aggregated-based methods, norm clipping
and weak differential privacy [215] and pruning and fine-
tuning [217] can also mitigate or even eliminate the poisoning
attacks.

3) Defenses for Cyber Attack: Traditional defenses against
cyber attacks include encryption, authentication, access con-
trol, and so on. With the development of ML, there is also a lot
of research using AI to protect networks from attacks. These
methods mainly detect abnormal behavior that an attack is pos-
sibly taking place. The authors of [221] used a CNN model, an
RNN model, and a hybrid CNN+LSTM model to detect the
cyber attack, respectively, and the highest detection accuracy
on the CICIDS2017 dataset is 98.16%. However, these meth-
ods are passive defenses that cannot actively look for attackers.
One of the active defense mechanisms is deception-based
defense, which creates deception and some continuous unpre-
dictable changes in network configures to perplex and confuse

the attackers, or to lure them toward some pre-deployed
honeypot traps [222].

4) Blockchain Technologies: Recently, blockchain tech-
nologies are used to improve the defense level in EECC
architecture. Blockchain has several advantages: (i) data is
unalterable, traceable, and jointly maintained by multiple
parties. Thus, the integration of blockchain into EECC archi-
tecture can ensure the data integrity and availability in the
process of collaborative computing [254]. (ii) The smart con-
tracts make the blockchain-based EECC system a secure
and trusted computing service platform, providing efficient
and secure computing services. (iii) As a platform for data
interaction and token transfer, blockchain can realize incentive
mechanisms through tokens to promote data sharing between
multiple scenarios and encourage multi-party collaborations.
(iiii) The data transparency and auditing feature of blockchain
can be used to manage device access and improve system
security [224], [225], [226].

D. Privacy Threats

The end devices in the EECC framework will generate
massive data, which often contains a large amount of pri-
vate information. Although the original data is stored locally
and the end device or edge device only needs to upload the
processed data, the intermediate data still faces the risk of pri-
vacy disclosure. For the end devices, they may regard personal
training data, attributes, and member information as private
information. For the cloud or edge, the trained model is private
information, because the training process usually has a massive
expense, and the leakage of model parameters to opponents
will lead to serious economic losses. Privacy threats occur
when an attacker is able to link a record owner to a sensi-
tive attribute in a published data table. In the following, we
introduce several privacy threats.

1) Membership Inference: Given a training sample, a mem-
bership inference attack is to judge whether a training sample
is involved in the training process. If an instance is inferred as
the training data, the data owner’s privacy may be leaked. For
instance, a patient whose clinical records are used to train a
heart disease prediction model is likely to have heart disease.
The vulnerability of this type of attack stems from the dif-
ferences of output distributions of the model to membership
and non-membership inputs. The differences are even greater
when models overfit the training data.

Membership inference attacks can be divided into black-box
and white-box inferences. Black-box inference attacks usually
assume that the attacker can only obtain the output probability
vector of the model. Shokri et al. [255] firstly proposed this
attack, where a mass of samples from the training data set
and non-training data set are constructed, respectively. Then,
they used the samples from the training data set to train the
shadow models to imitate the performance of the target black-
box model. After that, they used the outputs of shadow models
from the training data set and non-training data set to train
a binary classifier to distinguish the membership and non-
membership. Considering the lack of target training data in
practice, Zhang et al. [227] used GAN to generate samples
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Fig. 15. Several privacy-preserving technologies.

that have the same distribution as the original data records to
fill the gap in attack data.

The other inference attack assumes the white-box setting,
which means that the attacker can obtain the parameters and
gradients of the middle layer of the model. Membership infer-
ence attacks in distributed settings can be naturally treated as
white-box, because both the participant, edge, and cloud can
obtain the model updates. Although the white-box settings are
more transparent than the black-box settings, the authors [242]
found that it is not effective to apply the inference on the
output layer under the black-box setting to all activation func-
tions of the white-box model. Thus, they proposed the gradient
ascent attack, where the attacker runs gradient ascent on a tar-
get data sample and observes whether its increased loss can
be drastically reduced in the next communication round, if so,
the sample is very likely to be in the training set.

2) Attribute Inference: In addition to the leakage of mem-
bership information, Lyu and Chen [243] demonstrated that the
shared epoch-averaged local model gradients can also reveal
sensitive attributes of local training data of any victim partic-
ipants. They assumed that the malicious server can infer the
sensitive binary or categorical demographic-related attributes.
The malicious server reconstructs the sensitive attributions by
matching the original gradient updated by the victim partici-
pant and the virtual gradient calculated on a virtual input. If
the distance between the two gradients is small enough, even
though the attacker did not know the attribution in the original
input, he/she can still obtain the sensitive attributions from the
virtual input. Considering the model updates may be anony-
mous and shuffled before aggregation to obscure the source,
the attribute attack can also be coupled with a deanonymiza-
tion attack to enhance the attack effect. The authors of [244]
utilized the bias error signal among different model updates
caused by the non-IID data distribution to re-identify the cor-
responding participants, and showed that the deanonymization
can serve as a stepping stone for attribute inference to improve
attack performances and further associate recovered attributes
with identities.

3) Reconstruction Attack: Reconstruction attack is referred
to as reconstructing the training samples of the target device
from the aggregated model. Actually, the model parameters
can be viewed as encoded information from training samples.
Therefore, if a corresponding decoder could be constructed,
the private data or statistics can be recovered inversely.
Because GAN model can generate data that has the same dis-
tribution as real data, the recent works often take GAN as

the decoder to recover training data. Hitaj et al. [246] uti-
lized the shared model as the discriminator to train a GAN
and train a generator model to successfully mimic the training
samples. To reduce the intrusion of attacks on the training pro-
cess, Wang et al. [245] assumed the server was malicious, who
used a multi-task GAN to generate training inputs. The multi-
task discriminator restrained the training of the generator, as a
result, the generated samples were targeted to a specific client
and compromised the client-level privacy.

4) Model Extraction: In the model extraction
attack [248], [256], an adversary uses a generative model
to generate input data and then queries the target model
to get outputs. With the inputs and outputs, it can train a
clone model. But this attack is not feasible since it needs
a lot of queries, which is easy to be detected by anomaly
detection. Considering this challenge, the authors of [247]
proposed a data-free model extraction attack. The adversary
uses the explanations for computing the exact gradients to
train the generative model and reduces the number of queries.
However, it cannot steal the complete model. Zhu et al. [249]
proposed Hermes attack, which fully stole the whole victim
model, including the hyper-parameters, parameters, and
architecture through accessing the PCIe bus between the host
machine and the GPU-based devices.

E. Privacy Protection Technologies

The above privacy threats share an underlying property,
i.e., the attacker infers privacy information from the model
parameters or updates. As a result, the defenses for model
parameters and updates are universal for all protection tech-
nologies. Instead of displaying the corresponding defenses for
each privacy threat, we highlight the prominent defense meth-
ods: differential privacy and encryption technologies, which
are shown in Fig. 15.

1) Differential Privacy (DP): DP has become an effective
way to protect private data in distributed learning [228], [229].
The basic concept of DP is to inject Gaussian or Laplace noise
into the data to guarantee that the adversary cannot infer the
original data from the noisy output with high confidence. In
the DP-based distributed learning setting, the central servers
are assumed to be trustful and can inject noise into the aggre-
gated gradients to defend against the outer adversary. The
privacy level is controlled by the privacy budget. A larger
budget means a higher privacy loss, which would be accumu-
lated in each training epoch. To bound the total privacy loss
in the training process, some advanced composition theorems
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TABLE VIII
A SUMMARY OF SECURITY AND PRIVACY THREATS IN DISTRIBUTED LEARNING AND COUNTERMEASURES

were proposed to track the cumulative privacy loss [257]. The
training would stop when the loss reached a threshold. This
method protects the user-level privacy, i.e., an outer adversary
cannot know whether a user participates in the training or not
from the aggregated model.

However, the central server may be honest-but-curious, and
it can infer the privacy of participants from the uploaded gra-
dients. To defend the malicious server, some works proposed
the local differential privacy (LDP) [229], [232], [258], which
applied DP at the local gradients before aggregating. LDP
protects record-level privacy, i.e., an adversary cannot know
whether a particular sample participant is in the training or
not. LDP has a stronger privacy guarantee than DP, but it
also suffers from huge utility degradation, especially with
a large number of participants. To fill the gap, the shuf-
fling technique was combined with DP [233], [234], [259].
It anonymously shuffles the local gradients before aggrega-
tion to enhance privacy. However, anonymization may lead to
malicious users tampering with data. Furthermore, it is diffi-
cult for the server to evaluate the participants’ contribution to
calculate the payoff.

2) Encryption Technologies: Secure Multi-Party Comput-
ation (MPC) [260] is the most commonly used method to
protect data privacy in distributed scenarios involving multi-
party computing. It enables multiple participants to securely
compute a public function without revealing their private data.
Homomorphic Encryption (HE) is often used as the encryp-
tion technique in MPC, which allows performing addition
or multiplication operations on a ciphertext, the decryption
of which corresponds to algebraic operations on the plain-
text [235]. The authors in [236] utilized an additively HE
scheme to securely calculate the aggregated model updates.
As a result, it prevented data leakage of clients at the
central server. However, it is not safe enough if a client col-
ludes with the aggregator as all the clients share the same
secret key.

To solve this problem, authors of [261], [262] considered
multi-key scenarios, where each client has a public-private
key pair. The multi-key setting can not only defend against
collusion attacks but also increase the flexibility and scala-
bility of the system, as the client can join or drop out at

any time. Although HE can defend malicious aggregators,
it cannot prevent the malicious participant from launching
inference attacks to obtain private information from the par-
ticipant. Thus, some works [237], [238], [263] combined DP
with encryption technologies to address such concerns, in
which each participant injected noise into the local update
before encryption. Encryption technologies usually have high
communication and computation costs, which make them not
applicable to large-scale distributed scenarios and resource-
limited devices. How to trade off between efficiency and
privacy is still an intractable problem.

3) Network Compression: Compressing network infor-
mation can not only improve transmission efficiency, but also
reduce the information exposed to the adversary. Both the
gradient sparsification and gradient quantization mentioned
above belong to the compression technology. However, the
compressed gradients will still reveal sensitive information
as they keep their own form [264], thus compression is
also often combined with differential privacy or encryp-
tion to increase the level of protection. Li et al. [239]
proposed a sketch-based framework for distributed learning,
which transmitted messages via sketches to simultaneously
achieve communication efficiency and provable privacy bene-
fits. Wang et al. [240] used an auto-encoder to filter sensitive
information and decrease the feature dimension, and DP noise
is injected into the processed features to provide stronger
protection. The authors of [241] proposed an end-to-end
encrypted neural network, which locally encoded the gradi-
ent to a lower-dimension space, and decoded the aggregated
gradients as a whole to defend against the untrusted central
server.

F. Summary and Lessons Learned

In this section, we have discussed two issues, i.e., security
and privacy. The typical attack methods and defense tech-
nologies are summarized in Table VIII. Privacy threats mainly
exist in the process of model training and inference. Three
key lessons learned from the security and privacy defense
technologies are as follows.

1) Systematic and Comprehensive Security Framework: A
systematic and comprehensive security framework is required
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for the distributed AI empowered by EECC. AI technologies
are vulnerable to attacks on data and models, like data poi-
soning and model poisoning. The distributed AI empowered
by EECC not only inherits these defects but also faces new
challenges due to the distributed architecture, such as deal-
ing with network attacks, security authentication, and access
control over a large number of devices and data. However,
the existing researches generally focused on a certain threat,
lacking systematic and comprehensive defense measures.

2) Proper Privacy Technology Selection: Privacy threats
mainly exist in the process of model training and inference.
DP and encryption are two main privacy defense technolo-
gies, which have achieved great success in reality. DP protects
privacy by injecting noise. It is lightweight and easy to
be integrated into the system but may degrade the model’s
performance. Compared to DP, encryption technologies have
a higher level of privacy protection, but the high computation
cost makes them hard to be deployed on resource-limited end
devices. Since each privacy technology has pros and cons,
proper privacy technology section should be conducted for
different applications based on their requirements.

3) Laws and Regulations in Security and Privacy: The
development of laws and regulations is the key to resolving
the reality of privacy breaches. There are many privacy pro-
tection technologies, but privacy breaches still happen almost
every day. This is because users have little control over the
type and amount of data the company collects. Motivated by
profit, organizations that collect data may maliciously exploit
these data to target a specific object. Laws and regulations are
effective ways to regulate them to comply with the privacy
principles.

V. APPLICATIONS IN DAI-EECC

Nowadays, the EECC paradigm continues to have a pro-
found impact on a wide range of intelligent applications,
improving the quality of daily life and economic growth. In
this section, several application scenarios are presented.

A. Smart Industry and Manufacturing

The smart industry and intelligent manufacturing refer to the
integration of intelligence into the manufacturing processes,
aiming to promote the automation of industrial manufacturing
operations, e.g., automatic control, detection, monitoring, and
prediction, as shown in Fig. 16. In the era of Industry 4.0,
data generated from heterogeneous smart terminals (e.g., sen-
sors and cameras) is growing exponentially. Traditional CC
architecture faces several shortcomings, such as high latency
and bandwidth along with low availability. With the support of
EECC architecture, various requirements of intelligent indus-
trial applications could be efficiently satisfied with effective
collaboration among suppliers, manufacturers, and industrial
customers. Next, we introduce several practical tasks in the
EECC-enabled smart industry.

1) Control and Monitoring: In traditional cloud-based
manufacturing, there are many control and monitoring equip-
ments directly accessing to the cloud and generating mas-
sive industrial data. However, data transmission brings huge

Fig. 16. An illustration of smart industry.

network pressure and unbearable latency, along with privacy
risks. Guo et al. [265] proposed a cloud-edge collaboration
architecture for 3D printers based on digital twin. By deploy-
ing time-sensitive services at the edge, real-time control and
monitoring based on digital twin for additive manufacturing
can be realized.

However, few industrial platforms consider the real-time
latency demand of control, which severely hinders the deploy-
ment of delay-sensitive services. IndustEdge [267] was an
extensible EECC orchestration component that can reduce
the application latency via deploying the microservices of
applications onto edge/cloud devices. Besides, task schedul-
ing and resource allocation are still intractable problems in
the control process, and the existing scheduling methods are
difficult to keep a balance between algorithm complexity
and performance. Thus, a cloud-edge-based two-level hybrid
scheduling learning model was put forward for fast prediction
of the cloud-edge collaborative scheduling results [268]. In
terms of resource allocation, Zhang et al. [297] designed an
EECC-based architecture to coordinate DNN inference tasks
for the industrial IoT with limited resources, and placed part
of the training model at the end and edge for pre-inference,
maximizing inference accuracy.

2) Prediction and Detection: AI-enabled prediction and
detection are crucial components of industrial systems to iden-
tify faults, malfunctions, or the effects of bad maintenance, and
forecast future status in the manufacturing process. However,
how to ensure low-latency and high accuracy requirements
are critical challenges. EECC architecture can help solve
these problems by scheduling heterogeneous resources. For
prediction applications, Ding et al. [269] designed an LSTM-
based load forecasting method deployed in the distributed
cloud-edge environment. To reduce the transmission power
consumption and delay, Wang et al. [270] exploited the dif-
ferentiated capabilities of heterogeneous devices and designed
bidirectional prediction-based underwater data collection pro-
tocols for the EECC system.

In terms of fault detection, through the cloud-edge col-
laboration framework in the power IoT, the author in [271]
investigated imaged-based fault detection methods in power
industry IoT and electric sites with the resource orchestration
of edge server and cloud center. Besides, fault diagnosis is
of great significance for timely detection of safety hazards of
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Fig. 17. An illustration of smart transportation.

machinery and ensures the normal operation of production. To
address the problem of low accuracy and poor robustness of
mechanical fault detection, Lu et al. [272] proposed an EECC
intelligent fault diagnosis method based on the LSTM-VAE
hybrid model.

B. Intelligent Transportation

The modern intelligent transportation system (ITS) relies on
various remote sensors (e.g., road cameras, traffic density, and
speed sensors) to sense road conditions and make scheduling
decisions, as shown in Fig. 17. By introducing EECC into ITS,
some services with ultra-low latency such as advanced IoV
(Internet of Vehicles), ADAS (autonomous driving assistance
systems), and real-time vehicle monitoring and scheduling can
be better achieved [298], [299], [300].

1) Autonomous Driving: To ensure safe driving, the ADAS
for autonomous vehicles integrates visual computing, radar
monitoring, and a global positioning system to accu-
rately detect nearby obstacles and make real-time decisions.
Typically, the core functions of ADAS (e.g., perception,
annotation, visualization, and navigation) are computation-
intensive [301]. The onboard computing capabilities of vehi-
cles are insufficient to perform these tasks and thus the
support of a powerful cloud server is required. However, an
autonomous driving car produces 4000 TB of data per day
and needs to receive surrounding information and make real-
time responses, which makes it insufficient to rely only on
the cloud [302]. Therefore, this requires the synergy of edge
computing and cloud computing.

In [273], EdgeDrive orchestrated storage, computing, and
network components, which can support low-latency ADAS
applications (such as smart navigation and weather noti-
fication) with an average system latency of less than
100 ms. Furthermore, some works are devoted to safe driv-
ing optimization, such as human abnormal driving behavior
detection. Xun et al. [274] also presented a driving behavior
evaluation mechanism based on vehicle-edge-cloud architec-
ture. When vehicles run on the road, the driver behaviors are
transmitted to the edge networks via telematics box, and the
edge devices use the evaluation model trained by the cloud
server to return results to vehicles. The cloud server continu-
ously updates the model and regularly transmits it to the edge
side [303].

Fig. 18. An illustration of smart grid.

2) Public Vehicle Monitoring and Scheduling: Public vehi-
cle monitoring and scheduling play important roles in public
transport management. For example, the real-time monitoring
of urban road traffic flow can provide intelligent schedul-
ing and relieve traffic jams. In general, the network edge
can transmit all the captured surveillance videos to the cloud
server. However, the increasing traffic monitoring data volume
has brought great pressure to the cloud storage and process-
ing. To address this issue, the vehicle video detection model
can be firstly trained in the cloud and deployed on an edge-
computing-based video analytics system for real-time traffic
monitoring [275], [276]. Moreover, EECC can help public
vehicle (PV) systems improve traffic efficiency. ECPV [277]
was proposed to improve vehicle occupancy ratios by schedul-
ing ridesharing among travelers. However, the resources in
the ITSs are complicatedly coupled, and the orchestration of
multiple resources is hard to be solved in a real-time manner.
In [278], Yuan et al. explored cross-domain resource schedul-
ing and orchestration for the smart road, and utilized swarm
intelligence to jointly optimize the information flow for the
PVs, which enables agents to learn cross-domain optimization
policies.

C. Smart Grid

Smart grid is the electricity supply network that uses digital
communication technologies to achieve reliable and efficient
power usage, usually relying on cloud-based infrastructure.
With the rising number of smart meters, there are some
limitations on cloud computing. For instance, processing sen-
sor data in the cloud is inefficient for power supply/demand
prediction due to the significant latency of data transmission.
By bringing computations closer to IoTs and the data sources,
EECC-based smart grid architecture, as shown in Fig. 18, can
fully exploit the distributed resources, reduce communication
latency, and solve practical problems in power IoT. Examples
include network congestion alleviation [304], smart meter con-
nectivity verification [279], equipment surveillance [280], and
high impedance faults detection [305].

Recently, in consideration of environmentally friendly and
energy-saving emission reduction, the number of electric
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Fig. 19. An illustration of smart healthcare.

vehicles (EVs) has increased rapidly. It brings some chal-
lenges to the safe operation of the smart grid network. Zhong
and Xiong [281] proposed an ordered charging scheduling
method for EV charging in the cloud-edge collaborative envi-
ronment. The power supply plans are designed according to
the status of edge nodes (e.g., charging stations and renewable
plants, etc.) and cloud side. Besides, the operation efficiency
of the power grid is a critical factor for grid stabilization.
V2G (Vehicle 2 Grid)-enabled EVs can improve this situation
via load matching and current harmonic filtering. The authors
of [282] proposed a smart framework based on IoT and edge
computing to manage V2G operations efficiently, aiming to
create an optimal charging schedule for each EV and increase
grid reliability.

To improve the management of EV charging stations,
Zhang et al. [283] utilized reinforcement learning at the
network edge to decide plug-in EV charging pricing strategies,
where service providers can quickly respond to the dynamic
needs of users and load of grid. Moreover, data privacy and
cost issues also attract attention. A decentralized scheduling
method [306] was designed for EV charging and discharge
management based on cloud-edge collaboration, ensuring the
resource-efficiency and privacy of the energy supply plan.

D. Smart Healthcare

Benefiting from the rapid development of smart wearable
devices, biosensors, and AI technologies, smart healthcare
has been widely promoted to facilitate traditional healthcare
services, e.g., health monitoring, disease diagnosis, and remote
surgery [307]. The EECC framework can provide powerful
data storage and fast service responses for smart medical
devices, as presented in Fig. 19. However, IoT devices in the
healthcare ecosystem are usually highly heterogeneous due
to different types of medical tasks. An efficient orchestra-
tion for different types of healthcare IoT devices is crucial
to ensure the quality of service. Particularly, smart healthcare
mainly focuses on health monitoring and AI-assisted medical
diagnosis.

1) Health Monitoring: Smart health monitoring systems
collect health conditions (e.g., heart rate, blood pressure,
and sleep status) of patients by employing various wearable
devices, sensors, cameras, and other IoT devices, especially

for in-home health monitoring for the aging population [308].
A key issue is the data privacy concern. The EECC-based
FL framework is characterized by high privacy-preserving and
low latency, which is an ideal solution for the health mon-
itoring system. In [284], FedHome learned a shared global
model in the cloud from multiple homes at the network
edges and achieves data privacy protection by keeping user
data locally. By using edge-cloud hybridization mode, exist-
ing IoT ecosystems can support real-time biosensor streaming
service provisioning and analytics in a resource-constrained
environment [285].

2) AI-Assisted Medical Diagnosis: Recently, visual-based
healthcare approaches have been explored in disease analysis
systems (e.g., electroencephalography [286], CT images [287],
and gastroscope [289]), assisting doctors to diagnose dis-
eases more accurately and reduce their workload [288]. Most
computer-aided medical systems provide intelligent analysis
services that rely on public cloud platforms, suffering from
high communication and computing costs. The geographical
dispersion and dynamicity of physical nodes also challenge the
development of the healthcare system. A promising solution
is to employ an intelligent EECC framework for health-
care systems, which is expected to improve the end-to-end
performance of next-generation smart healthcare [288].

In the EECC empowered smart healthcare, IoT devices and
medical machines collect data on the end side. Then, the basic
data analysis and processing are performed at the edge side.
Lastly, the cloud server is responsible for system orchestra-
tion and management. Based on this collaborative framework,
a smart electronic gastroscope system was proposed to real-
ize lesion location and fine-grained disease classification of
gastroscopic videos in an online mode [289]. The DL-based
CT image analysis were studied in remote diagnostic systems,
improving the accuracy of disease classification and shortening
the response time [287]. Besides, Wu et al. [290] considered
that traditional cloud-based emotion recognition models lack
the abilities in characterizing individual variations of the users,
and designed a private transfer learning-based emotion recog-
nition structure under the cloud-edge-client collaborations.

E. Real-Time Video Analytics

Real-time video analytics plays important roles in pub-
lic safety surveillance, autonomous driving, virtual reality
(VR) and augmented reality (AR), etc. Generally, accurate
video analytics in real-time requires complex image process-
ing algorithms, large memory, and high-performance hardware
resources [291]. However, analyzing large-scale live video
streams in the cloud is impractical due to high bandwidth
consumption, unexpected latency, and reliability issues. On the
other hand, edge devices are often incapable of executing com-
plex vision algorithms due to restricted resources. Given the
infeasibility of both cloud-only and edge-only solutions, a col-
laborative end-edge-cloud architecture for large-scale real-time
video analytics is necessary, as shown in Fig. 20.

In the EECC architecture, each level is responsible for dif-
ferent functions. Specifically, at the end level, devices such
as surveillance cameras are responsible for video capture and
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Fig. 20. An illustration of real video analytics.

video compression, etc. At the edge level, the edge layer
enables model inference and model selection, and then the
requests are forwarded to the backend cloud via a gateway.
When an end node is unable to provide accurate analysis, edge
nodes can cooperate to provide better services [292], instead
of directly delegating to the cloud resources. The cloud is
mainly responsible for model training and parameter updating,
data storage, and processing complex tasks in collaboration
with edge nodes. In the following, we summarize two com-
mon application scenarios of real-time video analytics: salient
object detection and video query.

1) Salient Object Detection: Salient object detection is
a crucial function to estimate human behaviors in various
surveillance applications. The authors [291] leveraged collab-
orative cloud-edge deep reinforcement learning for real-time
surveillance video salient object detection. Firstly, the surveil-
lance camera extracts key frames for compressing video
data at the edge. Then, the Asynchronous Advantage Actor
Critic algorithm schedules object detection tasks adaptively
in the edge or cloud. However, real-time object detec-
tion in autonomous driving cannot always be guaranteed
due to dynamic channel quality. To mitigate this problem,
Kim et al. [293] focused on extracting the region of interest
(RoI), compressing the image data based on the RoIs, and
transmitting the compressed images to the edge or cloud.
However, the traditional cloud-edge distributed schemes are
unsuitable for cross-camera object detection tasks because of
the unbalance of semantic knowledge caused by model train-
ing in different scene-specific servers. To tackle this challenge,
Gao et al. [294] proposed to build a semantic similarity-based
intelligent network, which can make saliency detection in the
edge server suitable for its scene, to achieve a balance between
global contextual information and local detailed information.

2) Video Query: Another application of video analytics is
the real-time query of objects (e.g., cars and people). For
example, users input the query command including query
objects and locations, the system outputs the video frames
with query objects from the recorded video databases. The
challenge of video query is to make fast spatio-temporal
matching from massive videos. This motivates us to synergize
the virtually unlimited cloud resources with agile edge pro-
cessing to deliver an online real-time video query. In [295],
Wang et al. designed an intelligent task allocator to balance the
load among different computing nodes with a latency-accuracy
tradeoff for real-time queries. Besides, considering the com-
plex interaction and dependency within and across video query

pipelines, Zhang et al. [296] designed CEVAS, which can
support fine-grained and adaptive partitioning of cloud-edge
workloads for multiple concurrent queries. It can reduces costs
when compared to a pure cloud scheme and improves the
query throughput when compared to an edge-only scheme.

F. Summary and Lessons Learned

In this section, we have discussed five applications empow-
ered by DAI-EECC. Some representative and state-of-the-art
references are provided in Table IX. Two key lessons learned
are summarized as follows.

1) Customized Distributed AI Algorithms: For all appli-
cations we have discussed in this section, the three most
important tasks are risk management, privacy preserving, and
response latency reduction, which can make the systems
smarter, securer, and faster with the assistance of DAI-EECC.
However, the unique characteristics of each application moti-
vate us to design customized distributed AI algorithms to
satisfy the application requirements. We summarize and com-
pare the design requirements of the distributed AI algorithms
for different applications in Table X.

2) Deep Analysis of Practical Deployment: Although many
existing works adopt EECC architecture for AI applications,
there is currently no experience work to deeply analyze
the long-term deployment performance in practical testbeds.
The practical deployment performance analysis will provide
important guidance for future applications on choosing appro-
priate distributed learning architectures and learning models,
and also help to identify performance bottlenecks for further
optimization.

VI. RESEARCH CHALLENGES AND OPEN ISSUES

As discussed in the above sections, DAI-EECC architec-
ture demonstrates its increasingly significant role in promoting
intelligent services and applications. Although existing studies
provide comprehensive investigations on DAI-EECC from var-
ious aspects, the field of study is still in its infancy and needs
continuous research efforts to fuel the explosion of distributed
AI applications. In this section, we briefly outline some future
research directions to foster further research.

A. Service Orchestration and Resource Management in
Computing Power Network

The development of EECC makes computing power present
a distributed and universal trend. To fully release the poten-
tial of distributed computing capabilities, the computing power
network is a promising technology [309]. Particularly, the
computing power network is a novel infrastructure that flexibly
allocates and schedules computing, storage, and communica-
tion resources between cloud, edge, and end devices accord-
ing to service requirements. Currently, the computing power
network is in its fancy, many open issues can be studied to
enable more efficient service orchestration and resource man-
agement. For example, (i) by flexible cross-layer scheduling
and orchestration of computing power, how to provide on-
demand computing services without paying attention to the
location of resources. (ii) How to unify computing power
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TABLE IX
THE APPLICATIONS DRIVEN BY END-EDGE-CLOUD COMPUTING INTELLIGENCE

measurement rules by building an abstract model of hetero-
geneous computing resources. (iii) How to provide unified
heterogeneous hardware development tools to reduce the cost
of cross-architecture programming for users. Some potential
solutions can be considered, such as computing power network
node task classification, multi-level computing power trading
allocation mechanism [310], elastic capacity expansion and
contraction [311].

B. Adaptive Distributed Learning in DAI-EECC

Heterogeneous devices face the problem of insufficient
resources in EECC-powered distributed learning. Thus, we

should fully consider the computing capability differences
of participating devices in distributed training. However, the
adaptive distributed training and inference mechanism for het-
erogeneous EECC has not been thoroughly studied. Therefore,
i) how to design customized model structures for different
training and inference devices according to the resources
and computing capabilities of heterogeneous devices is a
key challenge. ii) Since the quality of distributed data and
the importance of model parameters are different, how to
design efficient aggregation methods for heterogeneous mod-
els, as well as optimizing aggregation efficiency and accuracy
is worthy to be further explored. iii) Most of the existing
studies assume that the model is static during training and
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TABLE X
APPLICATION CHARACTERISTICS COMPARISON

cannot adapt according to the capability of equipment. It is
another challenge to design the fine-tuning scheme for local
models, so that it can adapt to the optimal configuration to
realize the performance optimization of the global model.
There are some potential solutions: i) adopting model pruning
strategy to customize model structures for different training
devices; ii) designing an efficient aggregation method for het-
erogeneous model structures by considering the quality of
distributed data and the importance of model parameters; and
iii) designing dynamic local model tuning method to optimize
the performance of the global model [312]. In addition, another
promising future research direction is client scheduling in
FL since distributed learning poses different objectives to
pure wireless communications when base stations schedule
clients [313].

C. End-Edge-Cloud Intelligence in Metaverse

Metaverse is envisioned to be the next-generation Internet
after the Web and the mobile network revolutions, in which
humans (acting as digital avatars) can interact with other peo-
ple and software applications in a three-dimensional virtual
world by head-mounted display [314]. These services require
ultra-low latency and ultra-high bandwidth (e.g., super-realism
and zero-latency virtual environments at scale), which presents
a new challenge for distributed intelligence. To meet diver-
sified and stringent requirements for different processes in
the Metaverse, an efficient orchestrator is a necessity for the
interaction between the cloud and edge [315]. Therefore, how
to enable the DAI-EECC coordinator to integrate the cloud
and edge resources and data processing capabilities for users’
seamless experience in Metaverse is a promising direction.

D. Advanced Security and Privacy-Preserving Technologies

Although there are many existing works solving security
and privacy threats in the model training and inference pro-
cess. We still face several challenges. (i) In the training
phase, DP and encryption technologies protect the system

with sacrifices of efficiency or precision, which are inefficient
for distributed learning with limited resources or small-scale
data sets. Moreover, the high computation cost of existing
defense methods leads to difficulties for model deployment on
resource-limited end devices. Therefore, a more lightweight
privacy or encryption algorithm that can support nonlinear
operation is essential for the model training in the DAI-EECC
architecture [316]. (ii) In the inference phase, a well-trained
model will be released to the terminal devices for inference
tasks, anyone can use the model without permission, which
violates the intellectual property rights of the model owner. As
a result, model authorization is a future direction needed to be
studied. (iii) Besides, the trusted execution environment (TEE)
is a useful technology that provides users with confidentiality
and integrity (e.g., face recognition). However, TEEs have the
disadvantages of low extensibility and poor performance. It is
also worth investigating how to improve the performance of
AI model training and inference in TEE [317].

E. Cooperative Computing of Coprocessors

To meet the computing requirements of AI technologies
for hardware resources, accelerators for AI models have been
developed rapidly, from CPU to GPU, TPU, DPU (Deep learn-
ing Processing Unit), and NPU. However, due to the limitation
that the AI compiler cannot support the cooperative work of
multiple coprocessors, these accelerators are independent of
each other in the process of model training and inference,
resulting in a waste of computing resources. Therefore, it
would be an attractive direction to design AI compilers that
can compatibly and concurrently process these coprocessors
to support AI training and inference tasks [318].

VII. CONCLUSION

Driven by the flourishing of both AI and distributed com-
puting paradigms, there is an urgent demand to integrate
distributed AI and hierarchical computing paradigms to pro-
mote the rapid development of AI applications, especially in
delay-sensitive scenarios. In this survey, we have concentrated
on the DAI-EECC architecture to comprehensively introduce
and discuss fundamental technologies in supporting distributed
AI, and the state-of-the-art optimization technologies, as well
as the security and privacy protection technologies to address
the major challenges in DAI-EECC. Additionally, we have
reviewed several emerging applications and highlighted the
remaining research challenges and open issues in DAI-EECC.
We hope this survey will provide a clear overview for readers
to grasp the current status of the emerging field of study, and
inspire continuous research efforts on DAI-EECC to promote
future distributed AI applications and services.
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[204] B. C. Şenel, M. Mouchet, J. Cappos, O. Fourmaux, T. Friedman, and
R. Mcgeer, “EdgeNet: A multi-tenant and multi-provider edge cloud,”
in Proc. 4th Int. Workshop Edge Syst. Anal. Netw., 2021, pp. 49–54.

[205] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning
attacks against federated learning systems,” in Proc. Eur. Symp. Res.
Comput. Security, 2020, pp. 480–501.

[206] B. Han, I. W. Tsang, and L. Chen, “On the convergence of a family of
robust losses for stochastic gradient descent,” in Proc. Joint Eur. Conf.
Mach. Learn. Knowl. Disc. Databases, 2016, pp. 665–680.

[207] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to Byzantine-robust federated learning,” in Proc. 29th USENIX Security
Symp. (USENIX Security), 2020, pp. 1605–1622.

[208] M. T. Hossain, S. Islam, S. Badsha, and H. Shen, “DESMP: Differential
privacy-exploited stealthy model poisoning attacks in federated learn-
ing,” in Proc. 17th Int. Conf. Mobility Sens. Netw. (MSN), 2021,
pp. 167–174.

[209] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in
Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 118–128.

[210] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 5650–5659.

[211] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulner-
ability of distributed learning in Byzantium,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 3521–3530.

[212] S. Awan, B. Luo, and F. Li, “CONTRA: Defending against poison-
ing attacks in federated learning,” in Proc. Eur. Symp. Res. Comput.
Security, 2021, pp. 455–475.

[213] L. Muñoz-González, K. T. Co, and E. C. Lupu, “Byzantine-robust
federated machine learning through adaptive model averaging,” 2019,
arXiv:1909.05125.

[214] B. Wang et al., “Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks,” in Proc. IEEE Symp. Security Privacy (SP),
2019, pp. 707–723.

[215] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” 2019, arXiv:1911.07963.

[216] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Stat.,
2020, pp. 2938–2948.

[217] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in Proc. Int. Symp. Res.
Attacks Intrusions Defenses, 2018, pp. 273–294.

[218] M. Kuzlu, C. Fair, and O. Guler, “Role of artificial intelligence in the
Internet of Things (IoT) cybersecurity,” Disc. Internet Things, vol. 1,
no. 1, pp. 1–14, 2021.

[219] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “Analysis
of DDoS-capable IoT malwares,” in Proc. IEEE Feder. Conf. Comput.
Sci. Inf. Syst. (FedCSIS), 2017, pp. 807–816.

[220] Z. Cekerevac, Z. Dvorak, L. Prigoda, and P. Cekerevac, “Internet of
Things and the man-in-the-middle attacks—Security and economic
risks,” MEST J., vol. 5, no. 2, pp. 15–25, 2017.

[221] M. Roopak, G. Y. Tian, and J. Chambers, “Deep learning models for
cyber security in IoT networks,” in Proc. IEEE 9th Annu. Comput.
Commun. Workshop Conf. (CCWC), 2019, pp. 452–457.

[222] J. Pan and Z. Yang, “Cybersecurity challenges and opportunities in the
new’ edge computing + IoT’ world,” in Proc. ACM Int. Workshop
Security Softw. Defined Netw. Netw. Function Virtualization, 2018,
pp. 29–32.

[223] Y. Ding and H. Sato, “Derepo: A distributed privacy-preserving data
repository with decentralized access control for smart health,” in
Proc. 7th IEEE Int. Conf. Cyber Security Cloud Comput. (CSCloud)
Proc. 6th IEEE Int. Conf. Edge Comput. Scalable Cloud (EdgeCom),
2020, pp. 29–35.

[224] C. Pahl, N. E. Ioini, S. Helmer, and B. Lee, “An architecture pattern
for trusted orchestration in IoT edge clouds,” in Proc. 3rd Int. Conf.
Fog Mobile Edge Comput. (FMEC), 2018, pp. 63–70.

[225] H. Guo, W. Li, M. Nejad, and C.-C. Shen, “Access control for elec-
tronic health records with hybrid blockchain-edge architecture,” in
Proc. IEEE Int. Conf. Blockchain (Blockchain), 2019, pp. 44–51.

[226] Y. Ren, F. Zhu, J. Qi, J. Wang, and A. K. Sangaiah, “Identity manage-
ment and access control based on blockchain under edge computing
for the industrial Internet of Things,” Appl. Sci., vol. 9, no. 10, p. 2058,
2019.

[227] J. Zhang, J. Zhang, J. Chen, and S. Yu, “GAN enhanced membership
inference: A passive local attack in federated learning,” in Proc. IEEE
Int. Conf. Commun. (ICC), 2020, pp. 1–6.

[228] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” 2017, arXiv:1712.07557.

[229] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang,
“Learning differentially private recurrent language models,” 2017,
arXiv:1710.06963.

[230] D. Wang, J. Ren, Z. Wang, X. Pang, Y. Zhang, and X. S. Shen,
“Privacy-preserving streaming truth discovery in crowdsourcing with
differential privacy,” IEEE Trans. Mobile Comput., vol. 21, no. 10,
pp. 3757–3772, Oct. 2022.

[231] Y. Zhao et al., “Local differential privacy-based federated learning
for Internet of Things,” IEEE Internet Things J., vol. 8, no. 11,
pp. 8836–8853, Jun. 2021.

[232] L. Sun, J. Qian, X. Chen, and P. S. Yu, “LDP-FL: Practical private
aggregation in federated learning with local differential privacy,” 2020,
arXiv:2007.15789.

[233] A. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. T. Suresh, “Shuffled
model of differential privacy in federated learning,” in Proc. Int. Conf.
Artif. Intell. Stat., 2021, pp. 2521–2529.

[234] T. Wang et al., “Improving utility and security of the shuffler-based
differential privacy,” 2019, arXiv:1908.11515.

[235] Z. Jiang, W. Wang, and Y. Liu, “FLASHE: Additively symmet-
ric homomorphic encryption for cross-silo federated learning,” 2021,
arXiv:2109.00675.

[236] Y. Aono et al., “Privacy-preserving deep learning via additively homo-
morphic encryption,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 5,
pp. 1333–1345, May 2018.

[237] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient
and privacy-enhanced federated learning for industrial artificial intel-
ligence,” IEEE Trans. Ind. Informat., vol. 16, no. 10, pp. 6532–6542,
Oct. 2020.

[238] B. Jia, X. Zhang, J. Liu, Y. Zhang, K. Huang, and Y. Liang,
“Blockchain-enabled federated learning data protection aggregation
scheme with differential privacy and homomorphic encryption in IIoT,”
IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 4049–4058, Jun. 2022.

[239] T. Li, Z. Liu, V. Sekar, and V. Smith, “Privacy for free: Communication-
efficient learning with differential privacy using sketches,” 2019,
arXiv:1911.00972.

[240] D. Wang, J. Ren, Z. Wang, Y. Zhang, and X. S. Shen, “PrivStream: A
privacy-preserving inference framework on IoT streaming data at the
edge,” Inf. Fusion, vol. 80, pp. 282–294, Apr. 2022.

[241] H. Li and T. Han, “An end-to-end encrypted neural network for gradient
updates transmission in federated learning,” 2019, arXiv:1908.08340.

[242] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning,” in Proc. IEEE Symp.
Security Privacy (SP), 2019, pp. 739–753.

[243] L. Lyu and C. Chen, “A novel attribute reconstruction attack in
federated learning,” 2021, arXiv:2108.06910.

[244] T. Orekondy, S. J. Oh, Y. Zhang, B. Schiele, and M. Fritz, “Gradient-
leaks: Understanding and controlling deanonymization in federated
learning,” 2018, arXiv:1805.05838.

[245] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi,
“Beyond inferring class representatives: User-level privacy leakage
from federated learning,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 2512–2520.

[246] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the
GAN: Information leakage from collaborative deep learning,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Security, 2017, pp. 603–618.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:56:40 UTC from IEEE Xplore.  Restrictions apply. 



622 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 1, FIRST QUARTER 2023

[247] T. Miura, S. Hasegawa, and T. Shibahara, “MEGEX: Data-free
model extraction attack against gradient-based explainable AI,” 2021,
arXiv:2107.08909.

[248] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures,” in Proc. 29th
USENIX Security Symp. (USENIX Security), 2020, pp. 2003–2020.

[249] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes attack: Steal DNN
models with lossless inference accuracy,” in Proc. 30th USENIX
Security Symp. (USENIX Security), 2021, pp. 1–9.

[250] G. Sun, Y. Cong, J. Dong, Q. Wang, L. Lyu, and J. Liu, “Data poisoning
attacks on federated machine learning,” IEEE Internet Things J., vol. 9,
no. 13, pp. 11365–11375, Jul. 2022.

[251] D. Cao, S. Chang, Z. Lin, G. Liu, and D. Sun, “Understanding dis-
tributed poisoning attack in federated learning,” in Proc. IEEE 25th
Int. Conf. Parallel Distrib. Syst. (ICPADS), 2019, pp. 233–239.

[252] J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu, “PoisonGAN:
Generative poisoning attacks against federated learning in edge com-
puting systems,” IEEE Internet Things J., vol. 8, no. 5, pp. 3310–3322,
Mar. 2021.

[253] C. Xie, S. Koyejo, and I. Gupta, “Practical distributed learning: Secure
machine learning with communication-efficient local updates,” in Proc.
Eur. Conf. Mach. Learn. Principle Pract. Knowl. Disc. Databases
(ECML PKDD), 2019, p. 19.

[254] C. Ma et al., “When federated learning meets blockchain: A new dis-
tributed learning paradigm,” IEEE Comput. Intell. Mag., vol. 17, no. 3,
pp. 26–33, Aug. 2022.

[255] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership infer-
ence attacks against machine learning models,” in Proc. IEEE Symp.
Security Privacy (SP), 2017, pp. 3–18.

[256] H. Yu, K. Yang, T. Zhang, Y.-Y. Tsai, T.-Y. Ho, and Y. Jin, “CloudLeak:
Large-scale deep learning models stealing through adversarial exam-
ples,” in Proc. NDSS, 2020, pp. 1–16.

[257] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Security, 2015,
pp. 1310–1321.

[258] S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy, and W. Wei, “LDP-fed:
Federated learning with local differential privacy,” in Proc. 3rd ACM
Int. Workshop Edge Syst. Anal. Netw., 2020, pp. 61–66.

[259] B. Balle, J. Bell, A. Gascón, and K. Nissim, “The privacy blanket of the
shuffle model,” in Proc. Annu. Int. Cryptol. Conf., 2019, pp. 638–667.

[260] A. C.-C. Yao, “How to generate and exchange secrets,” in Proc. IEEE
27th Annu. Symp. Found. Comput. Sci. (SFCS), 1986, pp. 162–167.

[261] Q. Zhang, S. Jing, C. Zhao, B. Zhang, and Z. Chen, “Efficient feder-
ated learning framework based on multi-key homomorphic encryption,”
in Proc. Int. Conf. P2P Parallel Grid Cloud Internet Comput., 2021,
pp. 88–105.

[262] Z. L. Jiang, H. Guo, Y. Pan, Y. Liu, X. Wang, and J. Zhang, “Secure
neural network in federated learning with model aggregation under
multiple keys,” in Proc. 8th IEEE Int. Conf. Cyber Security Cloud
Comput. (CSCloud) 7th IEEE Int. Conf. Edge Comput. Scalable Cloud
(EdgeCom), 2021, pp. 47–52.

[263] S. Truex et al., “A hybrid approach to privacy-preserving federated
learning,” in Proc. 12th ACM Workshop Artif. Intell. Security, 2019,
pp. 1–11.

[264] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proc. IEEE
Symp. Security Privacy (SP), 2019, pp. 691–706.

[265] L. Guo, Y. Cheng, Y. Zhang, Y. Liu, C. Wan, and J. Liang,
“Development of cloud-edge collaborative digital twin system for
FDM additive manufacturing,” in Proc. IEEE 19th Int. Conf. Ind. Inf.
(INDIN), 2021, pp. 1–6.

[266] H. Lu et al., “An adaptive neural architecture search design for collab-
orative edge-cloud computing,” IEEE Netw., vol. 35, no. 5, pp. 83–89,
Sep./Oct. 2021.

[267] Y. Wang, S. Yang, X. Ren, P. Zhao, C. Zhao, and X. Yang, “IndustEdge:
A time-sensitive networking enabled edge-cloud collaborative intelli-
gent platform for smart industry,” IEEE Trans. Ind. Informat., vol. 18,
no. 4, pp. 2386–2398, Apr. 2022.

[268] C. Jian, J. Ping, and M. Zhang, “A cloud edge-based two-level hybrid
scheduling learning model in cloud manufacturing,” Int. J. Prod. Res.,
vol. 59, no. 16, pp. 4836–4850, 2021.

[269] Z. Ding, J. Wang, Y. Cheng, and C. He, “Alice: A LSTM neural
network based short-term power load forecasting approach in dis-
tributed cloud-edge environment,” J. Phys. Conf., vol. 1624, no. 5,
2020, Art. no. 052017.

[270] T. Wang, D. Zhao, S. Cai, W. Jia, and A. Liu, “Bidirectional
prediction-based underwater data collection protocol for end-edge-
cloud orchestrated system,” IEEE Trans. Ind. Informat., vol. 16, no. 7,
pp. 4791–4799, Jul. 2020.

[271] C. Song, W. Xu, G. Han, P. Zeng, Z. Wang, and S. Yu, “A cloud edge
collaborative intelligence method of insulator string defect detection
for power IIoT,” IEEE Internet Things J., vol. 8, no. 9, pp. 7510–7520,
May 2021.

[272] S. Lu, X. Tang, Y. Zhu, and J. She, “A cloud-edge collaborative intel-
ligent fault diagnosis method based on LSTM-VAE hybrid model,” in
Proc. 8th IEEE Int. Conf. Cyber Security Cloud Comput. (CSCloud)
Proc. 7th IEEE Int. Conf. Edge Comput. Scalable Cloud (EdgeCom),
2021, pp. 207–212.

[273] S. Maheshwari, W. Zhang, I. Seskar, Y. Zhang, and D. Raychaudhuri,
“EdgeDrive: Supporting advanced driver assistance systems using
mobile edge clouds networks,” in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), 2019, pp. 1–6.

[274] Y. Xun, J. Qin, and J. Liu, “Deep learning enhanced driving behavior
evaluation based on vehicle-edge-cloud architecture,” IEEE Trans. Veh.
Technol., vol. 70, no. 6, pp. 6172–6177, Jun. 2021.

[275] C. Chen, B. Liu, S. Wan, P. Qiao, and Q. Pei, “An edge traffic
flow detection scheme based on deep learning in an intelligent trans-
portation system,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3,
pp. 1840–1852, Mar. 2021.

[276] I. Quintana-Ramirez, L. Sequeira, and J. Ruiz-Mas, “An edge-cloud
approach for video surveillance in public transport vehicles,” IEEE
Latin America Trans., vol. 19, no. 10, pp. 1763–1771, Oct. 2021.

[277] J. Lin, W. Yu, X. Yang, P. Zhao, H. Zhang, and W. Zhao, “An edge
computing based public vehicle system for smart transportation,” IEEE
Trans. Veh. Technol., vol. 69, no. 11, pp. 12635–12651, Nov. 2020.

[278] Q. Yuan et al., “Cross-domain resource orchestration for the edge-
computing-enabled smart road,” IEEE Netw., vol. 34, no. 5, pp. 60–67,
Sep./Oct. 2020.

[279] F. Si, Y. Han, J. Wang, and Q. Zhao, “Connectivity verification in
distribution systems using smart meter voltage analytics: A cloud-edge
collaboration approach,” IEEE Trans. Ind. Informat., vol. 17, no. 6,
pp. 3929–3939, Jun. 2021.

[280] F. Song, M. Zhu, Y. Zhou, I. You, and H. Zhang, “Smart collaborative
tracking for ubiquitous power IoT in edge-cloud interplay domain,”
IEEE Internet Things J., vol. 7, no. 7, pp. 6046–6055, Jul. 2020.

[281] J. Zhong and X. Xiong, “An orderly EV charging scheduling method
based on deep learning in cloud-edge collaborative environment,” Adv.
Civil Eng., vol. 2021, Jan. 2021, Art. no. 6690610.

[282] V. Chamola, A. Sancheti, S. Chakravarty, N. Kumar, and M. Guizani,
“An IoT and edge computing based framework for charge scheduling
and EV selection in V2G systems,” IEEE Trans. Veh. Technol., vol. 69,
no. 10, pp. 10569–10580, Oct. 2020.

[283] Y. Zhang et al., “Edge intelligence for plug-in electrical vehicle charg-
ing service,” IEEE Netw., vol. 35, no. 3, pp. 81–87, May/Jun. 2021.

[284] Q. Wu, X. Chen, Z. Zhou, and J. Zhang, “FedHome: Cloud-edge based
Personalized federated learning for in-home health monitoring,” IEEE
Trans. Mobile Comput., vol. 21, no. 8, pp. 2818–2832, Aug. 2022.

[285] P. Pratim Ray, D. Dash, and N. Moustafa, “Streaming service pro-
visioning in IoT-based healthcare: An integrated edge-cloud perspec-
tive,” Trans. Emerg. Telecommun. Technol., vol. 31, no. 11, 2020,
Art. no. e4109.

[286] D. Gao, C. Ju, X. Wei, Y. Liu, T. Chen, and Q. Yang, “HHHFL:
Hierarchical heterogeneous horizontal federated learning for electroen-
cephalography,” 2019, arXiv: 1909.05784.

[287] V. K. Singh and M. H. Kolekar, “Deep learning empowered COVID-
19 diagnosis using chest CT scan images for collaborative edge-cloud
computing platform,” Multimedia Tools Appl., vol. 81, no. 1, pp. 3–30,
2022.

[288] Z. Yang, B. Liang, and W. Ji, “An intelligent end–edge–cloud architec-
ture for visual IoT-assisted Healthcare systems,” IEEE Internet Things
J., vol. 8, no. 23, pp. 16779–16786, Dec. 2021.

[289] S. Ding, L. Li, Z. Li, H. Wang, and Y. Zhang, “Smart electronic gas-
troscope system using a cloud-edge collaborative framework,” Future
Gener. Comput. Syst., vol. 100, pp. 395–407, Nov. 2019.

[290] D. Wu, X. Han, Z. Yang, and R. Wang, “Exploiting transfer learning
for emotion recognition under cloud-edge-client collaborations,” IEEE
J. Sel. Areas Commun., vol. 39, no. 2, pp. 479–490, Feb. 2021.

[291] B. Hou and J. Zhang, “Real-time surveillance video salient object
detection using collaborative cloud-edge deep reinforcement learning,”
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2021, pp. 1–8.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:56:40 UTC from IEEE Xplore.  Restrictions apply. 



DUAN et al.: DISTRIBUTED ARTIFICIAL INTELLIGENCE EMPOWERED BY END-EDGE-CLOUD COMPUTING: A SURVEY 623

[292] X. Wang and G. Gao, “SmartEye: An open source framework for real-
time video analytics with edge-cloud collaboration,” in Proc. 29th ACM
Int. Conf. Multimedia, 2021, pp. 3767–3770.

[293] S.-W. Kim, K. Ko, H. Ko, and V. C. Leung, “Edge-network-assisted
real-time object detection framework for autonomous driving,” IEEE
Netw., vol. 35, no. 1, pp. 177–183, Jan./Feb. 2021.

[294] Z. Gao et al., “Salient object detection in the distributed cloud-
edge intelligent network,” IEEE Netw., vol. 34, no. 2, pp. 216–224,
Mar./Apr. 2020.

[295] S. Wang, S. Yang, and C. Zhao, “SurveilEdge: Real-time video query
based on collaborative cloud-edge deep learning,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), 2020, pp. 2519–2528.

[296] M. Zhang, F. Wang, Y. Zhu, J. Liu, and Z. Wang, “Towards cloud-
edge collaborative online video analytics with fine-grained serverless
pipelines,” in Proc. 12th ACM Multimedia Syst. Conf., 2021, pp. 80–93.

[297] W. Zhang et al., “Deep reinforcement learning based resource manage-
ment for DNN inference in industrial IoT,” IEEE Trans. Veh. Technol.,
vol. 70, no. 8, pp. 7605–7618, 2021.

[298] F. Lyu et al., “Characterizing urban vehicle-to-vehicle communica-
tions for reliable safety applications,” IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. 6, pp. 2586–2602, Jun. 2020.

[299] F. Lyu et al., “Towards rear-end collision avoidance: Adaptive beacon-
ing for connected vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 22,
no. 2, pp. 1248–1263, Aug. 2021.

[300] S. Duan et al., “Multitype highway mobility Analytics for efficient
learning model design: A case of station traffic prediction,” IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 10, pp. 19484–19496, Oct. 2022.

[301] P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and
A. Mouzakitis, “A taxonomy and survey of edge cloud computing for
intelligent transportation systems and connected vehicles,” IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 7, pp. 6206–6221, Jul. 2022.

[302] L. Liu, Y. Yao, R. Wang, B. Wu, and W. Shi, “Equinox: A road-side
edge computing experimental platform for CAVs,” in Proc. IEEE Int.
Conf. Connected Auton. Driving (MetroCAD), 2020, pp. 41–42.

[303] W. Wei, R. Yang, H. Gu, W. Zhao, C. Chen, and S. Wan, “Multi-
objective optimization for resource allocation in vehicular cloud com-
puting networks,” IEEE Trans. Intell. Transp. Syst., early access,
Aug. 3, 2021, doi: 10.1109/TITS.2021.3091321.

[304] A. Adeniran, M. A. Hasnat, M. Hosseinzadeh, H. Khamfroush, and
M. Rahnamay-Naeini, “Edge layer design and optimization for smart
grids,” in Proc. IEEE Int. Conf. Commun. Control Comput. Technol.
Smart Grids (SmartGridComm), 2020, pp. 1–6.

[305] Y. Zhang, X. Wang, J. He, Y. Xu, F. Zhang, and Y. Luo,
“A transfer learning-based high impedance fault detection method
under a cloud-edge collaboration framework,” IEEE Access, vol. 8,
pp. 165099–165110, 2020.

[306] J. Zhang et al., “An optimal dispatching strategy for charging and
discharging of electric vehicles based on cloud-edge collaboration,”
in Proc. IEEE 3rd Asia Energy Elect. Eng. Symp. (AEEES), 2021,
pp. 827–832.

[307] B. Patra and K. Mohapatra, “Cloud, edge and fog computing
in Healthcare,” in Intelligent and Cloud Computing. Heidelberg,
Germany: Springer, 2021, pp. 553–564.

[308] W. H. Organization. “Towards Policy for Health and Ageing.”
2019. [Online]. Available: https://www.who.int/ageing/publications/
alc_fs_ageing_policy.pdf,

[309] X. Tang et al., “Computing power network: The architecture of conver-
gence of computing and networking towards 6G requirement,” China
Commun., vol. 18, no. 2, pp. 175–185, 2021.

[310] R. Xiao-Xu, T. Jing-Tiao, D. Hui, C. Yi-Fan, C. Tiao, and Y. Xiao-Fei,
“Computing power network framework based on end-edge-supercloud
collaboration,” J. Comput. Appl., to be published.

[311] C. Telecom. “Computing Power Network for MEC.” 2019. [Online].
Available: https://www.itu.int/en/ITU-T/Workshops-and-Seminars/
2019101416/Documents/Xie_Yunpeng_Presentation.pdf

[312] G. Cheng, K. Chadha, and J. Duchi, “Fine-tuning is fine in federated
learning,” 2021, arXiv:2108.07313.

[313] Y. Li, F. Li, L. Chen, L. Zhu, P. Zhou, and Y. Wang, “Power of redun-
dancy: Surplus client scheduling for federated learning against user
uncertainties,” IEEE Trans. Mobile Comput., early access, May 26,
2022, doi: 10.1109/TMC.2022.3178167.

[314] L. U. Khan, Z. Han, D. Niyato, E. Hossain, and C. S. Hong,
“Metaverse for wireless systems: Vision, enablers, architecture, and
future directions,” 2022, arXiv:2207.00413.

[315] L.-H. Lee et al., “All one needs to know about metaverse: A complete
survey on technological singularity, virtual ecosystem, and research
agenda,” 2021, arXiv:2110.05352.

[316] S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park, “Advanced
lightweight encryption algorithms for IoT devices: Survey, challenges
and solutions,” J. Ambient Intell. Humanized Comput., to be published.

[317] U. Mattsson. “Machine Learning in Trusted Execution
Environments and Quantum Computers.” 2021. [Online].
Available: https://www.globalsecuritymag.com/Machine-Learning-
in-Trusted,20210610,112686.html

[318] IDC. “Function Offload Coprocessors: A New Era of
Decentralized and Distributed Computing.” 2020. [Online].
Available: https://www.globalsecuritymag.com/Machine-Learning-
in-Trusted,20210610,112686.html

Sijing Duan (Student Member, IEEE) is currently
pursuing the Ph.D. degree with the School of
Computer Science and Engineering, Central South
University, Changsha, China. Her research interests
include Internet of Things, edge computing, big data
measurement, and data-driven application design.

Dan Wang (Student Member, IEEE) received the
B.E. degree in electronic engineering and the M.Sc.
degree in control science and engineering from
China Agricultural University, China, in 2015 and
2017, respectively. She is currently pursuing the
Ph.D. degree with the School of Computer Science
and Technology, Central South University. Her
research interest focuses on privacy computing and
edge computing.

Ju Ren (Senior Member, IEEE) received the B.Sc.,
M.Sc., Ph.D. degrees in computer science from
Central South University, China, in 2009, 2012,
and 2016, respectively. He is currently an Associate
Professor with the Department of Computer Science
and Technology, Tsinghua University, China. His
research interests include Internet of Things, edge
computing, edge intelligence, as well as security and
privacy. He received many Best Paper Awards from
the IEEE Flagship Conferences, including IEEE
ICC’19 and IEEE HPCC’19, the IEEE TCSC Early

Career Researcher Award in 2019, and the IEEE ComSoc Asia-Pacific Best
Young Researcher Award in 2021. He was recognized as a Highly Cited
Researcher by Clarivate (2020–2022). He currently serves as an Associate
Editor for IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and Peer-
to-Peer Networking and Applications. He also served as the General Co-Chair
for IEEE BigDataSE’20, the TPC Co-Chair for IEEE BigDataSE’19, the
Publicity Co-Chair for IEEE ICDCS’22, the Poster Co-Chair for IEEE
MASS’18, the Symposium Co-Chair for IEEE/CIC ICCC’23&19, IEEE
I-SPAN’18, and VTC’17 Fall.

Feng Lyu (Senior Member, IEEE) received the B.S.
degree in software engineering from Central South
University, Changsha, China, in 2013, and the Ph.D.
degree from the Department of Computer Science
and Engineering, Shanghai Jiao Tong University,
Shanghai, China, in 2018. From September 2018 to
December 2019 and from October 2016 to October
2017, he worked as a Postdoctoral Fellow and was
a visiting Ph.D. student with the BBCR Group,
Department of Electrical and Computer Engineering,
University of Waterloo, Canada. He is currently a

Professor with the School of Computer Science and Engineering, Central
South University, Changsha, China. His research interests include vehicu-
lar networks, beyond 5G networks, big data measurement and application
design, and edge computing. He is the recipient of the Best Paper Award
of IEEE ICC 2019. He currently serves as an Associate Editor for IEEE
SYSTEMS JOURNAL and a Leading Guest Editor for Peer-to-Peer Networking
and Applications, and served as a TPC member for many international con-
ferences. He is a member of the IEEE Computer Society, Communication
Society, and Vehicular Technology Society.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:56:40 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TITS.2021.3091321
http://dx.doi.org/10.1109/TMC.2022.3178167


624 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 1, FIRST QUARTER 2023

Ye Zhang (Member, IEEE) received the B.Sc.
degree in computer science and technology from
Beihang University in 2007, and the M.E. degree
in software engineering from Peking University in
2011. She is currently a Teacher with the School of
Computer Science, Beijing Information Science and
Technology University. Her interests include edge
computing and natural language processing.

Huaqing Wu (Member, IEEE) received the B.E.
and M.E. degrees from the Beijing University of
Posts and Telecommunications, Beijing, China, in
2014 and 2017, respectively, and the Ph.D. degree
from the University of Waterloo, Waterloo, ON,
Canada, in 2021. She worked as a Postdoctoral
Fellow with the Department of Electrical and
Computer Engineering, MacMaster University from
2021 to 2022. She is currently an Assistant Professor
with the Department of Electrical and Software
Engineering, University of Calgary, Calgary, AB,

Canada. Her current research interests include B5G/6G, space-air-ground inte-
grated networks, Internet of vehicles, edge computing/caching, and artificial
intelligence for future networking. She received the Best Paper Award at IEEE
GLOBECOM 2018 and Chinese Journal on Internet of Things 2020, and the
prestigious Natural Sciences and Engineering Research Council of Canada
Postdoctoral Fellowship Award in 2021

Xuemin (Sherman) Shen (Fellow, IEEE) received
the Ph.D. degree in electrical engineering from
Rutgers University, New Brunswick, NJ, USA,
in 1990. He is a University Professor with the
Department of Electrical and Computer Engineering,
University of Waterloo, Canada. His research
focuses on network resource management, wire-
less network security, Internet of Things, 5G and
beyond, and vehicular networks. He is a Registered
Professional Engineer of Ontario, Canada, an
Engineering Institute of Canada Fellow, a Canadian

Academy of Engineering Fellow, a Royal Society of Canada Fellow, a Chinese
Academy of Engineering Foreign Member, and a Distinguished Lecturer of
the IEEE Vehicular Technology Society and Communications Society. He
received the Canadian Award for Telecommunications Research from the
Canadian Society of Information Theory in 2021, the R.A. Fessenden Award
in 2019 from IEEE, Canada, the Award of Merit from the Federation of
Chinese Canadian Professionals (Ontario) in 2019, the James Evans Avant
Garde Award in 2018 from the IEEE Vehicular Technology Society, the
Joseph LoCicero Award in 2015 and the Education Award in 2017 from
the IEEE Communications Society (ComSoc), and the Technical Recognition
Award from Wireless Communications Technical Committee in 2019, and
the AHSN Technical Committee in 2013. He has also received the Excellent
Graduate Supervision Award in 2006 from the University of Waterloo and the
Premier’s Research Excellence Award in 2003 from the Province of Ontario,
Canada. He served as the Technical Program Committee Chair/Co-Chair for
IEEE GLOBECOM’16, IEEE INFOCOM’14, and IEEE VTC’10 Fall, IEEE
GLOBECOM’07 and the Chair for the IEEE ComSoc Technical Committee
on Wireless Communications. He is the President Elect of the IEEE ComSoc.
He was the Vice President for Technical and Educational Activities, the Vice
President for Publications, the Member-at-Large on the Board of Governors,
the Chair of the Distinguished Lecturer Selection Committee, and a Member
of IEEE Fellow Selection Committee of the ComSoc. He served as the Editor-
in-Chief of the IEEE INTERNET OF THINGS JOURNAL, IEEE NETWORK,
and IET Communications.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:56:40 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


