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Abstract— Next generation cellular network is expected to
provide the simultaneous high-accuracy localization and ultra-
reliable communication services, even in high mobility scenarios.
To that end, the novel orthogonal time frequency space (OTFS)
modulation has been developed as a promising physical-layer
transmission technique, evident by the outstanding performance
in terms of robustness against time-frequency selective fading
over the orthogonal frequency division multiplexing (OFDM)
counterpart. However, when OTFS meets massive multiple-input
multiple-output (MIMO), the specific conditions, under which
the delay-Doppler (DD) domain channel model holds, are not
identified. In addition, the channel estimation and localization
performance in such system is rarely studied. In this work,
we target at these new challenges, and conduct comprehen-
sive modelling, performance analysis, and algorithm design
for massive MIMO-OTFS based simultaneous localization and
communications. Specifically, we derive new channel models
for the massive MIMO-OTFS system, which captures both
time-frequency dispersion and spatial wideband effects. The
specific conditions, under which the new models hold has been
unveiled as well. Based on the new models, we establish the
theoretical foundations for channel estimation and localization,
by deriving the Cramér-Rao lower bounds of channel parameter
and location estimation errors. Such bounds have been achieved
with the newly designed low-complexity channel estimation and
localization algorithms. Numerical simulations of the proposed
framework with prevailing pulse functions are also conducted
and the results validate the proposed designs and analysis.

Index Terms— Simultaneous localization and communications,
massive MIMO, OTFS, high mobility.

I. INTRODUCTION

S IMULTANEOUS localization and communica-
tions (SLAC) becomes a new feature in the
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fifth-generation (5G) and beyond cellular networks. This
technique can facilitate various applications, such as
Internet-of-Things (IoTs) and autonomous driving [1]. The
bridge between the localization and communications is the
propagation channel, which is used for data transfer while
carrying position-dependent information. Typical channel
parameters with position dependence include the received
signal strength (RSS), time of arrival (ToA), angle of arrival
(AoA), Doppler shift, and others. The acquisition of these
parameters is dependent on the physical layer signal design
and processing of the communications systems.

The orthogonal frequency division multiplexing (OFDM)
technology has been extremely successful in the evolution of
mobile communications systems for the past three decades,
due to its low-complexity implementation with fast Fourier
transform (FFT) algorithms and efficiency to combat the inter-
symbol-interference (ISI) over multipath fading channels by
adding the cyclic prefix (CP). However, towards the evolu-
tion to the sixth-generation (6G) wireless communications,
OFDM systems will experience the new challenges of strong
Doppler effects [1], [2], [3]. For one thing, ultra-high data
rate requirements in 6G use cases motivate the use of new
radio frequencies over millimeter wave (mmWave) and ter-
ahertz (THz) bands where large bandwidth is available [4].
For another, the emerging applications, such as the mobile
communications for high-speed railways (HSR), autonomous
vehicles, on-board aircraft, low-earth orbit satellites (LEOs),
unmanned aerial vehicles (UAVs), have critical challenges
to maintain reliability in high-mobility environments [5],
[6], [7], [8], [9]. The induced strong Doppler effects will
destroy the orthogonality of the sub-channel over subcarriers,
causing significant inter-carrier-interference (ICI) in OFDM
systems [3].

To highlight the motivation on massive multiple-input
multiple-output (MIMO) and orthogonal time frequency space
(OTFS) for SLAC, we will review the related work as follows.

A. OTFS Versus OFDM

While the Doppler shift has been recognized to be harmful
in OFDM systems, it can be utilized to separate multi-path
propagation and mitigate multi-user interference when the
user data is modulated in delay-Doppler (DD) domain [10],
[11]. This enlightens a ground-breaking modulation tech-
nique known as OTFS, initially introduced in [12] and [13].
By establishing the signal transmission and receiving in the
DD domain, we can develop the OTFS framework to spread
each information symbol over the entire time-frequency (TF)
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domain [14], [15]. As a result, full TF diversity gain can
be achieved to mitigate the doubly selective fading, enabling
robust and reliable communications in highly dynamic and
complex environments [16]. It has been widely demonstrated
that OTFS outperforms OFDM over doubly-dispersive chan-
nels [17], [18], [19], [20], [21], [22], [23]. For example, OTFS
modulation can be implemented with one CP for the entire
TF block, thus significantly reducing the overhead compared
to the OFDM counterpart [18]. Also, with the DD domain
representation, OTFS systems enjoy much longer coherence
time than OFDM systems, simplifying the channel estimation
and data detection algorithm designs [19], [20], [21]. The
conventional linear time invariant (LTI) channel model used
for OFDM is actually the 0-th order Taylor expansion of
the true wireless channel, while the DD domain channel
model is close to the first-order Taylor approximation. As a
result, the modelling error of the DD domain channel model
accumulates over time much more slowly, leading to prolonged
coherence time. It has been also reported that the OTFS
modulation exhibits low peak-to-average power ratio (PAPR)
and robustness to timing and frequency synchronization errors
over OFDM techniques [22]. Nevertheless, a fair comparison
between OFDM and OTFS modulations is difficult to conclude
since the requirements and hardware differ from case to
case [17].

B. Doubly-Dispersive Channels and TF Signalling

The underlying DD domain channel models are critical
for the development of OTFS frameworks. The investigation
of such doubly-dispersive channels dates back to Bello’s
benchmark work, where the mathematical fundamentals of
linear time-varying (LTV) channels were derived [24]. Specif-
ically, the LTV channels can be represented with multipath
components, each associated with a path gain, propagation
delay, and the Doppler shift caused by the mobility [24], [25],
[26]. By doing that, the time-varying TF domain channel can
be transformed to the LTV DD domain channel. The validity
of such LTV channel holds assuming that the propagation
environment remains unchanged during the entire TF block
transmission, while the time-varying part is caused by the
relative movement between the transmitter and receiver [3].
Besides the theoretical analysis, the measurement campaign
with a time-domain channel sounder at 60 GHz for vehicle-
to-infrastructure (V2I) communications has been conducted,
where the sparse representation of such channel in DD domain
has been demonstrated [27].

Prior to the OTFS work, several optimal TF signalling
studies have been done on doubly-dispersive channels [28],
[29], [30], [31]. By treating the received signal as a canonical
decomposition of shifted versions of the transmit signal in
DD domain, a DD domain RAKE receiver is designed in
[28] to exploit the double dispersions. A non-orthogonal
frequency division multiplexing system has been proposed
in [29], employing a similar transceiver structure to OFDM
systems by replacing the OFDM modulation/demodulation
with Heisenberg/Wigner transforms. The general framework
to account for the double dispersions based on short-time

Fourier basis has been developed in [30], where the authors
have shown that the optimal pulse should have the TF spread
proportional to the channel spread. In general, these works
focus on the transceiver designs in the TF domain rather than
the DD domain, which differs from the OTFS framework.
Additionally, when combining OTFS with multiple antenna
systems, the spatial wideband effect should be properly con-
sidered in the design [32], [33].

C. The Implementation of OTFS

Generally, the OTFS modulation at transmitter can be
implemented in two ways: an overlay of OFDM modulation
by employing the inverse-symplectic finite Fourier transform
(ISFFT) [34], [35], [36], and the direct implementation based
on Zak transform [37], [38], [39]. In the first approach, the
ISFFT-based pre-processing module is introduced before the
OFDM modulation at transmitter, and the symplectic finite
Fourier transform (SFFT)-based post-processing module is
applied after the OFDM demodulation, respectively. With this
approach, the OTFS implementation can reuse the OFDM
transceiver structure; however, multiple CPs are required,
degrading the overall spectrum efficiency [15]. On the other
hand, the direct implementation based on continuous-time
Zak-transform can map DD domain signal to the time-domain
representation [39]. Specifically, the inverse discrete Zak-
transform (IDZT) is shown to be equivalent to the sequential
combination of ISFFT and OFDM modulation; and the dis-
crete Zak-transform (DZT) is equivalent to the sequential
combination of OFDM demodulation and SFFT. By using
the DZT to replace the conventional ISFFT, computational
complexity can be significantly reduced. In addition, the
direct implementation can reduce the overhead of multiple
CPs, thus improving the spectrum efficiency [38]. In general,
the DZT-based implementation can simplify the DD domain
derivation and analysis of the input-output to the doubly-
dispersive channels.

Another important component associated with the OTFS
implementation is the waveform design [23]. It is generally
assumed that the transmit and receive window functions satisfy
the bi-orthogonal property, such that the ICI and inter-symbol-
interference (ISI) can be removed [26], [30]. In addition, the
used window function will impact the PAPR performance
[40]. It is demonstrated that the rectangular pulse outperforms
the raised cosine (RC) pulse, and then Gaussian pulse in
reducing the PAPR [22]. Moreover, since the pulse function
behaves differently in delay and Doppler estimation accuracy,
the impact of the pulse shapes on localization accuracy needs
further investigation.

D. Channel Estimation and Data Detection in OTFS Systems

With the DD domain signal representation, the chan-
nel estimation in OTFS systems can be conducted in the
DD domain [41], [42], [43]. The Cramér-Rao lower bound
(CRLB) for DD domain channel estimation accounting for
non-ideal pulse shaping in multiple use cases has been
derived, used as benchmark for channel estimation accuracy
[41]. Inspired by the sparsity of the DD domain channels,
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a set of compressed-sensing and sparse-Bayes learning (SBL)
based approaches have been studied [44], [45], [46], [47],
[48]. Specifically, a 3D-structured orthogonal matching pursuit
algorithm has been exploited in [44] by formulating the
corresponding channel estimation issue as a sparse signal
recovery (SSR) problem. The SSR problem is solved with
a two-dimensional off-grid SBL-based approach in [47], with
hyper-parameter update for the conditional posterior distribu-
tion of the channels. By linking channel parameters to the
location and moving speed of the user, a sensing-aided channel
estimation work has been studied in [49]. In general, sparsity-
inspired channel estimation methods can significantly reduce
the overhead and complexity for channel estimation.

By establishing the DD domain channel and signal repre-
sentation, linear data detection schemes can be directly applied
with the knowledge of the channel matrix [50], [51], [52], [53].
Closed-form bit error rate (BER) performance using linear
zero-forcing receivers has been reported in [50]. By noting
that the linear minimum mean-square error (LMMSE) equal-
ization matrix is sparse and quasi-banded, a low-complexity
matrix inversion method is proposed in [51] to reduce the
implementation complexity of the LMMSE detection to log-
linear level. The sparsity and quasi-banded structure are further
utilized in [53] to maintain low-complexity implementation of
linear detection methods considering different pulse functions.
The message passing based detection methods have been
also studied in OTFS systems, which achieve better trade-off
between the complexity and BER performance [54], [55].
The application of machine-learning based data detection
methods to OTFS systems has been recently reported [56],
[57]. To summarize, since the data detection requires the
estimation of the channel, and the channel estimation can
benefit from data detection, a joint channel estimation and
data detection framework enjoys much improved performance
[58], [59], [60], at the price of higher complexity.

E. OTFS for Sensing

Since OTFS is based on the doubly-dispersive channels,
and both delay (interpreted as rang) and Doppler (equivalent
to radial velocity/direction) parameters are critical sensing
performance metrics, the application of OTFS to sensing
framework has been studied recently [36], [61], [62], [63],
[64]. Particularly, in [61], the OTFS sensing problem is
solved with an iterative optimization method by searching
the target in the predefined DD grids. Distinct from the DD
domain processing, the authors in [36] proposed a time domain
generalized likelihood ratio test (GLRT) detector, where the
ICI and ISI are exploited to surpass the ambiguity barrier.
Considering the advantages of OTFS over OFDM in both
mobile communications and sensing, a universal waveform
based on OTFS for integrated sensing and communications
(ISAC) is generally preferred [62], [63], [64]. However, more
studies on this topic are required.

F. Our Contributions

In this paper, we conduct channel modelling, performance
analysis and algorithm design for SLAC based on massive

MIMO-OTFS systems. The underlying assumptions of the
conventional channel model are discussed in detail, and the
spatial wideband effect is considered. Based on the newly
derived signal model, comprehensive performance analysis is
conducted, and low-complexity algorithms are designed. Our
detailed contributions are summarized below.
• We have derived the massive MIMO-OTFS channel

model by considering the ultra-wide bandwidth mmWave
signals and large antenna arrays. Specifically, we prove
that the product of frame length and bandwidth is con-
fined by the reciprocal of the Doppler scaling factor.
Also, we show that the spatial wideband effect cannot be
ignored in channel modelling for massive MIMO systems
with ultra-wide bandwidth.

• Based on the multi-path wideband channel model, the
CRLBs are derived for channel estimation and localiza-
tion results. A fundamental trade-off between bandwidth
(delay estimation accuracy) and frame length (Doppler
estimation accuracy) is unveiled. The impacts of mul-
tipath effect and spatial wideband effect on positioning
accuracy are quantified and shown to be negligible with
careful algorithm design.

• A low complexity channel estimation method based
on FFT is proposed and shown to give the maximum
likelihood estimate of the LoS (Line of Sight) chan-
nel parameters. Based on the estimated ToA, AoA and
Doppler shift, the 3D positioning can be modelled as
a non-linear weighted least-squares problem, and solved
through Newton’s method.

• Comprehensive numerical results are presented to vali-
date the theoretical analysis and proposed designs. From
the simulation results, we can clearly see how different
factors contribute to positioning accuracy, including band-
width, frame length, antenna array size, SNR (Signal to
Noise Ratio), multi-path effect, spatial wideband effect,
shape of the modulation pulse. These results will shed
light on algorithm and system designs.

G. Organization and Notations

The rest of the paper is organized as follows. The massive
MIMO-OTFS signal model with high mobility is introduced in
Section II. After that, the theoretical foundations for channel
estimation and localization are presented in Section III. Low-
complexity channel estimation and localization algorithm are
provided in Section IV. Following that, we present the numer-
ical simulations and performance discussion in Section V.
Finally, the conclusions are drawn in Section VI.

Throughout this paper, the uppercase bold letters represent
matrices while the lowercase bold letters denote column vec-
tors. E{·} represents the mean of a random variable. For an
arbitrary vector a, a[n] is the n-th element. A[n, m] denotes
the element lying on the n-th row and m-th column of
matrix A. AT, AH, and A∗ indicate the transpose, Hermitian
transpose, and element-wise conjugate of matrix A. ∥ · ∥
denotes the L2 norm of a vector, while ∥ · ∥F is the Frobenius
norm of a matrix. tr{A} gives the trace of matrix A. diag{A}
is a column vector containing the diagonal elements of A,
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while diag{a} constructs a diagonal matrix with elements
of a.

II. MASSIVE MIMO-OTFS MODELLING WITH
HIGH MOBILITY

In this section, we will present the wireless channel model
for massive MIMO-OTFS systems with high mobility user
devices, i.e., vehicles. We will start with single-input-single-
output (SISO) channel model. Then in the second sub-section,
the Massive MIMO-OTFS channel model will be presented,
and the underlying approximations/assumptions will be dis-
cussed. Due to the huge antenna array and bandwidth, the
signal will experience the spatial wideband effect (beam
squint).

A. OTFS Channel Modelling With SISO

We consider a point-to-point wireless channel with L mul-
tipath components, each associated with a path gain, delay,
AoA, and Doppler shift. With a carrier frequency of fc Hz,
the equivalent baseband channel response in the time-delay
domain, i.e., h(t, τ), is given as [65]

h(t, τ) =
L−1∑
l=0

ale
−j2πfcτl(t)δ(τ − τl(t)), (1)

where al and τl(t) are the real-time complex path gain and
propagation delay of the l-th path. Due to the Doppler effect,
the propagation delays of different paths are changing over
time. In a relatively short period, we can safely assume that
the propagation delays change over time linearly:

τl(t) ≈ τl + ρlt, (2)

where τl is the zero-th order Taylor expansion of τl(t), and
ρl quantifies how fast the propagation delay of the l-th path
changes. Because ρl is proportional to the Doppler shift and
indicates the strength of the Doppler effect, it is generally
referred to as the Doppler scaling factor.

In OTFS modulation, suppose we are transmitting a 2D data
frame X ∈ CN×M , with N time slots and M sub-carriers. The
transmitted signal is

s(t) =
∑
n,m

Xn,mgt(t− nT )ej2πmF (t−nT ), (3)

where Xn,m is the symbol on the (n, m)-th time-frequency
slot, i.e., Xn,m = X[n, m]. As we can see, symbols are
modulated on different frequencies and shifted in time. The
sub-carrier spacing is F Hz, while the symbol duration is
T second. Generally we have TF = 1, and the signal can
thus be rewritten as

s(t) =
∑
n,m

Xn,mgt(t− nT )ej2πmFt. (4)

At the receiver side, the received signal is

r(t) =
∫

τ

s(t− τ)h(t, τ)dτ

=
∑

l

ale
−j2πfc(τl+ρlt)s(t− τl − ρlt). (5)

In high-mobility scenarios, the Doppler effect is significant,
i.e., ρl ̸= 0, and it is impacting the received signal in two ways:
first, the spectrum is shifted by νl = −ρlfc for the l-th path,
i.e., Doppler shift; second, the baseband signal s(t) is scaled
by a factor of 1 − ρl in time. For terrestrial communications
with electromagnetic signals, the Doppler scaling factor is
generally very small. For example, for high-speed train moving
at 360 km/h (or 100 m/s), we have |ρl| ≤ 1

3×10−6. In this case,
the second impact of Doppler effect can be ignored for certain
parameters. Specifically, suppose B is the total bandwidth of
s(t), and |ρlt| ≪ 1/B holds for any l and t ∈ [0, NT ],
we approximately have

s(t− τl − ρlt) ≈ s(t− τl). (6)

Define S = NT as the frame length in time, and we
equivalently have

MN = BS ≪ min
l
|1/ρl|. (7)

When inequality (7) holds, we can safely ignore the scaling
effect of s(t), resulting from the Doppler effect. As we can
see, the multiplication of frame lengths in time and frequency
domains cannot be very large in OTFS. For example, consider
high-speed railway system at 360 km/h, the product of M and
N should be much smaller than 106. With a bandwidth of
10 MHz, the frame length should be no larger than 10 ms.
We can also further increase the bandwidth to 100 MHz, and
reduce the frame length to 1 ms. Apparently, there is a trade-off
between total bandwidth and frame length, and we can adjust
them based on our needs.

The above discussions are based on the time-delay channel
response, while the DD domain channel modelling is almost
exclusively used in OTFS related papers. The DD domain
channel response is given as

h(τ, ν) =
L−1∑
l=0

ãlδ(τ − τl, ν − νl), (8)

with ãl = ale
−j2π(fcτl−νlτl) being the equivalent channel

gain, and νl = −ρlfc is the Doppler shift of the l-th path.
This leads to another representation of the received signal as

r(t) =
∫

ν

∫
τ

s(t− τ)h(τ, ν)ej2πν(t−τ)dτdν, (9)

known as the Heisenberg transform. Furthermore, we have
more explicit representation of the received signal as

r(t) =
∑

l

ãle
j2πνl(t−τl)s(t− τl)

=
∑

l

ale
−j2πfcτlej2πνlts(t− τl). (10)

It should be noted that the result in (10) is only approximation
of that in (5) by ignoring the scaling of the baseband signal
resulting from the Doppler effect. Equivalently, the DD domain
channel model in (8) is approximation of that in (1) by taking
the first-order Taylor expansion in (2) and then ignoring the
scaling effect on baseband signals. This approximation is only
accurate when inequality (7) holds.
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Fig. 1. Architecture of the multi-user MIMO-OTFS systems. S2P means serial-to-parallel, while P2S is for parallel-to-serial.

Suppose gr(t) is the receiving pulse, and we process the
received signal with a matched filter:

Y (t, f) =
∫

t′
r(t′)g∗r (t′ − t)e−j2πf(t′−t)dt′

=
∑
n,m

Xn,m

∑
l

ãle
j2π(νl+mF )(t−τl)

·A(t− τl − nT, f − νl −mF ), (11)

where A(τ, ν) is the cross-ambiguity function of gt(t) and
gr(t), given by

A(τ, ν) =
∫

t

gt(t)g∗r (t− τ)e−j2πν(t−τ)dt. (12)

Equation (11) is also referred to as the Wigner transform of
the received signal.

Y (t, f) is the received signal in time-frequency domain, and
we can sample it as Yn,m = Y (nT, mF ), given by

Yn,m =
∑

n′,m′

Xn′,m′

∑
l

ãle
j2π(νl+m′F )(nT−τl)

·A(nT − τl − n′T, mF − νl −m′F ). (13)

For n ̸= n′ and m ̸= m′, the cross-ambiguity function is very
small (i.e., bi-orthogonality), and the ISI in time-frequency
domain can be ignored, resulting in

Yn,m = Xn,m

∑
l

αle
j2πnTνle−j2πmFτl , (14)

where αl is given as

αl = ale
−j2πfcτlA(−τl,−νl). (15)

The bi-orthogonality of the cross-ambiguity function lays a
fundamental base for the OTFS framework. The validity of this
assumption is dependent on the product of the delay spread
and Doppler spread of the wireless channels. For terrestrial
communications with electromagnetic signals, this product is
generally smaller than 10−2, and we can safely rely on the
bi-orthogonality assumption.

As we can see, the Heisenberg transform at the transmitter
side and the Wigner transform at the receiver side can help
construct orthogonal sub-channels, similar to the OFDM. The
ISI in time and frequency domains can be ignored, and we

now have M ×N flat-fading channels. The complex channel
gain at the (n, m)-th slot will be

Hn,m =
∑

l

αle
j2πnTνle−j2πmFτl . (16)

This is the SISO channel model, and we will extend the
discussion to MIMO systems in the following sub-section.

B. Massive MIMO and OTFS

Similar to MIMO-OFDM systems, OTFS can also be com-
bined with MIMO for spatial multiplexing, and the architecture
is given in Fig. 1. This framework is very much like that
of the MIMO-OFDM systems, and the major difference
is that the IFFT/FFT are replaced by Heisenberg/Wigner
transform, respectively. The base station is equipped with
K antennas to simultaneously serve U single antenna users
through space division multiple access. This structure dates
back to decades ago, with the name Weyl-Heisenberg systems,
or non-orthogonal frequency division multiplexing (NOFDM)
[29]. With OTFS modulation, the doubly-dispersive channel
is transformed to flat-fading sub-channels in time-frequency
domain. On each sub-channel, multiple data streams are
transmitted simultaneously through the MIMO technique. The
data detection and beamforming techniques in the conventional
MIMO systems can be directly utilized here. In practice, the
BS assigns orthogonal pilot sequences to different users to
avoid inter-user interference during uplink channel estimation.
Therefore, we will focus on the single-user case in the follow-
ing discussions. The pilot design for multi-user case will be
investigated in sub-section IV-D.

Suppose the BS is equipped with a large uniform linear
array (ULA), with K antennas. The antennas are critically
spaced, i.e., the inter-antenna distance is D = c/(2fc) = λc/2,
with λc being the wavelength of the carrier. Then based on
(10), we have the received signal at the k-th antenna of the
BS as

rk(t) =
∑

l

ale
−j2πfcτl,kej2πνlts(t− τl,k), (17)

with τl,k denoting the propagation delay between the user
antenna and the k-th antenna at the BS along the l-th path.
When the distance between BS and user device is much larger
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Fig. 2. Illustration of AoA.

than the antenna dimension at the BS, we have

τl,k ≈ τl + kD cos θl/c, (18)

where τl = τl,0, θl is the AoA of the k-th path, and c is speed
of light. This angle is formed by the vector pointing from the
0-th antenna to the (K−1)-th antenna at the BS and the vector
pointing from the user device to the BS, illustrated in Fig. 2.

If we define the spatial signature of the l-th path as

ωl = π cos θl, (19)

the received signal at the k-th antenna can then be rewritten
as

rk(t) =
∑

l

ale
−j2πfcτle−jkωlej2πνlts(t− τl,k). (20)

Given that KD ≪ c/B, the received signal at the k-th antenna
can be further simplified as

rk(t) =
∑

l

ale
−j2πfcτle−jkωlej2πνlts(t− τl), (21)

which means all the antennas are seeing the same symbol
simultaneously. The propagation delays among different anten-
nas only incur a phase delay, but not time delay in the baseband
signal. This is a common assumption in MIMO-OTFS related
work. Based on such an assumption, the channel gain between
the user antenna and the k-th antenna at the BS for the (n, m)-
th slot is Hk,n,m, given as

Hk,n,m =
∑

l

αle
j2πnTνle−j2πmFτle−jkωl . (22)

For the bandwidth satisfying B ≪ c/(KD), the propagation
delay will only introduce a phase delay that grows linearly
with antenna index, but no time delay.

However, in massive-MIMO and millimeter wave commu-
nications, both the antenna array size and bandwidth can be
very large, and when c/B is comparable to the antenna array
dimension, the delay in baseband signal can no longer be
ignored, i.e., the spatial wideband effect [32], [33]. From
another perspective, for huge bandwidth, different frequency
components are seeing different steering vectors, which is
referred to as “beam squint” in radar. In such cases, we have
to consider the fact that s(t− τl,k) cannot be approximated as
s(t− τl). Specifically, we have

s(t− τl,k) =
∑
n,m

Xn,mgt(t− τl,k − nT )ej2πmF (t−τl,k).

(23)

For KD ≪ cT = c/(B/M) = Mc/B, which can be easily
satisfied, we have gt(t− τl,k−nT ) ≈ gt(t− τl−nT ), leading
to

s(t− τl,k) ≈
∑
n,m

Xn,mgt(t− τl − nT )ej2πmF (t−τl)

· e−j2πmFkD cos θl/c. (24)

As we can see, there is an extra phase shift that is proportional
to the product of frequency index and antenna index (i.e., m
and k) in the last component at the right hand side of (24).
By following similar procedure of the previous sub-section,
the complex channel gain Hk,n,m under the spatial wideband
effect can be adjusted as

Hk,n,m =
∑

l

αle
j2πnTνle−j2πmFτle−jkωl,m , (25)

with ωl,m given as

ωl,m = 2π(fc + mF )D cos θl/c. (26)

That is to say, the spatial signature, or steering vector equiv-
alently, is changing over the sub-carriers. Comparing (22)
and (25), we can see that if we don’t consider the spatial
wideband effect, a phase shift of 2πkmFD cos θl/c on the
m-th sub-carrier is ignored for the l-th path and k-th antenna.
Consider a total bandwidth of 100 MHz, with fc = 30 GHz
and D = λc/2 = 5 mm, K = 100, the ignored phase
component can be as large as 2πKDB/c = π/3, which is
too significant to be ignored.

With the discrete-time equivalent baseband channel model,
we are now ready to discuss the potential performance of
such systems on localization in the next section. Before that,
we will briefly summarize the assumptions of the channel
model presented in this section as follows.
(1) Suppose each resource block has a size of B Hz ×

S seconds. Given that the user device moves at v, we have
to guarantee that BS ≪ c/v. For example, for a vehicular
speed of 120 m/s, c/v = 2.5× 106.

(2) For the conventional massive MIMO model, we should
have KD ≪ c/B or B ≪ c/(KD), if beam squint
is ignored. By considering the spatial wideband effect
in modelling and algorithm design, we can relax the
constraint to B/M ≪ c/(KD), which can be easily
satisfied and thus is more generally applicable.

III. THEORETICAL FOUNDATIONS

In this section, we will analyze the CRLB of channel
estimation and positioning error. Intuitively, the LoS path
signal contains the desired position information of the mobile
device, and the positioning accuracy is dependent on how
accurate we can estimate the parameters of the LoS path sig-
nal, including propagation delay, Doppler shift, and AoA, i.e.,
τ0, ν0 and θ0. The estimation errors of these three parameters
are impacted by SNR, the multi-path effect, bandwidth, frame
length, modulation pulses, etc. The estimation errors of these
geometrical channel parameters will then impact positioning
accuracy. Moreover, the estimation error of AoA is actually
a function of AoA itself. Specifically, when AoA is close to
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π/2, the bearing estimation error will be minimized, while an
AoA of 0 or π leads to infinitely large bearing error. Besides,
for ToA and AoA based positioning, the positioning error also
grows with ToA linearly. As we can see, how the estimation
errors of channel parameters map to positioning errors is very
complicated, which is exactly what we will attempt to reveal in
this section. Specifically, we want to investigate the following
problems.
• Increased frame length in time domain provides higher

Doppler estimation accuracy, while larger bandwidth
helps to estimate ToAs better. However, the product
of total bandwidth and frame length is constrained by
the physical channel, i.e., (7). Then, how should we
optimize the frame length and bandwidth for positioning
performance?

• The Doppler shift is generally believed to be a negative
factor in wireless communications. However, Doppler
shift also contains the position information of the mobile
device. Therefore, it is possible that Doppler shift can
actually help improve positioning accuracy.

• With a ULA, 2D positioning can be easily achieved
by combining AoA and ToA measurements. However,
by introducing Doppler shift, we will show that even
3D positioning becomes possible, given that the antenna
array is properly installed at the BS.

By deriving the CRLB, we will be able to shed lights on these
problems, and get some insights on practical system design.

A. Channel Estimation Error

Suppose we take P slots on time and Q slots on fre-
quency for channel estimation and localization. That is
to say, we insert pilots on (np, mq)-th slots, with np ∈
{n0, n1, · · · , nP−1} and mq ∈ {m0, m1, · · · , mQ−1}. These
pilot symbols are known at the BS. With these symbols,
we can estimate the channel parameters. Each path has four
parameters, the complex gain, propagation delay, Doppler
shift, and AoA (or spatial signature, equivalently), i.e., αl,
τl, νl, ωl. For positioning, we are only interested in the
position-related parameters, and the amplitude of αl has no
significance. To decouple the channel gains from the other
geometrical channel parameters, we further define ϕl as the
phase of αl, i.e., αl = |αl|ejϕl and θl = [τl, νl, ωl, ϕl]T. Then
we can put all the parameters from different paths together and
represent them more concisely as θ = [θT

0 ,θT
1 , · · · ,θT

L−1]
T,

a = [|α0|, |α1|, · · · , |αL−1|]T and θ̃ = [θT,aT]T.
The measured channel matrix on the mq-th sub-carrier is

Ĥmq
[k, p] = Ĥk,np,mq

, with the perfect CSI given as

Hk,np,mq
=
∑

l

αle
j2πnpTνle−j2πmqFτle−jkωl . (27)

Suppose the estimation errors of different channel gains are
i.i.d. cyclically symmetric complex Gaussian random vari-
ables, with a variance of σ2. For notional convenience,
we concatenate the channel matrices on different sub-carriers,
i.e., Ĥ =

[
Ĥm0 , Ĥm1 , · · · , ĤmQ−1

]
, with the true channel

matrix being H = E{Ĥ}. The likelihood of the channel

estimate is then given as

p(Ĥ; θ̃) = (πσ2)−KPQ exp
{
−∥Ĥ−H∥2F/σ2

}
, (28)

The log-likelihood function is

lg(Ĥ; θ̃) = −KPQ ln(πσ2)− ∥Ĥ−H∥2F/σ2. (29)

The gradient with respect of θ̃ is

∇θ̃lg = − 2
σ2

∑
k,p,q

ℜ{∇θ̃Hk,np,mq
(Hk,np,mq

− Ĥk,np,mq
)∗}︸ ︷︷ ︸

lk,p,q

.

(30)

Then the Fisher information matrix (FIM) concerning θ̃ is

Fθ̃ = E
{
∇θ̃lg∇

T
θ̃
lg
}

=
2
σ2

∑
k,p,q

ℜ
{
∇θ̃Hk,np,mq∇H

θ̃
Hk,np,mq

}
, (31)

where we implicitly used the fact that E{lk,p,qlk′,p′,q′} =
0 for k ̸= k′ or p ̸= p′ or q ̸= q′. Because
ℜ
{
∇θHk,np,mq∇H

a Hk,np,mq

}
= 0, we have

Fθ̃ = diag {Fθ,Fa} , (32)

with Fθ and Fa given as

Fθ = E
{
∇θlg∇T

θ lg
}

, Fa = E
{
∇alg∇T

a lg
}

. (33)

The FIM concerning θ can be rewritten as

Fθ =


F0,0 F0,1 · · · F0,L−1

FT
0,1 F1,1 · · · F1,L−1

...
...

...
...

FT
0,L−1 FT

1,L−1 · · · FL−1,L−1

 , (34)

with Fl,l′ defined as

Fl,l′ =
2
σ2

∑
k,p,q

ℜ
{
∇θl

Hk,np,mq∇H
θl′

Hk,np,mq

}
. (35)

The gradient is given as

∇θl
Hk,np,mq

= jak,p,q,l[−2πmqF, 2πnpT, k, 1]T, (36)

with

ak,p,q,l = αle
j2πnpTνle−j2πmqFτle−jkωl . (37)

For l = l′ we have

ℜ
{
∇θl

Hk,np,mq∇H
θl

Hk,np,mq

}
= |αl|2


4π2m2

qF
2 −4π2mqnp −2πkmqF −2πmqF

−4π2mqnp 4π2n2
pT

2 2πknpT 2πnpT
−2πkmqF 2πknpT k2 k
−2πmqF 2πnpT k 1


︸ ︷︷ ︸

Ak,p,q

.

Fl,l is given as

Fl,l =
2
σ2

∑
k,p,q

ℜ
{
∇θl

Hk,np,mq
∇H
θl

Hk,np,mq

}
=

2|αl|2

σ2

∑
k,p,q

Ak,p,q. (38)
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For l ̸= l′, we have

ℜ
{
∇θl

Hk,np,mq
∇H
θl′

Hk,np,mq

}
= ℜ{ak,p,q,la

∗
k,p,q,l′}Ak,p,q, (39)

and Fl,l′ is thus given as

Fl,l′ =
∑
k,p,q

ℜ{ak,p,q,la
∗
k,p,q,l′}Ak,p,q. (40)

The CRLB of θ0 is thus given by1

Rθ0 = F−1
θ [1 : 4, 1 : 4]. (41)

As we can see, each reflected path will have an impact on the
LoS path parameter estimation. The impact is dependent on
various system parameters, such as bandwidth, frame length,
antenna array size, pulse shape, etc. With huge bandwidth,
frame length and antenna array size, the multi-path effect will
eventually disappear. We can see this by comparing (38) and
(40). In (38), all the components are summarized coherently,
while in (40), ℜ{ak,p,q,la

∗
k,p,q,l′} can be positive or negative,

leading to much smaller elements in Fl,l′ .

B. Asymptotic Analysis

From the previous sub-section, we can see that the estima-
tion errors of position-related channel parameters (AoA, delay
and Doppler shift associated with the LoS path) are dependent
on frame length, bandwidth and antenna array size. When we
increase the observation window in any of these three dimen-
sions, the corresponding resolution will be higher, allowing
us to more accurately isolate different paths and eliminate
interference. Huge bandwidth, large antenna array and long
frame length is no longer a dream for massive MIMO-OTFS
on mmWave band. In such a case, the interference from the
NLoS paths will eventually disappear, and we have

Rθ0 ∼ F−1
0,0. (42)

To simplify the notation, we can define A as

A =
∑
k,p,q

Ak,p,q

=KQP


4π2m2

qF
2 −4π2mqnp −2πkmqF −2πmqF

−4π2mqnp 4π2np
2T 2 2πknpT 2πnpT

−2πkmqF 2πknpT k2 k

−2πmqF 2πnpT k 1

 ,

where ·̄ denotes the average value of all the elements. When
an integer N is very large, we have the following asymptotic
results:

N−1∑
n=0

nL ∼ NL+1/(L + 1). (43)

1For a scalar variable, the CRLB of estimation error is also a scalar, and it
is the lower bound of the variance of any unbiased estimate of the variable.
For a vector variable, the CRLB of the estimation error is a matrix. For
example, consider an arbitrary unbiased estimate of θ0 as θ̂0, while the CRLB
is Rθ0 . The CRLB gives the “lower bound” of covariance matrix in the
sense that E{(θ̂0 − θ0)(θ̂0 − θ0)T} −Rθ0 is positive semi-definite, i.e.,
E{(θ̂0 − θ0)(θ̂0 − θ0)T} ⪰ Rθ0 .

Therefore, we have

k ∼ K/2, k2 ∼ K2/3. (44)

Suppose mq’s and np’s are uniformly sampled, and we have

mq ∼ M/2, np ∼ N/2,

m2
q ∼ M2/3, n2

p ∼ N2/3. (45)

Note that MF = B and NT = S (S denoting the frame
length, i.e., spreading in time). Then we have the asymptotic
limit of the FIM as

Fθ0 ∼
2|α0|2

σ2
KPQ

[
H0 C
CT H1

]
, (46)

with H0, H1 and C given as

H0 = π2

[
4B2/3 −BS
−BS 4S2/3

]
,

H1 =
[

K2/3 K/2
K/2 1

]
,C =

[
−πKB/2 −πB
πKS/2 πS

]
. (47)

For τ0 and ν0, the covariance matrix of estimation errors is
lower bounded by F−1

θ0
[1 : 2, 1 : 2],2 which is approximately

equal to

Rτ0,ν0 =
σ2

2|α0|2
1

KPQ

(
H0 −CH−1

1 CT
)−1

, (48)

and the inverse of H1 is

H−1
1 =

[
12
K2 − 6

K
− 6

K 4

]
. (49)

Then we have

CH−1
1 CT = π2

[
B2 −BS
−BS S2

]
, (50)

leading to

H0 −CH−1
1 CT = π2

[
B2/3 0

0 S2/3

]
. (51)

The CRLB of τ0 and ν0 is thus simplified as

Rτ0,ν0 =
σ2

2|α0|2
3
π2

1
KPQ

[
1/B2 0

0 1/S2

]
. (52)

The diagonal elements of Rτ0,ν0 give us the CRLBs of
estimation errors of propagation delay and Doppler shift.
Now let’s move to the AoA estimation error. Specifically, the
covariance matrix of ω0 and ϕ0 is lower bounded by

Rω0,ϕ0 =
σ2

2|α0|2
1

KPQ

(
H1 −CTH−1

0 C
)−1

. (53)

The inverse of H0 is given as

H−1
0 =

3
7π2

[
4

B2
3

BS
3

BS
4

S2

]
. (54)

The estimation error of AoA is lower bounded by the first
diagonal element of Rω0,ϕ0 . Through tedious by straightfor-
ward derivations, we can get the lower bound as

Rω0 =
σ2

2|α0|2
12

K3PQ
=

σ2

|α0|2
6

K3PQ
. (55)

Remarks:

2Throughout the paper, A−1[ra : rb, ca : cb] denotes a sub-matrix of
A−1, ranging from row ra to rb and column ca to cb.
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• BS gives the product of bandwidth and frame length,
while PQ = PF × QT gives the product of bandwidth
and time assigned for channel estimation/localization.

• The AoA estimation error is inversely proportional to the
amount of time-frequency resources assigned for channel
estimation/localization.

• The CRLBs of propagation delay and Doppler shift, i.e.,
Rτ0 and Rν0 , are dependent on the total bandwidth and
frame length, respectively. The product of their CRLBs
is inversely proportional to the product of bandwidth and
frame length:

Rτ0Rν0 ∝
3

π2KPQ(BS)2
. (56)

From here we can clearly see the trade-off between the
estimation accuracy of ToA and Doppler shift. For a given
resource block, i.e., fixed BS, we can increase B to improve
the ToA estimation accuracy, but this will inevitably lead to the
reduced estimation accuracy of Doppler shift. Note that both
ToA and Doppler shift contribute to positioning accuracy, a
good strategy should be identified to minimize the positioning
error. For this purpose, we need to investigate the contributions
of ToA and Doppler shift on positioning accuracy, covered in
the following sub-section.

In the above analyses, the spatial wideband effect was
ignored. To quantify the impact of the beam squint on
positioning performance, we need to use the model in (25),
and re-derive the CRLBs by following the previous steps.
Specifically, the gradient in (36) should be revised as

∇θl
Hk,np,mq

= jak,p,q,l[−2πmqF, 2πnpT, k(1 + mqF/fc), 1]T. (57)

Elements in the third column/row of the original FIM should
be revised accordingly, and we can get (58), as shown at the
bottom of the next page, with r = MF/fc = B/fc denoting
the bandwidth-carrier frequency ratio, which is generally very
small.

We can clearly see that F(SW )
θ ⪰ Fθ. That is to say,

the spatial wideband effect actually brings more information
concerning the channel parameters. However, the increment is
negligible. For example, with fc = 30 GHz, and B = 10 MHz,
we have r = 1/3000. By considering the spatial wideband
effect, we won’t be able to extract more non-negligible
information concerning the channel parameters. Nonetheless,
ignoring the spatial wideband effect will induce huge biases,
as we shall see in the numerical results.

C. Positioning Error

It is generally assumed that only the LoS (Line of Sight)
path contains the target’s position information. Therefore,
our objective is to extract the position information of the
mobile device from τ0, ν0, and ω0. To simplify the notations,
we define ψ = [τ0, ν0, ω0]T.

For positioning, we need to build a coordinate system.
Suppose the mobile device is located at x = [x, y, h]T, with
(x, y) denoting the 2D horizontal coordinate and h denoting
the height. Similarly, xBS denotes the 3D position of the BS.

Suppose v is the 3D velocity of the mobile device, and we
have the following results:

τ0 = ∥x− xBS∥/c, ν0 =
(x− xBS)Tv
∥x− xBS∥c

fc,

ω0 = π cos θ0 = −π
(x− xBS)Ta
∥x− xBS∥

, (59)

where a is a unit vector pointing from the 0-th element to the
K − 1-th element of the BS antenna array. The second row
of (59) explicitly gives the relationship between Doppler shift
and velocity of the mobile device.

Without loss of generality, we assume the BS is located at
the origin and the FIM concerning x is

Fx = ∇T
xψFψ∇xψ, (60)

with Fψ denoting the equivalent FIM (EFIM) concerning ψ.
For ψ, the CRLB of estimation error is Rψ = Rθ0 [1 : 3, 1 :
3], and the EFIM is Fψ = R−1

ψ .
The Jacobian in (60) is given as

∇xψ =

 ρT
x/c

vT(I− ρxρ
T
x )fc/d/c

πaT(I− ρxρ
T
x )/d

 , (61)

with d = ∥x − xBS∥ = ∥x∥ denoting the distance between
the BS and mobile device, and ρx = x/d.

When the antenna array at the BS is vertically placed,
we will be able to achieve 3D positioning with a ULA, i.e.,
a = [0, 0, 1]T. As a matter of fact, as long as a is not aligned
with v or ρx, ∇xψ will have full rank, and we will be able
to achieve 3D positioning with the measured τ0, ν0, and ω0.

The CRLB of positioning error is

Rx = (∇xψ)−1Rψ(∇xψ)−T, (62)

where A−T =
(
AT
)−1

. Note that Rψ is diagonal, and we
have the CRLB of positioning error as

σ2
x = tr{Rx} = tr

{
Rψ

(
∇xψ∇T

xψ
)−1
}

. (63)

Then, we define D = diag [1/c, fc/d/c, π/d] and J =
[ρx,vt,at] with

vt = vT(I− ρxρ
T
x ),

at = aT(I− ρxρ
T
x ). (64)

Thus we have

∇xψ = DJT, (65)

and

∇xψ∇T
xψ = DJTJD, (66)

with JTJ given by

JTJ =

 1 0 0
0 ∥vt∥2 vT

t at

0 vT
t at ∥at∥2

 . (67)

The CRLB of positioning error can then be rewritten as

σ2
x = tr{Rx} = tr

{
RψD−1

(
JTJ

)−1
D−1

}
= tr

{
RψD−2

(
JTJ

)−1
}

. (68)
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Define vt = ∥vt∥, at = ∥at∥, and cv,a = vT
t at/(vtat). The

diagonal elements of the inverse of JTJ are

diag
{(

JTJ
)−1
}

=

 1(
v2

t (1− c2
v,a)
)−1(

a2
t (1− c2

v,a)
)−1

 . (69)

At this point, we can obtain the CRLB of positioning error
as

σ2
x =

σ2

2|α0|2
3

KPQπ2

(
c2

B2
+

d2c2

f2
c S2v2

t

1
(1− c2

v,a)

+
4d2

K2

1
a2

t (1− c2
v,a)

)
. (70)

Here Svt/(c/fc/2) is the equivalent length of the synthesized
array through the Doppler effect. It is clear that as long as vt

and at are not aligned, i.e., cv,a ̸= ±1, we will be able to
achieve 3D positioning with a ULA.

From the above discussions, we can see that the positioning
error is not only dependent on system parameters, but also
the vehicle’s position and velocity. The system parameters
include SNR, bandwidth, frame length, antenna array size.
During system design, we can optimize system performance
by carefully choosing these system parameters. However, the
mobile device’s position and velocity are out of our control.
As a result, we need to consider the worst case during system
design, so that the desired accuracy can be achieved no matter
where the device is located in the covered area.

IV. CHANNEL ESTIMATION AND LOCALIZATION

A. Maximum Likelihood Estimate of the Channel Parameters

With L paths, there are totally 4L channel parameters, and
the MLE (Maximum Likelihood Estimate) of the parameters
can be obtained by solving the following problem:

min
α̃l,ν̃l,τ̃l,ω̃l

∑
k,p,q

∣∣∣∣∣∑
l

α̃le
j2πnpT ν̃le−j2πmqF τ̃le−jkω̃l−Ĥk,np,mq

∣∣∣∣∣
2

.

The above problem involves minimizing a quadratic func-
tion of α̃l’s. Therefore, for any given ν̃l, τ̃l and ω̃l, we can find
the corresponding optimal α̃l to minimize the cost function.
To simplify the notation, we define

α̂ = [α̃0, α̃1, · · · , α̃L−1]T

s̃k,p,q =


ej2πnpT ν̃0e−j2πmqF τ̃0e−jkω̃0

ej2πnpT ν̃1e−j2πmqF τ̃1e−jkω̃1

...
ej2πnpT ν̃L−1e−j2πmqF τ̃L−1e−jkω̃L−1


∗

.

Then we can rewrite the optimization problem as

min
α̃l,ν̃l,τ̃l,ω̃l

∑
k,p,q

∣∣∣s̃H
k,p,qα̃− Ĥk,np,mq

∣∣∣2 . (71)

By taking the first-order derivative we can obtain∑
k,p,q

s̃k,p,q

(
s̃H
k,p,qα̃− Ĥk,np,mq

)
= 0. (72)

Suppose S̃ ∈ CL×KPQ contains all the s̃k,p,q’s, while ĥ ∈
CKPQ×1 contains all the Ĥk,np,mq

, we have

S̃S̃Hα̃ = S̃ĥ ⇒ α̃ =
(
S̃S̃H

)−1

S̃ĥ. (73)

Then the cost function is revised as

min
α̃l,ν̃l,τ̃l,ω̃l

∑
k,p,q

∣∣∣s̃H
k,p,qα̃− Ĥk,np,mq

∣∣∣2
= min

ν̃l,τ̃l,ω̃l

∥∥∥∥S̃H
(
S̃S̃H

)−1

S̃ĥ− h
∥∥∥∥2

= min
ν̃l,τ̃l,ω̃l

ĥH

(
I− S̃H

(
S̃S̃H

)−1

S̃
)

ĥ, (74)

where h = E{ĥ} contains the true channel gains. Basically,
we want to minimize the energy of ĥ on the null-space of S̃.
Equivalently, we have

arg min
ν̃l,τ̃l,ω̃l

ĥH

(
I− S̃H

(
S̃S̃H

)−1

S̃
)

ĥ.

= arg max
ν̃l,τ̃l,ω̃l

ĥHS̃H
(
S̃S̃H

)−1

S̃ĥ. (75)

Asymptotically, we have S̃S̃H ∼ KPQI, i.e., the vectors
corresponding to different paths are almost orthogonal for
large bandwidth, antenna array size and long frame, as has
been shown in the Appendix. As a result, the solution of
the above optimization problem is very close to that of the
following problem:

max
ν̃l,τ̃l,ω̃l

ĥHS̃HS̃ĥ =
∑

l

max
ν̃l,τ̃l,ω̃l

∣∣∣ĥHs̃l

∣∣∣2 , (76)

with sl denoting the l-th column of S̃H, containing all the
complex channel gains attached to the l-th path. This can be
done through FFT-based exhaustive search in the 3D space.
The complexity of the problem in (76) is much lower than
that of (74), because we can estimate the channel parameters
of different paths sequentially, instead of jointly. For joint
optimization, the complexity grows exponentially with the
number of paths, while that of the sequential optimization only
grows linearly. The fundamental reason for the possibility of
reducing the complexity is rooted in the fact that the vectors

F(SW )
θ ∼2|α0|2

σ2
KQP


4π2B2/3 −π2BS −(1 + 2r/3)πKB/2 −πB
−π2BS π2S2 (1 + r/2)πKS/2 πS

−(1 + 2r/3)πKB/2 (1 + r/2)πKS/2 (1 + r2/3 + r)K2/3 (1 + r)K/2
−πB πS (1 + r)K/2 1


(58)
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Fig. 3. Two dimensional DTFT.

corresponding to different paths are asymptotically orthogonal.
For positioning, we are only interested in the LoS path, and
the complexity is not even dependent on the number of paths.
However, the sequential estimate of all the channel parameters
will be necessary for mapping.

B. 3D Search With FFT

In this case we need to conduct 3D search through FFT, i.e.,
delay, Doppler shift and AoA. This can be done sequentially,
and we should start from Doppler shift and AoA. The reason is
that these two domains generally have higher resolutions, and
multi-path interference can be better isolated. To start with,
the measured channel matrix on the mq-th sub-carrier is

Ĥmq
=

L−1∑
l=0

αl,mq
aθl

aH
νl

+ Nmq
(77)

with Nmq ∈ CK×P denoting the additive white Gaussian
noise, and αl,mq given as

αl,mq
= αle

−j2πmqFτl . (78)

aθ and aν are steering vectors given as

aθ[k] = e−jkπ cos θ, aν [p] = e−j2πnpTν . (79)

Then we can estimate AoA and Doppler shift by analyzing
the 2D spectrum of Ĥmq

through 2D FFT, presented in [6].
Specifically, we can get the 2D DTFT (Discrete-Time Fourier
Transform) of Ĥmq

, and the 2D FFT gives the sampled version
of that. The 2D DTFT is illustrated in Fig. 3, where each path
corresponds to a 2D sinc function.

Suppose different paths are well separated, and we are only
interested in the LoS path. The 2D DFT is given as

Hω,mq = FH
KĤmqFP , (80)

with FK and FP denoting the Fourier matrices of dimension
K and P , respectively.

The peak of the LoS signal is located at ων =
2π(N/P )Tν0 and ωθ = π cos θ0. The corresponding sinc
function has four samples in the mainlobe. Suppose M/Q
and N/P are both integers, and we have mq = qM/Q and
np = pN/P . Thus, the indexes of the mainlobe samples are

(lθ, lν), (lθ + 1, lν), (lθ, lν + 1), (lθ + 1, lν + 1), with lθ ∈
{0, 1, · · · , K−1} and lν ∈ {0, 1, · · · , P −1}. Approximately,
we have

h0,0[mq] = Hω,mq
[lθ, lν ]

h0,1[mq] = Hω,mq
[lθ, lν + 1]

h1,0[mq] = Hω,mq
[lθ + 1, lν ]

h1,1[mq] = Hω,mq
[lθ + 1, lν + 1]. (81)

There must exist βν , βθ ∈ [0, 1), so that ωθ = (lθ +βθ) 2π
K and

ων = (lν + βν) 2π
P . Then we approximately have

h0,1[q] ≈ −
βν

1− βν
e−jπ/P h0,0[q]

h1,0[q] ≈ −
βθ

1− βθ
e−jπ/Kh0,0[q]

h1,1[q] ≈
βνβθ

(1− βν)(1− βθ)
e−j(π/P+π/K)h0,0[q]. (82)

Meanwhile, we have

h0,0[q] = h0,0[0]e−j2πqMF/Qτ0 = h0,0[0]e−j2πBτ0q/Q, (83)

which gives another complex sinusoid with a phase shift of
ωτ = 2πBτ0/Q, and we can employ IDFT to process the
sequence h0,0 along the sub-carrier index and obtain h(0,0)

ω ,
sampled from another sinc function with two samples in the
mainlobe. Similarly, there must exist integer lτ and βτ ∈ [0, 1),
so that ωτ = (lτ + βτ ) 2π

Q . The two samples in the mainlobe
will be

h(0,0)
ω [lτ ] = h0,0[0]

√
Qe−j(Q−1)βτ π/N sin(βτπ)

βτπ

h(0,0)
ω [lτ + 1] = h0,0[0]

−βτ

1− βτ
e−jπ/Q. (84)

Then we get eight samples that contain most of the energy
of the signal, which forms a tensor:

H(nθ, nν , nτ ) =
∣∣∣h(nθ,nν)

ω [lτ + nτ ]
∣∣∣ , (85)

with nθ, nν , nτ ∈ {0, 1}. The propagation delay, AoA and
Doppler shift can all be estimated from these eight samples
in very similar ways, and we will take the estimate of the
propagation delay as an example. For any combination of nν

and nθ, we can estimate the fractional part of propagation
delay (i.e., βτ ) as

β̂(nν ,nθ)
τ =

H(nθ, nν , 1)
H(nθ, nν , 0) +H(nθ, nν , 1)

. (86)

There are four combinations, and thus four estimates. We need
to combine them properly, based on their accuracy. Specifi-
cally, we can combine them with the weights given by

anν ,nθ
=
H(nθ, nν , 0)2 +H(nθ, nν , 1)2∑

nθ,nν ,nτ
H(nθ, nν , nτ )2

. (87)

Then estimate of βτ is updated as

β̂τ =
∑

nθ,nν

anν ,nθ
β̂(nν ,nθ)

τ . (88)

The ωτ can be estimated as ω̂τ = (lτ + β̂τ ) 2π
Q , and the

propagation delay can thus be estimated as τ̂0 = Qω̂τ/(2πB).

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:35:26 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: SIMULTANEOUS LOCALIZATION AND COMMUNICATIONS WITH MASSIVE MIMO-OTFS 3919

Fig. 4. One way to allocate resources for channel estimation and data
transmission in multi-user MIMO-OTFS.

Similarly, we can estimate the AoA and Doppler shift. This
algorithm was first proposed in [66]. Two applications of this
algorithm for positioning and channel tracking are given in
[6] and [67], respectively. Reference [6] actually extends the
algorithm to 2D cases.

C. Localization

Suppose the geometrical channel parameters are estimated
as τ̂0, ν̂0 and ω̂0, respectively. The next step is to extract the
position information. The non-linear weighted LS estimate of
the mobile device’s position can be obtained by solving the
following optimization problem with Newton’s method:

min
x̂

(τ̂0 − τ0(x̂))2

σ2
τ

+
(ν̂0 − ν0(x̂))2

σ2
ν

+
(ω̂0 − ω0(x̂))2

σ2
ω

,

(89)

where τ0(x̂), ν0(x̂), ω0(x̂) denote the calculated values of
delay, Doppler shift, and spatial signature, based on the esti-
mated position. Their corresponding errors are at drastically
different scales, and we need to normalize them with the corre-
sponding variances, i.e., σ2

τ , σ2
ν and σ2

ω , respectively. The solu-
tion of the optimization problem gives the non-linear weighted
least-squares estimate of the mobile device’s position. It also
happens to be the maximum likelihood estimate, given that
the estimation errors of three geometrical channel parameters
are uncorrelated zero-mean Gaussian random variables.

D. Multi-User Scenario

For multiple single-antenna users, suppose all the users are
distinguishable in space, and we can allow them to share
the same time-frequency resources through the space division
multiple access. The received signal of the k-th antenna at the
BS is

Yk,n,m =
U−1∑
u=0

H
(u)
k,n,mX(u)

n,m + Nk,n,m, (90)

where X
(u)
n,m and H

(u)
k,n,m are the transmitted symbol of the u-th

user at the (n, m)-th slot and the corresponding channel gain,
while Nk,n,m is the additive white Gaussian noise. Part of the
time-frequency resources will be used for channel estimation.
One possible way to do this is illustrated in Fig. 4

Without loss of generality, suppose there are four users
and each user needs nine time-frequency slots for channel

estimation. In such cases, to avoid inter-user interference,
we need to assign orthogonal time-frequency resources to
different users, and one strategy is shown in Fig. 4. In such
cases, the channel estimation of different users are conducted
independently and there is no mutual interference at all in
the channel estimation stage. Following that, all the users
will need to share the same time-frequency resources for
data transmission through the spatial division multiplexing
(“Uplink/Downlink Data” in Fig. 4, denoted in grey). Different
beamforming/combining strategies will then be employed to
suppress inter-user interference, such as the matched filter,
decorrelator, or LMMSE detector [65].

V. NUMERICAL EVALUATIONS AND DISCUSSION

In this section, we will conduct simulations to verify the
previously derived theoretical results. Consider fc = 30 GHz,
and a mobile device mounted on a vehicle, with a maximum
speed of 100 m/s, corresponding to a Doppler spread of
20 kHz. Suppose the delay spread is 0.5 µs, corresponding to
a distance of 150 m. Based on previous discussions, we can
take T = 5 µs and F = 200 kHz. In this case, we need to
make sure that MN = BS ≪ 3 × 106, and we can afford
MN = 1 × 105. QPSK modulation is employed throughout
the simulations. One percent of a resource block is utilized for
channel estimation and positioning, i.e., P/N = Q/M = 0.1.
The proposed system will be compared with existing work
that ignores the spatial wideband effect and only uses square
waveform for modulation.

A. Multi-Path Effect

In this part, we are going to evaluate the theoretical results
and algorithm performance in multi-path environment. Con-
sider five paths, one LoS path and four reflected paths. The
Doppler shifts and AoAs of paths are uniformly distributed,
while the propagation delays follow exponential distribution.
The average power of reflected paths is ten times weaker
than the LoS path. Fig. 5 shows the channel estimation
errors and positioning errors for different K and SNR. The
SNR is defined based on the channel measurement, i.e.,
Ĥ in (28), given as E{∥H∥2F /(KPQσ2)}. For an arbitrary
channel parameter x, the mean square error (MSE) of the
estimated parameter (i.e., x̂) is defined as E{|x̂ − x|2}. The
root MSE (RMSE) is the root of the MSE.

In Fig. 5, the number of antennas at the BS varies in
{32, 64, 128}. The total bandwidth is 200 MHz, and the frame
length is 0.5 ms. As we can see, the estimation errors of
Doppler shift and AoA are very close to the CRLB. The
multi-path effect can almost be ignored. The reason is that
the signals from different paths are almost orthogonal in the
delay-Doppler-space domain, and the 3D FFT-based algorithm
can identify the LoS signal and eliminate the others.

Based on the results, we can clearly see the advantages
of the proposed work over existing work. First, for such
wide bandwidth, the AoA cannot be accurately estimated if
the beam squint is ignored, as we can see in the third and
forth sub-figures, where “BSI” is short for “Beam Squint
Ignored”. When beam squint is ignored, the AoAs on different
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Fig. 5. Channel estimation error and positioning accuracy for different K and SNR.

sub-carriers will be estimated independently, and combined by
taking the average. This will inevitably leads to a bias at the
presence of beam squint. From the modelling, we can see that
the spatial signatures on different sub-carriers are changing
linearly over the sub-carrier index, and we can easily get
the maximum likelihood estimate of the AoA by fitting the
observed AoAs on different sub-carriers with a linear model.
By doing so, the AoA estimation accuracy can be significantly
improved. In terms of positioning error, we can see that
the beam squint is gradually manifesting itself when SNR
increases. Second, the theoretical results are very accurate,
which verifies our previous analysis on how bandwidth (B)
and frame length (S) impact positioning accuracy. For OFDM,
the product of B and S is at the level of one hundred in highly
dynamic environments. For example in LTE, one resource
block has 12 sub-carriers and 7 OFDM symbols, which means
the block size is only 84. For OTFS, the product of B and
S can be enlarged by two orders of magnitude. The reason
for such improvement is that the OTFS modulation is based
on the DD domain channel model by partially considering
the Doppler effect, while the OFDM is based on the LTI
channel model which ignores the Doppler effect. Thus, the
OTFS provides much better performance than OFDM.

From the simulation results, we can see that 3D positioning
can be done with a ULA if the Doppler shift measurements are
utilized. We also notice that the CRLB can serve as a metric for
performance analysis for the chosen bandwidth, frame length,
and antenna array size. Therefore, in the following sub-section,
we will evaluate the impact of Doppler effect on positioning
accuracy based on CRLB only.

B. Doppler Effect

As we already see, the Doppler shift provides extra position
information concerning the vehicle. Besides, the Doppler

Fig. 6. Doppler effect on positioning accuracy.

effect helps to isolate different paths and thus suppress the
interference. Then intuitively, when the vehicle moves faster
we can get higher positioning accuracy, which is exactly what
we can see in Fig. 6.

In Fig. 6, we present the RMSE of positioning results
for typical vehicular speeds, i.e., {0, 30, 50, 80, 100, 250,
350} km/h. Consider K = 32 antennas at the BS, with an SNR
of 0 dB. “MPC” is short for Multi-Path Components. From the
simulation results, we can also see that the previous analyses
are very accurate, including the exact CRLB with MPC in (41),
the CRLB without MPC in (42), and the asymptotic CRLB
without MPC in (70). This means the multipath effect is not a
big threat for SLAC, given that the bandwidth and antenna
array are large enough. The measurement noise dominates
the positioning accuracy. However, for smaller bandwidth or
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Fig. 7. Trade-off between B and S.

antenna array size, the MPC cannot be distinguished from the
LoS signal, and the multipath interference will play a more
important role in positioning error, as we will see in later
discussions.

The results show that the positioning error will decrease
when Doppler shift increases, as we expect from the theoretical
analyses. For a vehicle speed of 30 km/h, the positioning error
is at the level of one meter. However, if we increase the vehicle
speed to 250 km/h, the positioning error will decrease to 0.1 m.
There are two reasons for such improvement. First, when
the vehicle moves, through spatial-temporal signal processing
we can synthesize a virtual antenna array. When the vehicle
moves faster, the size of the virtual array also increases
proportionally, leading to higher spatial resolution and thus
smaller positioning error. Second, the higher spatial resolution
also helps to isolate different paths in space, leading to better
estimate of delay. However, the first advantage dominates
for the chosen parameters. Besides, we also notice that 3D
positioning becomes impossible for a vehicular speed of zero.

From the estimation error of ToA, we can clearly see
the impact of multi-path interference. For the two scenarios
without multi-path interference, the estimation error of ToA
is only dependent on the SNR. As a result, when the velocity
changes, the estimation error is constant. However, with multi-
path interference, both multi-path interference and noise are
contributing to the estimation error. As the velocity increases,
the multi-path interference can be better isolated and elim-
inated in the Doppler domain. As a result, the impact of
multi-path interference will decrease, and eventually disappear.
That is, the result will converge to the scenario without multi-
path interference.

C. Trade-off Between S and B

As we have previously discussed, there is a trade-off
between S and B. A larger S leads to higher Doppler shift
estimation accuracy, while increased B leads to reduced ToA
measurement error. In our case, both Doppler shift and ToA
measurements contribute to the positioning result. Therefore,
we need to figure out what are the optimal choices of B and
S. The numerical results are presented in Fig. 7.

In the simulations, we fix the product of B and S, i.e.,
BS = 105. For a vehicle speed of 30 km/h, the positioning
error decreases from around 20 meters to 0.25 meter when we

Fig. 8. Positioning errors of different modulation pulses.

increase bandwidth from 1 MHz to 10 MHz. However, if we
further increase the bandwidth at this point, the positioning
error will bounce back. This can be explained by the fact that
positioning error is dependent on the estimation accuracy of
both Doppler shift and ToA. When the product of B and S
is fixed, increasing B will lead to increased accuracy in ToA
estimate, but reduced accuracy in Doppler shift estimate. As a
result, the positioning error will decrease first and rise at a
certain point. For different vehicle speeds, we can see similar
trends. Although the optimal B seems to vary over the vehicle
speed, but 20 MHz can almost minimize the positioning error
in all the situations.

D. Positioning Error of Different Pulse Shapes

One huge advantage of OTFS-based SLAC is that we can
use a variety of pulse shapes for modulation. The potential
impact of pulse shape on positioning accuracy can be clearly
seen in (15). For different pulse shapes, the ambiguity function
will be different. If the ambiguity function is very sensitive
to delay and Doppler shift, then the corresponding complex
gains of reflected paths will roll off faster and lead to reduced
interference. In this sub-section, we will evaluate the perfor-
mance of different pulse shapes. Specifically, we will consider
four typical waveforms: the square waveform, the Gaussian
waveform, the linear frequency modulated (LFM) waveform,
and the windowed sinc waveform. Different pulse shapes
provide different levels of multi-path resilience. For example,
the square waveform is very sensitive to Doppler shift, while
the LFM waveform has very high resolution in delay. From
Fig. 6, we can see that multipath interference is not a problem
for large bandwidth, antenna array and long frame length,
and even square waveform works very well. However, small
communications devices with limited bandwidth and antenna
array size are not uncommon in the Internet of Things (IoT),
and proper waveform can help us to further eliminate MPCs.
Therefore, the bandwidth is chosen as 2 MHz for the the
simulation results in Fig. 8 to represent strong multi-path
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environment, with a frame length of 1 ms and an array size of
K = 32.

In Fig. 8, due to the much smaller bandwidth, frame length
and array size, the MPC can no longer be well separated.
From the figure, we can see that the positioning results
are quite unstable due to very strong MPC, and the LFM
waveform provides the best positioning accuracy in this case.
As comparison, all the other waveforms have almost constant
accuracy through the simulated SNR range, which means
the multi-path interference dominates the estimation errors
of channel parameters. This is evident from the results on
propagation delay. The great performance of the LFM wave-
form comes from its ability to isolate different paths in the
delay domain. For OFDM, the square waveform is employed
for modulation, so that the sub-channels are orthogonal in
frequency domain. As a result, this comparison shows the
advantage of OTFS over OFDM, resulting from the flexible
waveform design.

VI. CONCLUSION

In this paper, we conducted comprehensive signal mod-
elling, performance analysis, algorithm design, and numerical
evaluations for massive MIMO-OTFS based SLAC. Specifi-
cally, with a ULA at the BS, we showed that 3D positioning
of a high-speed device is possible if we combine ToA, AoA,
and Doppler shift measurements. The major discoveries lie in
three aspects. First, we modelled the spatial wideband effect
in massive MIMO-OTFS, and showed that this effect cannot
be ignored in SLAC with ultra-wideband mmWave signals.
Second, we showed that the product of bandwidth and frame
length is confined by the reciprocal of Doppler scaling factor.
Therefore, there is a trade-off between estimation accuracy of
Doppler shift and propagation delay. The optimal parameters
are derived. Third, the CRLB of positioning error is derived by
considering a general multi-path model, and a low-complexity
algorithm based on FFT is proposed to estimate the important
parameters of the LoS path signal. Based on the analysis,
we can see that the multi-path interference is not a problem for
massive MIMO-OTFS based SLAC, given that the bandwidth,
frame length and antenna array size are large enough. In strong
multi-path environment with limited bandwidth, frame length
and antenna array size, LFM signals provides better resolution
in both delay and Doppler domains, and thus is a better choice
than the conventional square waveform for SLAC.

APPENDIX A
ASYMPTOTIC ORTHOGONALITY OF DIFFERENT ROWS IN S̃

To simplify the notations, suppose the three phase shifts of
the l-th path are ωl

a (in angle domain), ωl
t (in Doppler domain)

and ωl
f (in delay domain), defined as

ωl
a = −ω̃l, ωl

t = 2πT ν̃lN/P, ωf = −2πF τ̃lM/Q. (91)

Without loss of generality, we consider two paths, indexed by
0 and 1. The first column of S̃T (or the first row of S̃) is given
by

s0 = aK(ω0
a)⊗ aP (ω0

t )⊗ aQ(ω0
f ), (92)

where ⊗ indicates the Kronecker product. aN (ω) =
[1, ejω, ej2ω, · · · , ej(N−1)ω]T is a steering vector of dimension
N . The second column of S̃T is given by

s1 = aK(ω1
a)⊗ aP (ω1

t )⊗ aQ(ω1
f )). (93)

When ω0
a ̸= ω1

a or ω0
f ̸= ω1

f or ω0
t ̸= ω1

t , the inner product of
s0 and s1 is given by

sH
0 s1 =

∑
k,p,q

ejk(ω1
a−ω0

a)ejp(ω1
t−ω0

t )ejq(ω1
f−ω0

f ),

=

(∑
k

ejk(ω1
a−ω0

a)

)
·

(∑
p

ejp(ω1
t−ω0

t )

)

·

(∑
q

ejq(ω1
f−ω0

f )

)
. (94)

Note that

lim
N→∞

∑
n ejnω

N
= 0 (∀ω ̸= 0), (95)

which holds for any integer N . Besides, we have
∥∥sH

0

∥∥ =∥∥sH
1

∥∥ =
√

KPQ, leading to

lim
K,P,Q→∞

sH
0 s1

∥sH
0 ∥∥s1∥

= 0. (96)
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