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Abstract—To handle the exponentially growing service expec-
tations from mobile users and circumvent the band switching
slow rate, device-to-device (D2D) communication is receiving
much research attention in the Internet of Things (IoT). While
the emerging D2D nodes can support heterogeneous frequency
bands [radio frequency (RF) including 2.4 GHz/5 GHz wireless
local area network (WLAN), 38-GHz millimeter wave (mmWave),
and visible light communication (VLC)], the physical constraints
(e.g., blocking) require the user devices to dynamically switch
between the bands in order to avoid the loss of connectiv-
ity and throughput degradation. In this article, we investigate
an effective online link selection in hybrid RF-VLC scenarios
for direct user data handling. First, we model the multiband
selection issue as a multiarmed bandit (MAB) problem. The
source/relay node acts as a player who gambles to maximize
its long-term feedback/reward via selecting suitable arms, i.e.,
available bands (WLAN, mmWave, or VLC). Then, we propose
an online, energy-aware band selection (EABS) methodology by
leveraging three theoretically guaranteed MAB techniques [upper
confidence bound (UCB), Thompson sampling (TS), and minimax
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optimal stochastic strategy (MOSS)] to derive optimal band selec-
tion policies. Based on these adopted policies, we propose three
algorithms, namely, EABS-UCB, EABS-TS, and EABS-MOSS, to
implement the EABS strategy, respectively. Extensive simulations
demonstrate our proposed algorithms’ superior performance
compared to the traditional link selection schemes regarding
energy efficiency, average throughput, and convergence rate. In
particular, EABS-MOSS emerges as the best algorithm as it
exhibits near-optimal performance due to its flexibility to both
stochastic and adversarial environments.

Index Terms—Band selection, channel selection, device-to-
device communication (D2D), millimeter wave (mmWave), min-
imax optimal stochastic strategy (MOSS), multiarmed bandit
(MAB), radio frequency (RF), Thompson sampling (TS), upper
confidence interval (UCB), wireless local area network (WLAN).

I. INTRODUCTION

THE NEXT-GENERATION (5G+/6G) mobile commu-
nication networks are anticipated to exploit a plethora

of frequency bands to satisfy the exponentially growing
bandwidth-demand of mobile users while meeting the Internet
of Things (IoT) and machine-to-machine (M2M) service
requirements. While the Giga/Tera Hertz (GHz/THz) spectra,
such as 38-GHz millimeter wave (mmWave) and 400–800 THz
visible light communication (VLC), are being considered
to dramatically increase the 5G+/6G capacity, these high
frequencies are adversely impacted by fast channel fading, sig-
nal attenuation, shadowing and blocking effect of walls and
other obstacles, limited range, and so forth. Therefore, the
legacy radio frequency (RF) band (i.e., 2.4/5.25-GHz WLAN)
and the sub-6 GHz mmWave are also considered to ensure
connectivity when the channels of the higher frequency bands
experience poor conditions. Incorporating Hybrid RF-VLC
systems into 5G+/6G networks and IoT systems, particularly
with device-to-device (D2D) communications [1], as shown in
Fig. 1, can enhance the system performance. For instance, by
switching between the multibands RF (Wi-Fi and mmWave)
and VLC, the D2D pairs can avoid service outage which
may otherwise occur due to substantial interference and full
blockage across an entire band. However, the optimized link
selection using the best band and its corresponding channel
in D2D communications, emerges as a difficult-to-formulate
research problem.
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Fig. 1. Considered system model and problem from a high level demonstrat-
ing our main objective to carry out online selection of the most suitable band
and corresponding channel in a dynamically varying D2D environment. For
simple depiction, only a pair of source (transmitting) and destination (receiv-
ing) devices is generalized that can be easily extended to multiple D2D relay
nodes.

In this article, we introduce a formal formulation of this
optimization problem of multiband selection targeting the
selection of RF or VLC for every D2D pair. This formulated
problem requires full channel knowledge and is identified to
be computationally hard. Therefore, we stress on the need to
reformulate this original optimization problem in a relaxed
form so that acceptable quality solutions (i.e., suboptimal
band/channel selection decisions) could be derived at real time
at the resource-constrained D2D nodes without the need for
the full channel knowledge.

In this vein, we explore the state-of-the-art machine learning
techniques, particularly the reinforcement learning (RL) family
with online-learning and self-deciding capabilities [2], [3], to
overcome the challenges involved in the multiband selection
considering both blocking and transmitting device’s battery
levels within the selection operation. Our investigation leads to
reformulate the original band selection optimization problem
into a stochastic multiarmed bandit (MAB) game, a specific
type of RL whereby an agent attempts to maximize its long-
term rewards via online learning to solve the well-known
“exploitation-exploration dilemma” [4]–[6]. Our stochastic
MAB model depends on the reward independence of each
arm (i.e., a frequency band and any of its corresponding chan-
nel). After deciding an action selection, a stochastic reward is
revealed for only the chosen action.

To solve the formulated RF-VLC band selection MAB
problem for individual D2D pairs, we present several
online, energy-aware learning algorithms. Unlike contempo-
rary machine/deep learning techniques, our proposed algo-
rithms do not require prior training plus they are theoretically
guaranteed, and thereby can improve the overall system com-
plexity and overheads. The key contributions of this article are
summarized as follows.

1) The problem of hybrid RF-VLC band selection is for-
mulated as a stochastic MAB where the transmitting
device attempts to maximize its long-term reward via
appropriate band selection by considering the impact of
blockage.

2) To the best of our knowledge, our research is the first
work in the literature to present a unified RF-VLC
channel model which considers blockage loss of all
frequency bands comprehensively. Furthermore, we
present a general formula for the blockage loss, which
can be extended for any multiband frequencies used by
the same transmitting (TX) and receiving (RX) nodes.

3) We leverage three theoretically guaranteed MAB-
based schemes, i.e., upper confidence bound (UCB),
Thompson sampling (TS), and minimax optimal stochas-
tic strategy (MOSS) in solving the formulated problem
to provide the best band selection at real-time between
individual D2D pairs. Our applied MAB techniques
to solve our formulated communication problem hinge
upon the fundamental theory that ascertain bounded
performance guarantees. Through our applied and com-
parative MAB-based, online algorithms, we demonstrate
how to efficiently assign the channels in a distributed
fashion, without intervention from a centralized oracle.

4) Based on the utilized band, we also incorporate
energy-aware band selection (EABS) using the UCB,
TS, and MOSS schemes. Accordingly, we present
three online, energy-aware, fast-converging algorithms,
namely, EABS-UCB, EABS-TS, and EABS-MOSS,
respectively, to consider the source’s consumed energies
according to the chosen transmission band. Our proposed
algorithms simulate the real scenarios where the energy
cost of selecting any band is carefully reflected.

5) Our proposed algorithms are compared with one
other and with traditional band selection techniques
for performance analysis and evaluation. Extensive
computer-based simulation results are reported to verify
the superior band selection performance of our proposed
algorithms in contrast with the traditional approaches.

The remainder of this article is organized as follows.
Section II surveys the relevant research work. Section III
describes the utilized system model, including the used RF-
VLC channel models and the unified channel and blockage
model considered in our scenario. Section IV formulates an
optimization problem of hybrid RF-VLC band selection and
then provides a reformulation of that original problem as an
MAB game. In Section V, we present our proposed EABS-
UCB, EABS-TS, and EABS-MOSS algorithms. Section VI
provides the detailed simulation results and discussion by
comparing our proposed algorithms with contemporary band
selection methods in terms of average throughput and con-
vergence rate. Finally, Section VII offers concluding remarks
and open research issues. Table I summarizes the utilized
abbreviations and mathematical symbols.

II. RELATED WORK

This section summarizes the relevant research work from
the perspective of RF-VLC systems and learning-based multi-
band selection strategies in the next generation communication
networks.

A. Hybrid RF-VLC Systems

While legacy RF bands may offer nominal data rates over
wider coverage areas, 38-GHz mmWave and 400–800 THz
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TABLE I
LIST OF ACRONYMS AND NOTATIONS USED IN THIS WORK

VLC bands provide much higher data rates at the expense of
limited communication range [7], [8]. Therefore, hybrid RF-
VLC systems have been recently conceptualized to exploit
the large capacity of VLC links and improved RF cover-
age in next-generation networks [7], [8]. Readers may find a
detailed survey on hybrid RF-VLC systems in [9]. A stochas-
tic geometry model for coverage and rate analysis regarding a
typical user in a large indoor coverage area in hybrid RF-VLC
networks was designed in [10]. On the other hand, the work
in [11] envisioned an RF-VLC link selection scheme for data
delivery in an indoor scenario with Quality of Service (QoS)
guarantees by considering an intermittently active data source.
A practical hybrid WLAN-VLC system, which aggregates
wireless local area network (WLAN) and VLC downlinks,
and shares the WLAN uplink instead of utilizing separate
VLC uplink channels for indoor usage, was presented in [12].
A system integrating optical communication based on light
fidelity (Li-Fi) and mmWave was proposed by a coauthor
of our work in [13]. That work also suggested a mmWave
beamforming training according to the Li-Fi localization.
Furthermore, researchers of [14] considered a heterogeneous
RF-VLC-based industrial network system to satisfy diverse
QoS demands in IoT applications. The up/down-link resource
management was modeled as a Markov decision process in
that system. However, the aforementioned research work took
into consideration neither the co-existence of mmWave with
WLAN and VLC bands nor multiband D2D scenarios, which
are essential 5G+/6G use-cases.

B. Learning-Based Multiband Selection Techniques

Various learning techniques exist for multiband or
multichannel selection in diverse wireless network scenarios,

which include cellular networks, IoT, D2D, drone cells, and
so forth [15]–[18]). Among these, the relevant research work
involving the hybrid bands is categorized into supervised
learning and online learning as described in the remainder of
this section.

1) Deep Learning-Based Wireless Resource Selection
Techniques: A deep learning model, for WiFi-VLC band
selection in a D2D scenario, was presented in [19]. Their solu-
tion was based on a deep neural network (DNN), which pro-
vides an initial band selection decision. Based on the DNN’s
output, a fast heuristic algorithm was proposed to improve
the band selection decision further. However, this approach
is limited due to the base station-based centralized imple-
mentation, suitable only for specific indoor scenarios. On the
other hand, several coauthors of our work envisioned a deep
learning-based predictive channel selection model to solve
the dynamic channel conditions problem in multiband relay
networks in [20] and [21]. They customized a convolutional
neural network (CNN) model to predict the channels belonging
to heterogeneous frequency bands to achieve the best signal-
to-interference-plus-noise-ratio (SINR) value. Moreover, they
envisioned deep learning-based controlled and smart chan-
nel assignment policies. However, they did not consider the
VLC channel model in their work. Moreover, the aforemen-
tioned deep learning models require extensive training data
sets, which may not be available until the roll-out of 5G+
systems with hybrid RF-VLC bands.

2) Online Learning-Based Wireless Resource Selection
Techniques: The existing online learning techniques, domi-
nated by reinforcement/deep RL [22]–[24], typically consider
dynamic multichannel access problems whereby several corre-
lated channels are assumed to follow an unknown joint Markov
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model. An RL-based prediction and selection algorithm for
idle channels is proposed to sense industrial big spectrum data
in [25]. Also, In [26], an adaptable decentralized joint power
and channel allocation scheme is proposed for better power
performance in D2D unlicensed pairs. Furthermore, MAB has
gained much interest recently to formulate the exploration–
exploitation tradeoff in solving severe existing wireless radio
resource allocation problems and enhancing the overall system
performance in an online manner. For instance, different MAB
problems were considered for D2D neighbor discovery and
selection [27], [28], gateway unmanned aerial vehicle (UAV)
selection [29], concurrent beamforming (BF) [30], and beam
alignment [31], [32]. A brief tutorial on bandit problems and
its recent applications in the wireless communication domain
was presented in [4]. Vora and Kang [33] improved the
throughput of 5G systems by directly applying the TS algo-
rithm. In [34], MAB selection approaches were employed to
determine the access point (AP) configuration, which maxi-
mizes the long-term throughput. A distributed nonorthogonal
multiple access-based MAB (D-NOMA-MAB) method was
proposed in [35] to address channel and power selection prob-
lems jointly. However, the aforementioned MAB-based work
did not consider a hybrid RF-VLC band selection problem.

Only a few researchers recently started to consider MAB-
based models for real-time resource scheduling in specific
wireless network scenarios. For instance, in [36], the com-
bined optimization of bandwidth, power, and user association
problem in a hybrid RF-VLC system was considered by
employing a deep Q-learning algorithm via targeting optimal
policy learning. On the other hand, a context-aware transfer
learning network selection algorithm, sensitive to the fea-
tures of traffic, networks, and network load distribution for
indoor RF-VLC heterogeneous scenarios, was designed in [37]
and [38]. However, these research works did not consider a
hybrid RF-VLC band selection problem in D2D communica-
tions where the online band selection issue leveraging MAB
is likely to be impacted by the frequency-dependent block-
age. There is a lack of a unified system model in the existing
literature that is needed to generalize the channels and block-
age effect across the heterogeneous wireless resources, namely,
2.4/5.25-GHz WLAN, 38-GHz mmWave, and 400–800 THz
VLC bands, before an online multiband channel selection may
be effectively considered.

III. SYSTEM MODEL

D2D communications is a key enabling technology
for realizable IoT applications/services in future 5G+/6G
systems [39]. Hence, our considered system model, consist-
ing of the RF and VLC link models, and the unified blockage
model, is described in details in this section. For simplic-
ity, Fig. 1 depicts only a single D2D pair, i.e., a source (S)
node and its corresponding destination (D) node. Note that
this can be generalized to k pairs distributed within a certain
area in the considered D2D scenario. Each node in the D2D
network is assumed to be equipped with multiple bands, each
of which consists of multiple channels, to send, receive, and
forward/relay data packets. Assume that the available channels

belong to any of the RF (2.4/5.25-GHz WLAN, 38-GHz
(WiGig) mmWave) or 400–800 THz VLC bands. Both V2X
and V2V is a considerable application scenarios to our system
model, which called Terahertz (THz)-assisted 6G-V2X [40].

A. RF Links Models

The RF communications considered in our system model
consist of WLAN bands operating at 2.4 and 5.25 GHz, and
the mmWave band operating at 38 GHz. These heterogeneous
channels/links are modeled below.

1) Unified Link Model for WLAN: For a unified link model
for both 2.4and 5-GHz WLAN systems, we first employ the
model used in [41], and then provide the empirical parameters
to specify either links. Let us consider the source and receiver
nodes to be separated by a distance x. Then, the received
WLAN power, Pw

D (expressed in dBm) in the WLAN channel
model is formulated as in [41]

Pw
D[dBm] = Pw

S [dBm] − Pw
L0

− 10γw log10 (x)− ψw (1)

where Pw
S , Pw

D, and Pw
L0

denote the transmitted power of the
source device, received power at the destination node, and
reference path-loss, respectively. γw represents the path loss
exponent while ψw � N (0, σw) denotes the log-normal shad-
owing with zero mean and σw standard deviation. The utilized
parameters for 5.25-GHz WLAN system are Pw

L0
= 47.2,

γw = 2.32, σw = 6 dB [42]. On the other hand, the 2.4-GHz
WLAN system parameters are γw = 2, Pw

L0
= 41.8, and

σw = 2.15 dB [43].
2) mmWave Links Model: To construct the mmWave links

model, the mmWave received power (Pm
D) by considering BF

gain and blockage effect [41] is given by

Pm
D = μ(PLoS(x))P

m
S�S�D/PLm(x) (2)

where μ(PLoS(x)) is a Bernoulli random variable (RV) reflect-
ing the blockage effect with the parameter PLoS(x), which
indicates the distance-dependent Line-of-Sight (LoS) probabil-
ity. Pm

S denotes the mmWave source power while �S and �D

represent the source (S) and destination (D) BF gains. PLm(x),
expressed in dB, indicates the distance-dependent path loss as
follows:

10 log10
(
PLm(x

)
) = PLm

0 + 10γ l
m log10 (x)+ χ l

m (3)

where PLm
0 , γ

l
m, and χ l

g � N (0, σ l
m) represent the mmWave

path loss at a reference distance x0, path loss exponent, and
log-normal shadowing with zero mean and standard deviation
of σ l

m, respectively. From (3), we consider l ∈ {L,NL}, where
L and N indicate LoS and non (NLoS), respectively. Only the
LoS path is taken into account since this is typically domi-
nant in mmWave communications as the gain of the LoS path
can be 20-dB higher than those of NLoS [44]. Therefore, for
simplicity of notation, the suffix l is removed in the remain-
der of this article unless otherwise specified. For �S and �D,
the 2-D, steerable antenna model with a Gaussian main loop
profile, described in [45], is utilized in our system model, that
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is expressed as

�(θ) = �0e
−4 ln(2)

(
θ

θ−3 dB

)2

, �0 =
⎛

⎝ 1.6162

sin
(
θ−3 dB

2

)

⎞

⎠

2

(4)

where θ, θ−3 dB, and �0 denote the azimuth angle, −3-dB
beamwidth, and the maximum antenna gain, respectively.

B. VLC Links Model

For constructing the VLC channels and links in our consid-
ered heterogeneous system, we utilize the Lambertian model
due to its suitability for the light-emitting diode (LED) trans-
mitters [9], [11]. The channel gain, based on LED with the
Lambertian patterns (considering the LED beam with solid
as well as the maximum half-angles, the angle between the
source-receiver line and beam axis, and the angle between the
source-receiver line and receiver normal), is adopted similar
to most existing research work [9]. The LoS channel gain for
indoor VLC employing the Lambertian patterns is modeled as

HVLC = (g + 1)AR

2πx2
Ts(φv)g(φv) cosm θv cosφv ∀φv < φc (5)

where AR denotes the optical detector’s physical area. θv and
φv define the incidence and irradiance angles, respectively.
Next, φc represents the width of the field vision at the receiver
while (g = −([ ln(2)]/[ ln(cos θv max)])) identifies the order
of the Lambertian model. Here, Ts(φv) and g(φv) indicate
the gains of the optical filter and concentrator, respectively.
Then, the received optical power, Pv

D, can be derived from the
transmitted optical power, Pv

S, as

Pv
D = HVLCPv

S. (6)

C. Generalized Blocking Model

We leverage a unified blocking model that accounts for
all the RF and VLC frequencies in the remainder of the
section. Our generalized blocking model is inspired by
the work in [46]. Experimental measurements conducted
in an urban environment with quasi-static settings under
small-sized (5.07 × 1.69 × 1.93 m3) and large-sized
(7.01 × 2.04 × 2.63 m3) blockers have been considered in
that work. Hence, motivated by the blockage loss analysis fig-
ures in [46], our generalized frequency-dependent blocking
model is mathematically modeled as [46]

Blockage loss[dB] = βa + αa log

(
1 + fc,n

1 GHz

)
(7)

where αa denotes the slope parameter, βa represents the inter-
cept of the line plotted via linear regression, and a indicates
the index of the blocker type (i.e., small or large). This block-
age loss can be amended to the path loss formula as a function
of the operated frequency in addition to the blocker type.

IV. PROBLEM FORMULATION

The hybrid RF-VLC band selection optimization problem
in D2D scenario targets maximizing the long-term average
throughput of the D2D linkage while considering the sur-
rounding environment blocking and the battery consumption of

the source device upon the selected band. To formally present
the problem, by generalizing the system model described in
Section III, we assume an undirected bi-partite graph, G =
(U,C,E) with where U = {u1, . . . , uK} and C = {c1, . . . , cN}
denote the disjoint sets of users and channels, respectively; and
E = U × C = {e11, . . . , eKN} represents a set of edges. Thus,
an edge, eij, connects the vertices ui ∈ U and cj ∈ C. Let xij be
the weight for the edge eij. Furthermore, the cardinality of the
sets U and C are given by |U| = K and |C| = N ≤ ∑m

i=1 ni,
respectively; where m and ni denote the number of frequency
bands (RF-VLC) and the number of channels in band i. Thus,
N represents the total number of available channels across
all the bands. Supposing that K ≤ N, the target is to find a
vertex-to-vertex matching with the maximum sum of weights
such that no two vertices in U can be matched to any two
vertices belonging to |C| to prevent wireless resource (i.e.,
frequency band and corresponding channel) allocation conflict.
The problem can then be formulated as

arg max
i,j

m∑

i=1

ni∑

j=1

xijE
(
ψij(t)

)
(8a)

s.t. �s,ij(t) > �th ∀s ∈ {transmitting nodes} (8b)
m∑

i=1

ni ≤ N (8c)

m∑

i=1

ni∑

j=1

xij = 1 (8d)

xij ∈ {0, 1} (8e)

where ψij(t) indicates the throughput in bps of the S-D D2D
link at time t. Note that t refers to the required time for estab-
lishing D2D link within a certain frequency band m. xi,j is a
decision variable-based upon which the optimal band and its
corresponding channel is to be selected to maximize the aggre-
gated, expected throughput, denoted by E(ψij(t)). We express
ψij(t) as

ψij(t) = Wi,jTD
i,j(t)

U(t) ∗ Th,ij + TD
(9)

where Wi,j refers to the channel bandwidth of band i and
its corresponding channel j. TD refers to the data transmis-
sion time while Th,ij denotes the overhead time between the
S-D (source destination) nodes pair according to the pulled
frequency band. As mentioned earlier in Section III, this can
be extended to a pair of relay nodes, or a relay-destination
node also. Without any loss of generality for the conventional
band selection method, U(t) = N for ∀t. This is due to its pol-
icy of searching all the available bands before selection. 
i,j(t)
is the link spectral efficiency (SE) in bps/Hz upon the cho-
sen band/frequency at a time t, which can be mathematically
described as


i,j(t) = log2

(

1 + Pi,j
D (t)

N0 + I(t)

)

(10)

where Pi,j
D (t) is the received power at destination at a time

t according to the selected band, N0 is the noise power at
D, I is the interference from nearby devices that utilize the
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same frequency. In this article, we consider the interference
issued from the two WLAN channels only. The mmWave and
VLC systems are directional ones, hence their interference are
negligible with respect to the random noise. �s,i,j(t) represents
the standing energy in joule of the source device S at time t
upon the utilized channel j of band i, and �th is the energy
threshold after which the source devices cannot establish D2D
links, and saves its power for its main activity.

The objective function (8a) is subject to several constraints,
which are now described. For each transmitting node s, con-
straint (8b) indicates that the standing energy of device s
should be larger than a threshold, �th. Next, constraint (8c)
states that the total number of channels across all the con-
sidered frequency bands should be equal to or larger than
the sensed, available number of channels, N. Then, con-
straints (8d) and (8e) signify that only one band and its
corresponding channel can be selected at a time for a relay
node, and that xi,j is a binary decision variable.

In order to solve the problem in (8a), a centralized oracle
with complete information, i.e., the network-wide information
of all bands and channel conditions for each node (source,
destination, or relay), is required. Furthermore, the problem
can be shown to be computationally hard for a large num-
ber of decision variables, and may be difficult to compute
in polynomial time let alone real time. Therefore, we need
to reformulate the objective of choosing the most appropriate
band that maximizes the throughput of the entire link LS−D

using a distributed, online learning technique for every D2D
node. This needs to be carried out by considering the utilized
bands’ blocking effects, which is variable from one band to
another upon the nature of utilized frequencies. Motivated by
this, we convert the problem [in (8a)] into an online, MAB
problem [10]. Let us consider each channel j in a band i that
belongs to the set C to be an arm. Note that unknown distri-
butions are considered for arm selection affecting the reward
(i.e., throughput). If we were to have the knowledge of the
distribution fi,j, we should always pull the arm that has the
maximum mean μi,j. Therefore, the optimal arm that should
be selected is

{i, j}∗ = arg max
i,j

μi,j. (11)

In the following section, we develop algorithmic strategies
to explore and identify the optimal arm, i.e., the optimal chan-
nel in a frequency band without sacrificing the reward com-
pletely during exploration. The policy of calculating �s,i,j(t)
is explained in detail in Section V.

V. PROPOSED METHOD

Similar to the typical bandit description, our formulated ban-
dit has [N] = 1, 2, 3, . . . , n arms (available channels with dif-
ferent frequencies). During each round t ∈ T (time horizon),
selecting a channel n returns a reward rwn,t defined as the
throughput. These rewards are RVs, independently and identi-
cally sampled, according to a specific probability distribution.
However, in our formulated problem, pulling an arm n during
every trial t is associated with a cost cn,t, which is the esti-
mated battery consumption of the source if band n were to be

selected for transmission. This is because of the changed con-
sumption values with respect to the utilized frequency during
each round. The battery update equation of the transmitting
node according to the selected band is given by

�S,n∗
MAB

(t) = �S,n∗
MAB

(t − 1)− Pn
SLData

Wn∗
MAB



n∗

MAB
(t)

(12)

where MAB reflects the utilized policy (e.g., EABS-UCB,
EABS-TS, or EABS-MOSS), ES,n∗

MAB
(t − 1) is the remain-

ing energy of the source at the previous round (t − 1),
and Pn

SLData/Wn∗
MAB


n∗
MAB

(t) reflects the energy expenditure
to transfer the desired data of LData bits using a data rate of
Wn∗

MAB



n∗
MAB

(t) bps via the chosen band n∗
MAB. For a fixed

length of data, the source energy consumption depends on the
utilized frequency in terms of the transmission bandwidth (Wn)
and transmission power (PS,n). In the remainder of this sec-
tion, we propose three EABS algorithms based on UCB, TS,
and MOSS MAB-based policies, respectively.

Practically TS is often achieves a smaller regret than many
UCB-based algorithms [47], [48]. In addition, TS is simple
and easy to implement. Despite these advantages, the the-
oretical analysis of TS algorithms has not been established
until the past decade plus it is suitable for stochastic environ-
ments only. Moreover, MOSS is adaptable for both adversarial
and stochastic bandit settings. The Three MAB techniques
are guaranteed theoretically and can be applied in different
scenarios.

A. EABS-UCB Algorithm

UCB (optimism against uncertainty) is one of the famous
stochastic bandit algorithms that achieves a lower regret bound
with the possibility of finite time analysis [49]. The UCB
policy balances the exploration–exploitation tradeoff via col-
lecting more information of the environment. It first focuses on
exploration by attempting each arm once; then it concentrates
on exploitation by choosing the action with the largest reward.
For each arm, there is a lower and upper boundary (confidence
interval). UCB name comes from upper bound concern where
the bandit player is trying to obtain the arm with the maxi-
mum long-term reward. Our proposed EABS-UCB algorithm
follows the original UCB policy with reflecting the battery
consumption due to the chosen band for a realistic decision-
making scenario. In our customized EABS-UCB algorithm,
during every trial t > N, satisfying the following maximization
equation is selected for constructing the D2D link:

n∗
EABS−UCB(t) = arg max

n

{

ψ̄n(t)+
√
� ln t

Mn,t
− xn

�S,n(t)

}

(13)

where ψ̄n(t) is the average throughput obtained from trans-
mission band n till time t. Mn,t is the number of times n has
been picked till time t and � is a tunable parameter for explo-
ration and usually equals 2 [49]. The new term (xn/[�S,n(t)]
is appended to the standard UCB formula to consider the bat-
tery consumption of the source relative to its distance from the
destination due to a selected band/arm n at time t. Hence, for
a fixed LData value in (12), the residual energy of the source is
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Algorithm 1: EABS-UCB
Input: t = 0, ψ̄n(t) = 0, Mn,t = 0,

�th, �S,n(t = 1), 1 ≤ n ≤ N, 1 ≤ t ≤ T .
Initialization: pick each band n once in the first t = N trials and

update the Source remaining energies �S,n(t) for ∀n
using eq. (12).

1 for t = N + 1 : T do
2 if �S,n(t) > �th for any n ∈ N then
3 1. Choose the most appropriate channel index n∗

UCB(t) for
establishing the D2D connection using EABS-UCB eq. (13).

4 2. Obtain ψ
n∗(t)

UCB
using eq. (9).

5 3. Mn∗,t
UCB

= M
n∗,t−1

UCB
+ 1.

6 4. ψ̄n∗,t
UCB

= 1
M

n∗,t
UCB

∑MnU CB∗,t
j=1 ψ

n∗,j
UCB

.

7 5. Update the remaining energy
�S,n∗

UCB
(t) using eq. (12).

8 end
9 end

strongly related to the utilized frequency band n∗
UCB plus the

distance from the destination xn. This also impacts the achiev-
able data rate Wn
n∗

UCB
(t) in (12). Algorithm 1 summarizes the

main steps of the EABS-UCB algorithm. First, the algorithm
tries all arms N one time and observe its reward with updating
the source remaining energy ∀n using (12). For the remain-
ing of the time horizon T , the best arm is selected according
to (13) with updating different parameters upon the chosen
band. The game ends when the source remaining energy falls
below a threshold value. Although simple idea of EABS-UCB,
it is suitable for stochastic environments only and have lower
performance than its similar-based TS version [50].

B. EABS-TS Algorithm

TS follows a Bayesian strategy, where posterior distributions
are constructed for the gained rewards based on a predefined
probabilistic model. TS achieves good empirical performance
with guarantees even better than those warranted by UCB,
especially when the said model highly matches the actual
distribution of the rewards [50]. At the beginning of the TS
algorithm, prior distributions are constructed for rewards based
on parameter initialization of the said model. Then, the TS
policy keeps track of the posterior distributions of the rewards
based on the collected rewards during the learning process,
which is achieved by updating the parameters of the probabilis-
tic models [50], [51]. This is conducted through sampling each
arm (channel of a particular band in our case) from the poste-
rior distribution and determining the arm with the maximum
expected reward. Due to the additive white Gaussian noise
(AWGN), our reward distribution is assumed to be Gaussian.
Therefore, we apply the Gaussian-based TS with a structure
similar to the one used in [34]. Thus, a random sample is
decided for each n based on the normal distribution function
and selecting the arm with a maximum reward with apply-
ing energy constraint conditions. In the EABS-TS algorithm,
the new term (xn/[�S,n(t)]) is introduced to the central TS
equation as follows:

n∗
EABS−TS(t) = arg max

n

{
θn(t)− xn

�S,n(t)

}

Algorithm 2: EABS-TS

Input: t = 0, ψ̄n(t) = 0, Mn,t = 0, σ 2
n,t = 1

�th, �S,n(t = 1), 1 ≤ n ≤ N, 1 ≤ t ≤ T .
Initialization: Pull each band n once in the first t = N steps and update

the remaining energies �S,n(t) for ∀n using eq. (12).
1 for t = N + 1 : T do
2 if �S,n(t) > �th for any n ∈ N then
3 1. Apply the proposed EABS-TS to discover the channel

index n∗
TS(t) most appropriate for establishing the D2D

connection at time t using eq. (14).
4 2. Obtain ψn∗

TS(t)
using eq. (9).

5 3. Mn∗
TS,t

= Mn∗
TS,t−1 + 1.

6 4. ψ̄n∗
TS,t

= 1
Mn∗

TS,t

∑Mn∗
TS,t

j=1 ψn∗
TS,j

.

7 5. σ 2
n∗

TS,t
= 1

Mn∗
TS,t

+1 .

8 6. Update the remaining energy of the selected device upon
the chosen band �S,n∗

TS
(t) using eq. (12).

9 end
10 end

θn(t) ∼ N
(
ψ̄n(t),

1

Mn,t + 1

)
(14)

where N (ψ̄n(t), [1/(Mn,t+1)]) referes to a normal distribution
with ψ̄n(t) mean and [1/(Mn,t + 1)] variance.

Algorithm 2 highlights the main steps of our proposed
EABS-TS algorithm, where the Gaussian distribution is
reflected for the output throughput rewards calculated by each
band, i.e., N (ψ̄n(t), [1/(Mn,t + 1)]). An earlier distribution
is initialized for the rewards by initializing ψ̄n(t) and σ 2

n,t
as stated in Algorithm 2. Afterward, the samples θn(t) are
sampled from these distributions, and the pillar band n∗

TS hav-
ing the most extreme sample value is chosen to be played
using (14). The sample of each arm is taken by the player
(i.e., each transmitting D2D node), which selects the max-
imum arm and updates other variables for the forthcoming
rounds. Upon the continuous updated, the rewards’ posterior
distributions are improved within the learning phase, resulting
in better band/channel selections over the time horizon T .

C. EABS-MOSS Algorithm

MOSS is a mutated MAB arm selection policy that is adapt-
able to all associated bandit variants or subproblems (e.g.,
stochastic and adversarial setups) [51], [52]. The confidence
interval of MOSS is designed to assign the time horizon T
fairly within the number of arms N and the number of pulls
each arm is picked. Once the suboptimal arms are more fre-
quently selected, their correlated confidence interval narrows
down, thereby demonstrating not only satisfactory exploration
but also rapid convergence to the optimal arm. In our proposed
EABS-MOSS, at each time t > N, the source/transmitting
device, S, follows the maximization formula to select the best
suitable link for transmission as expressed below

n∗
EABS−MOSS(t)

= arg max
n

⎧
⎪⎨

⎪⎩
ψ̄n(t)+

√√√√max
(

log
(

t
Mn,t

)
, 0
)

Mn,t
− xn

�S,n(t)

⎫
⎪⎬

⎪⎭
(15)
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Algorithm 3: EABS-MOSS
Input: t = 0, ψ̄n(t) = 0, Mn,t = 0, �th,

�S,n(t = 1), 1 ≤ n ≤ N, 1 ≤ t ≤ T .
Initialization: Pull each band n once in the first t = N steps and update

the remaining energies �S,n(t) for ∀n using eq. (12).
1 for t = N + 1 : T do
2 if �n(t) > �th for any n ∈ N then
3 1. Apply the proposed EABS-MOSS to discover the device

index n∗
EABS−MOSS(t) most appropriate for establishing the

D2D connection at time t using eq. (15).
4 2. Obtain ψn∗

MOSS(t)
using eq. (9).

5 3. Mn∗
MOSS,t

= Mn∗
MOSS,t−1 + 1.

6 4. ψ̄n∗
MOSS,t

= 1
Mn∗

MOSS,t

∑Mn∗
MOSS,t

j=1 ψn∗
MOSS,j

.

7 5. Update the remaining energy of source �S,n∗
MOSS

(t) using
eq. (12).

8 end
9 end

where ψ̄n(t) denotes the average reward/throughput collected
from channel n at time t. Mn,t defines the total number of
times channel n has been chosen until time t. The expression
(xn/[�S,n(t)]) is annexed to the regular MOSS equation to
reflect the battery consumption of the source related to its dis-
tance from the destination and the chosen band. The steps of
our proposed EABS-MOSS are summarized in Algorithm 3.
All arms are pulled for once after initializing different param-
eters. The remaining energy due to each arm selection is
reflected using (12). Afterward for the remaining trials of T ,
i.e., N < t < T , the best arm is selected according to the
EABS-MOSS policy using (15) with updating different algo-
rithm parameters. Finally, the algorithm chooses the best band
at the last trial of T .

Readers interested in the regret bound derivation for each
algorithm may refer to the work in [51] and [53]. Regarding
the timing complexity, for EABS-UCB, the time complexity
per trial is O(N). For EABS-TS, time complexity per trial
is O(N) also, where a random sample is obtained from a
Gaussian distribution by employing the standard Box-Muller
transform [54]. Also, the timing complexity of EABS-MOSS
algorithms is O(N). In the following section, we evalu-
ate the performance of these algorithms with and without
energy awareness to carry out a comprehensive comparative
performance analysis to verify the most suitable algorithm
among the afore-mentioned three with the same computational
complexity. In other words, we aim to identify the best solution
without degrading the computational complexity of O(N).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
algorithms, i.e., EABS-UCB, EABS-TS, and EABS-MOSS in
a systematic manner in two different setups. The first setup
investigates the impact of the adopted arm selection policies on
the throughput and convergence performance in a nonenergy-
awareness scenario. The original MAB policies (i.e., UCB, TS,
and MOSS) are implemented without the newely added term
to the multiband/channel selection problem named BS-UCB,
BS-TS, and BS-MOSS, for clarity and ease of notation. Their

TABLE II
CONSIDERED SIMULATION PARAMETERS

performances are also benchmarked against the optimal, con-
ventional, and random multiband/channel selection schemes
for performance evaluation. The optimal selection technique
directly selects the ideal (i.e., the best) channel with the
complete knowledge of a centralized oracle as described in
Section IV. The conventional scheme uses brute force to dis-
cover the best channel that requires a large search space and
also requires complete information regarding the channel qual-
ity across all the bands. This consumes a considerable time. On
the other hand, the random scheme arbitrarily picks a channel
during each round t, without any channel quality consideration.

The second setup reflects the energy-awareness option
where our proposed EABS-UCB, EABS-TS, and EABS-
MOSS algorithms are compared in terms of both throughput
and energy efficiency (EE) metrics, as well as convergence
speed against previously mentioned three traditional selection
methods for a comprehensive performance evaluation.

Table II lists the various parameters utilized in our con-
ducted simulations in both setups. Without losing generality,
we tried four arms/channels. The first and second channels
are WIFI ones with 5.25 and 2.4-GHz central frequencies and
bandwidths of 40 and 20 MHz, respectively. Both have same
transmit power of 20 mW. The third arm is a mmWAve-based
one with 38-GHz operating frequency, 100-MHz bandwidth,
and 10-mW transmit power. The fourth arm is a VLC-based
one with 105-GHz central frequency, 20-MHz bandwidth, and
20-mW transmit power. Other main parameters for these dif-
ferent channels and blockers sizes are detailed in Table II.
We reconfirm our adoption of quasi-static blocking scenario
in [46] for urban setup. As indicated earlier, the utilized
performance indicators for the first scenario consist of through-
put and convergence rates while the second setup comprises
an additional performance metric in terms of the average EE.
EE satisfies the average throughput over energy expenditure
per selected band in bit/sec/joule that is expressed as

EE = 1

N

N∑

n=1

ψn(T)/
(
�S,n(t = 1)−�S,n(t = T)

)
(16)
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(a) (b) (c)

Fig. 2. Comparison of the conventional and MAB-based algorithms for assessing the throughput performance, without energy-awareness, for varying distances
between transmitting and receiving D2D nodes and different blocking scenarios. (a) No blocking scenario. (b) Small blocking scenario. (c) Large blocking
scenario.

Fig. 3. Convergence performances of the MAB-based algorithms when
energy-awareness option is not used.

where �S,n(t = 1) denotes the initial energy (i.e., battery level)
of S (the source/transmitting node) while �S,n(t = T) rep-
resents its final energy after utilizing the nth ∈ 1, 2, . . . ,N
channel/arm.

A. Nonenergy-Aware Results

First, the results obtained in the first scenario are reported
in Figs. 2 and 3. Fig. 2 illustrates the average throughput
over multiple runs for varying distances (in meters) in terms
of three different blocking scenarios. The average throughput
comparisons for no blocking, small blocking, large block-
ing conditions are displayed in Fig. 2(a)–(c), respectively.
Due to the blocking, the average throughput among the three
blocking cases experiences a decreasing trend as the block-
ing is increased from none to large blockers. In each of the
adopted blocking scenarios, the proposed MAB-based tech-
niques outperform the conventional and random methods for
selecting the most suitable channels in a multiband channel
selection task. For all the considered distances, the proposed
MAB-based MOSS, TS, and UCB achieve 97.23%, 88.32%,
and 76.76% of the ideal throughput, respectively. On the
other hand, the conventional techniques could not achieve
such high efficiency according to the obtained simulation out-
comes. The conventional brute-force and random approaches
achieve only 75% and 62.24% of the ideal throughput, respec-
tively. Thereby, the encouraging performance over multiple
runs ensures the effectiveness of the proposed MAB-based

Fig. 4. Cumulative regret of the BS-MAB-based algorithms at 10-m
separation distance and no blocking.

techniques. Also, among the three MAB-based techniques (i.e.,
without the energy-awareness incorporation), the MOSS pol-
icy approach outperforms all other techniques due to its ability
to select the most suitable channels in dynamic environments.

Next, the convergence rate for the leveraged MAB-based
band selection techniques, while not considering the energy-
awareness option, are presented in Fig. 3 and compared with
the optimal, conventional, and random methods by consider-
ing 10 m of S-D distance at T = 1000. The best performance
for the proposed approach is noted over 500 runs. At the
round, t = 300, the proposed MAB-based MOSS technique
reaches 99% convergence compared to the optimal scheme. TS
and UCB-based policies obtained the convergence of 98.78%
and 93.54%, respectively, at t = 300. These results demon-
strate that these proposed policies can converge promptly
even before emerging half of the total rounds (T) when the
energy-awareness option is not enabled.

Next, in Fig. 4, we demonstrate the cumulative regret
incurred during the progressive rounds for the baseline random
implementation and the three MAB variants without energy
consideration. As demonstrated in the results, BS-MOSS out-
performs all the other methods and attains substantially low
and stable regret values over increasing time rounds.

B. Energy-Aware Results

In the remainder of the section, we describe the simulation
results for the second scenario where the energy-awareness is
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(a) (b) (c)

Fig. 5. Comparison of the conventional and MAB-based algorithms for assessing the throughput performance, with energy-awareness, for varying distances
between transmitting and receiving D2D nodes and different blocking scenarios. (a) No blocking case. (b) Small blocking scenario. (c) Large blocking scenario.

(a) (b) (c)

Fig. 6. Comparison of the conventional and MAB-based algorithms for assessing the EE performance, with energy-awareness, for varying distances between
transmitting and receiving D2D nodes and different blocking scenarios. (a) No blocking scenario. (b) Small blocking scenario. (c) Large blocking scenario.

incorporated in our proposed EABS variants, namely, EABS-
UCB, EABS-TS, and EABS-MOSS. The average throughput
comparisons of these proposed algorithms with the traditional
techniques are demonstrated in Fig. 5. The energy thresh-
old for the considered transmitting device is set to 1% as
listed in Table II. From Fig. 5, we can observe that the
throughput demonstrated a downward trend as the blocking
increased. The three proposed EABS variants demonstrate
superior performance to the conventional and random selec-
tion techniques in all three blocking scenarios. In contrast
with the optimal scenario, the EABS-MOSS, EABS-TS, and
EABS-UCB achieve up to 98%, 92%, and 84% of the ideal
throughput, respectively. On the other hand, the conventional
brute-force method and random technique achieved only 59%
and 66% of the ideal throughput. The random channel selec-
tion strategy manifests the worst performance with a steep
decrease in the average throughput with an increasing distance
because of the randomness in the chosen channel which might
encounter a poor channel state. The conventional brute-force
technique also illustrates poor performance due to searching
over all options while deciding the channel to utilize.

Next, Fig. 6 exhibits the viability of our proposed EABS
algorithms in terms of EE in Gbps/mJ over varying S-D
distances (in meters). Here, Fig. 6(a)–(c) demonstrate the out-
comes in the considered no-blocking, small blocking, and large
blocking scenarios, respectively. The EE for all schemes illus-
trated a downward trend as the distance increased, due to
the path loss. In all three considered blocking scenarios, the
EABS-MOSS approach outperforms all other techniques due

Fig. 7. Comparison of the convergence performances of the proposed EABS
algorithms.

to its better performance and appropriate selection of chan-
nels with appropriate consideration of the consumed energy
of the transmitting D2D node. Meanwhile, EABS-TS and
EABS-UCB also displayed encouraging performances across
all distances in terms of EE. However, due to the changeable
selection policy in an energy-constrained situation, the perfor-
mances of the conventional brute-force and random selection
techniques were much worse than our proposed algorithms.
The random channel selection technique yields the worst
EE performance across all distances. Thus, the encouraging
experimental results demonstrate that our proposed EABS
algorithm(s), particularly EABS-MOSS, can be regarded as
the most viable channel selection method(s) in multiband,
multichannel D2D network environments.

Finally, in Fig. 7, a comparative convergence analysis
of our proposed EABS-UCB, EABS-TS, and EABS-MOSS
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Fig. 8. Cumulative Regret of the EABS-MAB-based algorithms at 10-m
separation distance and no blocking.

algorithms is conducted in terms of the average through-
put at the S-D distance of 10 m and T = 1000. The
proposed EABS-MOSS technique clearly outperforms other
methods that reflects its fast convergence and reasonably accu-
rate performance. At the time round, t = 300, EABS-MOSS
attains a convergence rate of 99.98%, whereas EABS-TS and
EABS-UCB result in around 99.4% and 94.9% of the optimal
performance. On the other hand, the random selection tech-
nique obtains only a 53.65% convergence rate of the optimal
performance.

Finally, in Fig. 8, we demonstrate the performance of the
cumulative regret observed over the increasing time rounds
for the compared methods with energy awareness. Compared
to the nonenergy-aware scenario depicted in Fig. 4 where the
MOSS-based MAB variant emerged as the best method, in
the energy-aware scenario, EABS-MOSS and EABS-TS both
provide satisfactory performances by achieving significantly
low and stable regret values over the increasing time rounds
up to 1000.

VII. CONCLUSION

In this article, motivated by IoT-enabled applications and
services using D2D communications, we considered the
problem of assigning the best wireless resources at real time
to resource-constrained yet bandwidth-hungry D2D nodes,
which are equipped with multiple bands and channels ranging
from radio frequency or RF (e.g., 2.4-GHz WLAN, 5.25-GHz
WLAN, and 38-GHz mmWave) to ultrahigh-frequency VLC
technology operating at 400 to 800 THz. We formulated
the best band selection optimization problem using energy-
aware stochastic MAB techniques to increase the network
throughput with the constraint of energy expenditure of the
D2D nodes. Hence, our proposed algorithms, i.e., EABS-
UCB, EABS-TS, and EABS-MOSS, reflected the transmitting
D2D node’s battery usage according to the selected trans-
mission band. For each of the proposed EABS variants, we
reported extensive simulation results to evaluate their perfor-
mances. The performance evaluation clearly demonstrated that
our proposed EABS-MOSS algorithm emerged as the most
viable technique for finding the best bands/channels at an
individual D2D transmitting node while preserving its energy-
efficiency requirement. Future research directions are directed

toward multiplayers scenario extension, where the interference
will play a dominant role. Moreover, investigations of sim-
ilar problems in time-varying environments like high speed
communications where adversarial bandits is more suitable.
Finally, investigations of such a hard problem in UAV commu-
nications with a real application such as disaster area coverage
will be more beneficial.
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