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Abstract—Device-edge collaboration on deep neural network
(DNN) inference is a promising approach to efficiently utilizing
network resources for supporting Artificial Intelligence of Things
(AIoT) applications. In this article, we propose a novel digital
twin (DT)-assisted approach to device-edge collaboration on
DNN inference that determines whether and when to stop local
inference at a device and upload the intermediate results to
complete the inference on an edge server. Instead of determining
the collaboration for each DNN inference task only upon its
generation, multi-step decision making is performed during the
on-device inference to adapt to the dynamic computing workload
status at the device and the edge server. To enhance the adaptivity,
a DT is constructed to evaluate all potential offloading decisions
for each DNN inference task, which provides augmented training
data for a machine learning-assisted decision-making algorithm.
Then, another DT is constructed to estimate the inference status
at the device to avoid frequently fetching the status information
from the device, thus reducing the signaling overhead. We also
derive necessary conditions for optimal offloading decisions to
reduce the offloading decision space. Simulation results demon-
strate the outstanding performance of our DT-assisted approach
in terms of balancing the tradeoff among inference accuracy,
delay, and energy consumption.

Index Terms—Artificial Intelligence of Things (AIoT), device-
edge collaborative inference, digital twin (DT), networking
for AI.

I. INTRODUCTION

ARTIFICIAL Intelligence of Things (AIoT) is receiving
increasingly attention due to the remarkable capability

of artificial intelligence (AI) on data analysis for Internet
of Things (IoT) applications, such as smart cities and smart
manufacturing [2], [3]. Deep neural network (DNN) has been
widely adopted in AIoT due to its ability of automatic feature
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extraction for pattern recognition or decision making [2], [3].
DNNs for AIoT applications are commonly deployed on cloud
servers and edge servers since AIoT devices, e.g., smart
cameras, have limited computing capabilities. Cloud servers,
which possess extensive computing capabilities and data, can
be leveraged for DNN training. In addition, edge servers,
deployed in close proximity of AIoT devices, can process
offloaded task data and generate processing results by DNN
inference with low latency [4]. With the growing popularity
of AIoT applications, the demand for DNN inference tasks
(referred to as DNN tasks) can be substantial, e.g., tens of
frames are generated per second by a smart camera for real-
time intersection monitoring [5]. In this regard, optimizing
the performance of DNN inference via efficient utilization of
network resources becomes a significant issue.

DNN partitioning is a promising solution to achieve the
collaboration on DNN inference between AIoT devices and
edge servers for enhanced performance of DNN inference. In
DNN partitioning, the inference of a multi-layer DNN can be
partitioned into two parts, i.e., on-device inference and edge
inference [6]. Specifically, an AIoT device executes the layers
before a partition layer, i.e., on-device inference, and uploads
the intermediate result, as the input to the partition layer, to
an edge server. The edge server then executes the remaining
layers of the DNN, i.e., edge inference, to obtain the final
inference result. The partition layer for a DNN task determines
computing load of on-device inference and edge inference,
respectively, and the size of data to be offloaded. Therefore,
the partition layer should be properly chosen to minimize the
overall delay and energy consumption for task processing [7].
When the edge server is heavily loaded, the overall delay
to process a task can be high, even if the optimal partition
layer is chosen for the task. In this case, the DNN inference
can be early exited by AIoT devices for some tasks instead
of offloading them to the edge server for completing the
inference [8]. In this way, the overall delay of task processing
can be reduced at the cost of reduced inference accuracy [9].
By determining whether to offload a DNN task to the edge
server or not, such a tradeoff can be made as needed.

With device-edge collaboration, DNN task offloading deci-
sions are made on whether and when an AIoT device should
stop on-device inference and upload intermediate results to
an edge server to complete the inference. Such decision
making should adapt to the computing workload status at
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the device and the edge server, which is challenging since
the workload status can change dynamically due to stochastic
task generation at each AIoT device covered by the edge
server [10]. In particular, conventional approaches that make
the offloading decision for each DNN task only upon its
generation is unlikely to be optimal [11]. This is because on-
device inference delay for a task can be as long as hundreds of
milliseconds for executing one convolutional layer [9], which
can result in 1) a drastic change of the instantaneous workload
status between the generation of the task and the completion
of the on-device inference for the task, and 2) difficulty in
predicting such a change especially when the dynamics of task
arrival is unavailable [9], [12].

The digital twin (DT) paradigm, proposed as a promising
next stage of network virtualization [2], can be leveraged
to facilitate adaptive device-edge collaboration on DNN
inference [1]. Through data synchronization, DTs can be
constructed as digital representations of physical objects or
processes to manage network data [13], estimate network
status (e.g., the running states of IoT devices [14]), and predict
network performance (e.g., the end-to-end delay of network
slices [15]). In addition, DTs can empower network emulations
for efficient network management [2], e.g., constructing a
simulation environment for pretraining a machine learning-
assisted task offloading algorithm [16]. For the case of
device-edge collaborative DNN inference, DTs can empower
machine learning-assisted offloading decision making by pro-
viding augmented training data. For example, after a DNN task
is offloaded to an edge server, DTs can be used to evaluate
alternative offloading decisions of the task in hypothetical
scenarios, i.e., offloading the task later or locally completing
the task.

In this article, we leverage DTs to facilitate adaptive device-
edge collaborative DNN inference. We consider an AIoT
scenario, where a full-size DNN is deployed at an edge
server for high-accuracy inference and a shallow DNN, which
consists of the first several layers of the full-size DNN
concatenated by an exit branch, is deployed at an AIoT
device for low-latency on-device inference. In addition, the
on-device and edge server computing workloads are dynamic
due to stochastic task arrival. The objective is to optimize the
performance of DNN inference in terms of balancing inference
accuracy, delay, and energy consumption by determining the
device-edge collaboration for the DNN tasks generated by
the AIoT device. To achieve this objective, we propose a
DT-assisted approach to adaptive device-edge collaboration
on DNN inference, which determines whether to offload a
DNN task each time when the on-device inference status
changes, i.e., when a layer of the shallow DNN is about
to be locally executed for the task. An offloading decision-
making algorithm based on the optimal stopping theorem and
assisted by machine learning is developed. Moreover, DTs are
constructed in the proposed approach to play the following
two roles.

1) Evaluating all potential offloading decisions of each
DNN task to provide augmented training data
for the learning-assisted offloading decision-making
algorithm.

2) Estimating the inference status at the device to avoid
frequently fetching the status information from the
device, thus reducing the signaling overhead.

The main contributions of this article are summarized as
follows.

1) We propose an approach to device-edge collaboration on
DNN inference that adapts to the dynamic on-device and
edge server workloads in offloading decision making to
optimize the DNN inference performance.

2) We propose a learning-assisted algorithm, which gen-
erates effective offloading decisions with unknown task
arrival statistics. Empowered by DTs, the algorithm can
promptly attain an effective offloading solution with
sufficient training data.

3) We derive necessary conditions for optimal offloading
decisions and accordingly use them for decision space
reduction, which reduces the complexity for adaptive
device-edge collaboration on DNN inference.

The remainder of this article is organized as follows. In
Section II, we review the related works. In Section III, we
introduce the system model. In Section IV, a DT-assisted
approach to adaptive device-edge collaboration on DNN infer-
ence is proposed. The problem is formulated and transformed
in Section V, and the DT and learning-assisted offload-
ing decision-making algorithm is proposed in Section VI.
In Section VII, we investigate offloading decision space
reduction. Simulation results are provided in Section VIII.
Section IX concludes this article.

II. RELATED WORKS

Collaboration among end devices and computing servers
on task processing has attracted increasing research atten-
tion for efficient utilization of network computing resources.
The collaboration among various computing servers within
an IoT network was investigated in [17] and [18]. For the
collaboration of AIoT devices and computing servers on
DNN inference, some existing works optimized the number
of DNN tasks offloaded from each AIoT device to the
computing servers to minimize the overall delay in task
completion [19], [20], [21]. Due to the limited computing
capabilities, a lightweight DNN was executed by AIoT devices
for task processing to reduce the delay of on-device DNN
inference at the cost of inference accuracy [20], [21], [22]. In
such a case, the offloading decision was made to optimize
the tradeoff between DNN inference costs (in terms of delay,
energy consumption, etc.) and inference accuracy.

Leveraging DNN task partitioning, some works investi-
gated DNN task offloading by selecting the partition layer
in light of server workload [6], [23], [24]. In [6], DNN
partitioning-based device-edge collaboration was proposed,
and the partition layer to minimize the delay or energy
consumption of a DNN task was dynamically selected based
on the real-time workload at a computing server. In a multide-
vice scenario, partition layer selection was jointly optimized
with task scheduling and computing resource allocation at an
edge server [23], [24]. Other works evaluated the on-device
computing workload for DNN task partitioning [12], [25].
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Specifically, considering periodical task generation at the
device, Liang et al. [25] maximized the throughput of
the DNN inference while preventing the DNN tasks from
experiencing on-device queuing delay. For the case when
the DNN task generation at the device is nonperiodical,
Song et al. [12] proposed a deep reinforcement learning
(DRL)-based algorithm to dynamically select the partition
layer. The aforementioned works adapted to the network
dynamics, e.g., dynamic channel condition [26], on-device
workload [12], and server workload [6], by making offloading
decision for each DNN task upon its generation. In order
to make the device-edge collaboration more adaptive, the
offloading decision of each DNN task was adjusted during the
on-device DNN inference based on the real-time estimation
and the statistics of channel conditions [11].

Different from the existing works, this work proposes a
DT-assisted approach to device-edge collaboration on DNN
inference that can adapt to the dynamic on-device and edge
server computing workloads with unknown task arrival statis-
tics. In addition, we investigate how to reduce the signaling
overhead for and the complexity of adaptive device-edge
collaboration on DNN inference, by establishing a DT and by
analyzing properties of the workload evolution, respectively.
Moreover, instead of simply employing a learning algorithm
to identify unknown network dynamics in offloading decision
making, we investigate how a DT can be used to augment the
training data for empowering such a learning algorithm.

III. SYSTEM MODEL

In this section, we first introduce the models of DNN
task generation, computing and queuing. Then, we define the
utility of a DNN task, which incorporates the delay, inference
accuracy, and energy consumption for processing a DNN task.

A. Task Generation Model

Consider an AIoT device that connects to an edge com-
puting server through an access point (AP). The AIoT device
collects sensing data, such as images, and generates computing
tasks, such as object recognition, for processing the collected
data. The time horizon is divided into slots with equal duration
denoted by �T , and the index of a time slot is denoted by
t ∈ {1, 2, . . .}. At the beginning of each time slot, a task
is probabilistically generated by the device with an unknown
probability [12]. Let �Tn represent the interval between the
time instants when the (n+1)th and the nth tasks are generated,
where n ∈ {1, 2, . . . , N}, and let �T0 represent the time instant
when the first task is generated.

B. Task Computing Model

For processing the tasks, one full-size DNN with L consec-
utive layers (e.g., L = 7 in Fig. 1) is deployed at the edge
server, and one shallow DNN with fewer layers is deployed
at the AIoT device. For DNNs that contain parallel layers
or residual blocks, the layers in each residual block or the
layers with parallel execution can be abstracted as one logical
layer [24], [27]. In the design and training of the full-size and
shallow DNNs, the BranchyNet architecture [28] is used such

Fig. 1. System model.

that the first le layers of the two DNNs are identical (e.g.,
the three blue-colored layers in Fig. 1). The remaining part
of the shallow DNN is referred to as an exit branch, and the
layers therein (e.g., the two orange-colored layers in Fig. 1)
are abstracted as one logical layer, i.e., the (le + 1)th layer of
the shallow DNN.

Each time before the AIoT device executes the next layer
in the shallow DNN, a network controller decides whether
the AIoT device should stop locally processing the task at
this point and offload the task to the edge server instead. For
the nth task, when the task is offloaded to the edge server
or locally completed, the number of executed layers in the
shallow DNN for the task is determined, which is denoted by
xn ∈ {0, 1, . . . , le +1}. We define xn as the offloading decision
for the nth task, which can result in three DNN inference
scenarios as illustrated in Fig. 1.

1) Edge-Only Inference: If xn = 0, the nth DNN task is
offloaded to the edge server without being processed by
any layer of the shallow DNN by the device. In other
words, the task is completely processed by the full-size
DNN at the edge server.

2) Device-Edge Joint Inference: If 1 ≤ xn ≤ le, the nth
DNN task is locally processed by the first xn layers
of the shallow DNN (e.g., xn = 2 for the device-edge
joint inference scenario in Fig. 1). Then, the output of
the xnth layer of the shallow DNN, as the intermediate
result, is uploaded to the edge server and processed by
the remaining layers of the full-size DNN.

3) Device-Only Inference: If xn = le + 1, the nth DNN
task is not offloaded to the edge server but completely
processed by the shallow DNN at the device.

To assist in making offloading decisions of DNN tasks, as
shown in Fig. 1, DTs are constructed by the network con-
troller. Specifically, the network controller collects the network
information, i.e., the per-layer on-device DNN inference delay
and the information on task arrivals at the AIoT device and
the edge server. The collected information is processed by DT
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Fig. 2. Task queuing model.

models to estimate the status of the AIoT device and the edge
server for assisting in making offloading decisions of DNN
tasks. Detailed introduction of the DTs will be presented in
Section IV.

C. Task Queuing Model

As shown in Fig. 2, the task queuing model includes
queuing at the device and queuing at the edge server.

1) On-Device Task Queue: The device has one computing
unit and one transmission unit, which can, respectively, pro-
cess and transmit only one task at any time instant. The tasks
that have been generated but not yet processed or offloaded
are stored in an on-device task queue following the first-come-
first-serve (FCFS) rule. When the computing unit becomes
idle, the first task in the on-device task queue leaves the queue.
If the transmission unit is also idle, edge-only inference, i.e.,
the transmission unit offloads the task to the edge server
without any on-device processing, can be chosen for the task.
Otherwise, the task will be processed by the computing unit
until the transmission unit is idle and a decision to offload
the task is made. At the beginning of the (t + 1)th time slot,
the on-device computing workload in terms of the number
of tasks in the on-device queue, denoted by QD(t + 1), is
updated as

QD(t + 1) = QD(t) + I(t + 1) − O(t + 1) (1)

where I(t) equals to 1 if one DNN task is generated in the
(t −1)th time slot and 0 otherwise; O(t) equals to 1 if a DNN
task leaves the on-device task queue at the beginning of the
tth time slot and 0 otherwise.

2) Edge Server Queue: The edge server has one computing
unit, which can process only one task at any time instant, and
maintains a computing queue for tasks yet to be processed. The
computing tasks arriving at the edge server in each time slot
will either start to be processed by the computing unit or enter
the computing queue at the beginning of the next time slot.1

The edge server workload is the sum of CPU cycles required
to complete the processing of the task in the computing unit as
well as all the tasks in the computing queue. At the beginning
of the (t + 1)th time slot, the edge server workload, denoted
by QE(t + 1), is updated as

QE(t + 1) = max
{
QE(t) − f E�T, 0

}+ D(t) + W(t) (2)

1The processing order of the computing tasks arriving at the edge server in
a time slot is determined by a task scheduling algorithm. For simplicity, we
assume that the task offloaded by the considered device will be first processed.

where D(t) and W(t) represent the workload of the tasks from
the considered device and other devices connected to the edge
server, respectively, in the tth time slot; f E represents the
computation frequency of the edge server in the unit of CPU
cycles per second.

D. Task Utility

In this section, we first derive the delay, inference accuracy,
and energy consumption of processing a DNN task. Then, we
define the utility of a DNN task.

1) Delay: Depending on the task offloading decision, the
processing of a DNN task can incur 1) on-device queuing
delay; 2) on-device inference delay; 3) transmission delay from
uploading the intermediate result; 4) queuing delay at the edge
server; and 5) edge inference delay. The delay from delivering
the task result to the device is neglected due to the typically
small size of the result.

a) On-device inference delay: The on-device inference
delay of the nth task is the sum of the execution delay of the
first xn layers in the shallow DNN, given by

T lc
n (xn) =

{∑xn
l=1 dD

l , xn ≥ 1
0, xn = 0

(3)

where dD
l represents the time to execute the lth layer in the

shallow DNN by the device ∀l ∈ {1, 2, . . . , le + 1}. The
value of dD

l is rounded to an integer multiple of the time slot
duration �T .

b) On-device queuing delay: The queuing delay of the
nth DNN task at the device is determined by the offloading
decisions for the DNN tasks generated earlier, which are
denoted as xn−1 = {x1, x2, . . . , xn−1}. Let x0 = ∅ for
consistency. The on-device queuing delay for the nth task,
denoted by T lq

n (xn−1), can be calculated by

T lq
n (xn−1)

=
{

0, n = 1

max{T lq
n−1(xn−2) + T lc

n−1(xn−1) − �Tn−1, 0}, n ≥ 2.
(4)

c) Data uploading delay: If edge-only inference or
device-edge joint inference is adopted for the nth DNN task,
i.e., 0 ≤ xn ≤ le, the task processing will incur an uploading
delay denoted by Tup

n . The data to be uploaded is the input to
the (xn + 1)th layer of the shallow DNN, and the uploading
delay can be calculated by

Tup
n (xn) =

{
sxn/R0, 0 ≤ xn ≤ le
0, xn = le + 1

(5)

where sl represents the size of the data to the (l + 1)th layer
of the shallow DNN ∀l ∈ {0, 1, . . . , le}; R0 is the uplink
transmission rate between the device and the AP.

d) Edge queuing delay: If the nth DNN task is offloaded
to the edge server, i.e., xn ≤ le, the task processing can incur
a queuing delay at the edge server, given by

Teq
n (xn) =

{
QE
(
tn,xn

)
/f E

s , 0 ≤ xn ≤ le
0, xn = le + 1

(6)
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where tn,xn is the index of the time slot when the nth DNN
task arrives at the edge server.2

e) Edge inference delay: If xn ≤ le, the task processing
will incur an inference delay at the edge server from executing
the remaining layers of the full-size DNN, given by

Tec
n (xn) =

{∑L
l=xn+1 dE

l , 0 ≤ xn ≤ le
0, xn = le + 1

(7)

where dE
l represents the execution time in the lth layer of the

full-size DNN by the edge server.
Summarizing the delay in (3) to (7), the overall delay of

the nth DNN task, denoted by Tn(xn), can be calculated by

Tn(xn) = T lq
n (xn−1) + T lc

n (xn)

+ Tup
n (xn) + Teq

n (xn) + Tec
n (xn). (8)

2) Inference Accuracy: The accuracy of the task result is
denoted by An(xn), which equals ηE if the task is offloaded
to the edge server for processing by the full-size DNN, i.e.,
1 ≤ xn ≤ le, and ηD if the result is derived by the shallow
DNN, i.e., xn = le +1. The accuracy of the task result derived
by the full-size DNN is higher than that derived by the shallow
DNN, i.e., ηE > ηD.

3) Energy Consumption: The energy consumption for pro-
cessing the nth DNN task, denoted by En(xn), includes two
parts, i.e., the energy consumption for DNN inference and that
for task data uploading. The overall energy consumption can
be calculated by

En(xn) = κD(f D
s

)3
T lc

n + κE(f E
s

)3
Tec

n + pupTup
n (9)

where κD and κE are the energy efficiency coefficients of
the device and the edge server, respectively [19]; pup is the
transmit power of the device.

4) Task Utility: We define the utility of the nth DNN task,
denoted by Un(xn), as a weighted sum of the overall delay,
inference accuracy, and energy consumption of the task

Un(xn) = −Tn(xn) + αAn(xn) − βEn(xn) (10)

where α and β are positive weights for the inference accuracy
and energy consumption, respectively.

IV. DT-ASSISTED ADAPTIVE DEVICE-EDGE

COLLABORATION ON DNN INFERENCE

In this section, we first introduce the data required to estab-
lish the DTs of two processes, i.e., a DT of the on-device DNN
inference and a DT of the computing workload evolution.
Then, we introduce how the DT of on-device inference can be
established to estimate the on-device inference status, and how
the DT of computing workload evolution can be established
to emulate the on-device workload and edge server workload,
respectively. Finally, assisted by the two DTs, an approach
to adaptive device-edge collaboration on DNN inference is
proposed.

2Assuming a high-data transmission rate, the data uploading for a DNN
task can be completed within one time slot.

A. Data for Establishing DTs

The following information for establishing the DTs is
estimated or collected by the network controller.

1) Per-Layer On-Device Inference Delay: The delay for
executing each layer of the shallow DNN by the device,
i.e., {dD

l , l = 1, 2, . . . , le + 1}, is estimated by the
network controller. Specifically, the estimation can be
based on a) the number of FLOPs required for each layer
and the computing capability of the device [29] or b)
regression models given the configuration of each layer,
such as the input and output data sizes [23].

2) Task Generation and Arrival: At the beginning of each
time slot, the controller collects information on a)
whether a DNN task is generated by the AIoT device at
the beginning of each time slot, i.e., {I(t), t = 1, 2, . . .}
and b) the workload of computing tasks arriving at the
edge server not from the considered device in the time
slot, i.e., {W(t), t = 1, 2, . . .}.

B. DT of On-Device DNN Inference

For each DNN task, the network controller determines
whether to continue the on-device inference before the device
executes each layer in the shallow DNN. As a result, the
change of on-device DNN inference status, i.e., a layer is about
to be locally executed, needs to be known by the network
controller. Instead of acquiring the on-device inference status
from the device in real-time, which can result in large signaling
overhead, the network controller establishes a DT to emulate
the on-device inference and estimate the on-device inference
status. Denote the index of the time slot right before the on-
device execution of the (l+1)th layer for the nth DNN task by
tn,l ∀l ∈ {0, 1, . . . , le}. Then, tn,l can be estimated based on
the time instant when the nth DNN task is generated, the on-
device queuing delay of the nth DNN task, and the on-device
inference delay before executing the (l + 1)th layer

tn,l(xn−1) = 1

�T

((
n−1∑

i=0

�Ti

)

+ T lq
n (xn−1) +

l∑

i=0

dD
i

)

. (11)

In addition, tn,le+1(xn−1) is also calculated, which represents
the index of the next time slot if the task were completed by
device-only inference.

C. DT of Computing Workload Evolution

The evolution of the computing workload on the AIoT
device and the edge server affects the average utility of the
DNN tasks. To capture the evolution with unknown statistics,
a learning algorithm can be applied when determining whether
to continue the on-device inference for a DNN task. Such an
algorithm can be trained based on the utility of the tasks and
the decisions made for the tasks. However, if a decision to
offload a task is made, options of continuing the on-device
inference for the task cannot be evaluated for training the
algorithm. This is because offloading the task would affect the
workload evolution, which makes the workload evolution if
the on-device inference continued unobservable.

To estimate the on-device and edge server computing
workload status under each candidate offloading decision for
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a DNN task, the DT of computing workload evolution is
established. Specifically, for each task, the DT emulates the
workload evolution in a hypothetical case, i.e., if the task
processing were completed by the shallow DNN at the device.
The time slots to execute the shallow DNN for the nth task are
denoted by t ∈ {tn,0, tn,0 +1, . . . , tn,le+1 −1}, and the emulated
on-device workload and edge server workload, denoted by
Q̃D(t) and Q̃E(t), respectively, are calculated by

Q̃D(t) =
{

QD(t), t = tn,0

Q̃D(t − 1) + I(t), otherwise
(12a)

Q̃E(t) =
{

QE(t), t = tn,0

max{Q̃E(t − 1) − f E�T, 0} + W(t), otherwise.
(12b)

The difference between the actual computing workloads
in (1) and (2) and the emulated computing workloads in (12)
is that the former are calculated based on the actual offloading
decision of a DNN task while the latter are calculated in
the hypothetical case that the task processing were locally
completed. In such a hypothetical case, the decrease of the
computation workload at the device due to the offloading of
the task, i.e., O(t) in (1), and the increase of the computation
workload at the edge server due to the offloading of the task,
i.e., D(t) in (2), both equal zero. Correspondingly, (12) for
calculating the emulated workloads in the hypothetical case
omits O(t) and D(t), which is the major difference with (1)
and (2).

D. Analysis of DTs’ Overheads

The data collection and processing for DTs can result in a
delay and resource consumption. Nevertheless, such a delay
and resource consumption are relatively low. This is because,
first, the data collected for DTs as described in Section IV-A
have a small size. Second, the processing of the collected
data, following (11) and (12), only involves several addition
operations. Third, only the recently collected data, i.e., the
information on tasks that arrive at the AIoT device and the
edge server during the on-device processing of the current
DNN task, are required for data processing. As a result, the
outdated data, such as the information on tasks, that arrive
during the on-device processing of the preceding DNN tasks,
can be discarded to minimize the cost of storing the DTs.

E. DT-Assisted Approach to Adaptive Device-Edge
Collaboration

As shown in Fig. 3, with the DT of on-device inference
and the DT of computing workload evolution, we propose
an approach to adaptive device-edge collaboration on DNN
inference, which involves the following four steps.

1) Step 1 (Task Information Gathering): In the beginning of
each time slot, the device sends the DNN task generation
indicator I(t) to the controller, which then calculates the
gaps of task generations {�Tn, n = 0, 1, . . . , (

∑
t I(t))

− 1}. After the controller determines the offloading
decision for the (n − 1)th DNN task, i.e., xn−1, the
on-device queuing delay of the nth DNN task, i.e.,
T lq

n (xn−1), is calculated. Then, the controller utilizes

Fig. 3. DT-Assisted approach to adaptive device-edge collaboration on DNN
inference.

the DT of on-device inference and (11) to estimate
the indices of the time slots when the device would
execute each layer of the shallow DNN for the nth
task, i.e., {tn,l(xn)}le

l=0, assuming the task continues to be
processed locally.

2) Step 2 (Learning-Assisted Offloading Decision Making):
After the transmission unit is idle, i.e., t ≥ tn,̂xn , at
the beginning of any time slot t ∈ {tn,l(xn−1)}le

l=̂xn
,

leveraging a learning-assisted algorithm, the controller
determines whether the device should continue the on-
device execution of the (l + 1)th layer of the shallow
DNN or upload the intermediate result to the edge server.

3) Step 3 (Signaling of Task Offloading): If the controller
determines to stop the on-device inference for the nth
DNN task in the beginning of the tth time slot, it
sends a signal to the device, corresponding to setting
O(t) = 1, to the device. The device then uploads the
intermediate result to the edge server for executing the
remaining layers of the full-size DNN. Without receiving
this signal, the device will continue executing the next
layer of the shallow DNN.

4) Step 4 (Training of Learning-Assisted Offloading
Algorithm): After the time slot t = tn,le+1(xn−1), the
workload evolution if the nth DNN task were locally
completed by the shallow DNN, is generated using the
DT of computing workload evolution and (12). Then,
a learning-assisted offloading algorithm will be trained
with the data augmented by the emulated workload
evolution.

V. PROBLEM FORMULATION AND TRANSFORMATION

In this section, we formulate the problem of maximizing
the average utility of DNN tasks generated by the considered
AIoT device. Due to the stochastic DNN task generation, we
transform the problem into multiple subproblems, which are
solved sequentially to make the offloading decision for each
task given the decisions for its preceding tasks.
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A. Problem Formulation

We aim to maximize the average utility of DNN tasks gen-
erated at the considered device by optimizing the offloading
decisions for the tasks. The problem is given by

(P1) maxxN lim
N→∞

1

N

N∑

n=1

Un(xn) (13a)

s.t. 0 ≤ xn ≤ le + 1 ∀n ∈ {0, 1, . . . , N} (13b)
(

n−1∑

i=m

�Ti

)

+ T lq
n (xn−1) + T lc

n (xn) ≥ T lq
m (xm−1)

+ T lc
m (xm) + Tup

m (xm)

∀m ∈ {1, . . . , n − 1}, n ∈ {1, 2, . . . , N} (13c)

where (13c) ensures that the nth DNN task can be offloaded to
the edge server only when the offloading of preceding DNN
tasks, if any, has been completed and the transmission unit
is idle. Note that T lc

n (xn) monotonically increases with xn.
As a result, given any xn−1, we can find for the nth task a
minimum number of layers in the shallow DNN, denoted by
x̂n(xn−1), which should be locally executed to satisfy (13c).
An equivalent form of (13b) and (13c) is

x̂n(xn−1) ≤ xn ≤ le + 1 ∀n ∈ {0, 1, 2, . . . , N}. (14)

B. Problem Transformation

Solving (P1) requires the joint optimization of offloading
decisions for all the DNN tasks, which is challenging due
to the stochastic task generation at the device with unknown
statistics [12]. In this section, we first define the long-term
utility of one task, which incorporates the main impact of
the offloading decision of the task on the other tasks, i.e., the
on-device queuing delay of the other tasks resulting from the
on-device inference of the task.3 Then, we transform (P1) into
the online optimization of the offloading decision for each
DNN task given the offloading decisions of the preceding
DNN tasks, with the objective to maximize the expected long-
term utility of each DNN task.

1) Long-Term Utility of DNN Task: The on-device queuing
delay of a DNN task results from the on-device inference
for its preceding tasks. As shown by the red lines in Fig. 4,
we first decompose the on-device queuing delay of a task as
the summation of the queuing delay resulting from each of
its preceding tasks. Then, we define the long-term on-device
queuing delay for processing each task, which is the sum on-
device queuing delay of subsequent tasks resulting from the
on-device processing of the task. For brevity, we omit the
parentheses and the offloading decision variables in notations.

First, define Dlq
m→n as the on-device queuing delay of the

nth DNN task directly resulting from the on-device inference

3Although the edge queuing delay of a DNN task from the considered
device can be affected by the offloading decisions of its preceding DNN tasks,
such effect is relatively small as the edge queuing delay is affected by the
computing tasks offloaded to the edge server from the other devices.

Fig. 4. Decomposition of the on-device queuing delay T
lq
n .

of the mth DNN task, calculated by

Dlq
m→n =

{
0, m ≥ n

max{min {T lq
m −∑n−1

i=m �Ti, 0} + T lc
m , 0}, m < n.

(15)

When m ≥ n, Dlq
m→n equals zero since tasks leave the on-

device task queue following the FCFS rule; when m < n,
the maximum Dlq

m→n is the on-device inference delay of the
mth task, i.e., T lc

m (e.g., Dlq
2→3 = T lc

2 in Fig. 4). Given the
offloading decision of the mth DNN task, Dlq

m→n decreases
with the increase of the gap between the generation instants
of the mth and the nth tasks (e.g., Dlq

1→3 decreases with the
increase of �T1 or �T2 in Fig. 4).

Proposition 1: The on-device queuing delay of the nth
DNN task is the sum of the on-device queuing delay resulting
from all the N DNN tasks generated by the device

T lq
n =

N∑

m=1

Dlq
m→n. (16)

Proof: See Appendix A.
Proposition 2: Define the queuing delay of all N DNN

tasks due to the on-device inference for the nth DNN task, i.e.,
Dlq

n = ∑N
m=1 Dlq

n→m, as the long-term on-device queuing delay
of the nth DNN task, which can be calculated as follows:

Dlq
n =

{
0, T lc

n = 0
∑tn,0+

(
T lc

n /�T
)−1

t=tn,0
QD(t)�T, otherwise.

(17)

Proof: See Appendix B.
Equation (17) can be interpreted as follows. First, if a DNN

task is directly offloaded to the edge server without any on-
device inference, i.e., T lc

n = 0, the on-device queuing delay
of the other tasks would not be increased, i.e., Dlq

n = 0.
Otherwise, if the device is processing the task in the tth time
slot, the on-device queuing delay of each task in the on-device
task queue will be increased by the time duration of a time
slot, i.e., �T . As a result, the sum of the increased on-device
queuing delay for the tasks in the on-device queue in the tth
time slot is QD(t)�T . The increased queuing delay of the
subsequent tasks due to the on-device inference for the nth
task is thus the summation term in (17).

By substituting T lq
n (xn) in the overall delay (8) with Dlq

n (xn),
we define the time cost of the nth task as

Cn(xn) = Dlq
n (xn) + T lc

n (xn)

+ Tup
n (xn) + Teq

n (xn) + Tec(xn) (18)
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Fig. 5. DT and learning-assisted algorithm for DNN task offloading decision making.

where Dlq
n is a function of xn since tn,0 and T lc

n in (17) are
functions of xn−1 and xn, respectively.

By substituting Tn(xn) in (10) with Cn(xn), we define the
long-term utility of the nth DNN task by

Ult
n (xn) = −Cn(xn) + αAn(xn) − βEn(xn). (19)

Compared with the original utility of a DNN task in (10),
which incorporates the on-device queuing delay of the task,
the long-term utility in (19) incorporates the on-device queuing
delay of subsequent tasks due to the on-device inference
for the task. As a result, when sequentially and individually
maximizing the long-term utility of each task, the on-device
queuing delay of subsequent tasks can be minimized accord-
ingly.

Based on Proposition 1, the sum of the on-device queuing
delay of all the N DNN tasks can be calculated by

N∑

n=1

Dlq
n =

N∑

n=1

(
N∑

m=1

Dlq
n→m

)

=
N∑

n=1

(
N∑

m=1

Dlq
m→n

)

=
N∑

n=1

T lq
n . (20)

Thus, we have

N∑

n=1

Un(xn) =
N∑

n=1

Ult
n (xn) (21)

which indicates that the average utility of the N DNN tasks,
as the objective in (P1), equals to the average long-term utility
of the N DNN tasks.

2) Problem Transformation: Due to the stochastic DNN
task generation at the considered device and the task arrival
at the edge server, we transform (P1) into the sequential and
individual maximization of the expected long-term utility of a
task given the offloading decisions of all preceding tasks

(P2) max̂xn(xn−1)≤xn≤le+1 E

[
Ult

n (xn)
]
. (22)

VI. DT AND LEARNING-ASSISTED ALGORITHM

FOR OFFLOADING DECISION MAKING

In this section, to solve the transformed problem (P2),
we propose an algorithm for DNN task offloading decision
making, assisted by DTs and machine learning techniques as
shown in Fig. 5. In this algorithm, we use the optimal stopping
theorem and a neural network to make offloading decisions,
and propose DT-assisted training for the neural network.

For brevity, we denote Dlq
n (xn = l|xn−1), Teq

n (xn = l|xn−1)

and Ult
n (xn = l|xn−1) by Dlq

l , Teq
l and Ult

l , which, respectively,
represent the long-term on-device queuing delay, the edge
queuing delay and the long-term task utility if the offloading
decision of the nth DNN task is l, i.e., xn = l, given that
the offloading decisions of the first n − 1 DNN tasks are
xn−1. To emphasize the impact of the long-term on-device
queuing delay and the edge queuing delay on the long-term
utility of a DNN task, we represent Ult

l as Ult
l (Dlq

l , Teq
l ). In

addition, we define Dlq
l = {Dlq

0 , Dlq
1 , . . . , Dlq

l } and Teq
l =

{Teq
0 , Teq

1 , . . . , Teq
l }.

A. DT and Learning-Assisted Offloading Decision Making

1) Continuation Value-Based Offloading Decision Making:
Define Vl(D

lq
l , Teq

l ) as the maximum expected long-term utility
of a DNN task when l layers of the shallow DNN have been
executed for the task, where l ∈ {0, 1, . . . , le+1}. Such a value
satisfies a recursion rule

Vl

(
Dlq

l , Teq
l

)
=
⎧
⎨

⎩

max
{

Ult
l

(
Dlq

l , Teq
l

)
, Cl

(
Dlq

l , Teq
l

)}
, l ≤ le

Ult
le+1

(
Dlq

le+1, Teq
le+1

)
, l = le + 1

(23)

where ∀l ∈ {0, 1, . . . , le}, we have

Cl

(
Dlq

l , Teq
l

)
= E

[
Vl+1

(
Dlq

l+1, Teq
l+1

)
|Dlq

l , Teq
l

]
(24)

referred to as the continuation value [30].
Proposition 3: Based on optimal stopping [31], the optimal

offloading decision for maximizing the expected long-term
utility of the nth DNN task is

xn =
{

min{�}, if � 
= ∅
le + 1, otherwise

(25a)
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where

� =
{

l | x̂n ≤ l ≤ le, Ult
l

(
Dlq

l , Teq
l

)
≥ Cl

(
Dlq

l , Teq
l

)}
. (25b)

The continuation value-based offloading decision making
given in (25) is explained as follows. For the nth DNN task,
after the device executes l layers of the shallow DNN, where
l ∈ {̂xn, x̂n + 1, . . . , le}, if the long-term utility of offloading
the DNN task now, i.e., Ult

l (Dlq
l , Teq

l ), is no less than the
continuation value, i.e., Cl(D

lq
l , Teq

l ), the on-device inference
for the task should be stopped for offloading the task to the
edge server. Otherwise, the device should continue executing
the (l + 1)th layer of the shallow DNN.

2) DT and Learning-Assisted Offloading Decision Making:
The continuation value for each layer of the shallow DNN can
be obtained using backward induction [31], which however
requires the prior statistics of the workload evolution and
introduces computing overhead [32]. Inspired by [30], our
approach is to construct a neural network referred to as
ContValueNet to generate an approximated continuation value
Ĉθ (l + 1, Dlq

l , Teq
l ) given the input {l + 1, Dlq

l , Teq
l }, where θ

represents the parameters in ContValueNet. By substituting the
continuation value in (25b) with the approximated continuation
value, a learning-assisted offloading algorithm is obtained.
Specifically, as shown in the green blocks in Fig. 5, through
the DT of on-device DNN inference given in (11), the con-
troller is informed when a layer of the shallow DNN is about
to be executed at the device. Before the on-device execution of
the (l+1)th layer by the device, the controller calculates 1) the
queuing delay Dlq

l and Teq
l ; 2) calculates the long-term utility

of the task Ult
l (Dlq

l , Teq
l ); and 3) approximates the continuation

value by the ContValueNet, i.e., Ĉθ (l + 1, Dlq
l , Teq

l ). If the
continuation value is greater than the utility, the controller lets
the device execute the next layer for the task. Otherwise, the
network controller lets the device upload the input data of the
(l + 1)th layer in the full-size DNN to the edge server.

B. DT-Assisted Training of ContValueNet

As shown in the blue blocks in Fig. 5, DTs are leveraged
to assist in training ContValueNet, which involves three steps,
i.e., DT-assisted data augmentation, reference continuation
value construction, and online ContValueNet training.

1) DT-Assisted Data Augmentation: If the nth DNN task
is determined to offload to the edge server, i.e., xn ≤ le, the
controller emulates the long-term on-device queuing delay and
the edge queuing delay given the remaining potential offload-
ing decisions for the task, i.e., {Dlq

l }le+1
l=xn+1 and {Teq

l }le+1
l=xn+1,

using the DT of workload evolution and (12). Specifically,
{Dlq

l }le
l=xn+1 are calculated by substituting QD(t) in (17) with

Q̃D(t) in (12a), and {Teq
l }le+1

l=xn+1 are calculated by substituting
the on-device workload in (6) with the emulated on-device
workload in (12b). Then, the controller calculates the approx-
imated continuation values {Ĉθ (l + 1, Dlq

l , Teq
l )}le+1

l=xn+1 using

ContValueNet. Combining the above values with {Dlq
l }xn

l=0,
{Teq

l }xn
l=0 and {Ĉθ (l + 1, Dlq

l , Teq
l )}xn

l=0 which are collected dur-
ing the decision making for the nth DNN task, the controller

obtains {Dlq
l }le+1

l=0 , {Teq
l }le+1

l=0 and {Ĉθ (l + 1, Dlq
l , Teq

l )}le+1
l=0 ,

which will be used to construct the reference continuation
values.

2) Reference Continuation Value Construction: To
optimize the parameters θ of ContValueNet, reference
continuation values of evaluating the approximation error of
ContValueNet should be constructed [30].

First, for any l ∈ {0, 1, 2, . . . , le}, we calculate V̂l(D
lq
l , Teq

l )

by substituting the continuation value in (23) with the approx-
imated continuation value

V̂l

(
Dlq

l , Teq
l

)
= max

{
Ult

l

(
Dlq

l , Teq
l

)
, Ĉθ

(
l + 1, Dlq

l , Teq
l

)}
.

(26)

Then, the reference continuation value can be obtained
according to (24)

C̃l

(
Dlq

l , Teq
l

)
= E

[
V̂l+1

(
Dlq

l+1, Teq
l+1

)
|Dlq

l , Teq
l

]
. (27)

Due to the unknown statistics, we use the single-sample
estimation method [33] to approximate the expectation term
in (27)

E

[
V̂l+1

(
Dlq

l+1, Teq
l+1

)
|Dlq

l , Teq
l

]
≈ V̂l+1

(
Dlq

l+1, Teq
l+1

)
. (28)

Finally, by combining (27) and (28), and calculating
V̂l+1(D

lq
l+1, Teq

l+1) in (28) according to (26), the reference
continuation value is obtained by

C̃l

(
Dlq

l , Teq
l

)
= max

{
Ult

l+1

(
Dlq

l+1, Teq
l+1

)
, Ĉθ

(
l + 2, Dlq

l+1, Teq
l+1

)}
.

(29)

Remark 1: To calculate the reference continuation value
C̃l(D

lq
l , Teq

l ) in (29), Dlq
l+1 and Teq

l+1 are required. As a result,

with {Dlq
l }xn

l=0 and {Teq
l }xn

l=0 collected in the offloading decision
making for the nth task, reference continuation values before
executing each of the first xn layers of the shallow DNN can be
obtained, where xn ≤ le +1. In contrast, with DT-assisted data
augmentation, which generates {Dlq

l }le+1
l=xn+1 and {Teq

l }le+1
l=xn+1,

reference continuation values before executing each of the
le + 1 layers in the shallow DNN can be obtained. In this way,
the data for training ContValueNet is augmented.

3) Online ContValueNet Training: To mitigate the impact
of the one-sample estimation method in (28), ContValueNet
is trained in an online manner with a carefully designed
loss function. Specifically, the loss function for training
ContValueNet after processing the first n̂ DNN tasks, where
1 ≤ n̂ ≤ M, is denoted by LNN(θ, n̂) and defined by

LNN(θ, n̂)

= 1

n̂(le + 1)

n̂∑

n=0

le∑

l=0

[
Ĉθ

(
l + 1, Dlq

l , Teq
l

)
− C̃l

(
Dlq

l , Teq
l

)]2

(30)

which is the mean squared error of the continuation value
approximation. Then, the gradient descent method is applied
to optimize the parameters θ in ContValueNet to minimize the
loss function. Specifically, the update rule of θ is

θ ′ = θ − γ∇θLNN(θ, n̂) (31)

Authorized licensed use limited to: University of Waterloo. Downloaded on March 31,2024 at 17:26:22 UTC from IEEE Xplore.  Restrictions apply. 



12902 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 7, 1 APRIL 2024

where γ is the learning rate; ∇θ LNN(θ, n̂) is the first-order
derivative of the loss function with respect to θ .

VII. OFFLOADING DECISION SPACE REDUCTION

The complexity of the approach to adaptive device-edge
collaboration on DNN inference in Section VI-A can be high
due to the potentially large number of layers in the DNN. In
this section, from two aspects, we will derive necessary con-
ditions for an offloading decision to be optimal in maximizing
the expected long-term utility. Correspondingly, we investigate
decision space reduction to reduce the complexity.

A. DNN Layers With Negligible Execution Time

The execution time of some layers in a DNN, e.g., pooling
layers in a convolutional neural network (CNN), is negligible
due to relatively simple operations [34]. As a result, such
a layer has a negligible impact on the long-term on-device
queuing delay and the edge queuing delay of a DNN task.
In contrast, the data size before and after the execution of
such layers can be drastically changed. For example, a max-
pooling layer downsamples input data to learn spatially robust
features for image recognition tasks, while a max-unpooling
layer upsamples the input data to restore the original data size
for semantic segmentation tasks.

Remark 2: If a layer in a DNN has negligible execution
time and outputs data with reduced (increased) size, offloading
the DNN task before (after) the on-device execution of the
layer cannot be optimal for maximizing the expected long-term
utility of the DNN task. This is because offloading a DNN
task after the data size is increased or before the data size is
reduced would result in a higher data uploading delay. Based
on this necessary condition, we can treat each max-pooling
layer and its preceding layer as one logical layer and each
max-unpooling layer and its succeeding layer as one logical
layer in the offloading decision making for a DNN task.

B. Properties of Workload Evolution

Based on the properties in the evolution of the on-device
workload and the edge server workload over time, properties in
the evolution of long-term on-device queuing delay and edge
queuing delay (as the on-device inference continues) can be
derived, respectively.

Property 1: During the on-device inference for a DNN
task, the on-device workload QD(t) is nondecreasing with t.
In addition, the on-device inference delay T lc

n increases with
xn. As a result, when xn increases, the long-term on-device
queuing delay Dlq

n (xn), calculated by (17), is nondecreasing
with xn. The increase of Dlq

n (xn) is minimized if no DNN
tasks are generated after the controller starts to make the
offloading decision for the nth DNN task, i.e., QD(t) =
QD(tn,̂xn) ∀t ≥ tn,̂xn . The minimum increase is equal to the
product of QD(tn,̂xn) and the increase of on-device inference
delay T lc

n (xn).
Property 2: The edge server workload can decrease or

increase during the extended on-device inference for the nth
task due to the increase of xn. The decrease of the workload
is maximized if no tasks arrive at the edge server during

the extended on-device inference, and the maximum decrease
is equal to the workload that the edge server can process
during the extended on-device inference. As a result, given
the increase of xn, the maximum decrease of the edge queuing
delay Teq

n (xn), calculated by dividing the edge server workload
by the edge server processing capability, equals to the increase
of the on-device inference delay T lc

n (xn).
Using the above properties, a necessary condition for an

offloading decision xn ∈ {̂xn, . . . , le} to be optimal can be
derived.

Lemma 1: Define a deterministic part in the long-term

utility of the nth DNN task as Upt
n (xn)

def= −Tup
n (xn)−Tec

n (xn)−
βEn(xn). If x∗

n ≤ le maximizes E[Ult
n (xn)], then for any xn ∈

{̂xn, . . . , x∗
n}, it holds

Upt
n

(
x∗

n

) ≥ Upt
n (xn) + QD(t = tn,̂xn

)(
T lc

n (x∗
n) − T lc

n (xn)
)

(32)

where tn,̂xn is the index of the time slot from which the nth
DNN task can be offloaded to the edge server.

Proof: Note that Ult
n (xn) = Upt

n (xn) − T lc
n (xn) − Dlq

n (xn) −
Teq

n (xn) + αAn(xn). If x∗
n ≤ le maximizes E[Ult

n (xn)], then for
any xn ∈ {̂xn, . . . , x∗

n}, we have

Upt
n

(
x∗

n

)− T lc
n

(
x∗

n

)− E

[
Dlq

n

(
x∗

n

)]− E
[
Teq

n

(
x∗

n

)]+ αAn
(
x∗

n

)

≥ Upt
n (xn) − T lc

n (xn) − E

[
Dlq

n (xn)
]

− E
[
Teq

n (xn)
]+ αAn(xn).

(33)

When xn ≤ le (including the case when x∗
n ≤ le), the nth

DNN task is offloaded to the edge server for processing by
the full-size DNN. The inference accuracy is thus the same
under the two cases

An
(
x∗

n

) = An(xn). (34)

According to Property 1, we have

Dlq
n

(
x∗

n

) ≥ Dlq
n (xn) + QD(t = tn,̂xn

)(
T lc

n (x∗
n) − T lc

n (xn)
)
. (35)

According to Property 2, we have

T lc
n

(
x∗

n

)− T lc
n (xn) ≥ Teq

n (xn) − Teq
n

(
x∗

n

)
. (36)

Combining (33)–(35), and (36), (32) is obtained.
In addition, we derive a necessary condition of the device-

only inference, i.e., xn = le + 1, to be optimal in maximizing
the long-term utility Ult

n (xn).4

Lemma 2: If xn = le + 1 maximizes the long-term task
utility Ult

n (xn), then

Un(le + 1) ≥ Un(̂xn)

+ QD(t = tn,̂xn

)(
T lc

n (le + 1) − T lc
n (̂xn)

)
. (37)

Proof: Since xn = le + 1 maximizes the long-term task
utility Ult

n (xn), we have

Ult
n (le + 1) ≥ Ult

n (̂xn). (38)

4The long-term utility of a task by device-only inference would not be
affected by the dynamic workload at the edge server, while the utility by the
other inference scenarios would be affected. Due to the unknown statistics of
the dynamic workload, we cannot derive any necessary condition for device-
only inference to be optimal in maximizing the expected long-term utility.
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Algorithm 1: Decision Space Reduction

1 Input: x̂n;
2 Output: Ln;
3 Initialization: Ln = {̂xn, x̂n + 1, . . . , le + 1};
4 for l ∈ {̂xn, x̂n + 1, . . . , le} do
5 Given x∗

n = l, for any xn ∈ {̂xn, . . . , x∗
n}, if (32) is

violated, delete l in the set Ln;
6 end
7 if Ln = {̂xn, le + 1} then
8 if (37) is violated then
9 delete le + 1 in the set Ln;

10 end
11 end
12 return Ln

According to Property 1, we have

Dlq
n (le + 1) ≥ Dlq

n (̂xn)

+ QD(t = tn,̂xn

)(
T lc

n (le + 1) − T lc
n (̂xn)

)
. (39)

Note that

Ult
n (le + 1) + Dlq

n (le + 1) = Un(le + 1) + T lq
n (xn−1) (40a)

Ult
n (̂xn) + Dlq

n (̂xn) = Un(̂xn) + T lq
n (xn−1). (40b)

Combining (38) and (39), (37) is obtained.
Based on Lemmas 1 and 2, an algorithm for reducing

the offloading decision space is proposed in Algorithm 1.
Specifically, when the nth DNN task can be offloaded to the
edge server, the potential offloading decisions xn ∈ {̂xn, x̂n +
1, . . . , le} will be checked, and only the decisions satisfying
the condition given in Lemma 1 will be considered in the
learning-assisted offloading decision making. In addition, if all
the possible offloading decisions xn ∈ {̂xn + 1, . . . , le} violate
the necessary condition given in Lemma 1, the condition in
Lemma 2 will be checked to determine whether device-only
inference, i.e., xn = le + 1, can be optimal for maximizing
the long-term task utility. If not, xn = le + 1 will not be
considered. Finally, only the remaining decisions, i.e, Ln, will
be considered.

VIII. SIMULATION RESULTS

In this section, through simulations, we evaluate the
performance of the DT-assisted approach to adaptive device-
edge collaboration on DNN inference.

A. Simulation Settings and Benchmarks

The main parameters used in the simulations are given in
Table I, and the detailed configurations of the full-size and
shallow DNNs are shown in Fig. 6, where Alexnet is chosen
as the full-size DNN. Based on Remark 2, we consider each
pooling layer and its preceding layer as one logical layer.
The execution time for the layers of the shallow DNN by the
device, i.e., {dD

l }le+1
l=1 , and that for the layers of the full-size

DNN by the edge server, i.e., {dE
l }L

l=1, are estimated based
on the number of FLOPs for the layers and the computation
frequency of the AIoT device and the edge server [29].

Fig. 6. Full-size DNN and shallow DNN.

TABLE I
SIMULATION PARAMETERS

The neural network for approximating the continuation val-
ues, i.e., ContValueNet, consists of three fully connected layers
with 200, 100, and 20 neurons, respectively. For optimizing
the parameters therein, the learning rate γ is set to be 1×10−3

and the Adam optimizer is chosen. In the processing of the
first 2000 DNN tasks, ContValueNet for continuation value
approximation is trained, i.e., M = 2000. The average DNN
task utility, inference delay, accuracy and energy consumption
are derived by applying the trained ContValueNet to assist
making offloading decisions of 8000 DNN tasks. The DNN
task generation at the considered device follows a Bernoulli
distribution with probability p and task arrival from the other
devices to the edge server follows a Poisson distribution with
arrival rate λ. The CPU cycles required for processing a
computing task follows uniform distribution U(0, Umax), with
the value of Umax set as 8 × 109. The DNN task generation
rate in the unit of tasks per second can be calculated by p/�.
In addition, the edge processing load can be calculated by
λUmax/2f E. As a unitless ratio, the edge processing load is
not tied to a specific system parameter, such as computing
capability, task arrival rate, and task computation cost. As
a result, using this metric allows our simulation results to
offer findings that are applicable across various AIoT network
settings.

In the simulations, the following three benchmarks are used.
1) One-Time Ideal Case: The offloading decision of a

DNN task is made only once (upon task generation)
to maximize the long-term utility of the task, assuming
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Fig. 7. Average DNN task utility versus task generation rate.

perfect knowledge of the future on-device workload and
edge server workload.

2) One-Time Long-term: The offloading decision of a
DNN task is made only once (upon task generation)
to maximize the long-term utility of the DNN task
based on the current on-device workload and edge server
workload.

3) One-Time Greedy: Similar to [6], the offloading decision
of a DNN task is made only once (upon task generation)
to maximize the utility of the DNN task based on the
current on-device workload and edge server workload.

In addition, we will compare the performance of the learning-
assisted task offloading algorithm 1) with and without the
DT-assisted training data augmentation and 2) with and with-
out the offloading decision space reduction, respectively.

B. Adaptiveness to Dynamic Computing Workload

In Fig. 7, the average utility of DNN tasks under varying
DNN task generation rate is shown, where the edge processing
load is 0.9. It can be observed that the proposed approach
outperforms the one-time greedy benchmark. This is because
the proposed approach makes the offloading decision of a
DNN task while considering the on-device queuing delay of
subsequent DNN tasks. In addition, the proposed approach
outperforms the one-time long-term benchmark, since instead
of making task offloading decision upon the task generation,
our approach continuously monitors the on-device workload
during the on-device inference for each task and adaptively
makes the offloading decision.

In Fig. 7, it can be observed that the performance gain
compared to the one-time long-term benchmark increases with
DNN task generation rate. This is because the increase of
the task generation rate results from the increase of the task
generation probability, which in turn increases the variance of
the Bernoulli distribution and the dynamics of the on-device
workload. Since the performance gain comes from better
adaptiveness to the dynamics, it increases with the dynamics.
In Fig. 8, the average DNN task utility under varying edge
processing load is shown, where the DNN task generation
rate is 1.0. Similarly, the proposed approach outperforms the
one-time long-term and one-time greedy benchmarks and the
performance gain increases with the edge processing load.

In Fig. 9, the average inference delay, accuracy and energy
consumption under varying DNN task generation rate is

Fig. 8. Average DNN task utility versus edge processing load.

(a)

(b)

(c)

Fig. 9. (a) Average delay. (b) Average accuracy. (c) Average energy
consumption versus DNN task generation rate.

shown, where the edge processing load is 0.9. Compared
with the benchmarks, the proposed approach achieves lower
delay and higher inference accuracy at the cost of higher
energy consumption. This results from the weights for the
delay, inference accuracy and the energy consumption in the
task utility, which are set as 1.0, 1.0, and 0.002, respectively.
Combining the ranges of the three metrics shown in Fig. 9,
it can be seen that the delay and the accuracy contribute
significantly more than the energy consumption in determining
the task utility. Since the proposed approach does not assume
perfect knowledge of the workload evolution, it can conser-
vatively offload a task to the edge server for reducing the
on-device queuing delay of the tasks in the on-device queue
and increasing the inference accuracy.

C. Effectiveness of DT-Assisted Training Data Augmentation

In Fig. 10, the number of training samples collected during
the training of ContValueNet is shown, where the edge
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(a)

(b)

Fig. 10. Number of collected training samples with and without DT-assisted
training data augmentation, where the DNN task generation rates are (a) 0.4
and (b) 0.8.

Fig. 11. Average DNN task utility with and without DT-assisted training
data augmentation.

processing load is 0.9, and the DNN task generation rate is 0.4
and 0.8 in Fig. 10(a) and (b), respectively. It can be observed
that with DT-assisted training data augmentation, the number
of training samples linearly grows as the training continues.
This is because the DT of workload evolution is used by the
network controller to emulate the on-device and edge server
workload under every possible offloading scenario so that, for
each DNN task, we can obtain le+1 training samples, where le
is 2 based on the configuration of the shallow DNN in Fig. 6.
In contrast, without DT-assisted training data augmentation,
very limited training samples can be obtained since only the
workload evolution before the offloading of a DNN task can
be used to construct training samples.

In Fig. 11, the average DNN task utility versus the task
generation rate, with and without DT-assisted training data
augmentation, is shown, where the edge processing load
is 0.9. With DT-assisted training data augmentation, the
average task utility increases. In addition, as the task gen-
eration rate increases, the performance gain increases. This
is because the dynamics of the on-device workload increase
with the task generation rate, which in turn requires a larger
amount of and more diverse training data. The performance
gain due to the DT-assisted data augmentation can also be

(a)

(b)

Fig. 12. Training loss with and without DT-assisted training data augmen-
tation, where the DNN task generation rates are (a) 0.4 and (b) 0.8.

(a)

(b)

Fig. 13. (a) Complexity and (b) average DNN task utility with and without
decision space reduction.

explained by analyzing the training loss during the training of
ContValueNet. In Fig. 12, with the same simulation settings
as those used to generate Fig. 10, we can observe that without
DT-assisted data augmentation, the training loss fluctuates
more due to overfitting caused by insufficient training data.
In contrast, with DT-assisted data augmentation, the training
loss decreases more steadily to a lower level at the end of the
training.

D. Complexity Reduction by Decision Space Reduction

In Fig. 13, the performance of the proposed device-edge
collaborative DNN inference with and without decision space
reduction in Algorithm 1 is shown, where the edge processing
load is 0.9. As shown in Fig. 13(a), with the decision space
reduction, the proposed approach can be implemented with
reduced complexity in terms of the average number of times
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Dlq
n =

N∑

m=1

Dlq
n→m

= q0T lc
n +

n+q1∑

m=n+q0+1

(

T lq
n + T lc

n −
m−1∑

i=n

�Ti

)

= (q1 − q0)T
lq
n + q1T lc

n − (q1 − q0)

n+q0∑

i=n

�Ti −
q1+n−1∑

i=q0+n+1

(q1 − i + n)�Ti (44)

tn,0+
(
T lc

n /�T
)−1∑

t=tn,0

QD(t)�T = q0

(

−tn,0�T +
n+q0∑

i=1

�Ti

)

+
q1+n−1∑

m=q0+n+1

(m − n)�Tm + q1

⎛

⎝tn,0�T + T lc
n −

n+q1−1∑

i=1

�Ti

⎞

⎠

= q0

(

−T lq
n +

n+q0∑

i=n

�Ti

)

+
q1+n−1∑

m=q0+n+1

(m − n)�Tm + q1

⎛

⎝T lq
n + T lc

n −
n+q1−1∑

i=n

�Ti

⎞

⎠

= (q1 − q0)T
lq
n + q1T lc

n − (q1 − q0)

n+q0∑

i=n

�Ti +
⎛

⎝
q1+n−1∑

m=q0+n+1

(m − n)�Tm − q1

q1+n−1∑

i=q0+n+1

�Ti

⎞

⎠

= (q1 − q0)T
lq
n + q1T lc

n − (q1 − q0)

n+q0∑

i=n

�Ti −
q1+n−1∑

i=q0+n+1

(q1 − i + n)�Ti (45)

when the controller determines whether to continue on-device
inference for a DNN task based on (25). This is because with
the decision space reduction, the on-device DNN inference
continues if the corresponding offloading decision violates
the necessary condition given in Lemma 1. In addition, in
Fig. 13(b), it can be observed that with the decision space
reduction, the average task utility is nearly unaffected and even
improved in the high regime of DNN task generation rate.
This is because the necessary conditions sometimes prevent
the controller from choosing nonoptimal offloading decisions
that could have been chosen due to the imperfect continuation
value approximation by ContValueNet.

IX. CONCLUSION

In this article, we have proposed a DT-assisted approach to
device-edge collaboration on DNN inference, which can adapt
to dynamic computing workloads at AIoT devices and edge
servers with low-signaling overhead. The proposed approach
can be applied to support AIoT scenarios where densely
deployed AIoT devices dynamically generate AI model infer-
ence tasks. For the future work, we will further explore the
DTs to capture the time-varying data distribution for joint AI
model training and AI model inference in AIoT.

APPENDIX A
PROOF OF PROPOSITION 1

Case 1: If T lq
n−1 + T lc

n−1 ≤ �Tn−1, the on-device queuing

delay of the nth DNN task T lq
n equals to zero. Based on (15),

Dlq
n−1→n = max{min {T lq

n−1 − �Tn−1, 0} + T lc
n−1, 0} = 0.

Similarly, we have Dlq
m→n = 0 ∀m < n, we have Dlq

m→n =
0 ∀m ≥ n. Therefore, T lq

n = ∑N
m=1 Dlq

m→n.

Case 2: If T lq
n−1 + T lc

n−1 > �Tn−1, T lq
n = T lq

n−1 + T lc
n−1 −

�Tn−1 > 0, which indicates that one preceding DNN task (its
index is denoted by m0) is in the computing unit upon the
generation of the nth task. As a result, we have

T lq
m0

≤
n−1∑

i=m0

�Ti ≤ T lq
m0

+ T lc
m0

(41)

and for any mth task, where m0 + 1 ≤ m ≤ n − 1, T lq
m ≥∑n−1

i=m �Ti.
Based on (15), Dlq

m→n can be calculated by

Dlq
m→n =

⎧
⎨

⎩

T lq
m + T lc

m −∑n−1
i=m �Ti, m = m0

T lc
m , m0 + 1 ≤ m ≤ n − 1

0, otherwise.
(42)

Then,
∑N

n=1 Dlq
m→n can be calculated as

N∑

n=1

Dlq
m→n = T lq

m0
+ T lc

m0
−

n−1∑

i=m0

�Ti +
n−1∑

m=m0+1

T lc
m

=
(

T lq
m0

+ T lc
m0

− �Tm0

)
−

n−1∑

i=m0+1

�Ti +
n−1∑

m=m0+1

T lc
m

= T lq
m0+1 −

n−1∑

i=m0+1

�Ti +
n−1∑

m=m0+1

T lc
m

= T lq
m0+1 + T lc

m0+1 −
n−1∑

i=m0+1

�Ti +
n−1∑

m=m0+2

T lc
m , . . .

= T lq
n−1 + T lc

n−1 − �Tn−1 = T lq
n . (43)
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APPENDIX B
PROOF OF PROPOSITION 2

When T lc
n = 0, Dlq

n→m = 0 ∀1 ≤ m ≤ N. As a result, Dlq
n =∑N

m=1 Dlq
n→m = 0. When T lc

n ≥ �T , for brevity, we denote
QD(tn,0) and QD(tn,0 + (T lc

n /�T) − 1) by q0 and q1, which
represent the number of tasks in the on-device task queue in
the time slots when the on-device inference for the nth DNN
task starts and completes, respectively. During the on-device
inference for the nth task, the mth task is in the on-device task
queue, where n < m ≤ n + q1. We can derive the queuing
delay of the mth task that results from the on-device inference
of the nth task as

Dlq
n→m =

{
T lc

n , n < m ≤ n + q0

T lq
n + T lc

n −∑m−1
i=n �Ti, n + q0 + 1 ≤ m ≤ n + q1

(46)

and calculate on-device workload during the on-device infer-
ence of the nth task by

QD(t) =

⎧
⎪⎨

⎪⎩

q0, tn,0 ≤ t < 1
�T

∑n+q0
i=1 �Ti

m − n, 1
�T

∑n+q0
i=1 �Ti ≤ t < 1

�T

∑m−1
i=1 �Ti

q1,
1

�T

∑n+q1−1
i=1 �Ti ≤ t < tn,0 + 1

�T T lc
n

(47)

where q0 + n ≤ m ≤ q1 + n. Based on (42) and (47),

we can calculate
∑N

m=1 Dlq
n→m and

∑tn,0+(T lc
n /�T)−1

t=tn,0
QD(t)�T

using (44) and (45), shown at the top of the previous page,
respectively, and it can be observed from (44) and (45) that
they are equal.
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