
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022 13837

Distributed Offloading in Overlapping Areas of
Mobile-Edge Computing for Internet of Things

Jiwei Huang , Member, IEEE, Ming Wang , Yuan Wu , Senior Member, IEEE, Ying Chen , Member, IEEE,
and Xuemin Shen , Fellow, IEEE

Abstract—With the maturity of 5G cellular communication
systems and mobile-edge computing (MEC), a large number
of base stations (BSs) with edge-computing servers are densely
deployed. There are extensive overlapping coverage areas among
the BSs in which some heavy computational tasks from Internet
of Things (IoT) devices can be divided and offloaded to multiple
BSs via the coordinated multipoint (CoMP) technique for par-
allel processing. However, it is a challenging issue about how to
make proper task offloading decisions among multiple connected
BSs while satisfying delay requirements of multiple devices. To
address this challenge, this article presents an efficient multi-
device and multi-BSs task offloading scheme with the goal of
minimizing the delay for completing the tasks of the devices.
By conducting quantitative analysis of local delay and offloading
delay, a nonlinear and nonconvex delay optimization offloading
problem, which is based on the theory of noncooperative game,
is formulated. We prove the existence of Nash equilibrium by
analyzing the feature of the proposed offloading problem and
further propose a distributed task offloading algorithm called
DOLA. Finally, simulation experiments based on real-world data
set from the Melbourne CBD area of Australia are conducted to
validate the efficacy of our DOLA algorithm. Comparison exper-
iments are also carried out to demonstrate the superiority of
DOLA in comparison with some existing schemes.

Index Terms—Distributed task offloading, Internet of Things
(IoT), mobile-edge computing (MEC), Nash equilibrium.

Manuscript received 2 August 2021; revised 23 November 2021; accepted
7 January 2022. Date of publication 18 January 2022; date of current
version 25 July 2022. This work was supported in part by the National
Natural Science Foundation of China under Grant 61972414, Grant 61902029,
Grant 62072490, and Grant 61973161; in part by the Beijing Nova Program
under Grant Z201100006820082; in part by the Beijing Natural Science
Foundation under Grant 4202066; in part by the Excellent Talents Projects of
Beijing under Grant 9111923401; in part by the Scientific Research Project of
Beijing Municipal Education Commission under Grant KM202011232015; in
part by the FDCT-MOST Joint Fund Project under Grant 0066/2019/AMJ;
and in part by the Macao Science and Technology Development Fund
under Grant 0060/2019/A1 and Grant 0162/2019/A3. (Corresponding author:
Ying Chen.)

Jiwei Huang and Ming Wang are with the Beijing Key Laboratory of
Petroleum Data Mining, China University of Petroleum, Beijing 102249,
China (e-mail: huangjw@cup.edu.cn; 2019211263@student.cup.edu.cn).

Yuan Wu is with the State Key Laboratory of Internet of Things for Smart
City, University of Macau, Macau, China, and also with the Zhuhai-UM
Science and Technology Research Institute, Zhuhai 519000, China (e-mail:
yuanwu@um.edu.mo).

Ying Chen is with the Computer School, Beijing Information
Science and Technology University, Beijing 100101, China (e-mail:
chenying@bistu.edu.cn).

Xuemin Shen is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
sshen@uwaterloo.ca).

Digital Object Identifier 10.1109/JIOT.2022.3143539

I. INTRODUCTION

IN RECENT years, there has been an explosive growth
in the number of Internet of Things (IoT) devices, and a

variety of delay-sensitive applications (e.g., real-time sensing,
video processing, and dynamic control) has been deployed
on the IoT devices [1], [2]. These complex applications on
the IoT devices generate a large amount of data. It is esti-
mated in [3] that the mobile data traffic produced by these
applications and services would reach 49 EB in global terms.
However, the computing resources and the battery capacities
of the IoT devices are limited. Therefore, it is generally diffi-
cult and even impossible for these IoT devices to process all
the application tasks locally while satisfying the performance
demands of applications.

To address this issue, computation offloading is consid-
ered a promising solution [4]. IoT devices can offload their
computation-intensive tasks to remote cloud data centers for
processing [5], [6]. The cloud data centers have abundant
computing resources and unlimited power supply. However,
computation offloading to cloud data centers also faces several
challenges. As the data traffic generated by the IoT devices is
increasing dramatically, offloading all the data to the remote
cloud would put heavy burden on the network and cause
network congestion. Besides, the cloud data centers are usually
located far away from terminal devices. Therefore, offloading
tasks to the remote cloud would experience large delay and
poor performance. Fortunately, with the development of com-
munication technology, especially the 5th generation mobile
communication technology (5G) [7], [8], mobile-edge comput-
ing (MEC), which deploys the intensive computation resources
close to the edge of wireless networks [e.g., the cellular base
stations (BSs) or the local wireless access points], has been
envisioned as a promising paradigm to address the afore-
mentioned shortcoming of the conventional cloud systems
and eventually enable the computation-intensive and latency-
sensitive mobile Internet services [1], [9]. In MEC, a BS can
be equipped with one or multiple edge servers to provide the
computing services for the IoT devices, which thus effectively
reduce the communication overhead and the delay [3], [10].
The advantage of MEC has also attracted lots of interests in
exploiting MEC for various IoT services [11].

Nowadays, the 5G BSs are deployed more densely [12],
and an IoT device may be located in the overlapping coverage
areas of several BSs. Thus, an IoT device can be connected
to multiple BSs, and can offload its tasks to multiple BSs

2327-4662 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0002-4154-0324
https://orcid.org/0000-0001-6661-9461
https://orcid.org/0000-0002-0844-0882
https://orcid.org/0000-0002-4140-287X

13838 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

for processing. Computation offloading to the edge servers
on multiple BSs can make full use of the resources of these
edge servers and further reduce the delay, and the Quality of
Experience (QoE) of the devices can be improved greatly [13].
However, with far more increase in the number of IoT devices
and the data traffic generated by these devices’ applications,
the communication resources and the computing capacities of
these BSs may be still limited and face shortages. If the task
offloading decisions are made improperly, the workload among
these edge servers on BSs may be imbalanced, and some edge
servers may be heavy loaded while others suffer from a low
utilization, resulting in large delay and even task congestion
leading to a system crash. Besides, multiple IoT devices com-
pete for the limited communication and computing resources,
and it is a challenging issue for network operators or service
providers to make a global decision of offloading strategy
obtaining equilibrium. Therefore, how to find a proper task
offloading scheme among multiple connected BSs while sat-
isfying the requirements of multiple devices remains largely
unexplored.

This article studies distributed task offloading in overlap-
ping areas of MEC for IoT. The tasks from the device can
be separated into multiple subtasks, and executed locally or
offloaded to multiple BSs in parallel. We theoretically ana-
lyze the property of the offloading problem, formulate the
global offloading game model, and propose the distributed task
offloading algorithm (DOLA) for all the IoT devices. Then, we
adopt real-world data from Melbourne CBD area of Australia
to evaluate the performance of our DOLA algorithm.

The main contributions of our work are as follows.
1) We consider the scenario of a MEC system with multiple

IoT devices and densely deployed BSs. Each IoT device
is situated in the overlapping area of different BSs, and
the task from the IoT device can be divided into sev-
eral subtasks. We formulate the offloading optimization
problem for each device, and the goal is to minimize the
delay subject to resource constraints.

2) We theoretically analyze the property of the delay
optimization problem for each IoT device. Then, the
offloading delay optimization problem is formulated as
a global offloading game model. We theoretically prove
the existence of Nash equilibrium, and propose the
DOLA algorithm for all devices to converge to the Nash
equilibrium.

3) In order to verify the performance of our DOLA algorithm,
we carry out the experiments with real-world data set
from Melbourne CBD area of Australia. The experimental
results show that our DOLA algorithm converges quickly,
and can achieve good scalability and work-balance
performance when the system scale increases.

The remainder of this article is organized as follows.
Section II reviews the related work. Section III presents the
system model and delay optimization problem formulation.
Section IV analyzes the property of the offloading problem
and proposes the DOLA algorithm. Section V evaluates the
performance of our DOLA algorithm with real-world trace
data, and Section VI concludes this article and discusses the
future direction.

II. RELATED WORK

In this part, we discuss related work on task offloading from
two aspects: 1) coarse-grained offloading, where a task cannot
be further divided and 2) fine-grained partial offloading, where
a task can be divided into several subtasks.

A. Coarse-Grained Offloading

Coarse-grained offloading means that a task from the device
is nondivisible, and the whole task is either processed locally
or offloaded (to MEC servers or cloud servers). In [14], a
MEC system with a single-user and multiple tasks was inves-
tigated. In order to jointly optimize the computation time
and the energy consumption of all tasks, they formulated a
minimization problem as a nonconvex mixed-integer problem.
Furthermore, Wu et al. [15] studied a MEC system with a BS
and several mobile terminals. Mobile terminals offload partial
of their tasks to a BS that is equipped with an edge server, and
the authors aimed to minimize the execution time of all mobile
terminals. Chen et al. [16] focused on a multilevel offloading
scenario that included a user with multiple tasks, an access
point with computation resource, and a cloud server. There
were three options for the user to choose to process the task,
i.e., locally, on the MEC server and on the cloud server. With
the same optimal target in [14], the goal was to optimize the
overall cost of energy and delay, and they designed a semidef-
inite relaxation and randomization mapping algorithm to make
the offloading decision.

Some works focused on multiple users offloading scenarios.
Chen [17] aimed to minimize the cost defined by a weighted
sum of latency and power. They proposed an efficient offload-
ing strategy based on game theory, and a Nash equilibrium
of the game was obtained. Unfortunately, the authors only
developed the model for one single access point. In order to
study a more complex system, Jošilo and Dán [18] considered
a multiusers and multiaccess points scenario, and each user
could select one wireless access point to transmit data to cloud
for computation offloading. Furthermore, Zhang et al. [19]
took fairness among users during task offloading into consider-
ation, and they formulated a problem to minimize the maximal
task execution time among all the users. Guo and Liu [20]
studied cloud-MEC collaborative task offloading, and made
use of the computation resource of the cloud. Zhou et al. [21]
aimed to maximize the expected offloading rate of multiple
agents by optimizing their offloading thresholds.

B. Fine-Grained Partial Offloading

Fine-grained partial offloading means the task of the device
can be divided into multiple subtasks, and the subtasks can
be processed locally, or on offloading servers in parallel.
Generally speaking, partial offloading is more complex com-
pared with coarse-grained offloading as the solution space
size is much larger. Cao et al. [22] considered a scenario,
including a single user node, a help node, and a MEC server.
The user could divide the task into three parts that were pro-
cessed locally, on help node and MEC server. The goal was
to optimize the energy consumption of the user under the exe-
cution latency constraint. Furthermore, in order to solve the

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DISTRIBUTED OFFLOADING IN OVERLAPPING AREAS OF MOBILE-EDGE COMPUTING 13839

Fig. 1. Partial computation offloading scenario in overlapping area.

multiuser with a single edge server computation offloading
problem, Le et al. [23] proposed a method to minimize the
computation time for each user by joint allocation of radio
and computation resource. In order to utilize the computa-
tion resource of cloud, Mahn et al. [24] considered a MEC
system with the multilevel architecture, in which there were
multiple devices, an access point with computation resource,
and a remote cloud server. They aimed to minimize the energy
consumption of each user, and a distributed algorithm was
designed to obtain the fractions of subtasks.

Some works considered the multi-TN (task node) and multi-
HN (help node) scenario in a fog network [25], [26]. In [25],
each TN had a splittable task that could be divided into
multiple subtasks, and those subtasks could only be offloaded
to multiple HNs and virtual machines on the cloud. The
authors defined a concept named processing efficiency, and a
decentralized task scheduling algorithm was designed to mini-
mize the computation delay. However, they assumed each HN
and virtual machine could process only one subtask. Then,
in [26], they improved their work, and the HNs could execute
multiple subtasks from different TNs.

In this article, we study the partial offloading scenario where
a number of devices are situated in overlapping areas of
multiple BSs. The tasks of the device can be divided into sev-
eral subtasks and be executed locally and on different BSs in
parallel. We theoretically analyze the property of the offload-
ing problem, and then, prove the existence of Nash equilibrium
and propose the DOLAs for all the devices.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Scenario

We consider a cellular network shown in Fig. 1, and it con-
sists of N IoT devices denoted by N = {1, 2, . . . , N} and
K BSs denoted by K = {1, 2, . . . , K}. These devices are
situated at the overlapping coverage of multiple BSs. Each
BS k ∈ K is endowed with a MEC server, which provides
computing services to the devices within its radio range. The

coordinated multipoint (CoMP) technique [27] is adopted to
ensure that a device sends data to multiple BSs for process-
ing, and the result can be returned back through one BS.
The tasks are divided into multiple subtasks and offloaded
to multiple BSs for parallel computation. CoMP has been
considered as a promising technique for enabling coopera-
tive transmission among multiple BSs or transmission points
(TPs) [28]. Via CoMP, the co-channel interference among
different devices can be effectively mitigated by sharing the
channel state information (CSI) among different BSs. With
CoMP, the network efficiency and throughput can be improved
in network coordination. Our main focuses are to study the
optimal computation offloading under the scenario of CoMP
for task processing and the corresponding algorithmic design
for achieving the optimal solution.

In this article, we are concerned with arbitrarily partitioned
tasks, i.e., tasks that can be divided into infinite granular-
ity [29]. xk

n denotes the percentage of subtask offloaded from
device n to BS k, and xk

n ∈ [0, 1], k ∈ {0} ∪ K. x0
n is

the fraction of task processed locally, and it is obvious that
x0

n + ∑
k∈K xk

n = 1. Thus, the offloading strategy matrix is
X = (xT

1 , xT
2 , . . . , xT

N)T, where xn = (x0
n, x1

n, . . . , xK
n) is the

offloading policy for device n. We introduce a connection
matrix C = (cT

1 , cT
2 , . . . , cT

N)T representing the connection
between the devices and the BSs. ck

n = 1 means device n
is connected to BS k; otherwise, ck

n = 0 indicates there is no
connection between device n and BS k. The main notations in
this article are listed in Table I.

B. Local Computation and Offloading Computation

Here, we build the computation models, including local
computation and offloading computation. Similar to many
related works in the research area of parallel offloading, we
consider the scenario where tasks can be partitioned into
multiple independent parts, such as face detection, virus scan,
and AR applications. Device n’s task can be divided into
multiple subtasks, and the subtasks will be computed paral-
lelly both locally and on multiple BSs. The computation delay
of local computation is

T0,co
n = x0

nβn
ln
fn

(1)

where ln is the size of the task (in bits), βn represents the
processing density, i.e., the number of CPU cycles required
to process one bit data, and fn is the CPU frequency of the
device n.

Each device transmits the subtasks to the connected BSs
via wireless channel. Several BSs will process the subtasks in
parallel, and return the result to the device through one BS.
Similar to most of the previous works [29], [30], since the size
of the result is very small compared with the original data size,
we ignore the time for sending the result back to the device.
We consider that the BSs serve devices via frequency-division
multiple access (FDMA) schemes [24] and the channel is pre-
allocated. Therefore, there is no interference between different
devices.

Similar to existing works [26], we consider all subtasks
on the BSs must be transmitted before starting computing in

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

13840 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

TABLE I
NOTATIONS AND DEFINITIONS

order to facilitate the modeling and analysis. It circumvents
the complex transmission scheduling or radio resource allo-
cation problem, which are not the main thrust of this article.
In this way, the resulted transmission time can be regarded as
an upper bound of the actual transmission time. Based on the
Shannon Theorem, the transmission rate rk

n from device n to

BS k is expressed as

rk
n = Bk

n log2

(

1 + pnhk
n

σ

)

(2)

where Bk
n is the bandwidth of device n to the BS k, pn is

transmission power, hk
n denotes the uplink channel gain, and

the white Gaussian noise power is expressed by σ . Then, the
transmission time of the subtask from device n to BS k is

Tk,tr
n =

∑

n∈N
xk

n
ln
rk

n
. (3)

The proportion of computation resources allocated by BS k to
device n is

λk
n = xk

nln
∑

n∈N xk
nln

. (4)

The subtask execution delay of device n at BS k is

Tk,co
n = xk

n
lnβn

λk
nfk

=
∑

n∈N
xk

nβn
ln
fk

(5)

where fk denotes the CPU frequency of BS k.
Through the above analysis, we obtain the local offloading

delay T0,de
n = T0,co

n , and the offloading computation delay
is the sum of the transmission time and execution time. The
offloading computation delay is expressed as

Tk,de
n =

∑

n∈N
xk

n
ln
rk

n
+

∑

n∈N
xk

nβn
ln
fk

=
∑

n∈N
xk

nln

(
1

rk
n

+ βn

fk

)

. (6)

Since all subtasks of device n are processed in parallel, we
choose the longest execution time among all subtasks as the
final execution time of device n, expressed as

Tn(xn, X−n) = max
k∈{0}∪K

{
Tk,de

n

}
(7)

where X−n = (xT
1 , . . . , xT

n−1, xT
n+1, . . . , xT

N)T is the offloading
strategy matrix except device n.

C. Problem Formulation

To minimize the offloading delay of each individual device,
the following optimization problem can be formulated as:

min
xn

Tn (8)

s.t. T0,de
n ≤ Tn (8a)

Tk,de
n ≤ Tn (8b)

∑

n∈N
λk

n ≤ 1 ∀k ∈ K (8c)

x0
n +

∑

k∈K
xk

n = 1 (8d)

x0
n, xk

n ≥ 0 ∀k ∈ K (8e)

xk
n ≤ ck

n ∀k ∈ K. (8f)

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DISTRIBUTED OFFLOADING IN OVERLAPPING AREAS OF MOBILE-EDGE COMPUTING 13841

Constraints (8a) and (8b) indicate that the local computa-
tion delay and the offloading computation delay of device n do
not exceed the task completion time. Constraint (8c) guaran-
tees that the computation resources allocated to the devices are
no more than the total resources of the BSs. Constraints (8d)
and (8e) ensure that the subtasks are collaboratively executed
by the devices and the BSs. Constraint (8f) indicates that
the subtasks of the device can only be offloaded to its con-
nected BSs. ck

n = 0 represents that there is no connection
between device n and BS k, and thus, xk

n = 0. The condition
ck

n = 1 means that the device n is in the coverage area of the
BS k. Constraint (8f) ensures that the devices can only offload
subtasks to the connected BSs.

According to the above communication and computation
models, it is obvious that the computation offloading strategies
X = (xT

1 , xT
2 , . . . , xT

N)T among the devices are coupled. The
optimization problem is nonlinear and nonconvex. Thus, it is
challenging to solve the offloading problem efficiently. We will
propose a game-theoretic approach to solve the problem in the
following section.

IV. DISTRIBUTED TASK OFFLOADING

In this section, we exploit a game-theoretic approach to
efficiently solve the offloading problem for all the devices.
Specifically, in Section IV-A, we analyze the property of the
offloading problem, and then, propose the offloading strategy
for each device. In Section IV-B, we build the game model,
prove the existence of generalized Nash equilibrium (GNE),
and propose the DOLA for all the devices to reach the Nash
equilibrium.

A. Offloading Strategy for Each IoT Device

1) Property Analysis of the Offloading Problem: The sub-
tasks of each device n are executed in parallel. Thus, we aim
to keep the largest delay of the subtasks as small as possi-
ble, and the subtasks will be transferred from the BSs with
heavy workload to other BSs with relatively low workload.
Finally, the delays of all the subtasks will be same, as proved
in Theorem 1.

Theorem 1: The local computation delay is equal to the
offloading computation delay of the subtasks when the device’s
offloading policy is optimal, which can be expressed as

Tk,de
n = Tn = min

xn

{

max
k∈{0}∪K

{
Tk,de

n

}}

∀k ∈ {0} ∪ K, xk
n > 0.

(9)

Proof: We consider that x∗
n is the optimal offloading

policy for the device n. If (9) does not hold, then, ∃k ∈
K, Tk,de

n
∗ = Tn, and T0,de∗

n < Tk,de∗
n . Furthermore, the local

computation delay is

T0,de∗
n = x0∗

n βn
ln
fn

(10)

and the offloading computation delay is

Tk,de∗
n =

∑

n∈N
xk∗

n
ln
rk

n
+

∑

n∈N
xk∗

n βn
ln
fk

=
∑

n
=m

xk
m

lm
rk

m
+ xk∗

n
ln
rk

n
+

∑

n
=m

xk
mβm

lm
fk

+ xk∗
m βn

ln
fk

. (11)

There exists a task transition factor �xk∗
0 > 0, which makes

the following three expressions [i.e., (12), (13), and (14)] hold:

Tk,de∗
n =

∑

n
=m

xk
m

lm
rk

m
+

(
xk∗

n − �xk∗
0

) ln
rk

n

+
∑

n
=m

xk
mβm

lm
fk

+
(

xk∗
m − �xk∗

0

)
βn

ln
fk

< Tk,de∗
n (12)

Tk,de∗
n =

(
x0∗

n + �xk∗
0

)
βn

ln
fn

< T0,de∗
n (13)

Tk,de∗
n > T0,de∗

n . (14)

After transferring subtasks, the offloading strategy of device
n also satisfies constraints (8d) and (8e) as xk∗

m − �xk∗
0 > 0,

x0∗
n + �xk∗

0 > 0 and (x0∗
n + �xk∗

0) + x1
n + · · · + (xk∗

m − �xk∗
0) +

· · · + xK
n = 1.

When T0,de∗
n = Tn, there exists a task transition factor

�xk∗
0 > 0, which can further reduce Tk,de∗

n , and the result
can be proved in the similar way.

2) Offloading Size Decision: For each device n, given the
set of BSs selected for task offloading, we can obtain the
offloading strategy and the execution time of device n accord-
ing to Theorem 1. We use Sn = {k ∈ K | xk

n > 0} to denote the
set of BSs that device n can offload to. The offloading decision
of device n is xn, and we define Gk

n = ln([1/rk
n] + [βn/fk]).

From (1), (6), and (9), we obtain
∑

m
=n

xk
mGk

m + xk
nGk

n = x0
n

lnβn

fn
(15)

x0
n +

∑

k∈Sn

xk
n = 1. (16)

Hence

∑

m
=n

xk
mGk

m + xk
nGk

n =
⎛

⎝1 −
∑

k∈Sn

xk
n

⎞

⎠βn
ln
fn

. (17)

Then
(

Gk
n + lnβn

fn

)

xk
n + lnβn

fn

∑

i∈Sn\k

xi
n

= lnβn

fn
−

∑

m
=n

xk
mGk

m. (18)

Based on the BSs, which the subtasks of device n can be
offloaded to, we obtain a set of linear equations expressed
as (19), shown at the bottom of the next page, and it has a
total of |Sn| linear equations. We then calculate the fraction
of task of device n offloaded to BS k as (20), shown at the
bottom of the next page, and the fraction of task computed by
device n locally is

x0
n(X−n) =

1 + ∑
l∈Sn

∑
m
=n xl

mGl
m

Gl
n

1 + lnβn
fn

∑
l∈Sn

. (21)

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

13842 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

Furthermore, from (9), the offloading computation delay
Tn(X−n) is equal to the local computation. Then

Tn(X−n) = T0,de
n . (22)

Because the sum of the percentages of all subtasks is 1, taking
advantage of (8c), we obtain

Tn(X−n) = 1 −
∑

k∈Sn

xk
n(X−n)

lnβn

fn
. (23)

Finally, the execution time is

Tn(X−n) =
1 + ∑

l∈Sn

Tk,de
−n
Gl

n

1 + lnβn
fn

∑
l∈Sn

1
Gl

n

lnβn

fn
(24)

where Tk,de
−n = ∑

m
=n xk
mGk

m is the sum of the subtask offload-
ing delays of all devices on BS k except the subtask of
device n.

3) BS Selection: Device n cannot offload its subtasks to all
the connected BSs. This is because some connected BSs may
be already heavy loaded, and offloading subtasks to these BSs
will degrade the performance. We propose Theorem 2, which
is useful for obtaining |Sn|.

Theorem 2: For device n, if the delay sum of all the sub-
tasks (excluding the subtask from device n) on BS k is smaller
than the delay of local computing, then device n can select BS
k for offloading.

Proof: Based on Theorem 1, we can obtain the offloading
delay in the last iteration for device n. Since the local compu-
tation delay is equal to the offloading delay under the optimal
solution, the subtasks of device n can only be offloaded to
the BSs whose task execution time is less than the local
computation delay.

Based on Theorem 2, |Sn| can be calculated by

Sn =
{

k ∈ K | Tk,de
−n < Tn(X−n)

}
(25)

where T1,de
−n ≤ T2,de

−n ≤ · · · ≤ TK,de
−n , which means that the

task execution time of all BSs is arranged in a nonincreasing
order, and Tk,de

−n = ∞ if BS k is not connected to device n.
The device n needs to go through all candidate BSs (subset
of the connected BSs of device n with ck

n = 1), and then,
select a set of BSs. During this period, device n sorts Tk,de

−n (t)
first and then selects the appropriate BSs. Let M = ∑

k ck
n, and

the computational complexity in the worst case is O(M log M).
With some advanced sorting algorithms (e.g., Radix sort [31]),

the complexity can be further reduced to O(M). In reality, the
value of M is relatively small. Therefore, the extra delay for
making decision in our approach can be negligible.

B. Distributed Task Offloading Algorithm Design

We then propose the task offloading algorithm for the
devices. As the devices compete for the limited resources and
each cares for its own interests, we formulate an offloading
game model for the devices, and prove the existence of Nash
equilibrium. Then, we propose the offloading algorithm.

1) Game Model: For each device n, given other devices’
offloading policy X−n, it needs to make its own offloading
decision xn = (x0

n, x1
n, . . . , xK

n), xk
n ∈ [0, 1]. The goal is to

minimize the execution time expressed as

min
xn

Tn(xn, X−n) ∀n ∈ N . (26)

We formulate the above problem as a strategic game � =
(N , {an}n∈N , {Tn}n∈N), where N is the set of players, an =
[0, 1]K+1 is the set of strategies for player n, and xn ∈ an,
{Tn}n∈N is the player n’s cost function to be minimized. The
desired offloading strategy is the Nash equilibrium solution
defined in Definition 1.

Definition 1: X∗ is denoted as a Nash equilibrium of the
offloading game, if there is no way for any player to further
reduce the cost by one-side changing its decision under the
state of Nash equilibrium X∗, i.e.,

Tn
(
x∗

n, X∗−n

)
< Tn

(
xn, X∗−n

) ∀n ∈ N . (27)

Each device makes the corresponding decision for its own
benefit. Under the mutual influence of other devices, each
device n in the state of GNE can get a satisfactory offloading
strategy.

2) Existence of Generalized Nash Equilibrium: We now
prove the existence of GNE. Define x∗

n ∈ �n(X∗−n), where
�n(X∗−n) is the optimal strategy of device n, and �(X) is the
holistic optimization strategy of all devices expressed as

�(X) = �1
(
X∗−1

) ⊗ �2
(
X∗−2

) ⊗ · · · ⊗ �N
(
X∗−N

)
(28)

where X = x∗
1 ⊗ x∗

2 ⊗ · · · ⊗ x∗
N , and ⊗ is the Cartesian prod-

uct. Then, we prove that there exists a GNE point of the
optimization problem.

Lemma 1: The optimal strategy set X is convex.
Proof: We set x1, x2 ∈ an, and μ ∈ [0, 1]. According

to the definition of convex set, μx1 + (1 − μ)x2 ∈ an always

⎡

⎢
⎢
⎢
⎢
⎣

G1
n + lnβn

fn
lnβn

fn
· · · lnβn

fn
lnβn

fn
G2

n + lnβn
fn

· · · lnβn
fn

...
. . .

lnβn
fn

· · · GM
n + lnβn

fn

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1
n

x2
n
...

xM
n

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

lnβn
fn

− ∑
m
=n x1

mG1
m

lnβn
fn

− ∑
m
=n x2

mG2
m

...
lnβn

fn
− ∑

m
=n xM
m GM

m ,

⎤

⎥
⎥
⎥
⎥
⎦

(19)

xk
n(X−n) =

⎧
⎪⎨

⎪⎩

1
Gk

n

(
lnβn

fn
− Tk,de

−n

)
−

1
Gk

n

lnβn
fn

∑
l∈Sn

1
Gl

n

(
lnβn

fn
−∑

m
=n xl
mGl

m

)

1+ lnβn
fn

∑
l∈Sn

1
Gl

n

, Tk,de
−n < Tn(X−n)

0, Tk,de
−n ≥ Tn(X−n)

(20)

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DISTRIBUTED OFFLOADING IN OVERLAPPING AREAS OF MOBILE-EDGE COMPUTING 13843

Algorithm 1: DOLA

1 Initialize the iterative epoch t=0.
2 for n ∈ N do
3 Initialize x0

n(t) = 1, i.e., each device n selects local
computing.

4 repeat
5 for all devices in parallel do
6 Send TRI to BSs, including the size of task ln,

the computation frequency fn, and the transmit
power pn.

7 Receive the values of Gk
n and Tk,de

−n (t) from the
connected BSs.

8 Select the set of BSs Sn(t) based on Theorem 2
and (25).

9 Compute the optimal offloading strategy x∗
n(t)

and execution time T∗
n (t) based on (20), (21)

and (24).
10 if � = Tn(t) − T∗

n (t) > ε then
11 Send the UR message to BSs requesting for

the strategy update opportunity.
12 if BSs accept UR request then
13 Update the strategy xn(t + 1) = xn(t)∗ for

the next epoch.
14 else
15 Remain xn(t + 1) = xn(t) for the next

epoch.

16 else
17 Remain xn(t + 1) = xn(t) for the next epoch.

18 t = t + 1.

19 until No RTU messages are broadcasted for M
continuous epochs;

holds. Therefore, an is a convex set. X is the Cartesian product
of x∗

n ∈ an. Thus, the set X is convex.
Lemma 2: The optimal strategy set X is compact.

Proof: We set x ∈ an. Since an = [0, 1]K+1 and ‖x‖2 ≤
N, x is a bounded and closed set. X is the Cartesian product
of x∗

n, x∗
n ∈ an. Therefore, the set X is compact.

Based on Lemmas 1 and 2, we further propose the existence
of GNE as expressed in Theorem 3.

Theorem 3: The offloading game always has a Nash equi-
librium and the finite improvement property.

Proof: The set X is convex and compact according to
Lemmas 1 and 2, and it is also continuous based on (20)
and (21). Thus, �(X) must have a fixed point on X based on
Brouwer’s fixed-point theorem [26], [32], and the point is a
GNE of the optimization problem.

3) Distributed Offloading Algorithm: We propose the
DOLA as shown in Algorithm 1. t stands for the integrative
epoch ID. For each device n, we initialize the offloading deci-
sion as x0

n(0) = 1, i.e., each device n chooses local offloading.
Then, each device n sends task-related information (TRI) to the
connected BSs, including transmission power pn, size of task
ln and density βn, in line 6. The BSs calculate the expression
Gk

n = ln([1/rk
n] + [βn/fk]) and the current task computation

TABLE II
EXPERIMENT SETUP

time Tk,de
−n (t) = ∑

m
=n xk
m(t)Gk

m for device n, and return the
values to device n in line 7. In line 9, device n obtains the
set Sn(t) of selected BSs according to Theorem 2 and (25). In
line 9, device n obtains the optimal offloading strategy x∗

n(t)
and execution time T∗

n (t) based on (20), (21), and (24).
Then, device n updates its offloading strategy if it can fur-

ther reduce the execution time by ε, as stated in line 11. Device
n broadcasts the update request (UR) message to the BSs and
requests for updating the offloading decision. If the request is
accepted by the BSs, the BSs broadcast the update permis-
sion (UP) message to device n, and then, the device n updates
its strategy. Otherwise, device n keeps the current strategy for
next epoch. If device n cannot reduce its execution time by ε,
the device keeps the same strategy for the next epoch.

Finally, if there is no RTU message sent to the BSs for
M continuous epochs, it means no single device can further
reduce the execution time. Then, the BSs broadcast the END
message to all devices.

V. EXPERIMENTAL EVALUATION

A. Setup

We adopt the real-world data set from Melbourne CBD
area of Australia to validate our DOLA algorithm. The data
set includes the locations of 125 BSs and 825 devices in the
area [33]. Fig. 2 shows the distributions of these 125 BSs and
825 devices. The blue points represent the locations of devices
and the red points represent the locations of the BSs. The red
circles represent the coverage areas of the BSs. It can be seen
from Fig. 2 that the deployment of BSs is dense, and there
are a huge number of overlapping areas among these BSs.

For each BS, the coverage radius is set as 200 m, the channel
bandwidth is 10 MHz, the background noise is −100 dBm,
and the computation capability of each BS is 4 GHz [24]. For
each task generated by the device, the task size is randomly
set between 5 and 10 MB, and the density is 50 cycles/bit.
The computation capability of each device is 1 GHz and the
transmission power is 200 mW. The channel gain is set to
dk

n
−3

, where dk
n is the distance between device n and BS k. The

threshold parameter ε is set to 0.001. The detailed parameter
settings are listed in Table II.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

13844 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

Fig. 2. Distribution of BSs and devices in Melbourne CBD area of Australia.

Fig. 3. Number of iterations with different numbers of devices.

B. Parameter Analysis

Fig. 3 shows the required number of iterations to reach the
Nash equilibrium with different numbers of devices and dif-
ferent numbers of BSs. The number of devices is varied from
100 to 800, and there are three settings of the BS number,
i.e., 40, 70, and 125. We can see that for all the three BS
number settings, as the number of devices increases, the num-
ber of iterations to reach the Nash equilibrium also grows.
This is because the solution space size grows rapidly and the
overall offloading problem becomes more complex with the
rise of device number, increasing the number of iterations.
Nevertheless, compared with the exponential growth speed of
the solution space size with the number of devices, we can find
from Fig. 3 that the growth speed of the number of iterations

Fig. 4. Average workload with different devices.

is slower than linear growth. This shows the scalability of our
proposed DOLA algorithm, which is important for real-world
and large-scale system.

Fig. 4 shows the average workload (in bits) of each BS with
different numbers of devices. Similarly, the number of devices
is varied from 100 to 800. Obviously, the average workload of
each BS increases with the increase of device number, as this
brings more workload to the whole system. More specifically,
it can be observed that when the number of devices is less than
300, the average workload of each BS rises linearly with the
increase of device number. This is because when the device
number is small, the overall workload in the system is rela-
tively low, and most of the BSs are not heavily loaded or with
high utilization. In this case, as the workload from the devices

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DISTRIBUTED OFFLOADING IN OVERLAPPING AREAS OF MOBILE-EDGE COMPUTING 13845

Fig. 5. Workload on different BSs.

grows, the BSs have sufficient computation resources to handle
the workload. Thus, the BSs would admit the tasks offloaded
from the devices as many as possible. Nevertheless, it is seen
that when the device number is increased further (from about
400 in Fig. 4), the growth of each BS’s workload would slow
down, and the growth speed is slower than linear growth (the
device number’s growth speed). Actually, as the device number
increases further, more and more tasks are generated, and the
BSs in the system would face resource limitations. Therefore,
the BSs would reduce the admitted workload to maintain the
performance. This also demonstrates the adaptive property of
our proposed DOLA algorithm.

To further evaluate the offloaded workload of each BS with
more details, Fig. 5 illustrates the workload of each of the
125 BSs with different device numbers. Three different set-
tings of device numbers are considered, i.e., 100, 400, and 800.
We can find that when the device number rises, the workload
of each BS also rises. Especially, when the device number is
100, the workload of each BS is between 0.2 × 108 bits and
0.7 × 108 bits. Besides, the workload distribution is relatively
sparse as some BSs are not heavy loaded or in high utilization,
and these BSs only have a relatively small number of tasks
to process. When the number of device is 800, the workload
of each BS is between 1.4 × 108 and 1.8 × 108 bits, and
the workload distribution is dense. This is because when the
device number is further increased, more and more tasks are
generated, making the BSs heavy loaded. It is also observed
that for each of the three settings of the device number, the
workload of different BSs generally stays in the same hori-
zontal region. This shows that our proposed DOLA algorithm
can balance the workload among different BSs. Actually, load
balance is an important factor for maintaining system stability
in workload scheduling, which avoids some BSs from very
high utilization and even crash.

Finally, Fig. 6 illustrates the average offloading percentages
of the devices with varied device number. It is shown that as
the number of devices rises, the average offloading percentage
decreases and the decreasing rate becomes slower when the
number of the devices is increased further (from about 400 in

Fig. 6. Offloading percentage on different devices.

Fig. 6). Especially, when there are 500 devices, the average
offloading rate of devices is 49%. When there are 800 devices,
the average offloading rate falls to 37%.

C. Comparison Experiments

In this part, we carry out comparison experiments to fur-
ther evaluate the performance of our DOLA algorithm. The
following three benchmark experiments are adopted.

1) Local Computing: Each device performs the task locally.
No tasks are offloaded to the BSs for processing.

2) Total Offloading Computing: All the tasks are offloaded
to the BSs for processing. No tasks are processed locally
on the devices.

3) MCF: To further validate the efficiency and effectiveness
of our proposed approach, we also select a state-of-the-
art approach for comparison, namely, MCF from [34].

4) Equal-Sized Subtasks Offloading: For each device n, we
divide the task size equally by

∑
k ck

n + 1. Here,
∑

k ck
n

stands for the number of connected BSs for device n,
and 1 stands for local computing. The (

∑
k ck

n + 1) sub-
tasks are processed on the connected BSs and locally in
parallel.

Fig. 7 shows the average delays (in seconds) of the five algo-
rithms with different device numbers. We can see that when
the device number rises, the delay of the local computing algo-
rithm stays almost the same, while the delays of the other four
algorithm continue to increase. Nevertheless, the increasing
rate of our DOLA’s delay is smaller than linear increasing rate
(the increasing rate of the device number), while the delays
of the local computing and equal-sized subtasks offloading
algorithms show a linear increasing rate.

Specifically, when the device number is smaller than 500,
the delay of the local computing algorithm is the smallest
among the five algorithms, and the delays of our DOLA algo-
rithm and the equal-sized subtasks offloading algorithm are
similar. This is because when the device number is small, the
workload generated by these devices is relatively low. In this
case, the BSs have sufficient computation resources to handle
the workload from the devices. When the device number is

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

13846 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 15, 1 AUGUST 2022

Fig. 7. System average delay with different numbers of BSs.

Fig. 8. Number of OBD devices with different numbers of devices.

further increased (more than 500 in Fig. 7), the superiority of
our DOLA algorithm is more obvious. In this case, DOLA’s
delay is the smallest among the five algorithms. The delay of
the total offloading computing algorithm is the longest. This
is because when the device number is too large, these devices
generate a large number of tasks, and the computing resources
of the BSs are not sufficient to process all the tasks. Thus,
offloading all the tasks to the BSs actually enhances the delay
and degrades the performance. The results in Fig. 7 demon-
strate that our algorithm can effectively reduce the execution
time.

To evaluate the benefits of offloading toward local com-
puting, we define the concept of offloading beneficial device
(OBD). A device is called an OBD device if the delay of inte-
grating offloading control decisions is smaller than the delay of
solely local computing, and the device benefits from offload-
ing. Fig. 8 shows the number of OBD devices of the total
offloading computing, the equal-sized subtasks offloading, and
the DOLA algorithms with different device number. The local
computing algorithm is skipped for comparison as its OBD

device number is 0. We can see that the OBD device number
of our DOLA algorithm is always the largest, and the OBD
device number of the total offloading computing algorithm
is always the smallest. The results in Fig. 8 demonstrate the
increase of the number of beneficial devices compared to the
MCF algorithm.

To be more specific, when the device number is less than
300, the OBD device numbers of all the four algorithms
rise with the increase of device number. This is because the
computing resources and capacities of the BSs are relatively
sufficient for the devices, and the devices do not need to com-
pete for the sufficient resources. When the device number is
increased further (from 300 in Fig. 8), the OBD device num-
bers of our DOLA algorithm and the equal-sized subtasks
offloading algorithm both rise. What is more, we can find that
the advantage of our proposed DOLA algorithm toward the
equal-sized subtasks offloading algorithm is more obvious, and
the gap of the OBD device numbers between our DOLA and
the equal-sized subtasks offloading algorithms is larger. We
also observe that the OBD device number of the total offload-
ing computing algorithm cannot improve anymore and stays
the same. This is because when the device number is increased
further, the computing resources and capacities of the BSs are
not sufficient enough to deal with all the generated tasks of
the devices. The total offloading computing algorithm accepts
all the tasks generated on the devices, resulting in large delay
and poor performance.

VI. CONCLUSION

In this article, we have investigated a MEC system with
divisible tasks generated from IoT devices in the overlap-
ping coverage area of multiple BSs. The divisible tasks have
been divided into several subtasks, and executed locally or
offloaded to multiple BSs for processing in parallel. We have
formulated the delay optimal offloading problem, and theo-
retically, analyzed the properties of the offloading problem.
We have also proved the existence of Nash equilibrium and
proposed the DOLA algorithm for all the IoT devices to reach
the equilibrium. The DOLA algorithm can obtain the satisfy-
ing equilibrium offloading strategies for the devices in parallel.
Finally, we have adopted the real-world data from Melbourne
CBD area of Australia for evaluation. The experimental results
have demonstrated that our DOLA algorithm can converge
quickly and is adaptive when the system scale increases. For
our future work, we will consider the impact of energy con-
sumption of devices as most IoT devices are battery limited.
Since the energy consumption and delay are two conflicting
metrics, we will study the joint optimization of energy and
delay to achieve the tradeoff between those two metrics.

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[2] N. Y. Philip, J. J. P. C. Rodrigues, H. Wang, S. J. Fong, and
J. Chen, “Internet of Things for in-home health monitoring systems:
Current advances, challenges and future directions,” IEEE J. Sel. Areas
Commun., vol. 39, no. 2, pp. 300–310, Feb. 2021.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DISTRIBUTED OFFLOADING IN OVERLAPPING AREAS OF MOBILE-EDGE COMPUTING 13847

[3] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 3rd Quart., 2017.

[4] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4,
pp. 51–56, Apr. 2010.

[5] Z. Chang, L. Liu, X. Guo, and Q. Sheng, “Dynamic resource allocation
and computation offloading for IoT fog computing system,” IEEE Trans.
Ind. Informat., vol. 17, no. 5, pp. 3348–3357, May 2021.

[6] F. Tang, B. Mao, N. Kato, and G. Gui, “Comprehensive survey
on machine learning in vehicular network: Technology, applications
and challenges,” IEEE Commun. Surveys Tuts., vol. 23, no. 3,
pp. 2027–2057, 3rd Quart., 2021.

[7] J. G. Andrews et al., “What will 5G be?” IEEE J. Sel. Areas Commun.,
vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[8] Y. Xu, G. Gui, H. Gacanin, and F. Adachi, “A survey on resource alloca-
tion for 5G heterogeneous networks: Current research, future trends, and
challenges,” IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 668–695,
2nd Quart., 2021.

[9] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing–A key technology towards 5G,” Eur. Telecommun. Stand.
Inst., Sophia Antipolis, France, Rep. no. 11, 2015.

[10] D. Zeng, L. Gu, S. Pan, J. Cai, and S. Guo, “Resource management
at the network edge: A deep reinforcement learning approach,” IEEE
Netw., vol. 33, no. 3, pp. 26–33, May/Jun. 2019.

[11] M. Dai, Z. Su, J. Li, and J. Zhou, “An energy-efficient edge offloading
scheme for UAV-assisted Internet of Things,” in Proc. IEEE 40th Int.
Conf. Distrib. Comput. Syst. (ICDCS), 2020, pp. 1293–1297.

[12] X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, “5G ultra-dense cel-
lular networks,” IEEE Wireless Commun., vol. 23, no. 1, pp. 72–79,
Feb. 2016.

[13] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

[14] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading schedul-
ing and power allocation for mobile edge computing systems,” IEEE
Internet Things J., vol. 6, no. 4, pp. 6774–6785, Aug. 2019.

[15] Y. Wu, L. P. Qian, K. Ni, C. Zhang, and X. Shen, “Delay-minimization
nonorthogonal multiple access enabled multi-user mobile edge compu-
tation offloading,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 3,
pp. 392–407, Jun. 2019.

[16] M.-H. Chen, B. Liang, and M. Dong, “A semidefinite relaxation
approach to mobile cloud offloading with computing access point,” in
Proc. IEEE 16th Int. Workshop Signal Process. Adv. Wireless Commun.
(SPAWC), 2015, pp. 186–190.

[17] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[18] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile com-
putation offloading,” in Proc. IEEE INFOCOM IEEE Conf. Comput.
Commun., 2017, pp. 1–9.

[19] L. Zhang, R. Chai, T. Yang, and Q. Chen, “Min-max worst-case
design for computation offloading in multi-user MEC system,” in Proc.
IEEE INFOCOM IEEE Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), 2020, pp. 1075–1080.

[20] H. Guo and J. Liu, “Collaborative computation offloading for multiac-
cess edge computing over fiber-wireless networks,” IEEE Trans. Veh.
Technol., vol. 67, no. 5, pp. 4514–4526, May 2018.

[21] J. Zhou, D. Tian, Z. Sheng, X. Duan, and X. Shen, “Distributed task
offloading optimization with queueing dynamics in multiagent mobile-
edge computing networks,” IEEE Internet Things J., vol. 8, no. 15,
pp. 12311–12328, Aug. 2021.

[22] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computa-
tion and communication cooperation for energy-efficient mobile edge
computing,” IEEE Internet Things J., vol. 6, no. 3, pp. 4188–4200,
Jun. 2019.

[23] H. Q. Le, H. Al-Shatri, and A. Klein, “Efficient resource allocation in
mobile-edge computation offloading: Completion time minimization,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2017, pp. 2513–2517.

[24] T. Mahn, H. Al-Shatri, and A. Klein, “Distributed algorithm for energy
efficient joint cloud and edge computing with splittable tasks,” in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), 2019, pp. 1–7.

[25] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, “DATS: Dispersive
stable task scheduling in heterogeneous fog networks,” IEEE Internet
Things J., vol. 6, no. 2, pp. 3423–3436, Apr. 2019.

[26] Z. Liu, Y. Yang, K. Wang, Z. Shao, and J. Zhang, “POST: Parallel
offloading of splittable tasks in heterogeneous fog networks,” IEEE
Internet Things J., vol. 7, no. 4, pp. 3170–3183, Apr. 2020.

[27] G. R. MacCartney and T. S. Rappaport, “Millimeter-wave base station
diversity for 5G coordinated multipoint (CoMP) applications,” IEEE
Trans. Wireless Commun., vol. 18, no. 7, pp. 3395–3410, Jul. 2019.

[28] M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coor-
dination for spectrally efficient communications in cellular systems,”
IEEE Wireless Commun., vol. 13, no. 4, pp. 56–61, Aug. 2006.

[29] D. Nowak, T. Mahn, H. Al-Shatri, A. Schwartz, and A. Klein, “A gener-
alized nash game for mobile edge computation offloading,” in Proc. 6th
IEEE Int. Conf. Mobile Cloud Comput. Services Eng. (MobileCloud),
2018, pp. 95–102.

[30] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[31] O. Polychroniou and K. A. Ross, “A comprehensive study of main-
memory partitioning and its application to large-scale comparison-and
radix-sort,” in Proc. ACM SIGMOD Int. Conf. Manag. data, 2014,
pp. 755–766.

[32] G. Debreu, “A social equilibrium existence theorem,” Proc. Nat. Acad.
Sci., vol. 38, no. 10, pp. 886–893, 1952.

[33] Q. Peng et al., “Mobility-aware and migration-enabled online edge user
allocation in mobile edge computing,” in Proc. IEEE Int. Conf. Web
Services (ICWS), 2019, pp. 91–98.

[34] P. Lai et al., “Cost-effective app user allocation in an edge computing
environment,” IEEE Trans. Cloud Comput., early access, Jun. 11, 2020,
doi: 10.1109/TCC.2020.3001570.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 31,2022 at 23:59:00 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCC.2020.3001570

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

