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Abstract—Wireless federated learning (FL) is a collaborative
machine learning (ML) framework in which wireless client-devices
independently train their ML models and send the locally trained
models to the FL server for aggregation. In this paper, we consider
the coexistence of privacy-sensitive client-devices and privacy-
insensitive yet computing-resource constrained client-devices, and
propose an FL framework with a hybrid centralized training and
local training. Specifically, the privacy-sensitive client-devices per-
form local ML model training and send their local models to the FL
server. Each privacy-insensitive client-device can have two options,
i.e., (i) conducting a local training and then sending its local model to
the FL server, and (ii) directly sending its local data to the FL server
for the centralized training. The FL server, after collecting the data
from the privacy-insensitive client-devices (which choose to upload
the local data), conducts a centralized training with the received
datasets. The global model is then generated by aggregating (i)
the local models uploaded by the client-devices and (ii) the model
trained by the FL server centrally. Focusing on this hybrid FL
framework, we firstly analyze its convergence feature with respect
to the client-devices’ selections of local training or centralized
training. We then formulate a joint optimization of client-devices’
selections of the local training or centralized training, the FL
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training configuration (i.e., the number of the local iterations and
the number of the global iterations), and the bandwidth allocations
to the client-devices, with the objective of minimizing the overall
latency for reaching the FL convergence. Despite the non-convexity
of the joint optimization problem, we identify its layered structure
and propose an efficient algorithm to solve it. Numerical results
demonstrate the advantage of our proposed FL framework with
the hybrid local and centralized training as well as our proposed
algorithm, in comparison with several benchmark FL schemes and
algorithms.

Index Terms—Federated learning, hybrid local and centralized
training, resource allocation.

I. INTRODUCTION

W ITH the explosive growth in the number of Internet of
Things (IoT) devices, a tremendous amount of data is

generated by the IoT devices in the wireless access networks.
Federated learning (FL), which allows numerous client-devices
(CDs) to cooperatively train a common machine learning (ML)
model without revealing their private data, has attracted lots
of interests in a variety of services and applications [1], [2].
In FL, each CD can perform a local model training based on
its local data and then send the locally trained model to the
FL server for the global model aggregation. Compared to the
traditional centralized training, FL not only preserves the privacy
of local data but also reduces the communication resource usage
for transmitting data to the FL server.

The advantages of FL have raised lots of applications, in
particular, the wireless access networks. Taking into account the
limited radio resource (e.g., the access bandwidth and battery
capacity of wireless terminals), there have been many studies
investigating the joint optimization of radio resource allocation
and FL convergence. Many existing studies focus on the balance
of the resource utilization and the FL convergence performance,
in which the CDs are presumed as privacy-sensitive and can
only perform local model training [3], [4], [5]. However, in
practice, there exist the privacy-insensitive CDs but with limited
computing-resources, which thus prefer to send their local data
to the FL server for a centralized training.

Based on the above consideration, different from the existing
studies, we investigate a novel FL scheme with the hybrid
centralized and local training. Specifically, we consider that
there exist two types of CDs, i.e., the privacy-sensitive CDs
and the privacy-insensitive CDs. The privacy-sensitive CDs,
due to the stringent privacy concern on their local data, have to
conduct the local model training individually and then send their
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trained models to the FL server. The privacy-insensitive CDs,
however, do not have any privacy concern. Taking into account
its local computing-resource, each privacy-insensitive CD has
two options, i.e., (i) conducting a local training and then sending
its locally trained model to the FL server, and (ii) directly sending
its local data to the FL server for the centralized training. After
collecting the data from those privacy-insensitive CDs (which
choose to upload their local data), the FL server then conducts
a centralized training with the received dataset. After that, the
FL server will aggregate the centralized trained model with its
received local models from the CDs to update the global model.
This hybrid centralized and local training is expected to achieve
a higher convergence rate in comparison with the conventional
FL without the centralized training, which is regarded as a
key advantage and is validated by both theoretic analysis and
simulation in this work. There exist two key challenging issues in
this considered FL with the hybrid centralized and local training
as follows.
� Coordination between local and centralized training: To

minimize the convergence latency of FL, we need to prop-
erly coordinate the following two aspects: (i) the local
model training at the CD that consumes the local training
latency, and (ii) the data transmission and the centralized
training latency at the FL server.

� Convergence feature of the FL with hybrid training: We
need to quantify the FL convergence feature with respect to
the CDs’ selections of local training or centralized training,
as well as the corresponding resource allocation.

Motivated by the above challenges, we propose a joint opti-
mization of the CDs’ selections of local training or centralized
training and communication resource allocation. Our detailed
contributions in this paper can be summarized as follows.
� Hybrid training framework: We propose a novel FL frame-

work with the hybrid local and centralized training in which
the privacy-insensitive CD can flexibly choose to either
conduct local training or send its local data to the FL server
for centralized training. We characterize the connection
between the latency and the selection of local training
and centralized training as well as resource allocation,
and analytically derive the convergence feature for the
proposed FL framework.

� Latency minimization formulation: We formulate a joint
optimization of the CD’s selection of local training and
centralized training, the FL configuration (i.e., the numbers
of local iterations and global iterations) and the bandwidth
allocations to the CDs, with the objective of minimizing
the overall FL latency.

� Algorithmic design: To address the non-convexity of our
formulated joint optimization problem, we identify its lay-
ered structure and equivalently decompose it into a top
problem for optimizing the selection of local training and
centralized training, a middle layer problem for optimizing
the FL configuration (i.e., the numbers of local iterations
and global iterations) and a bottom problem for optimizing
the bandwidth allocation. With this layered structure, we
propose an efficient algorithm to find the optimal solution
of the formulated optimization problem.

� Numerical validation: We provide extensive numerical
results to validate the effectiveness of our proposed al-
gorithms. The derived convergence feature of our pro-
posed FL framework is validated with the real dataset. We
demonstrate the performance advantage of our proposed

algorithm in comparison with two benchmark algorithms.
We then demonstrate the performance advantage of our
proposed FL scheme with the hybrid training.

The remainder of this paper is organized as follows. We review
the related studies in Section II. We analyze the convergence fea-
ture of the proposed FL with the hybrid training and formulate a
joint optimization problem in Section III. We propose an efficient
algorithm for solving the formulated problem in Section V. The
numerical results are provided in Section VI. We finally conclude
this paper in Section VII and discuss the future directions.

II. RELATED STUDIES

As a distributed learning framework, FL is expected to en-
able various learning based services, which has attracted many
research efforts [6], [7], [8]. We review the studies related to our
paper as follows.
� FL with single edge-server or multiple edge-servers: Many

research efforts focus on the federated edge learning which
aggregates the model at the edge-server, and the latency
can be significantly reduced compared to the conventional
cloud-centralized FL network. In [9], the authors proposed
a communication-efficient asynchronous FL where part of
the clients’ local models were selected (according to their
arrival order) to be aggregated at the FL server. In [10],
the authors proposed a novel client selection scheme for
FL, based on the learning quality of participants. In [11],
Xiao et al. aimed to minimize the cost in the worst case
of FL by selecting the proper vehicles and optimizing
the corresponding resource allocation. In [12], Chen et al.
aimed to minimize the FL loss function by jointly opti-
mizing the user selection and the wireless resource al-
location. In [13], the authors proposed a simultaneous
wireless information and power transfer aided FL, in which
one FL server simultaneously broadcasts the global model
and provides wireless power transfer to wireless devices.
Since the coverage of a single edge-server is limited, the
authors in [14] considered FL with multiple edge-servers
and accelerated the training by utilizing the clients located
in the overlapping areas among different edge-servers.

� Hierarchical FL for edge cloud cooperated network: In
the hierarchical FL network, additional edge-servers are
deployed as the intermediate helpers between clients and
the FL server. Each intermediate helper first aggregates the
local models received from nearby clients and then uploads
its aggregated model to the remote server. In [15], the
authors proposed a hierarchical game framework to study
the dynamics of edge association and resource allocation in
self-organizing hierarchical FL networks. In [16], Xu et al.
provided the upper bound of the average global gradient
deviation and jointly optimized the edge aggregation inter-
val and resource allocation in the hierarchical FL. In [17],
Luo et al. proposed a novel hierarchical FL framework
where the model aggregation can be partially migrated
from the cloud to edge-servers. The authors in [18] stud-
ied a hierarchical FL framework where only a portion of
helpers’ aggregated model parameters can be uploaded to
the cloud server. In [19], the authors proposed a hierarchical
two-level incentive mechanism for the resource allocation
in hierarchical FL networks.

� Fully decentralized FL (or serverless FL): Fully decen-
tralized FL enables the clients to exchange the locally
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Fig. 1. FL with the hybrid local learning and centralized training.

trained models with the clients nearby, without relaying on
any server. The authors in [20] analyzed the convergence
behavior of decentralized stochastic gradient descent in
FL. In [21], Xiao et al. developed an unmanned aerial
vehicle assisted fully decentralized FL framework. The
authors in [22] studied the decentralized FL based on the
consensus mechanism in the blockchain. In [23], Xing et al.
investigated device-to-device communication assisted FL
by analyzing the performance of decentralized stochastic
gradient descent.

However, it is still an open research problem for the resource
allocation in the FL with a hybrid local and centralized training
framework, in which some FL clients are allowed to upload their
raw data to the FL server for centralized training.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the frequency-division multiple access (FDMA)
based FL system including one base station (BS) with one single
antenna and K CDs with one single antenna as shown in Fig. 1.
The BS is attached with an FL server. In particular, we separate
the CDs into two groups, i.e., the privacy-sensitive CDs and
privacy-insensitive CDs. We denote the subset of the privacy-
sensitive CDs as Ksp (here “sp” means strict-privacy), and the
subset of the privacy-insensitive CDs as Knp (here “np” means
non-privacy). We use a binary variable xk to denote the k-th
CD’s selection of performing either the local training or the
centralized training. For each privacy-sensitive CD k ∈ Ksp, the
value of xk should be

xk = 0, k ∈ Ksp,

which means that the privacy-sensitive CD k can only perform
the local training.

For each privacy-insensitive CD k ∈ Knp, if it selects to
perform local training, then xk = 0. If CD k selects to perform
the centralized training, then xk = 1, namely,

xk =

{
0, using local training
1, using centralized training , k ∈ Knp.

We next illustrate the proposed FL with the hybrid local and
centralized training as follows.

A. Stage I for All CDs: Global Model Downloading

In Stage I, the FL server sends the global model to all CDs.
We denote the size of the global model as S. We use bk to
denote the bandwidth allocated to CD k. We denote the BS’s
transmit-power as p0 and the channel coefficient between CD k
and the BS as hk. The CD k’s throughput for downloading the
global model is

Rdo
k = bklog2

(
1 +

p0hk

σbk

)
, ∀k ∈ K, (1)

where σ denotes the noise power density.
We use ydo

k (here “y” stands for transmission time and “do”
stands for “model downloading”) to denote the CD k’s model
downloading time, which can be expressed as

ydo
k =

S

Rdo
k

, ∀k ∈ K. (2)

B. Stage II for the CDs Performing Local Training: Local
Training and Model Uploading

As shown in Fig. 1, the illustration of Stage II can be separated
into two cases, i.e., the CD with xk = 0 (i.e., performing local
training) and the CD with xk = 1 (i.e., performing centralized
training). In this subsection, we firstly illustrate the operations
of the CDs which perform local training, including the privacy-
sensitive CDs in Ksp as well as those privacy-insensitive CDs
but choosing xk = 0. In the next subsection, we will further
illustrate the operations of the CDs which perform centralized
training, i.e., CDs choosing xk = 1.

In each round of FL iterations, the operations of CDs per-
forming local training include two parts, i.e., (i) local training
and (ii) model uploading, which are illustrated as follows.

(i) Local training: After receiving the global model from the
FL server, each CD k (with xk = 0) performs local training to
update its local model. We denote fk as the CPU frequency at
CD k, with the unit of HZ which means the number of CPU
cycles per second. Dk is the number of data samples on the k-th
CD, ι represents the data bits for each sample. We consider the
mini-batch stochastic gradient descent (SGD) method which is
widely used in FL. Here, we assume that the mini-batch size is
ϑDk, which means that the mini-batch size is proportional to
the size of total data on the CD, where 0 < ϑ < 1 is a constant
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and practically it is a very small value. We use variable m to
denote the number of local iterations. The computation time for
local training on the k-th CD tloc

k (here “t” stands for training
time and “loc” stands for “local training”) in each round is

tloc
k =

(1− xk)mιϑDkζk
fk

, ∀k ∈ K, (3)

where ζk represents the number of CPU cycles for the k-th CD
to process one bit data.

Since CD k’s CPU power consumption per second can be
expressed as κf3

k , where κ is a coefficient depending on the
CPU architecture, the k-th CD’s energy consumption for local
training in each round can be given by

Eloctr
k = (1− xk)κιDkζkmf2

k , ∀k ∈ K. (4)

(ii) Model uploading: After completing their respective local
training, the CDs performing local training send their local
models to the FL server via FDMA. We denote the CD k’s
transmit-power as pk. The CD k’s uploading throughput can
be expressed as

Rup
k = bklog2

(
1 +

pkhk

σbk

)
, ∀k ∈ K. (5)

We use yloc
k to denote the transmission duration for CD k to

upload its model, which can be expressed as

yloc
k = (1− xk)

S

Rup
k

, ∀k ∈ K. (6)

Correspondingly, the k-th CD’s energy consumption for up-
loading its local model to the FL server is

Elocup
k = pky

loc
k = pk(1− xk)

S

Rup
k

, ∀k ∈ K. (7)

Using (4) and (7), the energy consumption of CD k, which
selects to perform the local training, can be expressed asEloctr

k +

Elocup
k .

C. Stage II for the CDs Performing Centralized Training:
Data Offloading and Centralized Training

In this subsection, we illustrate the operations of the CDs
which perform centralized training, i.e., CDs choosing xk = 1.
In each round of FL iterations, the operations of CDs performing
local training include two parts, i.e., (i) data offloading and (ii)
central training, which are illustrated as follows.

(i) Data offloading: After receiving the global model from the
FL server, each CD k that selects to perform centralized training
offloads a mini-batch of its dataset to the FL server. We use
ycen
k (here “cen” stands for “performing centralized training and

offloading data”) to denote the transmission duration to offload
the data, which can be expressed as

ycen
k = xk

ιϑDk

Rup
k

, ∀k ∈ K, (8)

where Rup
k is given in (5) before.

Correspondingly, the k-th CD’s energy consumption for of-
floading its data to the FL server is

Ecen
k = pky

cen
k = pkxk

ιϑDk

Rup
k

, ∀k ∈ K. (9)

Fig. 2. An illustrative example of the operations in one FL iteration.

(ii) Centralized training: The FL server collects all the of-
floaded data to form a combined dataset, and then updates the
model with the combined dataset. We denote f0 as the available
CPU frequency at the FL server. The centralized training time
at the FL server tser (here “ser” stands for “centralized training
by the FL server”) can be expressed as

tser =
∑
k∈K

xkmιϑDkζ0
f0

, (10)

where ζ0 represents the number of CPU cycles for the FL server
to process one bit data.

D. Stage III for All CDs: Model Aggregating

In Stage III, the FL server aggregates its trained model (from
the centralized training in Stage II) and the collected local
models from the CDs which select to perform local training,
and further generates an updated global model which will be
sent to all CDs in the next round of FL iteration. Since the data
size for model aggregating is equivalent at each round, with a
fixed computing capacity at the FL server, the time for model
aggregating can be considered as a constant which is denoted as
ξ.

E. Overall Latency and Energy Consumption of the Proposed
FL With Hybrid Local and Centralized Training

An illustrative example of the operations in one FL iteration
is demonstrated in Fig. 2. In Fig. 2, CD 1 is privacy-sensitive and
performs local training. CD 2 is privacy-insensitive and chooses
to perform local training. CD 3 and CD 4 are privacy-insensitive
and choose to perform centralized training. By using the example
in Fig. 2, we illustrate the single-round latency, including Stage
I, Stage II, and Stage III, as follows. In particular, since the
latency of Stage III is same for all CDs, we focus on analyzing
the latency of Stage I and Stage II below.
� The latency of Stage I and Stage II for the CDs performing

local training, e.g., CD 1 and CD 2, includes: i) the model
downloading latency ydo

k , ii) the local training latency tloc
k ,

and iii) the model uploading latency yloc
k . Thus, the corre-

sponding latency of Stage I and Stage II for the CDs per-
forming the local training is maxk∈K {ydo

k + tloc
k + yloc

k }.
� The latency of Stage I and Stage II for the CDs performing

centralized training, e.g., CD 3 and CD 4, includes: i)
the model downloading latency ydo

k , ii) the data uploading
latency ycen

k , and iii) the latency of model training on edge
server tser. Thus, the corresponding latency of Stage I and
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Stage II for the CDs performing the centralized training is
maxk∈K {ydo

k + ycen
k }+ tser.

Since the FL server can only start Stage III for model aggre-
gating when all CDs complete the procedure of Stage I and Stage
II, the single-round latency for the FL can be expressed as

T single = max
{
max
k∈K

{ydo
k + tloc

k + yloc
k },

max
k∈K

{ydo
k + ycen

k }+ tser
}
+ ξ. (11)

We use variable n to denote the number of global iterations. The
total latency T all for n rounds of global iterations is

T all = nT single. (12)

We next model the energy consumption of each CD as follows.
Notice that if xk = 1, CD k’s energy consumption comes from
sending the data to the FL server, i.e., Ecen

k . If xk = 0, CD k’s
energy consumption comes from its local training and sending
the trained model to the FL server, i.e., Eloctr

k + Elocup
k . As a

summary, CD k’s energy consumption can be expressed as

Ek = n(Eloctr
k + Elocup

k + Ecen
k ), ∀k ∈ K. (13)

Reminder that in above (13), either (Eloctr
k + Elocup

k ) or Ecen
k will

be positive (and the other one will be zero), according to (4), (7)
and (9) before.

F. FL Training Process

We denote Fk(�) as the loss function for CD k’s local
training, and we use F0(�) to denote the loss function for
centralized training at the FL server with the data collected from
the CDs that select to perform centralized training. The objective
of FL is to minimize the overall loss function F (�) as

min
�

F (�)=

∑
k∈K (1− xk)DkFk(�)∑

k∈K Dk
+
F0(�)

∑
k∈K xkDk∑

k∈K Dk
.

(14)
To analyze the convergence feature of our proposed FL,

similar to [24], [25], we make the following assumptions.
Assumption 1: The loss function is L-Lipschitz and γ-

strongly convex (the detailed expression can be seen in (54)
in Appendix A).

Assumption 2: The stochastic gradient computed on the mini-
batch SGD can be bounded by introducing two variables ρ1 and
σ2
F (the detailed expression can be seen in (55) in Appendix A).
Assumption 3: We use Γ to quantify the degree of non-

independently identical distribution (non-IID) (the detailed ex-
pression can be seen in (56) in Appendix A).

The convex and Lipschitz assumptions (i.e., Assumption 1)
provide the upper bound and lower bound of �2Fk(�), i.e.,
γI≤ �2Fk(�) ≤ LI, which avoids a significant variation on
the gradient of the loss function. Moreover, the upper bound
and lower bound play an important role in deriving the conver-
gence feature of the proposed FL as illustrated in the proof of
Theorem 1. We notice that this similar assumption has also been
adopted in [12], [26]. Moreover, although we make the convexity
assumption, the convergence feature derived in Theorem 1 can
be also expended to non-convex function by using the similar
method in [26].

We denote gn as the global model at the n-th global iteration.
Under the above assumptions, the convergence feature of the
proposed FL is derived in Theorem 1.

Theorem 1: We use ηk to represent the decay effect of the
loss function for CD k’s local training, which can be expressed
as

ηk = 1− δγ

(
1− Lδ

2
− Lδ

2

ρ1
ϑDk

)
. (15)

Meanwhile, we use η0 to denote the decay effect of the
loss function for the CDs that select to perform the centralized
training at the FL server, i.e.,

η0 = 1− δγ

⎛
⎝1− Lδ

2
− Lδ

2

ρ1
ϑ
∑
k∈K

xkDk

⎞
⎠ . (16)

With the learning rate δ < 2ϑmin {Dk}
L(ϑmin {Dk}+ρ1)

, considering the
same number of local iterations m on all CDs and FL server, the
convergence feature can be written as

F (gn)− F ∗ ≤ (1− C1)
n(F (g0)− F ∗)︸ ︷︷ ︸

decay item for global iteration

+ C3
1−(1−C1)

n

C1︸ ︷︷ ︸
compensation item

,

(17)
where

C1 =
βγ2

2DL2

⎛
⎜⎜⎜⎜⎝
∑
k∈K

(1− xk)(1− (ηk)
m)Dk︸ ︷︷ ︸

from local training

+ (1− (η0)
m)
∑
k∈K

xkDk︸ ︷︷ ︸
from centralized training

⎞
⎟⎟⎟⎟⎠ , (18)

C2 =
σ2
F

ϑ

⎛
⎜⎜⎜⎜⎝
∑
k∈K

(1− xk)
1− (ηk)

m

1− ηk︸ ︷︷ ︸
from local training

+
1− (η0)

m

1− η0︸ ︷︷ ︸
from centralized training

⎞
⎟⎟⎟⎟⎠ ,

(19)

C3 = C2 − C1Γ. (20)

Proof: Please refer to Appendix A. �
Theorem 1 can be intuitively explained as follows. In (17),

item (1− C1) represents the decay rate of global iterations.
Since 0 < 1− C1 < 1, at each FL global iteration, the value
of F (gn)− F ∗ will decrease with the ratio 1− C1. In eq. (17),
item C3

1−(1−C1)
n

C1
represents the compensation for the mini-

batch SGD process since we assume the bound of mini-batch
SGD (as eq. (55) in Appendix A). In Theorem 1, C1 can be
regarded as the weighted combination of the CDs’ and the FL
server’s training decay items, while C2 can be regarded as the
weighted combination of the CDs’ and the FL server’s training
compensation items. The results of Theorem 1 are demonstrated
in Figs. 3 and 4. As demonstrated in Figs. 3 and 4, when more
CDs choose to perform centralized training, the FL can achieve a
higher convergence rate and the loss function can reach a smaller
value.
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Fig. 3. Convergence behavior for the proposed FL when m = 20 (K = 100).

Fig. 4. Convergence behavior for the proposed FL when m = 50 (K = 100).

We denote F (g0)− F ∗ = μ. According to Theorem 1, we
obtain Corollary 1 which is the training loss constraint in our
problem formulation as discussed later.

Corollary 1: To achieve the training loss decay rate ε sat-
isfying F (gn)− F ∗ ≤ ε(F (g0)− F ∗), the number of local
iterations m and the number of global iterations n should satisfy

−(ε− (1− C1)
n)μ+ C3

1− (1− C1)
n

C1
≤ 0. (21)

Notice that m is contained in C1 and C3 according to (18), (19)
and (20).

Proof: From (17) we obtain

(1− C1)
nμ+ C3

1− (1− C1)
n

C1
≤ εμ. (22)

Form (22), we can obtain the result in Corollary 1. �

G. Problem Formulation

Based on the above analysis, we aim at minimizing the overall
latency of FL and formulate Problem (OLM) as follows (here
“OLM” stands for “overall latency minimization”).

(OLM): minT all

subject to: Ek ≤ Emax
k , ∀k ∈ K, (23)∑

k∈K
bk ≤ B, (24)

xk ∈ {0,1},∀k ∈ Knp, (25)

xk = 0,∀k ∈ Ksp, (26)

1 ≤ n � nmax, n ∈ Z+, (27)

1 ≤ m � mmax,m ∈ Z+, (28)

Fig. 5. Illustration of our layered algorithm for solving Problem (OLM).

constraint: (21),

variables: m,n, {xk}K, {bk}K.

In Problem (OLM), constraint (23) guarantees that each CD’s
energy consumption cannot exceed its energy budget Emax

k .
Constraint (24) ensures that the summation of all CDs’ band-
width cannot exceed the available bandwidth denoted by B.
Constraint (21) ensures that the training loss decay satisfies the
training requirement.

However, due to jointly invoking the series of variables
{m,n, {xk}K, {bk}K}, Problem (OLM) is a non-convex opti-
mization problem, which means that there exists no general
algorithm that can solve Problem (OLM) efficiently. We will
propose an efficient algorithm to solve Problem (OLM) in the
next section.

IV. PROPOSED ALGORITHM FOR PROBLEM (OLM)

A. Layered Structure of Problem (OLM)

As demonstrated in Fig. 5, to solve the complicated non-
convex Problem (OLM), we exploit its layered structure as
follows.

Bottom-problem to optimize {bk}K under given {xk}K,m
and n. We firstly consider that CDs’ selections {xk}K and
the FL configuration (i.e., the number of global iterations and
local iterations) are given, and aim at optimizing the bandwidth
allocations {bk}K to minimize the overall latency. This leads to
the bottom problem (i.e., Problem (OLM-BOT)) as follows:

(OLM-BOT): TBOT ({xk}K,n,m) = minT all

subject to: constraints: (23), (24),

variables: {bk}K.

Mid-problem to optimize m and n under given {xk}K. With
the optimal value of TBOT({xk}K,n,m) by solving the bottom
problem (OLM-BOT), we then continue to optimize the number
of local iterations m and the number of global iterations n. This
leads to the middle layer problem (i.e., Problem (OLM-MID))
as follows:

(OLM-MID): TMID({xk}K) = min TBOT({xk}K,n,m)

subject to: constraints: (21), (23), (27), (28),

variables: m,n.

Top-problem to optimize {xk}K. After obtaining
TMID({xk}K) by solving Problem (OLM-MID), we continue to
optimize CDs’ selections {xk}K. This leads to the top problem
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(i.e., Problem (OLM-TOP)) as follows:

(OLM-TOP): T ∗ = min TMID({xk}K)
subject to: xk ∈ {0,1},∀k ∈ Knp, xk = 0,∀k ∈ Ksp,
variables: {xk}K.

B. Proposed Algorithms for Solving Problem (OLM-BOT)

We use T̂k to denote the latency of CD k for Stage I and Stage
II in one round, specifically,

T̂k =

{
ydo
k + tloc

k + yloc
k , xk = 0,

ydo
k + ycen

k + tser, xk = 1.
(29)

The objective of Problem (OLM-BOT) can be rewritten as

T all = n

(
max
k∈K

{T̂k}+ ξ

)
. (30)

Recall that ξ denotes the model aggregating time which is
described in Section III.D before. Thus, to minimize the ob-
jective of Problem (OLM-BOT) is equivalent to minimize
maxk∈K {T̂k}. We introduce a variable T̂ = maxk∈K {T̂k}.
With T̂ , we transform Problem (OLM-BOT) into the following
one:

(OLM-BOT-E): min T̂

subject to: T̂k ≤ T̂ , ∀k ∈ K, (31)

constraints: (23), (24),

variables: {bk}K.

To solve Problem (OLM-BOT-E), we firstly identify the
monotonic property of T̂k and Ek as Lemma 1 and Lemma 2.

Lemma 1: For each CD k, T̂k is monotonically decreasing
with bk.

Proof: Please refer to Appendix B. �
Lemma 2: For each CD k, Ek is monotonically decreasing

with bk.
Proof: Please refer to Appendix C. �
We use {blow

k }K to denote the lower bound of the feasible
region constrained by the energy budget constraint (23). Specif-
ically, there exists

blow
k = min {bk|Ek ≤ Emax

k }, ∀k ∈ K. (32)

Reminder that Ek can be regarded as an implicit function of
bk. Moreover, according to Lemma 2, Ek is decreasing with bk.
Thus, for each CD k, we can use the bisection search method to
determine the value blow

k in (32).
Lemma 3: Problem (OLM-BOT-E) is a convex problem.
Proof: Please refer to Appendix D. �
Lemma 3 enables us to use Karush-Kuhn-Tucker (KKT)

conditions to solve Problem (OLM-BOT-E). We use λk to de-
note the Lagrangian multiplier for constraint T̂k ≤ T̂ , ∀k ∈ K.
We use u to denote the Lagrangian multiplier for constraint∑

k∈K bk ≤ B. We use υk to denote the Lagrangian multiplier
for constraint Ek ≤ Emax

k , ∀k ∈ K. Thus, we can derive the
Lagrangian function as follows:

L(bk,λk,u,υk) = T̂ +
∑
k∈K

λk(T̂k − T̂ )+u

(∑
k∈K

bk −B

)

Algorithm 1: BA Algorithm to Solve Problem (OLM-BOT).

Input: the values of {xk}K, m.
1: Initialize S0 = ∅. Initialize i = 0.
2: while K \ Si �= ∅ or Si+1 �= Si do
3: With Si, use Subroutine-BA to compute {b̂k}

i
K,

which are the solutions of (38), (39) and (40).
4: Update Ŝ = {j|b̂ij < blow

j }. Set b∗j = blow
j , ∀j ∈ Ŝ.

5: Update Si+1 = Si ∪ Ŝ .
6: Update i = i+ 1.
7: end while

Output:
b∗k = b̂ik, ∀k ∈ K \ Si+1. b∗k = blow

j , ∀j ∈ Si+1.

Algorithm 2: Subroutine-BA to Compute {b̂k}
i
K (i.e., solu-

tions of (38), (39) and (40) under given Si).

Input: the values of {xk}K, m, and set Si.
1: Initialize ε with a small value. Initialize T̂ up with a

large value. Initialize T̂ low = 0. Initialize
bcur
k = blow

k , ∀k ∈ K.
2: while

∑
k∈K bcur

k > (1 + ε)B or∑
k∈K bcur

k < (1− ε)B do
3: Update T̂ cur = 1

2 (T̂
up + T̂ low).

4: Compute {bcur
k }K\Si satisfying (38) with the

bisection search.
5: if

∑
k∈K bcur

k ≤ (1− ε)B then
6: Update T̂ up = T̂ cur.
7: else
8: Update T̂ low = T̂ cur.
9: end if

10: end while
Output: b̂ik = bcur

k , ∀k ∈ K.

+
∑
k∈K

υk(Ek − Emax
k ). (33)

From the KKT conditions, we obtain

∂L(bk,λk,u,υk)

∂ bk
= −λk

∂Tk

∂ bk
+ u+ υk

∂Ek

∂ bk
= 0, ∀k ∈ K.

(34)
Based on Lemma 1 and Lemma 2, we conclude that ∂ Tk

∂ bk
<

0 and ∂Ek

∂ bk
< 0. We then consider u. Reminder that u ≥ 0. If

u = 0, then λk = 0, ∀k ∈ K, υk = 0, ∀k ∈ K. It implies that
for any values of {bk}K, there always exists ∂L(bk,λk,u,υk)

∂bk
=

0, ∀k ∈ K. As a result, the objective value does not change for
any values of {bk}K when u = 0, which incurs a contradiction.
Thus, we can conclude that u > 0.

From the complementary slackness condition that
u(
∑

k∈K bk −B) = 0, we conclude that the optimal solutions
of {bk}K should satisfy∑

k∈K
b∗k −B = 0. (35)

We next consider υk. Since υk ≥ 0, ∀k ∈ K, we divide set K
into two sub-sets S and K \ S , where S = {j|vj > 0}. For CD
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k ∈ K \ S , since vk = 0, from (34), we obtain

−λk
∂Tk

∂ bk
+ u = 0, ∀k ∈ K \ S.

Since u > 0 and ∂ Tk

∂ bk
< 0, we obtain

λk > 0, ∀k ∈ K \ S.

From the complementary slackness condition that λk(T̂k −
T̂ ) = 0, ∀k ∈ K, we conclude that

T̂k = T̂ , ∀k ∈ K \ S. (36)

For CD j ∈ S , since vj > 0, from the complementary slack-
ness condition that υj(Ej − Emax

j ) = 0, ∀j ∈ K, and recalling
that blow

j is the value satisfying Ej = Emax
j , we conclude that

b∗j = blow
j , ∀j ∈ S. (37)

Based on the above analysis, we conclude that the optimal
solutions of {b∗k}K should satisfy Proposition 1 as follows.

Proposition 1: The optimal solutions {b∗k}K of Problem
(OLM-BOT-E) should satisfy the equation group as⎧⎪⎨

⎪⎩
T̂k = T̂ , ∀k ∈ K \ S, (38)∑

k∈(K\S) b
∗
k +

∑
j∈S b

low
j = B, (39)

b∗j = blow
j , ∀j ∈ S. (40)

Proof: Combining (35), (36) and (37), we can derive the
conclusion in Proposition 1. �

With Proposition 1, we propose BA Algorithm (here “BA”
stands for “bandwidth allocation”) as Algorithm 1 to solve
Problem (OLM-BOT). The main idea of BA Algorithm is to re-
cursively updateSi+1 = Si ∪ {j|b̂ij < blow

j } until either (i) there
remains no elements in K \ Si or (ii) K \ Si keeps unchanged.

Proposition 2: The solution yielded by BA Algorithm suf-
fices to be the optimal solution for Problem (OLM-BOT).

Proof: BA Algorithm is based on the recursion method and
we conduct the proof by recursively revealing the relationship of
the i-th and (i+ 1)-th recursions. Since the optimal solutions of
{b∗k}Si are obtained in the (i− 1)-th recursion, we focus on the
analysis of {b∗k}K\Si . In the i-th recursion, after obtaining {b̂k}

i
K

by solving (38) and (39) underSi, we denote Ŝ = {j|b̂ij < blow
j }.

For CD j ∈ Ŝ , to satisfy the energy budget constraint (23), the
solution should satisfy

b∗j ≥ blow
j > b̂ij , ∀j ∈ Ŝ. (41)

From the monotonic property of T̂k (T̂k is implicit function
of bk), we obtain

T̂j(b
∗
j) ≤ T̂j(b

low
j ) < T̂j(b̂

i
j), ∀j ∈ Ŝ. (42)

Recall that {b̂ik}K\Si are the points satisfying T̂k(b̂
i
k) =

T̂ , ∀k ∈ K \ Si. (41) implies that more bandwidth (more than
b̂ik) should be allocated to the CDs in set Ŝ . Thus, the bandwidth
remained for CD k ∈ K \ (Si ∪ Ŝ) is non-increasing (smaller
than or equal to b̂ik), which implies that

b∗k ≤ b̂ik, ∀k ∈ K \ (Si ∪ Ŝ).

Also from the monotonic property of T̂k, we obtain

T̂k(b̂
i
k) ≤ T̂k(b

∗
k), ∀k ∈ K \ (Si ∪ Ŝ). (43)

Since {b̂ik}K\Si are the points satisfying

T̂j(b̂
i
j) = T̂k(b̂

i
k), ∀j ∈ Si,∀k ∈ K \ (Si ∪ Ŝ),

by combing (42) and (43), we obtain

T̂j(b
∗
j) < T̂k(b

∗
k), ∀j ∈ Ŝ,∀k ∈ K \ (Si ∪ Ŝ),

which implies that the solutions of {b∗k}K\Si satisfy maxj∈Ŝ
{T̂j} < maxk∈K\(Si∪Ŝ) {T̂k}. Thus, to minimize the objective

ofmaxk∈K\Si {T̂k} is equivalent to minimize the following one:

max

{
max
j∈Ŝ

{
T̂j

}
, max
k∈K\(Si∪Ŝ)

{
T̂k

}}
= max

k∈K\(Si∪Ŝ)

{
T̂k

}
.

(44)

Then, we conduct the analysis as follows.
� For CD j ∈ Ŝ , to minimize maxk∈K\(Si∪Ŝ) {T̂k}, we

should allocate more bandwidth to set K \ (Si ∪ Ŝ).
Specifically, we decrease the bandwidth of each CD j ∈ Ŝ
until it reaches its low bound blow

j . Thus, we conclude that

b∗j = blow
j , ∀j ∈ Ŝ .

� For CD k ∈ K \ (Si ∪ Ŝ), to minimize maxk∈K\(Si∪Ŝ)
{T̂k}, we update Si+1 = Si ∪ Ŝ and continue to minimize
maxk∈K\Si+1{T̂k} in the next recursion.

This completes the proof. �
Notice that in Step 3 of BA Algorithm, we use a subroutine

(i.e., Subroutine-BA as Algorithm 2) to compute the value of
{b̂k}K. Subroutine-BA can be regarded as a two-layer bisection
search method. In Step 4, given the value of T̂ , the value of
b̂ik satisfying T̂k = T̂ as (38) can be computed by the bisection
search method according to the monotonic property of T̂k in
Lemma 1. Then, from Step 5 to Step 10, we check whether
the obtained b̂ik can satisfy

∑
k∈K b̂ik = B as (39). If yes, we

output the final solution. Otherwise, we update the value of T̂
with the bisection search method, since the value of

∑
k∈K b̂ik is

monotonically decreasing with T̂ according to Lemma 1.

C. Proposed Algorithm for Solving Problem (OLM-MID)

After obtaining the optimal solutions of {bk}K in the previous
subsection, we next optimize the solutions of the number of local
iterations m and the number of global iterations n. The two cou-
pling variables m and n incur the difficulty for solving Problem
(OLM-MID). To address this difficulty, we firstly determine the
optimal value of n under given m, and then optimize m. The
details are as follows.

i) Determining the optimal value of n under given m: Since
T single is given under the given value of m, the objective T all =
nT single is monotonically decreasing with n. Thus, to minimize
the overall latency T all, we should decrease the value of n until
it reaches the lower bound of its feasible region. We denote
nlower and nupper as the lower and upper bounds of the feasible
region for n, which is constrained by the training loss constraint
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Algorithm 3: Computing the Optimal Values of m and n.

Input: the value of {xk}K.
1: Initialize set T = ∅.
2: for m = 1 : mmax do
3: Compute nlower satisfying (47) with the bisection

search method (and the 
·� operation).
4: Solve Problem (OLM-BOT) with BA algorithm.

Compute {Ek}K.
5: if maxk∈K {Ek − Emax

k } ≤ 0 and nlower ≤ nmax
then

6: Compute T all, and add the tuple (nlower,m, T all)
into set T .

7: end if
8: end for

Output: the optimal solution is the tuple with the
smallest value of T all in set T .

(21) and the energy budget constraint (23) 1. The training loss
constraint (21) comes from

F (gn)− F ∗ ≤ εμ. (45)

The energy budget constraint Ek ≤ Emax
k , ∀k ∈ K can be

rewritten as

max
k∈K

{Ek − Emax
k } ≤ 0. (46)

Lemma 4: In constraint (45), F (gn)− F ∗ is monotonically
decreasing with n.

Proof: It is observed in (17) that the more rounds of the global
iterations, the larger decay of the FL training loss. Thus, we can
obtain the conclusion in Lemma 4. �

Lemma 4 implies that constraint (45) gives a lower bound of
the feasible region for n. Specifically,

nlower = min {n ∈ Z+|F (gn)− F ∗ ≤ εμ}. (47)

Reminder that F (gn)− F ∗ can be regarded as an implicit
function of n. Moreover, according to Lemma 4, F (gn)− F ∗

is decreasing with n. To compute nlower, we firstly treat nlower as
a continuous value, which can be determined by the bisection
search method. Then, we obtain the integer solution of nlower

by taking the nearest upper integer of its corresponding contin-
uous solution according to the property of discrete monotonic
optimization [27].

Lemma 5: In constraint (46), maxk∈K {Ek − Emax
k } is

monotonically increasing with n.
Proof: From the expression of Ek as (13), we obtain

max
k∈K

{Ek−Emax
k } = n

(
max
k∈K

{Eloctr
k +Elocup

k +Ecen
k −Emax

k }
)
.

(48)
In (48), since Eloctr

k , Elocup
k and Ecen

k are given under the given
value of m, we can get the conclusion in Lemma 5. �

Lemma 5 implies that constraint (46) gives an upper bound
of the feasible region for n, i.e.,

nupper = max{n ∈ Z+|max
k∈K

{Ek − Emax
k } ≤ 0, n ≤ nmax}.

1It is noticed that both nlower and nupper depend on the currently given value
of m. For the sake of clear presentation, we do not explicitly include m in the
notations of nlower and nupper.

Algorithm 4: SL-CE Algorithm for Problem (OLM-TOP).

1: Initialize q1 and q0 and ε. Initialize i = 0.
2: while ‖qi+1 − qi‖ ≥ ε do
3: Update L samples of {xl}l=1,2,...,L. Specifically, in

each sample x = [x1,x2, . . .xK ], for CD k ∈ Knp,
the value of xk is generated following the
probabilistic distribution in eq. (50). For CD
k ∈ Ksp, we set xk = 0.

4: For each sample xl, solve Problem (OLM-MID)
with Algorithm 3 and obtain the optimal objective
value TMID(xl).

5: Re-order the samples {xl}l∈L as

TMID(x1) ≤ TMID(x2) < . . . < TMID(xL).

6: Choose L̂ best samples from the re-ordered set
{xl}l∈L.

7: Update the Bernoulli distribution parameter in eq.
(50) as

qi+1 =
1

L̂

L̂∑
l=1

xl. (49)

8: Update i = i+ 1.
9: end while

Output: the optimal solutions of {x∗
k}K.

To guarantee a non-empty feasible region, the values of nlower

and nupper should satisfy nlower ≤ nupper. However, if a given
value of m leads to nlower > nupper, which implies that the given
value of m is infeasible, then we will change another value of
m for a new search for the solution of n. Checking whether
nlower ≤ nupper is equivalent to Step 5 in Algorithm 3.

ii) Computing the optimal solution of m: The solution of m
is obtained by the exhaustive search. The exhaustive searching
in a proper range [0,mmax] only consumes a small complexity
since m is an integer.

The detailed procedures of our algorithm to compute the
solutions of m and n are demonstrated in Algorithm 3. Step
5 is equivalent to checking whether nlower ≤ nupper. If nlower ≤
nupper, we add the current tuple (nlower,m, T all) into set T as
shown in Step 6 in Algorithm 3. Otherwise, we continue to
evaluate the next value of m for a new round of iteration for
evaluating the corresponding value of n.

D. Proposed Algorithm for Solving Problem (OLM-TOP)

Problem (OLM-TOP) can be regarded as a typically combi-
natorial optimization problem. To solve this problem, we adopt
a stochastic learning based algorithm which is based on the
measure of cross-entropy [28], [29], i.e., our SL-CE Algorithm
in Algorithm 4. Based on the principle of CE, the key idea of
our SL-CE Algorithm is to find the best probabilistic distri-
bution for the matchment of the input-output relationship via
adaptive sampling. In particular, our SL-CE Algorithm involves
an iterative procedure including two phases: i) generating a
profile of random samples according to the current probabilistic
distribution, and ii) updating the parameters of the probabilistic
distribution to produce improved samples for the next iteration.
We illustrate the details as follows.
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For modeling the probabilistic learning, the CDs’ selections
{xk}np

K can be regarded as random variables. We generate L
samples of {xk}Knp following the Bernoulli distributions with
parameters {qk}Knp as

Φk(xk) = qxk

k (1− qk)
(1−xk), ∀k ∈ Knp. (50)

At each iteration, q = [q1, . . .qKnp ] is updated for improving the
matching between the probabilistic distribution and the input-
output relationship. The key steps of Algorithm 4 are illustrated
as follows.
� Step 3: A batch of L samples is updated with the cur-

rent Bernoulli distribution parameter q. In each sample,
the values of {xk}Knp for the privacy-insensitive CDs are
generated according to eq. (50). The values of {xk}Ksp for
the privacy-sensitive CDs are set to zeros.

� Step 6 to Step 7: The L̂ best samples are exploited to obtain
an improvement parameter qk of the Bernoulli distribution.
In Step 7, we utilize the criterion of CE to update the
probabilistic distributions, which is equivalent to solve the
problem as follows.

q∗k = arg max
0≤qk≤1

E(qxk

k (1− qk)
(1−xk)), (51)

where E denotes the expectation.

E. Complexity Analysis

We firstly discuss the complexity of BA Algorithm for solv-
ing Problem (OLM-BOT). BA Algorithm requires at most K
rounds (K rounds corresponds to the worst case) for invoking
Subroutine-BA to compute {b̂ik}K\Si . Subroutine-BA can be re-
garded as a two-layer bisection search method. The bottom-layer
bisection search requires at most Ailog2(

bini

ε ) iterations, where
bini is the initial value of the upper bound of bup

k and ε is the toler-
able computation-error which is used as the stopping criterion.
Ai represents the number of elements in the setK \ Si at the i-th
invocation of Subroutine-BA. The top-layer bisection search re-
quires at most log2(

T ini

ε ) iterations, where T ini is the initial value
of the upper bound of T̂ up. The Subroutine-BA requires at most
Ailog2(

bini

ε )log2(
T ini

ε ) iterations. For the worst case, we need K
rounds invocation of Subroutine-BA, and at the i-th invocation
of Subroutine-BA, the value of Ai is K − i. To solve Problem
(OLM-BOT), at most IBOT = 1

2K(K + 1)log2(
bini

ε )log2(
T ini

ε )
iterations are required.

We next analyze the complexity of Algorithm 3 for solving
Problem (OLM-MID). In Algorithm 3, to compute the optimal
value of n under given m, the bisection search is utilized to
computenlow, which requires at most log2(

nini

ε ) iterations, where
nini is the initial value of the upper bound ofnlow. Then, we utilize
the exhaustive search to find the optimal solution of m, which
requires mmax times of enumeration. Thus, to solve Problem
(OLM-MID), at most IMID = mmaxlog2(

nini

ε )IBOT iterations are
required, where IBOT denotes the number of iterations required
for the convergence of Problem (OLM-BOT) as demonstrated
before.

We finally analyze the complexity of SL-CE Algorithm for
solving Problem (OLM-TOP). In each round of iterations, we
need to generate a total number ofL samples ofxl. For each sam-
ple of xl, we invoke Algorithm 3 to solve Problem (OLM-TOP).
Let Q denote the total number of iterations required for our

Fig. 6. Evaluation on real dataset of MINST.

Fig. 7. Evaluation on real dataset of Fashion-MINST.

SL-CE Algorithm to converge. Then, to solve Problem (OLM-
TOP), QLIMID iterations are required, where IMID denotes the
number of iterations required for the convergence of Problem
(OLM-MID) as demonstrated before.

V. NUMERICAL RESULTS

In this section, we firstly evaluate the derived convergence
feature of the proposed FL with the hybrid training. We then
demonstrate the performance advantage of our proposed algo-
rithm in comparison with two benchmark algorithms. We next
demonstrate the performance advantage of the FL with hybrid
training.

We assume that the BS is located at (0, 0)m, and the CDs are
randomly located in a circular region with the radius of 200 m.
The path loss between the BS and CD k is modeled as PLk =
PL0 − 10αlog10

dk

d0
, where PL0 denotes the path loss at the ref-

erence distance d0, and α denotes the path loss exponent. We set
PL0 = 30 dB, α = 2, and d0 = 1m. The percentage of privacy-
sensitive CDs is set as 20%, i.e., the number of privacy-sensitive
CDs is 0.2K. Other parameters are set similar to those in [26],
[30] as follows. K = 50, S = 0.1× 106 bits, ζk = 0.3×
104 cycles/bit, ι = 1× 104 bits/sample, ϑ = 0.005, ξ = 1 s,
σ = 4× 10−21 W/HZ, B = 5× 106 HZ, f0 = 3× 1010 HZ,
κ = 1× 10−28, fk ∈ [1,6]× 108 HZ, Emax

k ∈ [1,2]× 104 J,
pk ∈ [0.1,0.2] W.

A. Convergence Feature of FL With Hybrid Training

We run the FL with real datasets of MNIST and Fashion-
MNIST [31]. MNIST is a dataset comprising of handwritten
images of the numbers 0 to 9. Fashion-MNIST contains images
of fashion products of 10 categories. Here, we focus on the non-
IID case since the practical data distribution is usually non-IID.

Figs. 6 and 7 demonstrate the convergence feature of the
proposed FL on the dataset of MNIST and Fashion-MNIST.
In Figs. 6 and 7, “analysis” means the derived convergence
feature of the proposed FL scheme according to Theorem 1,
while “experiment” means the FL training with the real dataset.
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TABLE I
PERFORMANCE GAIN VERSUS DIFFERENT NUMBERS OF THE CDS.

Fig. 8. Impact of the number of CDs.

The results in Figs. 6 and 7 show that the training performance on
the real dataset is improved when more CDs choose to perform
centralized training, which is consistent with the convergence
feature described in Theorem 1. The results in Figs. 6 and 7
also show that the difference of our analysis of the convergence
feature and the experimental results based on the real dataset is
very small.

We also evaluate the scalability of the proposed FL with hy-
brid training by demonstrating its performance versus different
numbers of the CDs, and the results are shown in Table I. In
Table I, the performance gain represents how much percent
our proposed FL with hybrid local and centralized training can
outperform the conventional FL without using the centralized
training. The results in Table I show that our proposed FL with
hybrid local and centralized training can achieve an obvious
performance gain when the number of the CDs increases.

B. Performance of the Proposed Algorithm

We evaluate the performance of the proposed algorithm by
comparing it with two benchmarks as follows.
� BCD-SQP-GA algorithm. Specifically, we utilize the block

coordinate descent (BCD) method to divide Problem
(OLM) into three subproblems as follows. i) The first
subproblem is to optimize the continuous variable {bk}K,
which is solved by the sequential quadratic programming
(SQP) algorithm [32]. ii) The second subproblem is to
optimize the integer variable {xk}K, which is solved by
the genetic algorithm (GA) [33]. iii) The third subproblem
is to optimize m and n, which is solved by Algorithm 3 in
Section IV-C.

� MPCC active set algorithm. Specifically, we firstly trans-
form the original problem with integer constraints to
mathematical programs with complementary constraints
(MPCC) [34], and then utilize the active set method [35]
to solve it.

Fig. 8 demonstrates the performance of the proposed algo-
rithm versus the number of CDs. The results in Fig. 8 show
that the latency of FL is increasing with the number of CDs.
The results in Fig. 8 also show that our proposed algorithm can

Fig. 9. Impact of the average CPU frequency of CDs.

Fig. 10. Evaluating the number of CDs selecting centralized training.

outperform both BCD-SQP-GA algorithm and MPCC active set
algorithm.

Fig. 9 demonstrates the performance of the proposed algo-
rithm versus the CDs’ average CPU frequency. The results in
Fig. 9 show that the latency of FL is decreasing with the average
CPU frequency of CDs. The results in Fig. 9 also show that
our proposed algorithm can outperform both BCD-SQP-GA
algorithm and MPCC active set algorithm. According to the
results shown in Fig. 3 and Fig. 9, our algorithm can on aver-
age outperform BCD-SQP-GA algorithm and MPCC active set
algorithm by 52% and 63%, respectively.

Fig. 10 demonstrates the number of CDs selecting centralized
training versus the average computing capacity of all CDs and
the average distance between the BS and the CDs. Here, we set
K = 100. Considering the same transmit-power and energy bud-
get of all CDs, we set Ek = 1× 104 J, pk = 0.1 W, ∀k ∈ K.
When evaluating the impact of the average computing capacity
of CDs, we set the same value of the distances between the CDs
and the BS (dk = 140 m, ∀k ∈ K). When evaluating the impact
of the average distance between the BS and the CDs, we set the
same computing capacity of all CDs (fk = 4× 108 HZ, ∀k ∈
K). The results in Fig. 10 show that the number of CDs selecting
centralized training is decreasing with the average computing
capacity of CDs and the average distance between the BS and
the CDs.

C. Evaluation of the Proposed FL With Hybrid Training

We evaluate the performance of the proposed FL scheme with
the hybrid training in comparison with three benchmark schemes
as follows.
� Conventional FL (i.e., pure local training) scheme, in which

all CDs are privacy-sensitive and preform local learning.
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Fig. 11. Impact of the percentage of privacy-sensitive CDs.

Fig. 12. Impact of the number of bits per sample.

Fig. 13. Impact of the FL server’s CPU frequency.

� Random selection FL scheme, in which the privacy-
insensitive CDs randomly select to perform local training
or centralized training.

� Fixed selection FL scheme, in which a fixed group of
the CDs are selected to perform centralized training while
others are fixed to perform local training.

Fig. 11 demonstrates the latency of the proposed FL scheme
with the hybrid training versus the percentage of privacy-
sensitive CDs. The results in Fig. 11 show that the latency of
the proposed FL is increasing with the percentage of privacy-
sensitive CDs. The results in Fig. 11 also show that our proposed
FL scheme can outperform the benchmark schemes and the
performance gain is decreasing with the percentage of privacy-
sensitive CDs.

Fig. 12 demonstrates the latency of the proposed FL scheme
with the hybrid training versus the number of bits per sample.
The results in Fig. 12 show that the latency of the proposed FL
is increasing with the number of bits per sample. The results in
Fig. 12 also show that our proposed FL scheme can outperform
the other benchmark schemes.

Fig. 13 demonstrates the latency of the proposed FL scheme
with the hybrid training versus the FL server’s CPU frequency.
The results in Fig. 13 show that the latency of the proposed
FL is decreasing with the FL server’s CPU frequency. The
results in Fig. 13 again validate that our proposed FL scheme
can outperform the other benchmark schemes. According to
the results shown in Figs. 11, 12, and 13, our proposed FL
framework can save the latency by more than 30% compared to
both conventional FL scheme and the FL with the randomized
selection of training types.

VI. CONCLUSION

In this paper, we have proposed an FL framework with hybrid
training, in which each privacy insensitive client-device has op-
tion to perform either the local model training or the centralized
training. We have analyzed the convergence feature under this
framework, and formulated a joint optimization of the client-
devices’ selections of training types, the FL configurations (i.e.,
the numbers of local iterations and global iterations) and the
bandwidth allocations for different client-devices. Despite the
non-convexity of the joint optimization problem, we have ex-
ploited its layered structure and proposed an efficient algorithm
to solve it. Numerical results have been provided to validate the
accuracy and efficiency of our proposed algorithm and demon-
strate the advantage the FL framework. The results demonstrate
that our proposed FL framework can save the latency by more
than 30% compared to both conventional FL scheme and the FL
with the randomized selection of training types. Meanwhile, our
proposed algorithm can outperform two benchmark algorithms
(i.e., BCD-SQP-GA algorithm and MPCC active set algorithm)
by more than 50%. For the future work, we will investigate the
scenario of multiple FL-servers in which different client-devices
can flexibly select different servers for their model aggregations.

APPENDIX A
PROOF OF THEOREM 1

To minimize the overall loss function and solve eq. (14),
similar to [26], we adopt distributed approximate Newton al-
gorithm (DANE). For DANE, the CDs and the FL server solve
the optimization problem as

min
vk

Ωk(g
n + vk) = Fk(g

n + vk)− (� Fk(g
n)

− β � F(gn))Tvk,

k = 0,1,2, . . .K, (52)

where β is a constant and k = 0 corresponds to the centralized
training on the FL server. vk denotes the difference between
the global FL model and the model of CD k or the FL server.
�k = gn + vk. To solve the optimization problem (52), we use
the gradient method as

vm+1
k = vm

k − δ � Ωk(g
n + vm

k ), (53)

where δ denotes the learning rate and vm
k denotes the value of

vk at the m-th local iteration.
To analyze the convergence feature of FL, similar to [25], we

assume that Fk(�) is L-Lipschitz and γ-strongly convex as

γI ≤ �2Fk(�) ≤ LI, (54)
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which avoids a significant variation on the gradient of the loss
function.

In our paper, we consider the mini-batch SGD. We use
�Ω̃k(�) to denote the stochastic gradient computed on the
mini-batch. Similar to [24], we assume that the stochastic gra-
dient’s variance is bounded as

E

(∥∥∥�Ω̃k(�)−�Ωk(�)
∥∥∥2) ≤ E(

ρ1
ϑDk

‖�Ωk(�)‖2)

+
σ2
F

ϑDk
,

k = 0,1,2, . . .K, (55)

where ρ1 and σ2
F are constant, and E means the expectation cor-

responding to the stochastic batch. In (55), D0 =
∑

k∈K xkDk.
Similar to [25], the degree of non-IID and the heterogeneity

of the data distribution can be quantified by Γ as

Γ = F ∗ − 1

D

(∑
k∈K

(1− xk)DkF
∗
k + F ∗

0

∑
k∈K

xkDk

)
, (56)

where D =
∑

k∈K Dk denotes the total data samples of all CDs.
Considering the training loss decay on mini-batch, we obtain

E(Ωk(g
n + vm+1

k )− Ωk(g
n + vm

k ))

= E
(
Ωk(g

n + vm
k − δ � Ω̃k(g

n + vm
k ))− Ωk (g

n + vm
k )
)

≤ E

(
Lδ2

2

∥∥∥�Ω̃k(g
n + vm

k )
∥∥∥2 − δ � Ωk(g

n + vm
k )T

×�Ω̃k(g
n + vm

k )

)

= E(
δ

2
(
∥∥∥�Ωk(g

n + vm
k )−�Ω̃k(g

n + vm
k )
∥∥∥2

− ‖�Ωk(g
n + vm

k )‖2

−
∥∥∥�Ω̃k(g

n + vm
k )
∥∥∥2) + Lδ2

2

∥∥∥�Ω̃k(g
n + vm

k )
∥∥∥2)

1©
=

Lδ2

2
E

(∥∥∥�Ωk(g
n + vm

k )−�Ω̃k(g
n + vm

k )
∥∥∥2)

−
(
δ − Lδ2

2

)
E(‖�Ωk(g

n + vm
k )‖2)

≤ − δ

(
1−Lδ

2
−Lδ

2

ρ1
ϑDk

)
E(‖�Ωk(g

n+vm
k )‖2)+Lδ2σ2

F

2ϑDk
.

(57)

1© is due to E(‖�Ω̃k(g
n + vm

k )− E(�Ω̃k(g
n + vm

k ))‖2) =
E(‖�Ω̃k(g

n + vm
k )‖2)− E(‖�Ω̃k(g

n + vm
k )‖)2, where

E(�Ω̃k(g
n + vm

k )) = E(�Ωk(g
n + vm

k )) since we assume
that the data on the k-th CD is unbiased.

From (52) and (54), after some mathematical manipulations,
we can conclude thatΩk is alsoL-Lipschitz andγ strong. Similar

to [25], the item in (57) can be bounded as

E(‖�Ωk(g
n+vm

k )‖2)≥ E(γ(Ωk(g
n+vm

k )−Ωk(g
n+v∗

k))).
(58)

By substituting (58) into (57), and choosing δ <
2ϑmin {Dk}

L(ϑmin {Dk}+ρ1)
which implies 1− Lδ

2 − Lδ
2

ρ1

ϑDk
> 0, we

obtain

E(Ωk(g
n + vm+1

k )− Ωk(g
n + vm

k ))

≤ −δγ

(
1− Lδ

2
− Lδ

2

ρ1
ϑDk

)
E(Ωk(g

n)− Ωk(g
n + v∗

k))

+
Lδ2σ2

F

2ϑDk
. (59)

By subtracting Ωk(g
n + v∗

k) at the left and right sides of (59)
simultaneously, we obtain

E(Ωk(g
n + vm+1

k )− Ωk(g
n + v∗

k))

=
Lδ2

2

σ2
F

ϑDk
+

(
1− δγ

(
1− Lδ

2
− Lδ

2

ρ1
ϑDk

))
E (Ωk (g

n + vm
k )− Ωk (g

n + v∗
k))

≤
(
1−δγ

(
1−Lδ

2
−Lδ

2

ρ1
ϑDk

))m+1

E(Ωk(g
n)−Ωk(g

n+v∗
k))

+
(1− δγ(1− Lδ

2 − Lδ
2

ρ1

ϑDk
))m+1

δγ(1− Lδ
2 − Lδ

2
ρ1

ϑDk
)

σ2
F

ϑDk
. (60)

By introducing ηk = 1− δγ(1− Lδ
2 − Lδ

2
ρ1

ϑDk
), k =

0,1,2, . . .K, from (60), the local training loss decay rate
at the k-th CD or the FL server (k = 0) can be written as
follows.

E(Ωk(g
n + vm+1

k )− Ωk(g
n + v∗

k))

≤ (ηk)
m+1E(Ωk(g

n)− Ωk(g
n + v∗

k)) +
(ηk)

m+1

1− ηk

σ2
F

ϑDk
.

Now, we consider the training loss of the global model. Since
we do not use the relationship between the expectation of the
mini-batch and that of the whole dataset in the following proof,
for the sake of simplicity, we omit the symbol E. The training
loss of the global model at (n+ 1)-th round can be bounded as
follows.

F (gn+1)

= F

(
1

D

∑
k∈K

(1− xk)Dkg
n+1
k +

1

D

∑
k∈K

xkDkg
n+1
0

)

2©
= F

(
gn +

1

D

∑
k∈K

(1− xk)Dkv
m
k +

1

D

∑
k∈K

xkDkv
m
0

)

≤ 1

D
� F (gn)

∑
k∈K

(1− xk)Dkv
m
k︸ ︷︷ ︸

A1

+
1

D
� F (gn)vm

0

∑
k∈K

xkDk︸ ︷︷ ︸
A2
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+
L

2

∥∥∥∥∥ 1

D

∑
k∈K

(1−xk)Dkv
m
k +

1

D

∑
k∈K

xkDkv
m
0

∥∥∥∥∥
2

︸ ︷︷ ︸
+

A3

F (gn).

2© comes from that gn+1 = gn + 1
D

∑
k∈K Dkv

m
k .

Considering the item A1, we obtain

A1 =
1

Dβ

∑
k∈K

(1− xk)

×Dk(Ωk(g
n + vm

k )− Fk(g
n + vm

k )+� Fk(g
n)vm

k )

≤ 1

Dβ

∑
k∈K

((1−xk)Dk( Ωk(g
n+vm

k )−Fk(g
n)︸ ︷︷ ︸

A4

−γ
2
‖vm

k ‖2).

Similarly, considering the item A2, we obtain

A2 ≤ 1

Dβ

∑
k∈K

xkDk(Ω0(g
n+vm

k )−F0(g
n)︸ ︷︷ ︸

A5

−γ
2
‖vm

0 ‖2).

We analyze the item A4 in A1 and obtain

A4 = Ωk(g
n+vm

k )−Ωk(g
n+v∗

k)−(Ωk(g
n)−Ωk(g

n+v∗
k))

≤ ((ηk)
m−1)(Ωk(g

n)−Ωk(g
n+v∗

k))+
1− (ηk)

m

1−ηk

σ2
F

ϑDk

= ((ηk)
m−1)(Fk(g

n)−Fk(g
n+v∗

k)

+(�Fk(g
n)−β � F (gn))Tvm

k +
1−(ηk)

m

1−ηk

σ2
F

ϑDk

= ((ηk)
m−1)(Fk(g

n)−Fk(g
n+v∗

k)+�Fk(g
n + v∗

k)v
∗
k)

+
1−(ηk)

m

1−ηk

σ2
F

ϑDk

≤ ((ηk)
m−1)

γ

2
‖v∗

k‖2+
1−(ηk)

m

1−ηk

σ2
F

ϑDk
.

Similarly to above analysis, the item A5 can be bounded as

A5 ≤ ((η0)
m − 1)

γ

2
‖v∗

0‖2 +
1− (η0)

m

1− η0

σ2
F

ϑ
∑

k∈K xkDk
.

Since the norm function is convex, from the property of
convex function (for convex function f(x), if

∑
ai = 1, then

there exists f(
∑

aixi) ≤ ai
∑

f(xi)), we obtain

A3 ≤
L

2D

∑
k∈K

(1− xk)Dk‖vm
k ‖2 + L

2D

∑
k∈K

xkDk‖vm
0 ‖2.

Choosing β > L
γ , we obtain 1

2D (L−
γ
β )
∑

k∈K xkDk‖vm
0 ‖2 < 0 and 1

2D

∑
k∈K(1− xk)Dk(L− γ

β )

‖vm
k ‖2 < 0. Then, combing the above analysis on A1, A2,

A3, A4, A5, we obtain

F (gn+1)− F (gn)

≤ − γ

2Dβ

∑
k∈K

((1−xk)Dk(1−(ηk)
m) ‖v∗

k‖2)︸ ︷︷ ︸
A6

+
1− (η0)

m

1−η0

σ2
F

ϑ

−γ‖v
∗
0‖2

2Dβ
(1−(η0)

m)
∑
k∈K

xkDk︸ ︷︷ ︸
A7

+
∑
k∈K

(1−xk)
1−(ηk)

m

1−ηk

σ2
F

ϑ
.

For the item A6, according to the Lagrange median theorem,
there always exists a� such that�Fk(g

n + vk)−�Fk(g
n) =

�2Fk(�)vk. Combining theL-Lipschitz and γ-strong assump-
tion, we obtain ‖v∗

k‖
2 ≥ 1

L2 ‖�Fk(g
n + v∗

k)−�Fk(g
n)‖2.

Form �Ωk(g
n + v∗

k) = �Fk(g
n + v∗

k)− (�Fk(g
n)− β �

F (gn)) = 0, we obtain β � F (gn) = �Fk(g
n)−�Fk(g

n +
v∗
k). Then, the item A6 +A7 can be bounded as

A6+A7 ≤ − βγ

2DL2

∑
k∈K

(1− xk)Dk(1− (ηk)
m) ‖�F (gn)‖

2

− βγ

2DL2 (1− (η0)
m)‖�F (gn)‖2

∑
k∈K

xkDk

≤ − βγ2

2DL2
(
∑
k∈K

(1− xk)(1− (ηk)
m)Dk

+ (1− (η0)
m)
∑
k∈K

xkDk)(F (gn)− F (g∗)).

(61)

We introduce two variables as

C1 =
βγ2

2DL2
(
∑
k∈K

(1− xk)(1− (ηk)
m)Dk

+ (1− (η0)
m)
∑
k∈K

xkDk)),

C2 =
∑
k∈K

((1− xk)
1− (ηk)

m

1− ηk

σ2
F

ϑ
+

1− (η0)
m

1− η0

σ2
F

ϑ
.

With these newly introduced variables, we obtain

F (gn+1) ≤ F (gn)− C1(F (gn)− F (g∗)) + C2.

With the non-IID assumption in (56), we obtain

F (gn+1) ≤ F (gn)− C1(F (gn)− (F ∗ − Γ)) + C2. (62)

Then, from (62), the convergence feature of the proposed FL
can be expressed as

F (gn+1)− F ∗ ≤ (1− C1)(F (gn)− F ∗)− C1Γ + C2

≤ (1− C1)
n+1(F (g0)− F ∗) + (C2 − C1Γ)((1− C1)

n

+ · · ·+ (1− C1) + 1)

= (1− C1)
n+1(F (g0)− F ∗) + (C2 − C1Γ)

1− (1− C1)
n+1

C1
.

This completes our proof.

APPENDIX B
PROOF OF LEMMA 1

The first-order derivative of Rup
k can be expressed as

d Rup
k

d bk
= log2

(
1 +

pkhk

σbk

)
− pkhk

(σbk + pkhk) ln 2
. (63)
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From the inequality that ln(1 + x) > x
1+x for x > 0, there

exists

log2

(
1 +

pkhk

σbk

)
>

pkhk

(σbk + pkhk) ln 2
. (64)

By substituting (64) into (63), we obtain d Rup
k

d bk
> 0. Thus, the

value of Rup
k is monotonically increasing with bk, which implies

that yloc
k and ycen

k are monotonically decreasing with bk.
Similarly, we can conclude that the value of ydo

k is monotoni-
cally decreasing with bk. From the expression of T̂k as (29), since
tloc
k and tser are fixed, we can obtain the conclusion in Lemma 1.

This completes our proof.

APPENDIX C
PROOF OF LEMMA 2

Based on the modeling of the energy consumption in (7), (9)
and (13), Ek can be rewritten as

Ek =

{
κιDkζkmf2

k + pky
loc
k , xk = 0,

pky
cen
k , xk = 1.

(65)

In (65), all items are fixed except yloc
k and ycen

k . In the proof
in Lemma 1, we conclude that yloc

k and ycen
k are monotonically

decreasing with bk. Thus, we get the conclusion in Lemma 2
and complete the proof.

APPENDIX D
PROOF OF LEMMA 3

The second-order derivative of Rup
k can be expressed as

d2Rup
k

db2k
=

pkhk(−(pkhk)
2 − σpkhkbk))

(σ(bk)2 + pkhkbk)(σbk + pkhk)2 ln 2
< 0,

which implies that Rup
k is concave. Since yloc

k = (1−
xk)

S
Rup

k

, ∀k ∈ K, according to the operation rules of preserving

convexity for composition function, we conclude that yloc
k is

convex. Similarly, we can conclude that the values of ydo
k and

ycen
k are monotonically decreasing with bk. From (29) we know

that T̂k is convex, which leads constraint (31) convex. From (65),
Ek is convex, which leads the energy budget constraint (23)
convex. Constraint (24) is linear. Thus, Problem (OLM-BOT) is
a convex problem. This completes the proof.
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