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Abstract—The periodic transmission of the customers’ power
consumption readings in the advanced metering infrastruc-
ture (AMI) is essential for energy management and billing.
To collect the readings efficiently, the change and transmit
approach is adopted in AMI (CAT AMI) so that the readings are
reported only when there is enough change in the consumption.
However, CAT AMI suffers from malicious customers who launch
electricity-theft cyberattacks by manipulating their readings to
illegally reduce their bills. These attacks can cause hefty financial
losses and degrade the grid performance because the readings
are used for grid management. In this article, the electricity-theft
problem in CAT AMI networks is investigated. We first process
a real power consumption readings data set to create a benign
data set and propose a new set of cyberattacks to create malicious
samples. We then develop a deep-learning-based electricity-theft
detection solution to identify malicious customers for the CAT
AMI network. The proposed detector uses both the customers’
transmission pattern and CAT readings to learn the correlation
between them in order to enhance the detector’s ability in iden-
tifying electricity thefts. We conduct extensive experiments to
evaluate the performance of our electricity-theft detector, and
the results indicate that our detector can accurately detect mali-
cious customers and achieve higher detection rate and lower
false alarm than the detectors that are trained only on the CAT
readings.

Index Terms—Change and transmit approach is adopted
in AMI (CAT AMI) network, electricity-theft cyberattacks,
electricity-theft detection, smart grid (SG).

Manuscript received 14 March 2022; revised 26 May 2022 and 4
July 2022; accepted 25 July 2022. Date of publication 17 August 2022;
date of current version 7 December 2022. This work was supported by
the Deanship of Scientific Research (DSR) at King Abdulaziz University,
Jeddah, Saudi Arabia, under Grant KEP-18-611-42. (Corresponding author:
Mohamed M. E. A. Mahmoud.)

Mohamed I. Ibrahem is with the Department of Cyber Security Engineering,
George Mason University, Fairfax, VA 22030 USA, and also with the
Department of Electrical Engineering, Faculty of Engineering at Shoubra,
Benha University, Cairo 11672, Egypt (e-mail: mibrahem @ gmu.edu).

Mohamed M. E. A. Mahmoud is with the Department of Electrical and
Computer Engineering, Tennessee Tech University, Cookeville, TN 38505
USA (e-mail: mmahmoud@tntech.edu).

Fawaz Alsolami is with the Department of Computer Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia (e-mail: falsolamil @
kau.edu.sa).

Waleed Alasmary is with Communication and Information Technology
Commission, Riyad 12382, Saudi Arabia (e-mail: wsasmary @gmail.com).

Abdullah Saad AL-Malaise AL-Ghamdi is with the Information System
Department, King Abdulaziz University, Jeddah 21341, Saudi Arabia, and
also with the Information Systems Department, HECI School, Dar Alhekma
University, Jeddah 22246, Saudi Arabia (e-mail: aalmalaise @kau.edu.sa;
aghamdi @dah.edu.sa).

Xuemin Shen is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
sshen@uwaterloo.ca).

Digital Object Identifier 10.1109/JI0T.2022.3197805

, Fellow, IEEE

I. INTRODUCTION

OST of the countries all over the world started to imple-

ment a smart grid (SG) infrastructure because it creates
a reliable, clean, and efficient power system compared to the
traditional power grid [1]. SG contains an advanced metering
infrastructure (AMI) which comprises of a set smart meters
(SMs) deployed at the homes of the customers. AMI enables
collecting SMs’ power consumption readings by the electric
utility (EU) for energy management, load monitoring, billing
computation, etc. [2].

Basically, there are two approaches to collect the SMs’
power consumption readings in SG: 1) periodic transmis-
sion (PT) [1], [2], [3], [4], [5] and 2) change and transmit
(CAT) [6], [71, [8], [9], [10], [11], [12], [13], [14], [15],
[16]. Using the PT approach, the SMs send the power con-
sumption readings periodically to the EU [3]. However, this
approach suffers from transmitting an enormous amount of
data between the SMs and EU, especially, after considering
the fact that AMI networks have millions of SMs and they are
scalable. This undoubtedly causes poor usage of the available
resources (bandwidth), especially when transmitting the SMs’
readings using cellular networks [4], [5]. On the other hand,
the SMs’ power consumption readings can be collected more
efficiently by using the CAT approach because the readings
are sent to the EU only when there is a sufficient change in
the consumption compared to the last reported reading [6],
[13], [14], [15], [16]. More precisely, a reading is sent when
the absolute value of change in the consumption exceeds a
predefined threshold. For example, at 10% threshold, each SM
reports a reading when the change in the current consumption
is above +10% or below —10% of the last reported consump-
tion. If a reading is not sent by an SM, the EU uses the last
reading reported by the SM. In this case, we refer to this
AMI by “CAT approach is adopted in AMI (CAT AMI),”
while we use the term “PT AMI” to refer to the AMI in
which the SMs’ power consumption readings are transmitted
constantly.

Both PT and CAT AMIs are vulnerable to electricity-theft
cyberattacks that can be launched by malicious customers who
steal electricity by tampering their SMs and reporting lower
power consumption readings to reduce their bills illegally.
Such attacks may cause severe problems in the existing power
grid such as financial losses, e.g., about U.S. $6 billion are
lost every year in the United States (U.S.) because of elec-
tricity thefts [17]. Also, the developing countries suffer from
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losses due to electricity thefts, e.g., India loses about U.S. $17
billion annually [18]. Moreover, this deceptive behavior may
affect the stability of the grid or cause blackout in the worst
cases since the false readings reported by malicious customers
are used for energy management and load monitoring [19].

Different machine learning-based electricity-theft detectors
have been proposed in the literature to identify malicious
customers in the AMI networks [18], [20], [21], [22], [23],
[24]. Some of these detectors are based on deep learning
models [20], [23], [24], while other detectors are based on
shallow models [18], [21], [22]. Among the existing detectors,
most of these works have demonstrated that the deep-learning-
based electricity-theft detectors can accurately detect electric-
ity thefts. However, all the existing electricity-theft detectors
are developed for the PT AMI networks, and none of the exist-
ing works has investigated the problem of electricity theft in
CAT AMI networks.

Detecting electricity-theft cyberattacks in the CAT AMI
network is different from that of the PT AMI for the follow-
ing reasons. In case of the PT AMI, the SMs send their power
consumption readings at each time slot, i.e., periodically, to
the EU which receives all the readings and run electricity-
theft detector. Hence, the detector in the PT AMI is trained
on accurate readings (i.e., customers’ fine-grained power con-
sumption readings) to learn their consumption patterns and
use them to detect malicious customers. However, in the case
of CAT AMI, the problem becomes more complex because
the readings in this case are clipped due to using the thresh-
old of the CAT approach in transmitting the readings which
makes the readings noisy. When an SM does not report a
reading, the EU uses the last reading reported by the SM for
the electricity-theft detector evaluation. This means that a new
data set for the CAT AMI that contains CAT power consump-
tion readings and a new detection approach are required to be
able to detect electricity-theft cyberattacks accurately in the
CAT AMIL

Moreover, new attacks tailored to the CAT AMI should be
investigated because CAT AMI readings may be lower than
the actual readings and this may be exploited by the attackers
to craft stealth electricity-theft attacks. On the other hand, the
attacks against the PT AMI aim at reducing the readings while
attempting to imitate the consumption pattern to avoid being
detected, and in this case, the attacker guarantees that there
is a reduction in his/her bill, whereas, when reporting false
readings in CAT AMI, the attacker should also follow the CAT
approach by sending a reading only if the consumption change
exceeds a predefined threshold; otherwise, the attack can be
easily detected. In other words, the attacker needs to consider
the threshold of the CAT approach in computing the false read-
ings and also make sure there is a reduction in his/her bill.
This is because the reported reading, that is considered by the
EU for billing, may be greater than the current consumption
when the absolute value of change in the consumption does
not exceed the threshold and, hence, there is no bill reduc-
tion in this case. In addition, simple attacks, e.g., reporting
zero readings, have been used in most of the existing research
works in the PT AMI [18], [20], [21], [22], [23], [24], which
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are easily detectable even without the use of machine learning
techniques.

Therefore, we investigate, in this article, the detection of
malicious customers who report false electricity consumption
readings to reduce their bills in the CAT AMI network using
different machine learning-based detectors. Our methodology
starts with preparing the data set followed by the design of
the electricity-theft detector, and finally the evaluation of the
detector’s performance. We create a new data set for CAT AMI
by considering different thresholds using a real power con-
sumption data set which is provided by the Smart project [25].
This data set contains only real benign power consumption
readings and is used to train and evaluate our electricity-theft
detectors. Next, to create malicious samples for CAT AMI,
we propose a set of new attacks that are tailored to CAT
AMI to imitate the behavior of malicious customers. Finally,
we propose a general electricity-theft detector using a hybrid
deep learning model to detect malicious customers with high
accuracy.

Our detector is general in the sense that it shall be used
for all customers. It is a hybrid deep learning model that uses
a gated recurrent unit neural network (GRU), fully connected
feedforward neural network (FFN), and a convolutional neural
network (CNN). The CNN and GRU are used in our detector
to extract the important features in the input CAT readings and
capture the complex correlation between the extracted features,
respectively. In addition, the FFN is used to make accurate
classifications. Furthermore, our detector processes the trans-
mission pattern of the customers besides the CAT readings
to boost the performance of the detector since the transmis-
sion pattern may change when a customer reports malicious
consumption readings. The transmission pattern contains a set
of binary numbers in which each number corresponds to a
reporting period, where it is one in case of transmitting a
reading while it is zero in the case of no transmission. When
the attacker reports false reading, he/she should follow the
CAT approach by making sure that the readings follow the
predefined threshold; otherwise, he/she can be detected easily.
Moreover, the transmission pattern contains information about
the customer’s behavior that the electricity-theft detector needs
to learn to differentiate between the malicious and benign cus-
tomers. Thus, considering the transmission pattern in addition
to the CAT readings can further enhance the detector’s ability
to identify malicious customers. The results of our experiments
show that the proposed detector can detect electricity-theft
cyberattacks with higher accuracy and performance than the
detector that is trained solely on the CAT readings.

To the best of our knowledge, this is the first work that
investigates the electricity-theft detection in the case of CAT
AMI networks, and in order to achieve this objective, we have
done the following phases.

1) Benign data sets for CAT power consumption readings at
different predefined threshold values have been created.
Then, we propose new attacks that are tailored to CAT
AMI to create malicious samples.

2) We train a hybrid and multi-input deep-learning-based
electricity-theft detector to identify malicious customers
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for the CAT AMI network. Our detector uses the cus-
tomer’s transmission pattern in addition to the CAT
readings to enhance the detector’s performance.

3) We conduct extensive experiments to evaluate the
performance of our electricity-theft detector, and the
results indicate that our detector can accurately detect
malicious customers. Furthermore, it outperforms the
detectors that are trained solely on the CAT readings
in terms of detection rate and false alarm.

The remainder of this article is as follows. The existing
works in the literature that investigate detecting electricity
theft in AMI networks are discussed in Section II. Then,
our considered system models are delineated in Section III.
Next, Section IV presents the data set created for training and
evaluating our detectors. A brief description of several clas-
sifiers that use different machine learning models to detect
malicious customers is discussed in Section V. The proposed
electricity-theft detector is presented in Section VI. Then,
the performance evaluation of our detector is discussed in
Section VII. Finally, the conclusions are drawn in Section VIIIL.

II. RELATED WORK

This section discusses the research works that investigate
the detection of malicious customers who launch electricity-
theft cyberattacks to steal electricity by reducing their bills
for the AMI networks of the smart power grid. Next, we will
discuss their shortcomings and research gap.

A. Electricity-Theft Detection in Periodic Transmission AMI

In the literature, different machine learning-based
electricity-theft detectors have been proposed for the
PT AMI networks to identify malicious customers who
launch electricity-theft cyberattacks [18], [20], [21], [22],
[23], [24]. Some of these detectors are based on deep learning
models [20], [23], [24], while other detectors are based on
shallow models [18], [21], [22]. In this section, we survey
these solutions.

1) Shallow Detectors: Ford et al. [21], Buzau et al. [22],
and Yan and Wen [26] have proposed electricity-theft detec-
tors. While the proposed detector in [21] uses a single hidden
layer artificial neural network, both detectors in [22] and [26]
are based on extreme gradient boosted trees (XGBoost). These
detectors are general in the sense that they can be used for all
customers since they are trained on the data of a large number
of customers. Thus, they have several advantages. First, they
can be used for new customers who do not have a history of
power consumption. Second, low computation power is needed
because a general detector is trained for all customers instead
of training one detector for each customer. In [21], a load pre-
dictor is used to create an electricity-theft detector in which
the detector uses the previous power consumption readings
to predict the future consumption values and then compare
them to the reported readings. Then, if the difference between
the predicted and reported readings does not exceed a certain
value, the customer is identified as honest; otherwise, he/she is
identified as malicious. Unlike the proposed detector in [21]
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that is trained only on benign readings, the electricity-theft
detector proposed in [22] is trained on malicious and benign
samples which are available in the data set of Endesa [24].

Jokar et al. [18], Ford et al. [21], and Yan and Wen [26]
have used the Irish data set [27] which contains real
and benign power consumption readings samples to train
the electricity-theft detectors. Unlike the proposed detectors
in [22], [26], and [21] that train general detectors, the detector
in Jokar et al. [18] is customized, i.e., a detector is trained for
each customer using his/her power consumption readings. Two
experiments were conducted in [18] to train electricity-theft
detectors. The first experiment trains a support vector machine
(SVM)-based detector using only the benign samples for each
customer while the second experiment trains an SVM detector
using malicious and benign samples. Jokar et al. [18] intro-
duced a set of attacks to create synthetic malicious samples
since the Irish data set does not contain malicious samples.
The results in [18] indicate that the detector that is trained
on both types of samples offers better performance than the
detector that is trained only on benign samples.

Although these studies have indicated that the XGBoost-
based electricity-theft detector offers better performance com-
pared to SVM, K-nearest neighbors detectors, and logistic
regression, the shallow-based detectors do not exploit the
temporal correlation of the power consumption readings, and
better performance can be obtained if the detector can learn
the temporal correlation.

2) Deep-Learning-Based Detectors: Since the shallow-
based electricity-theft detectors do not provide high
performance, the proposed detectors in [20], [23], and [24]
use deep learning because of its ability to better capture the
temporal correlations and extract the important features of the
electricity consumption readings. Various deep-learning-based
detectors are trained in [23] using a synthetic data set. These
detectors are general and use CNN, stacked autoencoder,
and long short-term memory network (LSTM). Moreover,
the performance of these detectors is compared to shallow
detectors including shallow NN, random forest (RF), and
decision tree (DT). The results demonstrate that the detectors
which use deep learning architectures give better performance
than the shallow detectors.

General electricity-theft detectors have been trained in [20]
and [24] using state grid corporation of China (SGCC) [28]
and Endesa [24] data sets, respectively. The SGCC data set
contains both malicious and benign samples. The proposed
detector in [20] is based on a deep learning architecture which
consists of CNN and multilayer perceptron (MLP) components
to be able to capture the periodicity of electric consumption
readings since according to a statistical analysis that is carried
on the SGCC data set, it has been observed that the electric-
ity consumption readings of malicious customers are usually
less periodic or nonperiodic compared to that of normal cus-
tomers. The proposed detector learns the temporal correlation
of the time-series electricity consumption readings to detect
false readings reported by malicious customers. Moreover, the
proposed deep-learning-based detector in [24] composes of
MLP and LSTM modules. The results show that the proposed
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detector outperforms the detector of [20] in terms of the
detection accuracy. Most of these studies have indicated that
utilizing the fine-grained energy consumption readings with
deep-learning-based models can accurately detect electricity
thefts.

B. Limitations and Research Gap

As can be noticed from the previous section, all the exist-
ing works consider only detecting electricity-theft cyberattacks
in the PT AMI networks, and the detection of electricity
theft in the CAT AMI has not been investigated yet. The
CAT approach is an efficient data collection method for AMI
network of the SG that has been adopted and investigated by
several works in the literature [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16]. Some of these works investigated dif-
ferent applications in SG, e.g., demand/response [7] and load
disaggregation [8] while using the CAT approach, while the
other works in [9], [10], [11], and [12] focus on finding a
good threshold value for the consumption change that triggers
transmitting a reading. All of these works do not consider that
there may be malicious customers who may report false read-
ings to reduce their bills illegally. Therefore, in this article, we
investigate different methods to detect electricity theft for the
CAT AMI using a publicly available data set that contains real
power consumption readings in order to fill the research gap.
Moreover, we propose a hybrid and multi-input deep-learning-
based electricity-theft detector to detect malicious customers
for the CAT AMI network with high detection performance.

The detection of electricity-theft cyberattacks in the CAT
AMI network is different from that of the PT AMI for the
following reasons. In case of the PT AMI, the SMs sends
their power consumption readings at each time slot, i.e., peri-
odically, to the EU which receives all the readings and run
electricity-theft detector. Hence, the detector in the PT AMI
is trained on accurate readings (i.e., customers’ fine-grained
power consumption readings) to learn their consumption pat-
terns and use them to detect malicious customers. However, in
the case of CAT AMI, the problem is more complex because
the readings in this case are clipped due to using the threshold
of the CAT approach in sending the readings which introduces
inaccuracy (or noise) to the data. When an SM does not report
a reading, the EU should use the last reported reading for the
electricity-theft detector evaluation. This means that a new data
set for the CAT AMI that contains CAT power consumption
readings and a new detection approach are required to be able
to detect electricity-theft cyberattacks in the CAT AMI. What
makes the problem more challenging is that a general detector
needs to be devised so that it can be used for all customers.
This can be done by training it on data from various customers
who have different consumption profile and, thus, different
CAT readings and transmission patterns.

Moreover, new attacks tailored to the CAT AMI should be
investigated because CAT AMI readings may be lower than
the actual readings and this may be exploited by the attack-
ers to steal electricity without being detected. On the other
hand, the attacks against the PT AMI aim at reducing the
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readings while attempting to imitate the consumption pattern
to avoid being detected, and in this case, the attacker guar-
antees that there is a reduction in his/her bill, whereas, when
reporting false readings in CAT AMI, the attacker should also
follow the CAT approach by sending a reading only if the
consumption change exceeds a predefined threshold, other-
wise, the attack can be easily detected without the need for
machine learning models. In other words, the attacker needs
to consider the threshold of the CAT approach in computing
the false readings and also make sure that there is a reduc-
tion in his/her bill. This is because the reported reading, that
is considered by the EU for billing, may be greater than the
current consumption when the absolute value of change in the
consumption does not exceed the threshold, and in this case,
there is no bill reduction. In addition, most of the existing
research works in the PT AMI have introduced simple attacks,
e.g., sending zero readings [18], [20], [21], [22], [23], [24],
which is easily detectable even without the need for machine
learning methods. Therefore, we introduce, in this article, a
set of sophisticated attacks that take the threshold of the CAT
approach into account and attempt to imitate the pattern of
CAT readings to avoid being detected while ensuring that there
is a bill reduction.

III. NETWORK AND THREAT MODELS

This section discusses the network and threat models con-
sidered in this article.

A. Network Model

As shown in Fig. 1, the main entities of the AMI network
considered in this article include a set of SMs and the EU.
The SMs are installed at the customers’ premises to send
real-time power consumption readings to the EU using CAT
approach, i.e., sending a reading if a sufficient power consump-
tion change compared to the last reported reading occurs. In
other words, the SMs do not send the consumption in some
time slots, and they only send the power consumption read-
ings when the absolute value of change in the consumption
exceeds a predefined threshold. For example, at 10% thresh-
old, each SM reports a reading when the change in the current
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consumption is above 410% or below —10% of the last
reported consumption. The threshold value is a system param-
eter which is distributed by the EU to all SMs so that they can
use it to transmit their readings based on the CAT approach.
The power consumption readings sent by SMs are used by
the EU for billing, load monitoring, and energy management.
Furthermore, the EU uses these readings to evaluate a machine
learning model to detect electricity-theft cyberattacks.

B. Threat Model

The customers may report false power consumption read-
ings to the EU to reduce their bills illegally. This does not
only cause financial losses but it may also result in wrong
decisions regarding energy management. This misbehavior can
be done by compromising the SMs and reprogramming them
to launch electricity-theft cyberattacks by reporting false read-
ings to the EU [29]. To compromise an SM, the SM’s software
can be modified or a malicious software can be programmed
and installed on it to be accessed through an ANSI opti-
cal port [30]. Furthermore, some platforms, e.g., Terminator,
can be used to hack the SMs by guessing the passwords. In
addition, according to [31], electricity-theft cyberattacks may
be launched by attacking the communication network since
it has been found that there are vulnerabilities in the com-
munications of AMI networks. Moreover, adversaries in the
system can collude together if this can help to launch suc-
cessful electricity-theft attacks. Each SM shares a secret key
with the EU and uses it to encrypt the power consumption
readings to protect their confidentiality and integrity.

IV. DATA SET PREPARATION

This section presents the power consumption data that is
used to train and evaluate our electricity-theft detectors. We
use real benign power consumption readings from a publicly
available data set [25] to create a data set for CAT AMI
using different thresholds. To create malicious samples, a set
of electricity-theft cyberattacks that can be launched by mali-
cious customers are proposed. Finally, we will discuss how
the benign and malicious data sets can be used to train our
detectors.

A. Benign Data Set

In this article, a publicly available real SM data set is used
for preparing our data set. This data set is provided by the
Smart project [25]. It includes real and benign power consump-
tion readings for 114 households in 2016, in which a power
consumption reading is reported to the EU every minute.
From this 1-min granularity data set Xgy and by summing
up the consumption readings, we have created two data sets
XgM and X_%]?,[ with transmission rates of 1/5 min (i.e., 288
readings per day) and 1/10 min (i.e., 144 readings per day),
respectively, where “1/t min” denotes the transmission rate
which means one reading is reported every ¢ minutes, and ¢ is
the transmission interval. Hence, based on a data set of real
benign CAT readings from 114 customers over 349 days, the
daily readings are considered a benign sample with a total
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TABLE I
SAVING (%) ACHIEVED BY USING CAT APPROACH AT TRANSMISSION
RATES AND DIFFERENT THRESHOLDS

Threshold (%)
5 10
Transmission 1/5min 36.48 39.75
rate 1/10min 19.95 25.87

of 39786 (114x349) samples. Each sample contains 288 and
144 CAT readings for transmission rates of 1/5 and 1/10 min,
respectively.

Next, we used XSM and X;z?,, to create other data sets for
the CAT approach at thresholds of 5% and 10%. This means
that by using 10% threshold, a power consumption reading
is sent by the SM only when the absolute value of change
in the consumption exceeds 10%. We measured the saving
that is achieved due to using the CAT approach in terms of
the percentage of unreported readings comparing to sending
the readings periodically at different transmission rates and
thresholds by using the following formula:

Np — N¢

Saving = x 100

P
where Nc is the number of transmitted readings in case of
CAT approach while Np is the number of transmitted readings
in case of PT of the readings. The bandwidth saving that is
achieved due to using the CAT approach is given in Table I at
different transmission rates and thresholds. It can be noticed
that the saving increases as the threshold increases because the
likelihood that the consumption change exceeds the threshold
of the CAT approach decreases, which consequently leads to
fewer number of transmissions. On the contrary, the saving
decreases as the transmission interval increases because the
likelihood that the consumption change exceeds the threshold
increases, which causes more transmissions.

Since the EU receives clipped power consumption read-
ings (CAT readings) from the SMs because of using the CAT
approach, a reading error may occur due to the fact that the
reading taken into account by the EU may be greater (or less)
than the actual reading measured by the SM due to the use
of a threshold. Since the EU computes the aggregated reading
of a group of SMs for load monitoring and the aggregated
reading of a set of readings of each customer for billing,
the aggregated reading error is calculated using our data sets
assuming that the AMI network has 114 SMs. Therefore, the
cumulative distribution function (CDF) of the aggregated read-
ing error for load monitoring is shown in Fig. 2 at different
transmission rates and thresholds. In addition, we also plot,
in Fig. 3, the error in the aggregated reading for billing of
two randomly selected customers over a year. As we can see
from these figures, the aggregated reading error is significantly
less than the maximum individual readings’ error (the thresh-
old value) because some errors are positive and other errors
are negative, which can reduce the error of the aggregated
reading. Therefore, although the readings that are received by
the EU, i.e., CAT readings, are clipped, the EU can still use
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Fig. 3.

them for billing and load monitoring accurately. Based on the
information given in Figs. 2 and 3, and Table I, we decided
to choose threshold values of 5% and 10% since these values
offer a reasonable saving in the bandwidth with acceptable
error.

We visualized our data set to gain better insights by dis-
playing the data in a visual context so that CAT transmission
patterns can be explored. Fig. 4 shows the real power con-
sumption and the corresponding transmission patterns due to
using CAT approach of two customers which are selected ran-
domly from our data set. As can be seen from Fig. 4(c) and
(d), there are no transmission events at certain periods because
readings do not pass the threshold. In other words, at these
periods, the change in the consumption does not exceed the
threshold, and in this case, the EU should use the last reported
reading. This means that the real reading may be lower than
or higher than the corresponding CAT reading.

B. Malicious Data Set

Since we need to train our electricity-theft detectors using
both benign and malicious data samples and due to the lack
of real malicious samples for the CAT AMI, we propose a
set of attacks that can be launched in the CAT AMI network
to mimic the attacks of malicious customers to create mali-
cious samples. For those customers to launch electricity-theft
cyberattacks to reduce their bills, they need to lower the val-
ues of the readings that they report while following the CAT

Aggregated error for billing of two randomly selected customers over a year. Aggregated error of (a) customer 1 and (b) customer 2.

approach, i.e., the readings reported by the SMs should respect
the predefined threshold of the CAT approach. Without fol-
lowing the CAT approach, these attacks are easily detectable
even without the need for machine learning-based electricity-
theft detection methods because the EU can simply compare
the readings sent by the SMs and their last reported read-
ings and check whether the reported readings exceed the
threshold.

In order to generate malicious samples, we propose five
attacks and apply them on benign samples. The proposed
attacks are summarized in Table II. As can be seen from the
table, each attack function f(-) aims at achieving a reduction
in the bill by applying different attack scenario. Denote 7%
and ré as the current true electricity consumption and the last
reported reading of SM;, respectively. Let Thy be the actual
threshold of the CAT approach, and to send a reading, the
following condition should be achieved _ré < x) or X, < r,
where x; = r; — (r] * Thye), X, = r; + (7} * Thye), and x; and
x!, are the lower and upper limits, respectively.

As shown in Table II, Attack 1 reduces the first read-
ing when launching the attack by n%, and then follows the
rate of change of the true readings to compute the malicious
readings. This means that if the consumption of a time slot
increases/decreases by percentage p comparing to the last read-
ing, the attacker increases/decreases the malicious readings by
the same percentage p. The objective of this attack is to make
the malicious consumption pattern look like the real pattern
but with lower magnitudes to confuse the detector. Also, this
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Real consumption and transmission patterns due to using CAT approach of different customers, where in (c¢) and (d), 1 and O refer to transmission

and no transmission events, respectively, at 1/5-min transmission rate and 10% threshold. Real power consumption pattern of (a) customer 1 and (b) customer

2. Transmission pattern of (c) customer 1 and (d) customer 2.

TABLE II
PROPOSED CYBERATTACK FUNCTIONS FOR ELECTRICITY
THEFT FOR CAT AMI

Attacks Attack function
h() = nxrl If first reading
Attack 1 e =Y 1+ p)ri  otherwise
iy= ri ri,<:nf orrli<rf‘,<ri71

Attack 2 Fare) {rl’ otherwise

Choose asymmetric thresholds T°h; and T'h,,, where

Thy = Thact and Thy, = Thact X oy + Thact

Attack 3 . . fg(r}:) = ) ) )

Do not transmit 7} — 7} * Thy <71y <71} + 7] % Thy

Transmit 7% otherwise
Attack 4 fa(rl) = acE[r]
Attack 5 f5(rl) = Bert

attack aims to make the transmission pattern look similar to
the true pattern to confuse the detector.

In Attack 2, the attacker sends . when: 1) r is less than
xf and 2) ri is greater than rf and less than the previous read-
ing ré_l. Hence, in this attack, the EU uses the last reported
reading r; when x;, < r.. instead of considering the actual cur-
rent consumption r!, which is higher than x!,. Also, this attack
aims at confusing the electricity-theft detector while achiev-
ing a reduction in the bill since some readings are true (when

r.o< xiorr <l < r_)), while others are false (when
<xl).

On the other hand, in Attack 3, instead of following the
symmetric threshold Thyy, i.e., £10%, the attacker creates and
follows asymmetric threshold Th; and Th,, e.g., Th; = 10%
and Th, = 20%, where Th; and Th,, are the lower and upper
limits of the attacker’s threshold, respectively, and Th; = Thy.
In this attack, the attacker randomly chooses Th, so that
|Th;| < |Thy| to ensure a reduction in the bill and a read-
ing is transmitted when ré < r; — rf * Th; or rf + rf *Th, < ré.
Moreover, as Th,, increases, as the probability that the current
consumption exceeds the upper limit decreases and, hence, the
EU uses the last reported consumption rf, which is lower than
the current consumption r;., to lower the bill. In other words,
the current consumption, which is bigger than the last reported
reading, is transmitted only when there is a large difference
between the last reported reading and the current consumption,
which guarantees a reduction in the bill. By launching Attack
3 continuously, the EU may observe that the change in the
transmitted readings comparing to the last reported readings
is always above Th,, (or the number of transmissions is below
the average value). Therefore, this attack should be launched
for certain time periods to prevent the EU from observing that
the change in the transmitted readings are always above Th,,.
Also, due to the natural randomness in the transmission pat-
tern due to the randomness of the activities of the dwellers,
depending only on the number of transmissions to detect elec-
tricity theft would give inaccurate detection results with high
false alarms.
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The objective of Attacks 4 and 5 is to scale down all the
consumption readings by a ratio and then follow the CAT
approach correctly in transmitting the readings. Attack 4, i.e.,
f4(-), computes the mean value E[ril] of a fraudulent cus-
tomer’s power consumption readings for a given day d, and
reduces it using a time-dependent ratio «.. Attack 5 [f5(-)]
reduces each power consumption ré by a time-dependent ratio
Bc, where 0 < o <1 and 0 < B, < 1.

Note that all these attacks should follow the CAT approach
in which a reading is transmitted only when the consumption
change exceeds the threshold Thy because the attacker can
be detected by the EU if the reported readings do not follow
the threshold Th,g.

C. Data Preprocessing

To use the aforementioned attacks to produce malicious
samples, we first set the parameters of each attack function, if
applicable. In order to simulate different malicious behaviors,
the parameters of each attack function are randomly selected
from a range of values. Some attackers may be aggressive
in their attacks and they select small values for the parame-
ters while other attackers may decide to select high values to
launch stealthy attacks. The higher the value of the parame-
ters, the more stealthy the attack, but the lower gains in terms
of the amount of stolen energy. The details are as follows.

For function fi(-), n is a random variable that is uniformly
distributed over the interval [0.3, 0.8] in which the lower 7,
the more profits the attacker can achieve. For function f3(-),
ay is a random variable that is uniformly distributed over the
interval [3, 8]. More reduction in the bill is achieved as «,
increases (i.e., Th,, increases). This is because the probability
that the current consumption exceeds the upper limit decreases
and, hence, the EU considers the last reported consumption
rf, which is lower than the current consumption ré, to com-
pute the bill. The range of « [3, 8] increases the attacker’s
upper threshold Th, between 40% and 90% in the case of
10% threshold, and between 20% and 45% in the case of 5%
Threshold. Therefore, to be realistic, we consider different val-
ues for the attacker’s threshold that can achieve enough gain
to the attackers in terms of the reduction in the bill.

For functions f4(-) and f5(-), . and B, are random variables
that are uniformly distributed over the interval [0.1, 0.6]. The
lower o and B., the more reduction in the bill the attacker
can achieve. Hence, based on a data set of benign CAT read-
ings from 114 customers over 349 days, the daily readings are
considered a benign sample with a total of 39 786 (114 x 349)
samples. Each sample contains 288 and 144 CAT readings for
transmission rates of 1/5 and 1/10 min, respectively. Each sam-
ple is labeled O if it is benign, while it is labeled 1 if the sample
is malicious. Then, the five proposed attacks are applied on
each benign sample to create five malicious samples. After
that, five balanced data sets, each data set corresponds to each
attack, are created in which each data set has 79 572 equally
distributed malicious and benign samples. Each data set is fur-
ther divided into two parts, where 80% of the samples are used
for training and 20% of the samples are used for evaluation.
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Next, we normalized both the training and evaluation data sets
to transform the values of all features into a common range to
make sure that no feature is dominating toward the detector’s
classification during the training. Moreover, normalizing the
data helps the detector to speed up the training process which
leads to faster convergence [32].

V. BENCHMARK DETECTORS

In this section, we discuss a set of shallow and deep-
learning-based electricity-theft detectors for the CAT AMI
using the reported consumption data, i.e., CAT readings. Two
shallow and three deep learning classifiers are investigated in
this article, where each detector is trained and evaluated using
both benign and malicious data samples. These models will
be used as benchmark detectors to compare their performance
with our electricity-theft detector presented in Section VI.
Moreover, we will use a combination of two deep learning
models presented in this section (CNN and GRU) to build our
electricity-theft detector.

1) Shallow-Based Detectors:

RF-Based Detector (RF): This classifier builds a set
of tree structures, where each tree consists of a set of
branches and leaf nodes that represent a class label. RF
is a well-known machine learning model that prevents
overfitting while handling high-dimensional data and
maintaining high computational efficiency [33]. RF uses
ensemble learning, which is a technique that combines
several classifiers to make accurate classifications.
SVM-Based Detector (SVM): It is one of the widely used
shallow classifiers in electricity-theft detection in the
PT AMIL. It separates different classes by constructing a
hyperplane with the largest amount of margin [18]. The
SVM-based electricity-theft detector is trained on both
benign and malicious samples along with their labels in
order to learn how to classify the sample’s label during
the evaluation stage [18].

2) Deep-Learning-Based Detectors:

MLP-Based Detector: 1t is a well-known deep learning
classifier which consists of: a) input layer which is the
model’s first layer where the input data is fed to; b) a
set of hidden layers in which each layer has a num-
ber of neurons to process the output of the input layer;
and c) output layer which is the last layer that outputs
the classification result of the classifier [34]. Although
MLP offers low computational complexity, it does not
have the ability to exploit the temporal correlation in the
electricity time-series consumption data.

CNN-Based Detector: CNN detectors are widely used
in solving machine learning problems, such as com-
puter vision applications, natural language processing,
and speech processing [35], which need a capability to
extract the important features of the input data. A CNN
model consists of input, convolution, fully connected,
and output layers. The convolution layer composes of
a group of filters and pooling layer(s). These filters are
responsible for extracting the most important features
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from the given data by sliding each filter, which is usu-
ally small in size, over the input, while the pooling
layer aims at reducing the data dimensionality on these
extracted features while keeping the most important
information. These operations are performed because the
model performance becomes poor if the dimension of
the data is large [35]. After the convolution layer(s),
one or more fully connected feedforward layers are usu-
ally used to process the extracted features to be used
by the output layer to compute the classification result.
Moreover, a nonlinear activation function such as Tanh,
ReLU, or Sigmoid is used after the convolution step to
enable the model to make complex decisions and solve
difficult tasks.

GRU-Based Detector: GRU is one type of recurrent neu-
ral networks which has a good ability to capture the
sequential information and temporal correlation which
exist in the customers’ time-series readings [36]. This
ability is due to the fact that GRU has the ability to
remember long sequences of input patterns by the help
of two gates, namely reset and update. These gates are
responsible for controlling the flow of the information
in order to learn the important information to retain.
Moreover, GRU contains a set of hidden states in which
each state acts as a memory. These states are used to
hold/remember information on previous data as data is
transferred from one layer to another; that is why, GRU
can capture the correlations between the input data. The
key component in GRU is the transition function in each
time step ¢ which takes the current time information
X; and the previous hidden state H,_; and updates the
current hidden state as follows:

H; = F(X;, Hi—1) (D

where F is a nonlinear transformation/activation func-
tion, e.g., Tanh and Sigmoid functions. Similarly, H;_|
considered the input at time # — 1 and the state at time
t —2 (H,—») and, thus, each state considers the previous
states and inputs which enables the GRU to process a
sequence of data.

VI. ELECTRICITY-THEFT DETECTORS FOR CAT AMI

In this section, we first investigate adapting the CNN-GRU-
based electricity-theft detector for the CAT AMI using the
reported consumption data, i.e., CAT readings. Then, we dis-
cuss the rationale behind our electricity-theft detector’s design.
Finally, we will explain the architecture of the proposed
detector in detail.

A. CNN-GRU-Based Detector

As mentioned earlier, the GRU-based detector can capture
the temporal and complex correlation within the data. Instead
of feeding the GRU model with a raw data, it can be fed with
the important features of the input data to further improve the
detection performance of the detector. Therefore, we investi-
gate using a hybrid CNN and GRU model for electricity-theft
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detection for the CAT AMI. This architecture composes of
1-dimensional (1-D) convolutional and max-pooling layers
followed by GRU layer(s). Hence, the 1-D convolutional
and max-pooling layers act as a feature extractor and the
GRU layer(s) further learn the temporal correlation within the
extracted features of the CAT readings. An activation func-
tion is usually used to help the detector to make complex
relationships between the input and output.

B. Rationale Behind Our Detector Design

Most of the recent studies about proposing electricity-theft
detectors in the PT AMI have concluded that using machine
learning-based detectors outperforms the state estimation-
based and game-theory-based detectors in terms of the detec-
tor’s accuracy [37]. While some of the machine learning-based
electricity-theft detectors use shallow classifiers, such as SVM
and RF, other detectors are based on deep learning architec-
tures, such as RNN and CNN [23], [24].

Furthermore, these detectors are either general, which can
be used for all customers, or customized (i.e., customer spe-
cific) which is used for only one customer. The problem
of the customized detectors is that they cannot be used to
detect new malicious customers until there is enough con-
sumption data of that customer for the training process.
Moreover, they are vulnerable to data contamination attacks
where malicious customers report false readings during the
training process to avoid being detected during the evalua-
tion [37]. On the other hand, general detectors are more robust
against such attacks since they are trained on the data of
a large number of customers, and, thus, new malicious cus-
tomers can be detected. Also, customer-specific detectors need
a lot of computation resources because too many detectors
should be trained, i.e., one detector should be trained for each
customer.

In addition, since the transmission pattern may change
when a customer reports false readings, the detector’s abil-
ity to learn the correlations between the CAT readings and
the transmission pattern is important. Moreover, the trans-
mission pattern contains information about the customer’s
behavior that can help the electricity-theft detector to make
accurate classifications. Therefore, we take the transmission
pattern into consideration as a second input to the detec-
tor in addition to the CAT readings, as can be seen in
Fig. 5, to further help the detector in identifying electricity
theft.

According to the preceding discussion, our detector shall:
(1) be general which can be used for any customer includ-
ing the new ones by training it using the data collected from
all customers; (2) consider the transmission pattern as well
as the CAT readings to boost the performance of the detector
instead of depending only on the SMs’ CAT readings for the
design of the electricity-theft detector; and (3) capture the cor-
relation within the CAT readings and the relation between the
CAT readings and the transmission pattern by using a deep
learning architecture and, thus, the detector shall be able to
make accurate classifications.
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Fig. 5. Architecture of our electricity-theft cyberattack detector for CAT AMI.

C. Architecture of Our Detector

Our detector takes two inputs in parallel; the first input is
the CAT readings of one day, while the second input is the
transmission pattern of the same day. These two inputs lead
to designing a two-stage detector, as shown in Fig. 5, to boost
the detector’s performance in detecting malicious customers.
These stages are described as follows.

1) The first stage of our detector processes solely one type
of input data, which is the CAT readings. This stage
is a hybrid deep-learning model that contains a CNN
with GRU neural networks. We use 1-D CNN neural
network (1-D CNN) because of its ability to capture
and extract the important features of the 1-D time-series
CAT readings and, hence, this results in a high detection
performance. Furthermore, we use the GRU architecture
to capture the time correlations of the consecutive CAT
readings.

2) The second stage of our detector takes the transmission
pattern as an input and concatenates it with the output
of the first stage. In this stage, a set of GRU layers is
used to enhance the detector’s capability in capturing
the correlation between the CAT readings and the cor-
responding transmission pattern. Moreover, these GRU
layers are followed by a fully connected neural network
to be able to make accurate classifications.

In order to evaluate the impact of processing the transmis-
sion pattern on the detection performance, we first evaluate
our detector without the transmission pattern, i.e., the output
of the first stage of the detector. Then, we evaluate our detec-
tor’s performance after considering the transmission pattern,
i.e., the output of the second stage of our detector, as shown
in Fig. 5.

VII. EVALUATIONS

This section first presents our experimental environment
and the metrics that we use to evaluate our detector’s
performance. Then, we evaluate our electricity-theft detector’s

performance by conducting two experiments. The first experi-
ment investigates different machine learning models to detect
malicious customers who launch electricity-theft cyberattacks
using only the CAT readings reported by SMs. On the other
hand, the second experiment investigates the improvement in
the detector’s performance when considering the transmission
pattern of the SMs in addition to the reported CAT readings.

A. Experimental Setup

In this work, all experiments are conducted with the high-
performance cluster (HPC) of the Tennessee Tech University
using one NVIDIA Tesla K80 GPU. During the learning stage
of our detectors, we used a hyperopt tool [38] on a validation
data set to appropriately fine-tune the detectors’ hyperparam-
eters, e.g., number of units per layer, activation function for
each layer, etc. Moreover, Adam optimizer [39] is used to train
our detectors for 200 epochs, 0.001 learning rate, 256 batch
size, and categorical cross entropy as the loss function. Also,
we used various Python3 libraries in our experiments as fol-
lows. Numpy is used to prepare our data set, while Keras [40]
and Scikit-learn [41] are used to train and evaluate our detec-
tors, respectively. Moreover, Matplotlib [42] is used for data
visualization.

B. Evaluation Metrics

Since electricity-theft detection is a binary classification
problem, we denote the malicious samples as the positive
class and benign samples as the negative class. Given that
true positive (TP) is the number of samples that are correctly
classified as malicious, true negative (TN) is the number of
samples that are correctly classified as honest, false positive
(FP) is the number of honest samples that are misclassified as
malicious, and false negative (FN) is the number of malicious
samples that are misclassified as honest, the performance of
our detector is assessed by using a set of evaluation metrics
as follows.

1) Accuracy (ACC): It measures the percentage of

the honest/malicious samples that are classified as
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TABLE III
COMPARISON BETWEEN THE PERFORMANCE OF DIFFERENT BENCHMARK MACHINE LEARNING-BASED ELECTRICITY-THEFT DETECTORS AT 1/5-MIN
TRANSMISSION RATE AND 10% THRESHOLD. (A) PERFORMANCE OF DIFFERENT TYPES OF SHALLOW-BASED DETECTORS. (B) PERFORMANCE OF
DIFFERENT TYPES OF DEEP-LEARNING-BASED DETECTORS

(a)

SVM

Attacks ACC DR FA
(%) (%) (%)

HD ACC DR FA HD
(%) (%) (%) (%) (%)

Attack 1 85.9 87.35 17.1

70.25 84.8 85.67 | 14.92 | 70.75

Attack 2 | 8343 | 89.34 | 17.98

71.36 80.92 | 8554 | 23.7 | 61.84

Attack 3 85 92.47 235

68.92 91.13 | 88.95 6.64 82.3

Attack 4 88 95 19 76 93.3 90.82 4.2 86.62
Attack 5 | 88.84 | 97.55 | 19.74 | 77.8 95.56 | 96.07 15.8 80.27
(b)
MLP CNN GRU

Attacks | ACC | DR FA HD || ACC
() | (%) | (%) | (%) (%)

DR | FA | HD || ACC | DR FA HD
(%) | (%) | (%) () | (B) | (%) | (%)

Attack 1 | 86.15 | 90.02 | 17.71 | 72.31 90.84

9159 | 99 81.68 91.52 | 90.57 | 7.52 | 83.05

Attack 2 | 83.15 | 93.68 | 27.38 66.3 92.86

95.14 | 943 | 85.72 || 93.17 | 97.16 | 10.81 | 86.35

Attack 3 | 93.43 | 96.65 9.83 86.82 96.16

9747 | 5.16 92.3 96.02 97 4.96 92.04

Attack 4 | 93.52 | 9746 | 1044 | 87.02 96.88

98.62 | 4.85 | 93.77 96.82 | 98.8 5.13 93.67

Attack 5 | 90.49 | 92.1 11.08 | 81.01 96.36

9743 | 471 | 92.72 96.19 | 97.14 | 4.76 | 92.38

honest/malicious. It is computed by using the following
expression:
TP + TN
X
TP + TN + FP + FN
2) Detection Rate (DR): It measures the percentage of the
malicious samples that are classified as malicious with
respect to the total actual number of malicious samples
in the data set. It is computed by using the following
expression:

ACC(%) = 100.

TP
DR(%) = 5 * 100.

3) False Alarm (FA): It measures the percentage of the
honest samples that are misclassified as malicious with
respect to the total number of honest samples in the data
set. It is computed by using the following expression:

FP
FA(%) = ————— x 100.
FP +TN
4) Highest Difference (HD): It is the difference between

DR and FA
HD(%) = DR (%) — FA(%).

5) Receiver Operating Characteristic (ROC) Curve: It is
usually used to assess the performance of a classifier
which is determined by the area under the ROC curve
(AUC) [43]. The higher this area, the better the classifier
performance in identifying the classes.

The detector’s performance is better when DR, HD, and

ACC are high, and FA is low.
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C. Results of Experiment [

To demonstrate the effectiveness of the proposed electricity-
theft detector, we first compare the performance of different
benchmark shallow-based and deep-learning-based detectors
by considering only the CAT readings reported by the cus-
tomers’ SMs for three use cases; 1/10-min transmission rate at
5% and 10% thresholds and 1/5-min transmission rate at 10%
threshold. The benchmark shallow detectors are SVM and RF,
while the benchmark deep learning detectors are MLP, CNN,
and GRU.

In this experiment, to ensure a fair performance comparison,
we used the data set that is discussed in Section IV to train
and evaluate the detectors discussed in Section V. We train our
detectors, where each detector can identify one attack, using
both honest and malicious samples. The performance of the
detectors is evaluated using the five different attacks discussed
in Section IV-B, separately. We randomly chose 20% of the
samples in our data set for evaluation and 80% of the samples
for training the detectors.

Results and Discussion: Tables III-V present the
performance of different types of machine learning-based
electricity-theft detectors including shallow and deep learn-
ing architectures for the three use cases, where subtable
(a) presents the performance of benchmark shallow-based
detectors and subtable (b) presents the performance of
benchmark deep-learning-based detectors. The performance
of the detectors is evaluated using the following metrics;
HD, DR, FA, and ACC. First, it can be seen from the given
results that both MLP and shallow-based detectors achieve
the lowest performance in identifying the five electricity-theft
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TABLE IV
COMPARISON BETWEEN THE PERFORMANCE OF DIFFERENT BENCHMARK MACHINE LEARNING-BASED ELECTRICITY-THEFT DETECTORS AT
1/10-MIN TRANSMISSION RATE AND 10% THRESHOLD. (A) PERFORMANCE OF DIFFERENT TYPES OF SHALLOW-BASED DETECTORS.
(B) PERFORMANCE OF DIFFERENT TYPES OF DEEP-LEARNING-BASED DETECTORS

(a)

SVM

Attacks ACC DR FA
(%) (%) (%)

HD ACC DR FA HD
(%) (%) (%) (%) (%)

Attack 1 | 80.55 | 89.26 18.1

71.61 86.23 852 | 20.56 | 64.64

Attack 2 | 79.62 | 85.74 | 26.52

59.23 84.45 | 86.23 | 17.33 68.9

Attack 3 | 84.88 | 90.57 | 20.97

69.6 88.62 86.8 9.51 77.29

Attack 4 86.3 9221 | 19.16

72.69 90.01 | 88.02 8.04 | 79.98

Attack 5 85.9 93.56 | 21.55

72.01 93.16 | 94.58 | 14.38 80.2

(b)

MLP

CNN GRU

Attacks ACC DR FA HD ACC
(%) (%) (%) (%) (%)

DR FA HD ACC DR FA HD
(%) | (%) | (%) (%) (%) | (%) | (%)

Attack 1 | 84.48 | 89.14 | 18.92 | 80.22 92.47

91.38 | 6.43 | 84.95 93.48 | 932 | 6.24 | 86.96

Attack 2 | 82.54 | 88.78 23.7 65.07 93.44

94.66 | 7.78 | 86.88 0328 | 94.44 | 7.88 | 86.56

Attack 3 | 8691 | 89.53 | 15.79 | 73.74 93.2

92.84 | 6.43 86.4 94.55 | 95.09 | 6.01 | 89.08

Attack 4 | 89.18 | 8998 | 11.59 | 78.38 96.77

98.42 | 483 | 93.59 96.76 | 98.76 | 5.16 | 93.6

Attack 5 | 89.18 | 91.71 | 13.27 | 78.44 96.02

97.06 5 92.06 9648 | 97.79 | 4.8 92.99

TABLE V
COMPARISON BETWEEN THE PERFORMANCE OF DIFFERENT BENCHMARK MACHINE LEARNING-BASED ELECTRICITY-THEFT DETECTORS AT
1/10-MIN TRANSMISSION RATE AND 5% THRESHOLD. (A) PERFORMANCE OF DIFFERENT TYPES OF SHALLOW-BASED DETECTORS.
(B) PERFORMANCE OF DIFFERENT TYPES OF DEEP-LEARNING-BASED DETECTORS

(2)

SVM

RF

Attacks | ACC | DR FA
() | (%) | (%)

HD || ACC | DR | FA | HD
(%) (%) | B | (B) | (%)

Attack 1 | 83.39 | 89.13 | 22.52

66.62 89.68 | 88.64 | 9.26 | 79.38

Attack 2 | 77.6 | 83.76 | 28.74

55.03 82.17 | 84.97 | 20.7 | 64.27

Attack 3 | 92.48 86.1 14.64

71.46 9238 | 92.16 | 7.39 | 84.77

Attack 4 | 87.14 | 92.81 | 18.68

74.13 9341 | 94.79 | 8.02 | 86.78

Attack S | 864 | 94.15 | 21.55

72.59 90.68 88.1 6.67 | 81.42

(b)

MLP

CNN GRU

Attacks ACC DR FA HD ACC
(%) (%) (%) (%) (%)

DR FA HD ACC DR FA HD
(%) | () | (%) (%) (%) | () | (%)

Attack 1 | 85.74 | 89.45 | 18.07 | 71.38 92.23

93.17 | 875 | 84.42 92.83 | 9358 | 7.95 | 85.64

Attack 2 | 81.25 | 82.51 | 20.04 | 64.47 94.09

95.67 | 7.54 | 88.13 94.05 | 9355 | 543 | 88.12

Attack 3 | 83.47 | 84.54 | 17.63 | 66.91 96.08

98.41 | 6.32 | 92.09 96.1 | 98.58 | 6.45 | 92.12

Attack 4 | 89.04 | 89.96 | 1191 | 78.06 96.42

97.6 | 4.79 | 92.81 96.41 | 9831 | 5.54 | 92.78

Attack 5 | 89.33 | 90.92 | 12.31 | 78.61 95.49

96.54 | 5.59 | 90.96 96.24 | 97.07 | 4.62 | 9245

cyberattacks. Second, we can see that both the GRU and
CNN-based detectors provide a better performance compared
to the MLP and shallow-based detectors because GRU has
a good ability to capture the temporal correlation between

Authorized licensed use limited to: University of Waterloo. Downloaded

the consecutive CAT readings while the CNN-based detector
has the ability of extracting the important features of the
CAT readings using a set of filters, which can enhance the
detector’s performance. Our goal from this experiment is to
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TABLE VI
OPTIMAL HYPERPARAMETERS OF OUR TWO-STAGE DETECTOR FOR
ATTACK 1 AT 1/10-MIN TRANSMISSION RATE AND 5% THRESHOLD

Hyper-parameters
Stage
Layer Number of units AF
Input 144 Linear
ConvlD 128 Tanh
Stage 1 ConvlD 256 Relu
MaxPooling1 D 2 -
GRU 128 Relu
Output 2 Softmax
Input 144 Linear
GRU 128 Sigmoid
GRU 128 Relu
Stage 2 Dense 64 Tanh
Dense 512 Tanh
Dense 64 Relu
Output 2 Softmax

determine the best performing benchmark detector for each
attack and we highlight it in bold font based on the value of
HD, as shown in Tables III-V.

D. Results of Experiment 2

This section compares the performance of the proposed two
electricity-theft detectors (the output of Stages 1 and 2) with
the best performing benchmark detectors evaluated in exper-
iment 1 as shown in Fig. 5 to assess the benefit of having a
hybrid detector and taking the transmission pattern into con-
sideration. The data set discussed in Section IV is used to
train our detector as follows. Only the CAT readings are used
for training Stage 1, while the transmission pattern in addi-
tion to the CAT readings are used for training Stage 2. As
mentioned earlier, we used Hyperopt to optimize the detec-
tors’ hyperparameters. For instance, our two-stage detector’s
optimal hyperparameters for Attack 1 at 1/10-min transmission
rate and 5% threshold can be seen in Table VI.

Results and Discussion: Table VII presents the values of
ACC, DR, FA, and HD of the best performing benchmark
detectors evaluated in experiment 1, our hybrid CNN-GRU
detector trained on the CAT readings only (Stage 1), and
the proposed two-stage detector trained on both CAT read-
ings and transmission pattern (Stage 2) in identifying the five
cyberattacks at different transmission rates and thresholds.
Furthermore, Fig. 6 shows the difference in the performance
between the CNN-GRU-based detector that processes CAT
readings only and our two-stage detector that processes trans-
mission pattern in addition to CAT readings using ROC curves
for Attack 2 at 1/5-min transmission rate and 10% threshold.

It can be seen that among all the best benchmark detectors,
CNN-GRU-based detectors provide the highest performance
because the combination of CNN and GRU can extract the
important features from the input CAT readings and capture
the correlation between the extracted features, which is the
key to improve the detector’s performance. Moreover, we can
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Fig. 6. Comparison between the ROC curves of Stages 1 and 2 for Attack

2 at 1/5-min transmission rate and 10% threshold.

see from the results that the performance of the detectors is
not affected by the values of the transmission rates and thresh-
olds. Hence, the hybrid CNN-GRU architecture is selected for
designing the proposed electricity-theft detector.

It can be seen from the results of the experiment that our
two-stage detector outperforms the other detectors in detect-
ing all the attacks. The superiority of our detector (Stage
2) over the detectors that process only the CAT readings
(Stage 1) is because it considers additional important features,
i.e., transmission pattern, which helps the detector to make
a more accurate classification boundary between the mali-
cious and benign samples. Moreover, our detector captures
the correlations between the CAT readings and the corre-
sponding transmission pattern. So, if a malicious customer
tampers with his SM’s readings, this may have an impact on
the correlations between the CAT readings and the transmis-
sion pattern. This means that having additional features allows
our detector to differentiate between the malicious and benign
samples by checking the correlations between the CAT read-
ings and the transmission pattern. This enhances the detector’s
performance, i.e., higher DR, lower FA and, hence, higher HD,
as can be seen in Table VI. Finally, considering transmission
patterns increases the HD by about 1% to 4% comparing to
the HD obtained by using only the CAT readings as can be
observed from Table VL.

On the other hand, it can be observed that Attacks 1 and 2
are the most difficult to detect comparing to the other attacks.
This can be explained by the fact that Attack 1 makes the
transmission patterns of the reported readings similar to the
patterns of the true readings to confuse the detector and also
makes the malicious consumption pattern look like the real
pattern but with lower magnitudes to reduce his/her bill. On
the other hand, Attack 2 confuses the electricity-theft detector
by reporting some true readings (when 7% < xf), which makes
it hard for the detector to detect. Despite the stealthiness of
the proposed attacks, the given results demonstrate that our
detector shows good performance under different cyberattacks
at different transmission rates and thresholds.
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TABLE VII
COMPARISON BETWEEN THE PERFORMANCE OF THE BEST BENCHMARK ELECTRICITY-THEFT DETECTOR, CNN-GRU (STAGE 1), AND TWO-STAGE
DETECTOR (STAGE 2) AT DIFFERENT TRANSMISSION RATES AND THRESHOLDS. (A) 1/5-MIN TRANSMISSION RATE AT 10% THRESHOLD.
(B) 1/10-MIN TRANSMISSION RATE AT 10% THRESHOLD. (C) 1/10-MIN TRANSMISSION RATE AT 5% THRESHOLD

(a)
Best performing benchmark detector CNN-GRU (Stage 1) Our two-stage detector (Stage 2)
Attacks ACC DR FA HD ACC DR FA HD ACC DR FA HD
(%) (%) (%) (%) (%) (%) | (%) | (%) (%) (%) | (%) (%)
Attack 1 | 91.52 | 90.57 | 7.52 83.05 93.42 93 6.16 | 86.84 || 9525 | 94.31 | 3.81 90.5
Attack 2 | 93.17 | 97.16 | 10.81 86.35 94.45 | 9538 | 6.48 | 88.81 95.56 | 95.29 | 4.16 91.13
Attack 3 | 96.16 | 97.47 | 5.16 92.3 96.78 | 974 | 3.84 | 93.55 97.66 | 97.82 | 2.5 95.32
Attack 4 | 96.88 | 98.62 | 4.85 93.77 98.37 | 99.39 | 2.65 | 96.75 98.96 | 99.07 | 1.14 97.92
Attack S | 96.36 | 97.43 | 4.71 92.72 9722 | 97.79 | 336 | 94.43 98.28 | 98.42 | 1.86 96.55
(b)
Best performing benchmark detector CNN-GRU (Stage 1) Our two-stage detector (Stage 2)
Attacks ACC DR FA HD ACC DR FA HD ACC DR FA HD
(%) (%) | (%) (%) (%) (%) | (%) | (%) (%) (%) | (%) (%)
Attack 1 | 9348 | 932 | 6.24 86.96 93.77 | 95.74 | 823 | 87.51 9539 | 9249 | 1.66 90.83
Attack 2 | 93.44 | 94.66 | 7.78 86.88 95.1 96.35 | 6.15 | 90.2 95.61 | 944 | 3.15 91.25
Attack 3 | 9455 | 95.09 | 6.01 89.08 95.54 | 9583 | 4.75 | 91.08 96.85 | 97.22 | 3.53 93.69
Attack 4 | 96.76 | 98.76 | 5.16 93.6 96.98 | 98.42 | 4.43 | 93.99 97.81 | 98.17 | 2.56 95.61
Attack 5 | 96.48 | 97.79 | 4.8 92.99 96.84 | 97.53 | 3.84 | 93.69 97.7 | 9945 | 4.08 95.37
(c)
Best performing benchmark detector CNN-GRU (Stage 1) Our two-stage detector (Stage 2)
Attacks ACC DR FA HD ACC DR FA HD ACC DR FA HD
(%) (%) | (%) (%) (%) (%) | (%) | (%) (%) (%) | (%) (%)
Attack 1 | 92.83 | 93.58 | 7.95 85.64 9398 | 9442 | 543 | 87.98 94.85 | 94.82 | 5.11 89.71
Attack 2 | 94.09 | 95.67 | 7.54 88.13 94.66 | 95.87 | 6.57 | 89.29 95.79 | 9748 | 594 91.55
Attack 3 | 96.1 98.58 | 6.45 92.12 96.86 | 97.6 | 391 93.7 97.21 | 96.36 | 1.93 94.44
Attack 4 | 9642 | 97.6 | 479 92.81 97.24 | 97.64 | 3.18 | 94.46 || 97.74 | 97.72 | 2.24 95.48
Attack 5 | 96.24 | 97.07 | 4.62 92.45 96.79 | 97.44 | 3.87 | 93.56 || 97.43 98 3.15 94.85

VIII. CONCLUSION

In this article, we have investigated detecting electricity-
theft cyberattacks in the CAT AMI network. Specifically, we
have processed a real power consumption readings data set to
create a benign data set for the CAT approach and proposed
a new set of cyberattacks to create malicious samples. Then,
we developed a deep-learning-based electricity-theft detection
solution to identify malicious customers for the CAT AMI
network. Our detector has been trained on the customers’
transmission patterns and CAT readings to learn the correlation
between them. Extensive experiments have been conducted,
and the results indicated that our detector can accurately iden-
tify malicious customers. Furthermore, the results showed that
our multi-input detector achieves higher DR and lower FA
than a single-input detector trained only on the CAT readings.
Although reporting the customers’ CAT readings enables the
EU to detect malicious customers, revealing these readings
to the EU endangers the customers’ privacy. This is because
the readings can leak private information about customers’

lifestyle, e.g., the appliances being used, presence/absence of
the customers, etc. To preserve customers’ privacy, the SMs’
readings should be encrypted and sent to the EU. However, in
this case, it would be difficult for the EU to make sure that
the customers follow the CAT approach and, hence, attack-
ers can launch new attacks which are not considered in this
article. Therefore, we will investigate, in our future work, this
privacy issue for the CAT AMI network.
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