
5318 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 6, JUNE 2021

Adaptive Computing Scheduling for Edge-Assisted
Autonomous Driving

Mushu Li , Student Member, IEEE, Jie Gao , Member, IEEE, Lian Zhao , Senior Member, IEEE,
and Xuemin Shen , Fellow, IEEE

Abstract—This paper investigates computing resource schedul-
ing for real-time applications in autonomous driving, such as
localization and obstacle avoidance. In our considered scenario,
autonomous vehicles periodically sense the environment, offload
sensor data to an edge server for processing, and receive computing
results from the server. Due to mobility and computing latency, a
vehicle travels some distance in the duration between the instant of
offloading its sensor data and the instant of receiving the computing
result. Our objective is finding a scheduling scheme for the edge
sever to minimize the above traveled distance of vehicles. The ap-
proach is to determine the processing order according to individual
vehicle mobility and computing capability of the edge server. We
formulate a restless multi-arm bandit (RMAB) problem, design a
Whittle index based stochastic scheduling scheme, and determine
the index using a deep reinforcement learning (DRL) method.
The proposed scheduling scheme avoids the time-consuming policy
exploration common in DRL scheduling approaches and makes
effectual decisions with low complexity. Extensive simulation re-
sults demonstrate that the proposed indexed-based scheme can
deliver computing results to the vehicles promptly while adapting
to time-variant vehicle mobility.

Index Terms—Autonomous vehicles, computing scheduling,
mobile edge computing, restless multi-armed bandit.

I. INTRODUCTION

SAFETY is one of the main focuses in autonomous driving
related industries. Various techniques have been adopted to

improve safety, e.g., embedding advanced sensors in vehicles
and developing precise perception using the sensor data. Such
safety measures usually yield a large amount of sensor data to
be processed with low latency [1], [2], which could be too de-
manding for local in-vehicle processing given the usually limited
on-board computing capability. To facilitate the safety measures,
mobile edge computing (MEC) has emerged as an approach

Manuscript received August 1, 2020; revised December 18, 2020; accepted
February 16, 2021. Date of publication March 1, 2021; date of current version
July 8, 2021. This work was supported in part by the Natural Sciences, and
Engineering Research Council of Canada under Grant STPGP-493787. The
review of this article was coordinated by the Guest Editors of the Special
Section on Vehicular Networks in the Era of 6G: End-Edge-Cloud Orchestrated
Intelligence. (Corresponding author: Lian Zhao.)

Mushu Li and Xuemin Shen are with the Department of Electrical, and
Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
(e-mail: m475li@uwaterloo.ca; sshen@uwaterloo.ca).

Jie Gao is with the Department of Electrical and Computer Engineering, Mar-
quette University, Milwaukee, WI 53233 USA (e-mail: j.gao@marquette.edu).

Lian Zhao is with the Department of Electrical Computer and Biomedical
Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada (e-mail:
l5zhao@ryerson.ca).

Digital Object Identifier 10.1109/TVT.2021.3062653

to provide additional computing power with low processing
delay [3], [4]. In such an approach, vehicles can offload their
sensor data to a proximal edge server, such as a base station or
a roadside unit, for fast data processing.

Despite the potential of MEC in enabling low-latency com-
puting offloading for autonomous driving, many challenges exist
for MEC to support real-time safety-related computing services.
In most safety applications, such as localization and obstacle
avoidance, vehicles may need to offload sensor data to the edge
server and require computing results [5], [6]. Because of the
mobility and computing delay, a vehicle would have traveled
some distance between the instant of offloading sensor data
to the edge server and the instant of receiving the computing
result from the edge server. Evidently, it is important to reduce
the above traveled distance as much as possible, considering
that the computing result may involve the vehicle’s position at
the instant of sensor data collection. Otherwise, the computing
result may no longer be accurate for real-time applications.
Consider a vehicle traveling at 50 km/h as an example. If the
vehicle receives the computing result 2 seconds after sensor
data offloading, the gap in the distance between the real-time
location and the location at the instant of offloading would be
28 m. This gap is larger than the reaction distance at 50 km/h,
which is 21 m [7]. The challenge in reducing the traveled distance
is that the edge server may have limited computation units,
which must be shared among all vehicles in its proximity. As
a result, the delay from the sensor data offloading to the result
delivery may increase with the number of vehicles, and so does
the traveled distance. Without proper scheduling, the delay can
become excessive [8].

There are extensive existing works on computing resource
scheduling in MEC [9]–[11]. Generally, the main objective of
the proposed schemes is to minimize the computing latency.
However, most of the works focus on myopic computing service
scheduling, which considers the existing computing load at
the edge server but not future computing service demands. As
vehicles may collect sensor data and request computing service
from time to time, developing a long-term proactive scheduling
scheme is important. An effectual scheduling scheme should
provide timely and frequent result delivery for vehicles so that
the computing results can reflect their real-time status, e.g.,
position, as much as possible.

Another important requirement for effectual scheduling is
the capability to adapt to the dynamics of vehicular mobility.

0018-9545 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9694-3294
https://orcid.org/0000-0001-6095-2968
https://orcid.org/0000-0002-5602-1738
https://orcid.org/0000-0002-4140-287X
mailto:m475li@uwaterloo.ca
mailto:sshen@uwaterloo.ca
mailto:j.gao@marquette.edu
mailto:l5zhao@ryerson.ca

LI et al.: ADAPTIVE COMPUTING SCHEDULING FOR EDGE-ASSISTED AUTONOMOUS DRIVING 5319

Different vehicles may travel at different speeds, which can
result in different service delay tolerance for real-time appli-
cations. Consider obstacle avoidance as an example. The edge
server should schedule high-speed vehicles with high priority
to minimize their traveled distance, and low-speed vehicles
may have low priority. In addition, the speed of a vehicle may
change over time, which may further complicate long-term
scheduling as such change is not known in advance. There are
existing works on resource allocation in MEC considering the
mobility dynamics, e.g., the offloading bandwidth assignment
in [12], [13], computing resource allocation in [14], [15], and
cooperative computing in [9], [16]. However, mobility has a
more significant impact on the performance in our considered
problem since the traveled distance, which we aim to minimize,
is dependent on vehicle mobility.

In this work, we design a computing resource scheduling
scheme at the edge server for real-time applications in au-
tonomous driving, considering the vehicle mobility dynamics.
Vehicles periodically offload sensor data, referred to as obser-
vations, to the edge server for processing, while the edge server
determines the processing order considering its computing ca-
pability and the unknown vehicle mobility dynamics. We define
the age-of-result (AoR) of a vehicle as its traveled distance
since the last data offloading before receiving the latest result
delivery from an edge server. Our objective is to minimize the
expected AoR of vehicles to deliver computing results timely.
We formulate the long-term scheduling problem as a restless
multi-arm bandit (RMAB) problem and propose a Whittle
index-based scheduling scheme. Two offloading scenarios are
investigated in the paper: synchronous, in which all computing
requests arrive simultaneously, and asynchronous, in which the
computing requests arrive arbitrarily.

The main contributions of this work are as follows:
1) We design a novel computing resource scheduling scheme

for the edge server to support autonomous driving, target-
ing at minimizing the AoR while considering the vehicle
mobility dynamics. The scheduling scheme can support a
large number of computing tasks with low complexity.

2) We obtain the Whittle index of the formulated RMAB
problem in closed form and prove the indexability of the
scheduling problem. The index can reveal the value of
scheduling each computing request and guide the comput-
ing policies in both the synchronous and the asynchronous
scenarios.

3) We exploit the deep reinforcement learning (DRL) method
to estimate the unknown mobility dynamics of vehicles
in the future according to their mobility dynamics in the
past. The learning process does not rely on the scheduling
decisions and can be pre-trained either at the edge server
or the vehicles.

The remainder of the paper is organized as follows. Section II
introduces the related works. Section III describes the system
model of the considered scenarios. Section IV introduces the
proposed index-based scheduling scheme for the synchronous
offloading scenario. The learning approach that matches the
index policy is presented in Section V. Section VI introduces the
scheduling scheme for the asynchronous scenario. Simulation

results are presented in Section VII. Section VIII concludes this
article.

II. RELATED WORKS

In the literature, MEC technology is adopted to support
computation-intensive applications with low latency require-
ments for autonomous vehicles, such as localization [17], high-
definition (HD) map generation [18], and on-board infotainment
services [19], [20]. There are many works on multi-resource
(e.g., spectrum and computing resources) allocation for comput-
ing offloading and scheduling [21]–[24]. Some of the existing
works utilize machine learning techniques to assist decision
making for edge computing in autonomous driving. Peng et al.
developed a learning approach to allocate communication band-
width and computing units to facilitate the computing offloading
of autonomous vehicles [12]. Sun et al. proposed a multi-armed
bandit based offloading strategy to adapt to a fast-varying net-
work topology [15]. Li et al. studied a collaborative computing
approach in vehicular networks and proposed a DRL technique
to tackle a complex decision-making problem [9]. Computing
resource scheduling is also investigated in [11], [25] to maximize
the utilization of limited computing resources at edge servers.
The above works mainly focus on supporting non-real-time
computing applications. For the real-time safety-related com-
puting applications, vehicles may require frequent computing
offloading and timely delivery of computing results [5], [6]. In
such a scenario, a customized computing scheduling scheme for
autonomous driving is important yet has not been investigated,
to the best of our knowledge.

To measure the timeliness of the received information, the
age-of-information (AoI) is well investigated in various com-
munication and computing scenarios. Extensive research works
study the minimization of the AoI using techniques such as
stochastic scheduling [26] and reinforcement learning [27]. In
vehicular networks, the freshness of the information is criti-
cal [28]. AoI minimization is considered to support the real-
time on-board services, such as vehicle-to-vehicle communica-
tions [29], [30] and HD map caching for automated driving [31].
Meanwhile, the computing result aging issue caused by process-
ing delay has been considered in [32]–[35]. Li et al. introduced
a general model for AoI minimization in edge computing [32].
Kuang et al. studied the AoI performance among different
computing policies and provided closed-form expressions of
AoI under stochastic processing delay distributions in MEC [33].
Chen et al. investigated the timeliness of computing result deliv-
ery in vehicular networks and minimized AoI by reinforcement
learning [34]. Inspired by AoI, we define a new metric, i.e.,
AoR, to measure the average traveled distance from the position
where the last computing result was received. The most relevant
works to this paper are [36] and [37]. Both works formulated an
RMAB problem, utilized Whittle’s Index policies to cope with
the randomness in the network environment, and proactively
scheduled the packets. However, unlike the AoI, the factors
that impact AoR include both the elapse of time and, more
importantly, vehicle mobility. The dynamics of vehicle mobility
render the considered problem more challenging.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

5320 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 6, JUNE 2021

Fig. 1. System model. (a) Edge-assisted autonomous driving network. (b) An
example on scheduling and result delivery on oneprocessor at an edge server.

III. SYSTEM MODEL

A. Network Model

Consider a vehicular network of autonomous driving shown
in Fig. 1(a). Vehicles sense the surrounding environment pe-
riodically (e.g., for localization, obstacle detection, and object
tracking), using sensors such as light detection and ranging and
cameras. The sensor data is referred to as observations, which
are offloaded to the closest edge node (e.g., roadside unit or base
station) for processing. The sensing and offloading processes
occur periodically for each vehicle, and each period is referred to
as a sensing cycle. The processing of an observation offloaded to
an edge node in each sensing cycle is referred to as a computing
task. In the sequel, we focus on a particular edge server.

An edge server is located in the edge node and may have one
or more processors. The server determines the execution order
and processes the received computing tasks periodically at each
processor, and each period is referred to as a computing cycle.
We assume that each processor handles a specific type of com-
puting tasks, which has the same processing time. For brevity,
we focus on the scheduling of computing tasks in one processor,
as the extension to multiple processors is straightforward.

The time length of a computing cycle is T , which is divided
into K computing slots. The length of a slot is the processing
time for a computing task, denoted by ω. The length of a
computing cycle depends on vehicles’ AoR requirements and
their sensing frequency. A shorter computing cycle can lead to

a lower AoR since the likelihood of scheduling a vehicle in a
certain period can be increased; however, too short computing
cycle raises the vehicles’ sensing frequency, which may result
in redundant task offloading and high communication resource
consumption. The objective of scheduling scheme on the edge
server is to allocate computing tasks to the slots in each comput-
ing cycle. The edge node is connected to a cloud server through a
backhaul link. As a controller, the cloud server determines com-
puting cycle length T and coordinates the computing resources
among all edge nodes.

If a task from a particular vehicle and a particular sensing cycle
is not scheduled until the next task of the vehicle is generated and
offloaded to the edge server, it becomes outdated and discarded,
and the server schedules the newly arrived task corresponding to
a subsequent and up-to-date observation from the same vehicle.
After processing the computing task, the edge server delivers the
computing result back to the corresponding vehicle. Therefore,
the computing schedule also affects the order of result delivery.
Since we consider real-time applications and the cycle length
is in seconds, the probability that the vehicle travels out of the
communication range of the edge server is neglected. For the
case that the vehicle travels out of the communication range
during a computing cycle, multiple edge nodes can cooperatively
deliver the result back to the vehicle, which has been discussed in
our previous work [9]. We ignore the transmission delay on result
delivery since the downlink transmission time is neglectable
compared to the computing time [4], [12], [23].

Due to the mobility and computing latency, the traveled
distance during offloading and edge computing is nonzero for
any vehicle and any task. An example of computing scheduling
and result delivery is shown in Fig. 1(b), where σ represents
the offloading time of a task.1 A vehicle offloads the computing
tasks periodically (e.g., every second as shown in the figure). The
speed of the vehicle remains constant within each sensing cycle
but may vary in different cycles. Because of the changing speed
of the vehicle, its traveled distance in two cycles can be different.
This is true even if the vehicle is assigned to the same slot in two
different cycles. As shown in the figure, the traveled distances of
the vehicle in cyclen andn+ 1 are different although the vehicle
is assigned to the third slot of both the computing cycles. In the
sequel, we focus on minimizing the expected traveled distance
from the position implied by the newest received computing
results, i.e., minimizing AoR.

B. Computing Scheduling Scenarios

Based on the task arrival pattern of vehicles in each computing
cycle, two computing scheduling scenarios are analyzed in this
work:
� Synchronous offloading: In this scenario, all vehicles have

the same sensing cycle and offload sensor data to the edge
server at the beginning of a computing cycle. In addition,
the computing cycle at the edge server is also the same in
length as the sensing cycle. This is illustrated in Fig. 2(a).

1As all tasks handled by the same processor is of the same type, we assume
that the offloading time is constant and the same for all vehicles.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADAPTIVE COMPUTING SCHEDULING FOR EDGE-ASSISTED AUTONOMOUS DRIVING 5321

Fig. 2. An illustration of the scheduling scenarios, where t(i) represents the
computing task from vehicle i. (a) Synchronous offloading. (b) Asynchronous
offloading.

The edge server decides the processing order of the tasks
received at the beginning of the cycle.

� Asynchronous offloading: In this scenario, vehicles offload
their observations to the edge server at arbitrary instants.
This is illustrated in Fig. 2(b). The time duration from the
beginning of the computing cycle to the offloading time of
vehicle i is denoted by Oi. For simplicity, we assume that
a computing cycle at the edge server is the same in length
as the sensing cycle in this scenario as well. However,
the proposed scheme can be readily extended even if the
assumption does not hold. Since the sensing and computing
cycles are not aligned, a vehicle may have two tasks from
adjacent sensing cycles scheduled in the same computing
cycle, one offloaded in the previous computing cycle and
the other offloaded in the current computing cycle.

In the remainder of the paper, we mainly focus on the syn-
chronous offloading. In Section VI, we extend the scheduling
scheme to the scenario of asynchronous offloading.

C. Age of Computing Results

The evolution of AoR of a vehicle in the synchronous offload-
ing scenario is shown in Fig. 3. The real-time AoR for vehicle
i in cycle n and computing slot k is denoted by Ri(n, k). Let
di,n denote the traveled distance of the vehicle in cycle n. As the
example shown in Fig. 3, vehicle i is scheduled in the cycles 1,
2, and 5. In these scheduled cycles, when the task computing is
completed, the AoR drops to the level of the dashed lines, which
represent the traveled distance from the starting of this cycle.
Otherwise, if the task is not scheduled in the corresponding
cycle, the AoR accumulates due to adding the traveled distance
within this cycle.

Fig. 3. The evolution of AoR of vehicle i in five computing cycles, where red
arrows represent the task offloading completion instant of a vehicle, and green
arrows represent result delivery instant.

The real-time AoR at the beginning of then-th cycle,Ri(n, 0),
can be written as

Ri(n, 0) = ai,n + di,n−1 +D(σ), (1)

where di,n−1 is the traveled distance in the previous cycle n− 1,
D(σ) is the traveled distance in the offloading time, and the
non-negative variable ai,n is a carryover component contributed
to AoR. It can be written as

ai,n+1 =

{
ai,n + di,n−1, if i ∈ {Vn\Sn},
0, if i ∈ Sn,

(2)

where Vn denotes the set of the vehicles that offloaded their
observations in computing cycle n. The sets Sn and {Vn\Sn}
denote the set of vehicles that are scheduled and not scheduled in
cycle n, respectively. Equation (2) shows that if the computing
is scheduled in the n-th cycle, the carryover component will be
reset as zero; otherwise, the carryover component accumulates
due to adding the vehicle traveled distance in the previous cycle.
In the example shown in Fig. 3, ai,2 and ai,3 are zeros since the
tasks are scheduled and processed in cycles 1 and 2, respectively.
However, the AoR starts accumulating since cycle 3. Thus,
ai,4 = di,2, and ai,5 = di,2 + di,3. Furthermore, the number of
time slots from the task finishing instant to the end of the cycle
is denoted as xi,n, where xi,n = 0 if i ∈ {Vn\Sn} and xi,n ≥ 0
otherwise.

The time average AoR of vehicle i in this process can be
represented by the area under age Ri(n, k) in the age evolution
graph, as shown in Fig. 3, normalized by the overall time length.
The area under age Ri(n, k) in cycle n is denoted by Qi,n and
can be represented as follows:

Qi,n = (ai,n + di,n−1)(T − xi,nω) +
1
2
di,nT +D(σ)T. (3)

The expected AoR (EAoR) for all vehicles in the communication
range of the edge server is:

ER = lim
N→∞

1
TN

N∑
n=1

1
|Vn|

∑
i∈Vn

Qi,n,

= lim
N→∞

1
TN

N∑
n=1

1
|Vn|

∑
i∈Vn

(ai,n+di,n−1)(T−xi,nω)+Λi,n,

(4)

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

5322 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 6, JUNE 2021

where ER denotes the value of EAoR, and Λi,n represents the
constant term of the AoR for vehicle i in cycle n, where

Λi,n =
1
2
di,nT +D(σ)T.

Neglecting the constant component in (4), the optimization
problem for minimizing EAoR can be represented as follows:

min
π∈Π

Eπ

[
1

TN

N∑
n=1

1
|Vn|

∑
i∈Vn

(ai,n + di,n−1)(T − xi,nω)

]
,

s.t.|Sn| ≤ K, ∀n,
0 ≤ xi,n < K,xi,n ∈ Z, ∀i, n, (5)

where π and Π represent the optimal policy and the feasible
policy set, respectively. Since the length of a computing cycle
is much shorter than the time for a vehicle leaving the service
coverage of an edge server, we apply the long-term policy for ve-
hicle i ∈ Vn. To solve the scheduling problem, we first determine
which tasks should be scheduled in the cycle when K < |Vn|,
i.e., finding Sn, based on the maximum AoR by setting the com-
puting slot at the very end of the corresponding computing cycle
(xi,n = 0). The problem is a long-term optimization problem
since the age of a vehicle will accumulate if the tasks are not
scheduled properly. After the tasks to be processed in the cycle
are selected, we determine when to process the selected tasks,
i.e., finding xi,n, which only affects the instantaneous age in the
corresponding cycle.

IV. RESTLESS MULTI-ARMED BANDIT FORMULATION

AND INDEX POLICY

To solve the optimization problem in (5), a myopic policy is
to schedule the vehicle with the highest AoR in each computing
cycle. As proved in [37], in a symmetric network, in which all
vehicles always have the same mobility, such policy follows a
round-robin pattern and attains the minimum AoR. However, the
optimality of the myopic policy would be lost if vehicles have
diversified and time-variant mobility. Therefore, considering the
mobility dynamics, we reformulate the AoR minimization prob-
lem into an RMAB problem. We then propose an index-based
scheduling scheme, which assigns an index to each vehicle to
be scheduled for measuring the value to activate an arm at a
particular state. A Whittle’s index policy, an optimal policy to
a relaxation of the RMAB problem [38], [39], is utilized to
schedule the processing order for the synchronous offloading
scenario.

A. Restless Multi-Armed Bandit Formulation

Different from classic MAB, RMAB considers a generalized
bandit process, in which the states of arms can evolve over
time even when the arms are not activated. Moreover, instead
of selecting only one arm in a decision step in MAB, RMAB
can activate multiple arms in a step. In our case, a cycle is a
decision step and can schedule K tasks in each decision step.
To determine which tasks to schedule in a computing cycle, i.e.,
the set Sn, we assume xi,n = 0 at first, in which the maximum
EAoR is minimized in this step.

The state of a vehicle consists of two parts: the current
carryover component, i.e., ai,n and the past vehicle mobility
profile. We use the traveled distance of the vehicle for each cycle
in past W cycles, i.e., δi,n = {di,n−W , . . . , di,n−1}, ∀i ∈ |Vn|,
as the past mobility profile to predict vehicle future mobility.
Denote δ−1

i,n as the vehicle traveled distance in pastW − 1 cycles,
i.e., δ−1

i,n = {di,n−W+1, . . . , di,n−1}. Let a binary variable ui,n

indicate the action of the RMAB problem for vehicle i in cycle
n. If the task is scheduled in the cycle, i.e., i ∈ Sn, the arm i
is activated, and ui,n = 1. Otherwise, the arm i is not activated,
and ui,n = 0.

According to the evolution of the carryover component ai,n
in (4), when action ui,n = 1, the state transition probability of
vehicle i can be obtained as follows:

P (ai,n+1 = 0, {δ−1
i,n; di,n}|ai,n, δi,n) = p(di,n|δi,n), (6)

where p(di,n|δi,n) is the probability that the vehicle travels di,n
distance in cycle n, given past mobility profile δi,n. On the other
hand, when action ui,n = 0, the state transition probability of
vehicle i can be obtained as follows

P (ai,n+1= ai,n + di,n−1, {δ−1
i,n; di,n}|ai,n, δi,n)=p(di,n|δi,n).

(7)
The Whittle index policy introduces a service charge whenever
an arm makes active action. Let C(δi,n) represent the service
charge for vehicle i given the mobility profile δi,n. The objective
of introducing the service charge is to make the passive and
active actions equal in a long-term cost [38]. Although there
is no instantaneous cost when the arm is passive in a step, it
would result in an accumulation of age and a service charge in
the future.

B. Indexability and Index Policy

In the Whittle index policy, a service charge is the Lagrange
multiplier of the RMAB constraint. The original RMAB prob-
lem is relaxed and decoupled into subproblems for individual
arms such that the service charge for each arm can be eval-
uated separately. The subproblem for each arm is referred to
as decoupled model, and the service charge obtained by the
decoupled model only depends on the characteristic of the
arm itself [38]. Although problem decomposition would relax
the original RMAB problem, a near-optimal solution can be
obtained by such decoupled model [37], [38]. However, the
service charge cannot be regarded as the Whittle index unless
the considered RMAB problem is indexable.

Denote the set of all policies for scheduling vehicle i by
Π(i). To determine whether the task should be scheduled, we
minimize the upper bound performance of the AoR achieved by
the selection. Decoupling the objective function (5) for vehicle
i, the new objective function for minimizing the AoR for this
individual vehicle is given by

min
π(i)∈Π(i)

Eπ(i) [Ji]

s.t. Ji =
1

TN

N∑
n=1

(ai,n + di,n−1)T + C(δi,n)ui,n, (8)

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADAPTIVE COMPUTING SCHEDULING FOR EDGE-ASSISTED AUTONOMOUS DRIVING 5323

To simplify the notation, we neglect the vehicle index i when
we evaluate the problem of the decouple model in (8).

Let Jn(an, δn) be the value function representing the mini-
mum EAoR for problem (8) when the state is (an, δn), which
can be formulated to the following dynamic programming:

Jn(an, δn) = (an + dn−1)T

+ min
un∈{0,1}

{
C(δn)un+

∑
dn

Jn+1(an+1, {δ−1
n ; dn})p(dn|δn)

}
.

(9)

According to [40], the value function of the optimal policy
in a finite-horizon average cost minimization problem can be
represented as

J∗(an, δn) ≈ h(an, δn) + λTN + o(N) = (an + dn−1)T

+ min
un∈{0,1}

{
C(δn)un +

∑
dn

p(dn|δn)
[
h(an+1, {δ−1

n ; dn})

+ λT (N − 1) + o(N)]

}
, (10)

where λ is the optimal average cost normalized by the number
of computing slots, h(an, δn) is the differential cost function
representing the cost incurred when the state transits from
(an, δn) to (0, δn+1) for the first time, and o(N) is the cost
caused by not completing the execution at the end of the time
horizon. All states communicate with one another, which implies
that h(0, δn) = 0, ∀n. Thus, we have differential cost function
h(an, δn) as follows:

h(an, δn) = (an + dn−1)T − λT

+ min
un∈{0,1}

{
C(δn)un +

∑
dn

p(dn|δn)h(an+1, {δ−1
n ; dn})

}
.

(11)

By solving the Bellman equation (11), the optimal service charge
C(a, δ) for vehicle i can be obtained, given Proposition 1 below.

Proposition 1: The service charge C(a, δ) for a vehicle in
state (a, δn) is

C(a, δn) ={
2a+ dn−1 +E

[∞∑
t=0

(a−Dn+t)1(Dn+t ≤ a)|δn

]}
T,

(12)

where Dn+t =
∑t

x=0 dn+x, and function 1(x) indicates
whether x is true or not, i.e., x is true if 1(x) = 1, and x is
false if 1(x) = 0.

Proof: See Appendix A. �
The purpose of the service charge is to measure the value of

activating an arm. A high service charge indicates that the cost of
making passive action on the arm is high. If the RMAB problem
is indexable, the service charge can be regarded as the Whittle
index, and the Whittle index policy is to schedule the tasks with
K highest service charges in a cycle. We denote set P(C) as the
set of state (a, δ) for which the arm is passive according to the

service charge C(a, δ). To prove the indexability of the arm, the
following condition should be satisfied:

Definition 1: If an arm is indexable, set P(C) of the corre-
sponding single-armed bandit process increases monotonically
from the empty set ∅ to the whole state space as charge C
increases from −∞ to +∞ [38], [41].

The condition on indexability indicates that the optimal action
of an arm can never switch from passive action to active action
with an increase ofC[41]. The RMAB problem is indexable only
if all arms are indexable. According to the above definition, we
prove the indexability of the considered RMAB problem.

Theorem 1: In computing cycle n, vehicle i is indexable, and
the Whittle index of vehicle i is identical with the service charge
of vehicle i, where

Ci(ai,n, δi,n) =

{
2ai,n + di,n−1 + E

[∞∑
t=0

(ai,n −Di,n+t)

× 1(Di,n+t ≤ ai,n)|δi,n

]}
T. (13)

Proof: Since both ai,n and di,n are non-negative, there is no
such state to make the service charge as a negative number.
Therefore, P(C) is an empty set when Ci = −∞. Moreover,
when δi,n is fixed, Ci increases monotonically with ai,n. An
arm in state (ai,n, δi,n) will not switch from passive to active
action with the increase of Ci. If Ci is +∞, ai,n can only be
+∞ since di,n < +∞. In such a case, P(C) is the whole state
set. Therefore, the RMAB problem is indexable, and the Whittle
index for the arm is the corresponding service charge. �

As shown in the Whittle index, as carryover component ai,n
and traveled distance in the past cycle di,n−1 increase, the value
for activating the arm also increases, which is similar compared
to the myopic policy. Furthermore, given the same ai,n and
di,n−1, a vehicle with high mobility in the subsequent cycles
may have a lower index compared to the one with low mobility.
This is because, if the vehicle with high mobility is scheduled,
the age of the result would increase fast in the future, and the
delivered computing results would be outdated quickly. Given
the limited computing resource, the edge server will select the
one that is most efficient to reduce the overall AoR in the long
term.

According to the closed-form Whittle index in (12), we can
schedule tasks in each cycle according to the Whittle index
policy. The index implies the value of scheduling a vehicle.
From a long-term perspective, scheduling the vehicle with a
higher index value leads to a lower AoR of the network. Recall
the model for the synchronous offloading scenario. The edge
server can collect the Whittle indexes of vehicles and schedule
K vehicles with the highest index values at the beginning of
each computing cycle. After selecting tasks, we allocate the
computing slot for those tasks. As mentioned above, the slot
allocation when set Sn is given only affects the instantaneous
AoR within a cycle. To obtain xi,n, we formulate the following
optimization problem:

min
{xi,n,i∈Vn}

∑
i∈Vn

(ai,n + di,n−1)(T − xi,nω). (14)

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

5324 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 6, JUNE 2021

As (ai,n + di,n−1) is constant, the optimal solution of the linear
programming (14) is to allocate the slot with the highest xi,n to
the vehicle with the highest carryover component ai,n + di,n−1.
The policy in this step is sorting those tasks according to (ai,n +
di,n−1) in a decreasing order and scheduling them in sequence.

Although we have obtained the closed-form of the Whittle
index and found the Whittle index policy for the synchronous
scenario, the future vehicle mobility is unknown. Next, we
develop a DRL-assisted method to learn the vehicle mobility
in the future from the vehicle mobility profile in the past in
Section V.

V. DRL-ASSISTED SCHEDULING

We denote the term related to the future mobility information
in the Whittle index by V (ai,n, δi,n), where

V (ai,n, δi,n) =

E

[∞∑
t=0

(ai,n −Di,n+t)1(Di,n+t ≤ ai,n)|δi,n

]
. (15)

We refer to V (ai,n, δi,n) as the value function for state
(ai,n, δi,n). Given the same carryover component ai,n, the value
function for state (ai,n, {δ−1

i,n; di,n}) can be obtained by

V (ai,n, {δ−1
i,n; di,n}) = E

[∞∑
t=1

(ai,n −Di,n+t + di,n)

× 1(Di,n+t − di,n ≤ ai,n)

|{δ−1
i,n; di,n}

]
. (16)

We then observe that the value function V (ai,n, δi,n) can be
represented in an alternative way as

V (ai,n, δi,n) = E [(ai,n − di,n)1(di,n ≤ ai,n)

+ V (ai,n − di,n, {δ−1
i,n; di,n})|δn

]
. (17)

Given a known traveled distance di,n, equation (17) is a Bell-
man equation and can be solved by dynamic programming.
Equation (17) also shows that V (0, δi,n) = 0. To adapt the
real-time vehicle mobility, we use a DRL method to approximate
V (ai,n, δi,n) iteratively, which gets the vehicle mobility from
the environment, i.e., the transportation network, and updates
the value function based on the current estimation.

Different from other reinforcement learning methods like
Deep Q Network (DQN), the considered learning process only
focus on the state transition and the value function approx-
imation. The state for the DRL-learning problem is si,n =
(ai,n, δi,n). The reward for each decision step is:

ri,n = (ai,n − di,n)1(di,n ≤ ai,n),

which can be observed from the vehicle mobility in the environ-
ment. Instead of observing the vehicle state of the next decision
step in traditional reinforcement learning methods, the next state
is known if di,n is obtained. According to (17), the next state

Fig. 4. Deep reinforcement learning structure.

s′i,n is:

s′i,n = (ai,n − di,n, {δ−1
i,n; di,n}).

Furthermore, since the state space of the considered problem is
large, we adopt deep neural networks to learn the value function
V (ai,n, δi,n). Inspired by DQN, we use two neural networks,
i.e., the evaluation network and the target network, to learn the
value function. As shown in Fig. 4, the evaluation network is
trained in an online manner according to a loss function, which
is shown as follows:

Li(θ) = ‖V̂ (si,n; θ)− (ri,n + V̂ (s′i,n; θ
′))‖2

2, (18)

where V̂ (s; θ) represents the estimated value function obtained
by weights θ in the evaluation network, and V̂ (s; θ′) represents
the estimated value function obtained by weights θ′ in the target
network. The weights in the target network are periodically
replaced by the weights in the evaluation network.

The algorithm of the proposed DRL-assisted index policy is
shown in Algorithm 1. At the beginning of each computing cycle,
the Whittle indexes of all vehicles are calculated using (12). The
edge server gathers the indexes and schedules the K vehicles
with the highest index values according to the Whittle index
policy, which is presented in Line 5 of Algorithm 1. To improve
the learning efficiency, in experience replay, we select the state-
reward tuples in the memory by weighted sampling in Line 8. Via
a positive parameter η, the state with non-zero ai,n has a higher
probability to be selected. As shown in Line 13, a soft parameter
replacement scheme for the target network is adopted, where τ is
a number less than one. Furthermore, we add an long short-term
memory (LSTM) layer in the neural network to analyze the time
correlation of the vehicle traveling mobility profile in the state.
As illustrated in Fig. 4, there are two options to implement the
proposed policy:
� Centralized control: An AI controller is deployed at the

edge server. Vehicles report their current state, and the
edge server stores all the state-reward tuples obtained in
this decision step in the memory. The neural network is
trained by the aggregated mobility profiles reported by the

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADAPTIVE COMPUTING SCHEDULING FOR EDGE-ASSISTED AUTONOMOUS DRIVING 5325

Algorithm 1: Learning-Assisted Whittle Index Policy.
1: Initialize the weights of the evaluation and target

networks (θ and θ′), respectively.
2: Initialize the experience replay buffer.
3: for each cycle n do

% Schedule tasks with the Whittle index policy.
4: Obtain the initial Whittle index for vehicle i

using (13) corresponding to the estimated value
function, i.e., V̂ (ai,n, δi,n).

5: Edge server gathers the Whittle indexes from all
vehicles and schedules the K vehicles with the
highest index values.

% Train the deep neural network.
6: Observe the traveled distance of vehicles, i.e.,

{di,n, ∀i}.
7: Store state-reward tuple (si,n, s′i,n, ri,n) in the

experience replay buffer. Delete the oldest transition
set if the buffer is full.

8: Sample a mini-batch of N samples using a weighted
sampling, where the weight for a state with carryover
component a is w = 1(a > 0) + η, and η > 0.

9: for state s0 with a = 0 in the mini-batch do
10: V̂ (s0; θ

′) = 0.
11: end for
12: Update the weights in the evaluation network by

minimizing the loss function (18).
13: Update the target network: θ′ = τ(1 − τ)θ + τθ′.
14: end for

vehicles. In this case, the edge server can learn the mobility
feature of a group of vehicles.

� Decentralized control: At each vehicle, an AI controller is
deployed to learn the vehicle driving behavior. Since the
Whittle index can be generated independently by each ve-
hicle, vehicles only need to update their Whittle indexes to
the server for scheduling. Compared to reporting the state
in each cycle in the centralized control, the communication
overhead is much lower via the decentralized control.

Either option can be selected, depending on the characteristics
of the communication and transportation network scenarios. For
example, in an urban area, the centralized method would be
preferred since the geometric features in traffic profiles can be
learned by the edge server. On the other hand, in areas with
smooth traffic flow or limited communication resources, the de-
centralized control would be preferred to reduce communication
overhead.

VI. SCHEDULING SCHEME FOR ASYNCHRONOUS OFFLOADING

So far, we have discussed the scheduling scheme for the
synchronous offloading scenario. In this section, the index-based
scheduling scheme is extended to the asynchronous scenario, in
which vehicles sense and offload their observation to the edge
server at arbitrary instants. As mentioned in the system model,
all vehicles have the same sensing cycle, while the proposed

scheme can be extended to adapt the case with different sensing
cycle lengths.

Compared to the synchronous scenario, in which a vehicle
only has one task to be scheduled in a computing cycle, up
to two tasks offloaded by a vehicle could be scheduled in a
computing cycle in the asynchronous scenario. For the edge
server, vehicle i with offset Oi divides a computing cycle into
two parts. In the set of the first several computing slots, denoted
by T 1

i = {1, . . . ,
Oi/ω�}, the edge server can schedule a task
that is offloaded in the previous computing cycle by vehicle
i but not scheduled yet. Such task is denoted by task n(1).
In the set of the rest of computing slots in the cycle, denoted
by T 2

i = {
Oi/ω�+ 1, . . . ,K}, the edge server can schedule
a task that is offloaded by vehicle i in the current computing
cycle. Such task is denoted by taskn(2). Therefore, three indexes
can be calculated for this vehicle: The first index is the service
charge for scheduling task n(1) in T 1

i , which is denoted by C1
i,n.

The value of C1
i,n inherits the index of the task in the previous

cycle. The second and third indexes are for scheduling task
n(2) in T 2

i . If task n(1) is not scheduled, carryover component
ai,n will increase as given in (2). The corresponding index for
scheduling task n(2) is denoted by C2

i,n. Otherwise, if task n(1)

is scheduled, carryover component ai,n will be reset as zero.
The corresponding index for scheduling task n(2) is denoted by
C3

i,n.
Extended from the Whittle index policy for the synchronous

scenario, we propose a scheduling scheme for asynchronous
offloading (SSA) algorithm, which is shown in Algorithm 2.
Instead of evaluating the Whittle index for all vehicles at the
beginning of a cycle in the synchronous scenario, the index
values are compared in each of computing slots in the asyn-
chronous scenario. The idea behind Algorithm 2 is similar to the
Whittle index policy, in which the server schedules the vehicle
with the highest Whittle index for each computing slot. At the
beginning of the algorithm, the initial Whittle indexes of tasks
n(1) and n(2) are obtained via Algorithm 1 without considering
asynchronous offloading. We use two indicator vectors I(1)

i,n and

I
(2)
i,n to represent whether vehicle i is scheduled in part T 1

i and
part T 2

i of the computing cycle, respectively. If the vehicle is

scheduled in part T 1
i , I(1)

i,n = 0; otherwise, I(1)
i,n = 1. Similarly,

if the vehicle is scheduled in part T 2
i , I

(2)
i,n = 0; otherwise,

I
(2)
i,n = 1. In Lines 6 to 13, the vehicle with the highest index is

scheduled for each slot iteratively. As shown in Lines 8 and 9 in
Algorithm 2, we define variables F (1)

i,n and F
(2)
i,n to represent the

initial index for n(1) and n(2) of vehicle i in a computing cycle.
To avoid scheduling a task twice in different computing cycles,
the values of F (1)

i,n and F
(2)
i,n will be -1 if the corresponding task

is scheduled. Furthermore, the index for task n(2) will change if
the computing policy for task n(1) changes. The approximated
Whittle index for the vehicle in slot k is defined as follows:

Ci,k = F
(1)
i,n1(k ∈ T 1

i) + F
(2)
i,n1(k ∈ T 2

i).

The vehicle with the highest approximated index is selected to
be scheduled in the slot as presented in Line 9. Lines 10 to 12
update the indicator according to the policy made by Line 9.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

5326 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 6, JUNE 2021

Algorithm 2: Scheduling Scheme for Asynchronous Of-
floading (SSA).

1: Initialize indicator vectors I(1)
i,n = I

(2)
i,n−1, and I

(2)
i,n = 0,

∀i.
2: Set the indicator vectors J (1)

i,n = I
(1)
i,n , and J

(2)
i,n = I

(2)
i,n ,

∀i.
3: Obtain the initial Whittle indexes, C1

i,n, C2
i,n, and

C3
i,n, using Algorithm 1.

4: Initialize counter e = 1.
5: Initialize assignment vector W = 0
6: for k = {1, . . . ,K} do
7: F

(1)
i,n = C1

i,nJ
(1)
i,n − (1 − J

(1)
i,n), ∀i.

8: F
(2)
i,n =

[C2
i,nJ

(1)
i,n + C3

i,n(1 − J
(1)
i,n)]J

(2)
i,n − (1 − J

(2)
i,n), ∀i.

9: For slot k, i∗ = argmaxiCi,k

10: If Ci,k < 0: Wk = ∅.

11: Else if 1(k ∈ T 1
i∗) == 1: J (1)

i∗,n = 0, Wk = i∗.

12: Else if 1(k ∈ T 1
i∗) == 0: J (2)

i∗,n = 0, Wk = i∗.
13: end for
14: if J (1)

i,n == I
(1)
i,n , J

(2)
i,n == I

(2)
i,n , ∀i then

15: C1
i,n+1 =

[C2
i,nJ

(1)
i,n + C3

i,n(1 − J
(1)
i,n)]J

(2)
i,n − (1 − J

(2)
i,n).

16: Assignment is completed.
17: else
18: I

(1)
i,n = J

(1)
i,n , I

(2)
i,n = J

(2)
i,n , ∀i.

19: e = e+ 1.
20: If e < emax: Return to Line 5
21: Else: Return to Line 15
22: end if

Since the task allocated to a slot with a small number has a
short queuing time, the algorithm allocates the tasks to slots 1 to
K in a cycle consecutively, and the computing slot with a small
number has priority in selecting a task. Since the changed policy
made in the first part of a computing cycle, i.e., T 1

i , for vehicle
i results in a different approximated index in the second part
of the computing cycle, i.e., T 2

i , the indicators may change as
the policy changes. The SSA algorithm iteratively updates the
computing policy until the indicator vectors no longer change
or the iteration number reaches emax.

The time complexity of the algorithm primarily depends on
the number of iterations of the outer loop in Algorithm 2, which
checks the convergence of the indicator vectors. In each iteration,
the time complexity is the same as the selective sorting algorithm
if the time complexity on solving the Whittle indexes using equa-
tion (13) is neglected. Since a vehicle has two indexes during a
computing cycle, the time complexity of comparing index values
at all vehicles is 2K|Vn|. Furthermore, since the indicators may
change when the policy changes, the convergence of the algo-
rithm may not be guaranteed. The algorithm will be terminated
after emax iterations if the algorithm cannot converge. Thus, the
time complexity of Algorithm 2 is O(2K|Vn|emax) in the worst
case.

TABLE I
VEHICLE SPEED DISTRIBUTION IN A COMPUTING CYCLE (KM/H)

VII. SIMULATION RESULTS

In this section, we first present the numerical results of
Whittle index policy that is found by the proposed scheduling
scheme and compare the performance with two other bench-
marks: highest-AoR-first and round-robin scheduling policies.
The highest-AoR-first policy is a myopic policy that always
schedules the task with the highest AoR first, and the round-robin
computing policy schedules vehicles in a circular order. We
also compare the performance of the proposed scheme with a
SSA-only scheme. In the SSA-only scheme, we schedule the
vehicles by the proposed scheduling scheme shown in Algo-
rithm 2. Different from the proposed scheme, the SSA-only
scheme uses vehicles’ AoR to guide the task scheduling rather
than the Whittle index. We simulate our computing scheduling
scheme and the learning approach based on a real-world vehicle
mobility dataset.2 The centralized learning model is considered
in the simulation.

A. Numerical Results

In this section, we generate vehicle mobility profiles and
simulate the proposed index-based scheduling scheme. In this
numerical example, the edge server schedules the vehicles’ tasks
according to the vehicle mobility profiles. We consider a total
of 150 vehicles traveling under the service coverage of the edge
server. According to the different speed distributions, they are
divided into five groups with the same number of 30 vehicles in
a group. We consider two mobility profiles, i.e. P1 and P2, which
is summarized in Table I. The speed of vehicles in P1 follows
normal distributions, whereμ and ξ represent mean and standard
deviation, respectively. In terms of profile P2, all vehicles travel
at constant speeds. For both mobility profiles, we evaluate the
performance of EAoR for both synchronous and asynchronous
scenarios, where the offset of vehicles in the asynchronous
scenario is selected randomly from the interval [0, T). The
length of a computing cycle T is 2 seconds. The policies are
used in 500 cycles to obtain the average AoR for all vehicles.
We demonstrate the performance of the computing policies
versus the number of slots in each cycle, i.e., K. The term sync
in the legend represents the synchronous offloading scenario,
and async represents the asynchronous offloading scenario. The
performance of EAoR with mobility profile P1 is shown in Fig. 5
with the number of slots in a cycle, i.e., K, changing from 20 to
150. In both the synchronous and asynchronous scenarios, our
proposed scheme has the lowest AoR among all scheduling poli-
cies. In the asynchronous scenario, when K is 80, the proposed
scheme can reduce the EAoR by up to 40% and 30% compared to

2The data came from the Didi Gaia Data Opening Plan: https://gaia.
didichuxing.com

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

https://gaia.didichuxing.com

LI et al.: ADAPTIVE COMPUTING SCHEDULING FOR EDGE-ASSISTED AUTONOMOUS DRIVING 5327

Fig. 5. EAoR versus the number of computing slots in a cycle with mobility
profile P1.

Fig. 6. EAoR versus the number of computing slots in a cycle with mobility
profile P2.

the round-robin and highest-AoR-first policies, respectively. In
the synchronous scenario, vehicles in the Whittle index policy
experience a higher AoR compared to the asynchronous sce-
nario, and the performance gaps between the proposed scheme
and the other two policies are smaller. This is because all
requests are arrived at the same time in the synchronous scenario.
Some tasks are inevitably being allocated to the computing
slots at the end of the computing cycle, which will increase
the AoR significantly. Although the same could also happen
using the highest-AoR-first policy, when the computing slots
are insufficient, the tasks with the highest AoR are likely about
to outdated. Processing the outdated tasks rather than the newly
arrived tasks results in a high EAoR whenK is small. Therefore,
the AoR of the highest-AoR-first policy with the asynchronous
offloading is not reduced significantly compared to that with the
synchronous offloading, especially when computing slots are
insufficient. The performance of EAoR with mobility profile P2
is shown in Fig. 6, in which all vehicles travel at constant speed.
In such a case, the major advantage of the Whittle index policy,

Fig. 7. A snap shot of the simulation region.

Fig. 8. The number of vehicles in the simulation time window.

which schedules the tasks according to the mobility dynamics,
has less influence on the scheduling performance. Therefore,
the Whittle index policy is close in performance with the other
two policies in the synchronous scenario. Moreover, as proved
in [37], when all vehicles have the same speed at the same time,
the highest-AoR-first policy is equivalent to the round-robin
policy and provides the optimal scheduling solution. Since ve-
hicles have similar mobility profiles, the three policies would
all achieve near-optimal performance. On the other hand, for
the asynchronous scenario, the Whittle-index policy has better
performance since it always schedules the tasks considering
the age.

B. Simulation in a Real Dataset

In this subsection, we simulate the proposed index-based
scheduling scheme and the learning approach based on the taxi
driving trace data collected by Didi Gaia Data Opening Plan in
Xi’an, China. We investigate the vehicle trajectories from 16:30
to 18:20 on Oct. 1st, 2016 in a 2 km × 2 km area as shown in
Fig. 7. The attributes of a set of data include timestamp, vehicle
ID, and vehicle location (longitude and latitude). The length of
a computing cycle is 2 seconds. Thus, there are 3300 computing
cycles in the simulation. We select the vehicles which travel in
the 2 km × 2 km area consistently in the prediction window
W , where W is 80 in our simulation. Under such condition,
there are 126,376 sets of data to be analyzed, and the number
of vehicles counted in each computing cycle is shown in Fig. 8.
The settings of the DRL algorithm are summarized as follows:
The learning rate is 0.001, the soft replacement parameter τ is

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

5328 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 6, JUNE 2021

TABLE II
NEURAL NETWORK STRUCTURE

Fig. 9. EAoR when the number of computing slots in each cycle, i.e., K,
is 10.

Fig. 10. EAoR when the number of computing slots in each cycle, i.e., K,
is 20.

0.8, the memory can store 800 state-reward tuples, and the batch
size is 48. The structure of the neural network is presented in
Table II. We apply a moving average to measure the EAoR value
for the vehicles in an online manner, where the window size is
200 cycles.

The EAoR performances in the simulation time window are
shown in Figs. 9 and 10, where the number of computing
slots in a cycle is 10 and 20, respectively. For both scenarios,
the proposed scheme reduces the AoR significantly. Although
the computing resource is limited, the proposed scheme main-
tains the AoR around 20 m and 10 m when K is 10 and 20,

TABLE III
AVERAGE ALGORITHM RUNNING TIME (IN SECOND)

respectively. Moreover, compared to the SSA-only scheme
which schedules the tasks without considering future mobility,
our proposed scheme can adapt to the time-variant vehicle mo-
bility in real-time and further reduce the EAoR. As the number
of slots increases, the performance gap between the proposed
scheme and SSA-only scheme also increases since the influence
of future mobility on AoR performance is significant when
computing slots are insufficient.

The average running time of the proposed and benchmark
schemes is presented in Table III. The simulation is performed on
a machine with Intel i7-9750H CPU. Since the proposed index-
based scheduling scheme obtains the Whittle indexes from the
neural network and attains scheduling policy iteratively, the
running time is the highest compared to other benchmarks. How-
ever, the time consumption for running the proposed scheme
is still on the millisecond level and can be acceptable to real-
time applications. Moreover, the time consumed on the neural
network dominates the overall running time of the proposed
scheme, which can be seen from the time difference between
SSA-only and the proposed scheme. Such running time can be
further decreased with the advancement of GPUs.

VIII. CONCLUSION

In this paper, we have proposed a proactive indexed-based
scheduling scheme based on predicted future vehicle mobility
dynamics for the edge server to process real-time computing
tasks offloaded by autonomous vehicles. We have adopted a
novel DRL approach to estimate the mobility of the vehicles in
the future and assist the evaluation of scheduling indexes. As a
result, the proposed scheduling scheme can adapt to real-time
vehicle mobility and support safety-related computing services
with low computing complexity and communication overhead.
A potential future research direction is to analyze how parame-
ters such as sensing cycle length impact the vehicles’ AoR and
design a computing scheduling scheme according to diversified
service requirements of the vehicles.

APPENDIX

A. Proof of Proposition 1

To obtain the service charge, similar to the approach in [37],
we assume a threshold policy at first. The threshold is denoted
by A. The arm is passive when the carryover component 0 ≤
an ≤ A and active when an > A.

According to the threshold policy, un = 1 when an > A. The
following condition has to be satisfied:

C(δn) >
∑
dn

h(an + dn−1, {δ−1
n ; dn})p(dn|δn),

when an > A. (22)

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADAPTIVE COMPUTING SCHEDULING FOR EDGE-ASSISTED AUTONOMOUS DRIVING 5329

Let j+ be a positive number. The differential cost in state (A+
j+, δn) for the case an > A can be simplified as

h(A+ j+, δn) = C(δn) + (A+ j+ + dn−1 − λ)T. (23)

The equation shows thath(A+ j+, δn)monotonically increases
with j+.

On the other hand, un = 0 when 0 ≤ an ≤ A. Assume that
the vehicle speed precision level is high, and existing a state
(A, δn) has a service charge as follows:

C(A, δn) =
∑
dn

h(A+ dn−1, {δ−1
n ; dn})p(dn|δn). (24)

Let j− be a negative number that greater than −A. Then, the
differential cost in state (A+ j−, δn) for the case 0 ≤ an ≤ A
is

h(A+ j−, δn) = (A+ j− + dn−1 − λ)T

+
∑
dn

h(A+ j− + dn−1, {δ−1
n ; dn})p(dn|δn). (25)

Similarly, equation (25) shows that h(A+ j−, δn) monotoni-
cally increases with j−. Given the threshold policy, the term
of h(A+ j− + dn−1, {δ−1

n ; dn}) can be determined according
to the value of the term of (A+ j− + dn−1). The differential
cost in (25) in could be further derived to (19), shown at the
bottom of this page, where Bn+t =

∑t
x=−1 dn+x shown at the

bottom of this page,shown at the bottom of this page. In a similar
manner, we then evaluate the differential cost for the next states
recursively, which could be summarized as (20).

Next, to simplify the complex form in (20), the term of h(A+
dn−1, {δ−1

n ; dn})p(dn|δn) in (24) is expanded according to the
threshold policy, we have

C(δn)=(A+dn−1 − λ)T+E[dn|δn]T +
∑
dn

C({δ−1
n ; dn})

× p(dn|δn)[P (dn−1>−j−)+P (dn−1≤−j−)]. (26)

Then, we recursively apply (26) to represent service charge
C(δn). Finally, we obtain the relation in (21) shown at the bottom
of this page. Combining (20) and (21) together, the differential
cost on state (A+ j−, δn) is obtained as follows:

h(A+ j−, δn) = (A+ dn−1 − λ)T + 2j− + C(δn)

+ E

[∞∑
t=−1

Bn+t1(Bn+t ≤ −j−)|δn

]
T

+ j−TP (Bn+t ≤ −j−|δn). (27)

Utilizing the property of h(0, δn) = 0 and letting j− = −A
in (27), the service charge C(δn) is:

C(δn) = (A+ λ − dn−1)T

+ E

[∞∑
t=−1

(A−Bn+t)1(Bn+t ≤ A)|δn

]
T.

(28)

h(A+ j−, δn) = (A+ j− + dn−1 − λ)T + P (dn−1 ≤ −j−|δn)
∑
dn

[
(A+ j+ + dn−1 + dn − λ)T

+
∑
dn+1

h(A+ j− + dn−1 + dn, {δ−2
n ; dn; dn+1})p(dn+1|{δ−1

n ; dn})
]
p(dn|δn)

+ P (dn−1 > −j−|δn)
∑
dn

[
C({δ−1

n ; dn}) + (A+ j− + dn−1 + dn − λ)T
]
p(dn|δn) (19)

h(A+ j−, δn) = 2(A+ j− + dn−1 − λ)T + E[dn|δn]T + (A+ j− − λ)T
∞∑

t=−1

P (Bn+t ≤ −j−|δn)

+ E

[∞∑
t=−1

Bn+t+21(Bn+t ≤ −j−)|δn

]
T + E

[∞∑
t=0

C(δ̂n+t+2)1(Bn+t > −j−, Bn+t−1 ≤ −j−)|δn

]

+
∑
dn

C({δ−1
n ; dn})p(dn|δn)P (dn−1 > −j−|δn), where δ̂n+t = {δ−t

n ; dn; . . . ; dn+t−1} (20)

C(δn) = (A+ j− + dn−1 − λ)T + E[dn|δn]T + E

[∞∑
t=0

C(δ̂n+t+2)1(Bn+t > −j−, Bn+t−1 ≤ −j−)|δn

]

+
∑
dn

C({δ−1
n ; dn})p(dn|δn)P (dn−1 > −j−|δn) + (A− λ)T

[∞∑
t=−1

P (Bn+t ≤ −j−|δn)
]

+ E

[∞∑
t=−1

(dn+t+2 + dn+t+1)1(Bn+t ≤ −j−)|δn

]
T (21)

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

5330 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 6, JUNE 2021

According to equation (28), we further obtain the service charge
for state {δ−1

n ; dn}, where

C({δ−1
n ; dn})=(A+λ−dn)T + E

[∞∑
t=−1

(A−Bn+t+1+dn−1)

× 1(Bn+t+1 − dn−1 ≤ A)|δn

]
T. (29)

Substituting (29) into (26) yields:

C(A, δn) = (2A+ dn−1)T

+ E

[∞∑
t=−1

(A−Bn+t+1+dn−1)1(Bn+t+1 − dn−1 ≤ A)|δn

]
T

=(2A+ dn−1)T+ E

[∞∑
t=0

(A−Dn+t)1(Dn+t≤A)|δn

]
T.

(30)

From (23) and (27), we see that the differential cost h(a, δn)
increases with carryover component a. Therefore, the solution of
the Bellman equation (11) follows a threshold policy. To evaluate
the service charge of state (a, δ), we substitute A to a, and the
corresponding service charge is presented in equation (30).

ACKNOWLEDGMENT

The authors would like to thank Conghao Zhou and Lechuan
Peng for their help with simulation data processing. The simu-
lation dataset is from the Didi Chuxing GAIA Initiative.

REFERENCES

[1] W. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, “SDN/NFV-empowered
future IoV with enhanced communication, computing, and caching,” Proc.
IEEE, vol. 108, no. 2, pp. 274–291, Feb. 2020.

[2] S. Zhang, J. Chen, F. Lyu, N. Cheng, W. Shi, and X. Shen, “Vehicular
communication networks in the automated driving era,” IEEE Commun.
Mag., vol. 56, no. 9, pp. 26–32, Sep. 2018.

[3] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-edge-cloud
orchestrated network computing paradigms: Transparent computing, mo-
bile edge computing, fog computing, and cloudlet,” ACM Comput. Surv.,
vol. 52, no. 6, pp. 1–36, Oct. 2019.

[4] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, “Energy-efficient
UAV-assisted mobile edge computing: Resource allocation and trajectory
optimization,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3424–3438,
Mar. 2020.

[5] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing for
autonomous driving: Opportunities and challenges,” Proc. IEEE, vol. 107,
no. 8, pp. 1697–1716, Aug. 2019.

[6] L. Li, Y. Li, and R. Hou, “A novel mobile edge computing-based archi-
tecture for future cellular vehicular networks,” in Proc. IEEE Wireless
Commun. Netw. Conf., 2017, pp. 1-6.

[7] Queensland Government’s Transport Department, “Stopping distances on
wet and dry roads,” [Online]. Available: https://www.qld.gov.au/transport/
safety/road-safety/driving-safely/stopping-distances/graph

[8] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F. Bronzino, “Scal-
ability and performance evaluation of edge cloud systems for latency
constrained applications,” in Proc. IEEE/ACM Symp. Edge Comput., 2018,
pp. 286–299.

[9] M. Li, J. Gao, L. Zhao, and X. Shen, “Deep reinforcement learning for
collaborative edge computing in vehicular networks,” IEEE Trans. Cogn.
Commun. Netw., vol. 6, no. 4, pp. 1122–1135, Dec. 2020.

[10] J. Cao, L. Yang, and J. Cao, “Revisiting computation partitioning in future
5G-based edge computing environments,” IEEE Internet Things J., vol. 6,
no. 2, pp. 2427–2438, Apr. 2019.

[11] J. Feng, Z. Liu, C. Wu, and Y. Ji, “AVE: Autonomous vehicular edge
computing framework with ACO-based scheduling,” IEEE Trans. Veh.
Technol., vol. 66, no. 12, pp. 10660–10675, Dec. 2017.

[12] H. Peng and X. Shen, “Deep reinforcement learning based resource man-
agement for multi-access edge computing in vehicular networks,” IEEE
Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 2416–2428, Mar. 2020.

[13] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge computing
for vehicular networks: A promising network paradigm with predictive
off-loading,” IEEE Veh. Technol. Mag., vol. 12, no. 2, pp. 36–44, Jun. 2017.

[14] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing
in vehicle networks: A deep reinforcement learning,” IEEE Trans. Veh.
Technol., vol. 67, no. 11, pp. 10190–10203, Nov. 2018.

[15] Y. Sun et al., “Adaptive learning-based task offloading for vehicular
edge computing systems,” IEEE Trans. Veh. Technol., vol. 68, no. 4,
pp. 3061–3074, Apr. 2019.

[16] J. Zhou, D. Tian, Y. Wang, Z. Sheng, X. Duan, and V. C. M. Leung,
“Reliability-optimal cooperative communication and computing in con-
nected vehicle systems,” IEEE Trans. Mobile Comput., vol. 19, no. 5,
pp. 1216–1232, May 2020.

[17] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization
and mapping: A survey of current trends in autonomous driving,” IEEE
Trans. Intell. Veh., vol. 2, no. 3, pp. 194–220, Sep. 2017.

[18] J. Zhang and K. B. Letaief, “Mobile edge intelligence and computing
for the internet of vehicles,” Proc. IEEE, vol. 108, no. 2, pp. 246–261,
Feb. 2020.

[19] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing-a key technology towards 5 G,” White paper, ETSI, vol. 11,
no. 11, pp. 1–16, 2014.

[20] F. Giust et al., “Multi-access edge computing: The driver behind the wheel
of 5G-connected cars,” IEEE Commun. Standards Mag., vol. 2, no. 3,
pp. 66–73, Sep. 2018.

[21] F. Lyu et al., “LEAD: Large-scale edge cache deployment based on
spatio-temporal WiFi traffic statistics,” IEEE Trans. Mobile Comput., to
be published, doi: 10.1109/TMC.2020.2984261.

[22] Y. Zhang, X. Lan, J. Ren, and L. Cai, “Efficient computing resource sharing
for mobile edge-cloud computing networks,” IEEE/ACM Trans. Netw.,
vol. 28, no. 3, pp. 1227–1240, Mar. 2020.

[23] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A fog-
enabled real-time traffic management system,” IEEE Trans. Ind. Informat.,
vol. 14, no. 10, pp. 4568–4578, Oct. 2018.

[24] M. Li, L. Zhao, and H. Liang, “An SMDP-based prioritized channel
allocation scheme in cognitive enabled vehicular ad hoc networks,” IEEE
Trans. Veh. Technol., vol. 66, no. 9, pp. 7925–7933, Sep. 2017.

[25] Y. Liu et al., “Dependency-aware task scheduling in vehicular edge
computing,” IEEE Internet Things J., vol. 7, no. 6, pp. 4961–4971,
Jun. 2020.

[26] R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,” IEEE Trans. Inf. Theory, vol. 65, no. 3,
pp. 1807–1827, Mar. 2019.

[27] M. Li, C. Chen, H. Wu, X. Guan, and X. Shen, “Age-of-information aware
scheduling for edge-assisted industrial wireless networks,” IEEE Trans.
Ind. Informat., vol. 17, no. 8, pp. 5562–5571, Aug. 2021.

[28] T. D. T. Nguyen, V. D. Nguyen, V. Pham, L. N. T. Huynh, M. D. Hossain,
and E. Huh, “Modeling data redundancy and cost-aware task allocation in
MEC-enabled internet-of-vehicles applications,” IEEE Internet Things J.,
vol. 8, no. 3, pp. 1687–1701, Aug. 2021.

[29] X. Chen et al., “Age of information aware radio resource management
in vehicular networks: A proactive deep reinforcement learning perspec-
tive,” IEEE Trans. Wireless Commun., vol. 19, no. 4, pp. 2268–2281,
Apr. 2020.

[30] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of informa-
tion in vehicular networks,” in Proc. 8th Annu. IEEE Commun. Soc. Conf.
Sensor, Mesh Ad Hoc Commun. Netw., 2011, pp. 350–358.

[31] S. Zhang, J. Li, H. Luo, J. Gao, L. Zhao, and X. Shen, “Low-
latency and fresh content provision in information-centric vehic-
ular networks,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2020.3025201.

[32] C. Li, S. Li, and Y. T. Hou, “A general model for minimizing age of
information at network edge,” in Proc. IEEE Conf. Comput. Commun.,
2019, pp. 118–126.

[33] Q. Kuang, J. Gong, X. Chen, and X. Ma, “Analysis on computation-
intensive status update in mobile edge computing,” IEEE Trans. Veh.
Technol., vol. 69, no. 4, pp. 4353–4366, Apr. 2020.

[34] M. Chen, Y. Xiao, Q. Li, and K. Chen, “Minimizing age-of-information
for fog computing-supported vehicular networks with deep q-learning,” in
Proc. IEEE Int. Conf. Commun., 2020, pp. 1–6.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

https://www.qld.gov.au/transport/safety/road-safety/driving-safely/stopping-distances/graph
https://dx.doi.org/10.1109/TMC.2020.2984261
https://dx.doi.org/10.1109/TMC.2020.3025201

LI et al.: ADAPTIVE COMPUTING SCHEDULING FOR EDGE-ASSISTED AUTONOMOUS DRIVING 5331

[35] A. Alabbasi and V. Aggarwal, “Joint information freshness and completion
time optimization for vehicular networks,” IEEE Trans. Serv. Comput., to
be published, doi: 10.1109/TSC.2020.2978063.

[36] B. Yin et al., “Only those requested count: Proactive scheduling policies for
minimizing effective age-of-information,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 109–117.

[37] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broadcast
wireless networks,” IEEE/ACM Trans. Netw, vol. 26, no. 6, pp. 2637–2650,
Dec. 2018.

[38] K. Liu and Q. Zhao, “Indexability of restless bandit problems and optimal-
ity of whittle index for dynamic multichannel access,” IEEE Trans. Inf.
Theory, vol. 56, no. 11, pp. 5547–5567, Nov. 2010.

[39] P. Whittle, “Restless bandits: Activity allocation in a changing world,” J.
Appl. Probability, vol. 25, no. A, pp. 287–298, 1988.

[40] D. P. Bertsekas, Dynamic Programming and Optimal Control. MA, USA:
Athena Scientific Belmont, 1995.

[41] Y. Qian, C. Zhang, B. Krishnamachari, and M. Tambe, “Restless poachers:
Handling exploration-exploitation tradeoffs in security domains,” in Proc.
Int. Conf. Auton. Agents Multiagent Syst., 2016, pp. 123–131.

Mushu Li (Student Member, IEEE) received the
B.Eng. degree from the University of Ontario Institute
of Technology (UOIT), Canada, in 2015, and the
M.A.Sc. degree from Ryerson University, Canada,
in 2017. She is currently working toward the Ph.D.
degree in electrical engineering with University of
Waterloo, Canada. She was the recipient of Natural
Science and Engineering Research Council of Canada
Graduate Scholarship in 2018, and Ontario Graduate
Scholarship in 2015 and 2016, respectively. Her re-
search interests include the system optimization in

VANETs and machine learning in wireless networks.

Jie Gao (Member, IEEE) received the M.Sc. and
Ph.D. degrees in electrical and computer engineer
from the University of Alberta, Edmonton, AB,
Canada, in 2009 and 2014, respectively. He joined the
Department of Electrical and Computer Engineering,
Marquette University, Milwaukee, WI, USA, as an
Assistant Professor in August 2020. He was a Re-
search Associate with the University of Waterloo,
Waterloo, ON, Canada, from 2019 to 2020 and a Post-
doctoral Fellow with Ryerson University, Toronto,
ON, Canada, from 2017 to 2019. His research inter-

ests include machine learning for communications and networking, Internet of
Things (IoT) and industrial IoT solutions, and cloud and edge computing. Dr.
Gao was the recipient of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

Top Reviewer Award (2018), the Ontario Centres of Excellence TalentEdge
Fellowship (2016), and the Natural Science and Engineering Research Council
of Canada Postdoctoral Fellowship (2016). He is the Editor for Springer Peer-
to-Peer Networking and Applications and IEEE ACCESS.

Lian Zhao (Senior Member, IEEE) received the
Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Waterloo,
Canada, in 2002. She joined the Department of Elec-
trical, Computer, & Biomedical Engineering with
Ryerson University, Toronto, Canada, in 2003 and
has been a Professor in 2014. Her research inter-
ests include the areas of wireless communications,
radio resource management, mobile edge computing,
caching and communications, and vehicular ad-hoc
networks.

She has been selected as an IEEE Communication Society (ComSoc) Dis-
tinguished Lecturer (DL) for 2020 and 2021, she was the recipient of the Best
Land Transportation Paper Award from IEEE Vehicular Technology Society in
2016, Top 15 Editor Award in 2015 for IEEE TRANSACTION ON VEHICULAR

TECHNOLOGY, Best Paper Award from the 2013 International Conference on
Wireless Communications and Signal Processing (WCSP), and the Canada
Foundation for Innovation (CFI) New Opportunity Research Award in 2005.

She has been the Editor for IEEE TRANSACTIONS ON VEHICULAR TECH-
NOLOGY, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, and IEEE
INTERNET OF THINGS JOURNAL. She was the Co-Chair of Wireless Commu-
nication Symposium for IEEE Globecom 2020 and IEEE ICC 2018, Local
Arrangement Co-Chair for IEEE VTC Fall 2017 and IEEE Infocom 2014,
Co-Chair of Communication Theory Symposium for IEEE Globecom 2013.
She was the committee member for NSERC (Natural Science and Engineering
Research Council of Canada) Discovery Grants Evaluation Group for Electrical
and Computer Engineering 2015 to 2018. She is a licensed Professional Engineer
in the Province of Ontario, a Senior Member of the IEEE Communication Society
and Vehicular Society.

Xuemin (Sherman) Shen (Fellow, IEEE) received
the B.A.Sc. degree from Dalian Maritime University,
China, the M.A.Sc. and Ph.D. degrees in electrical en-
gineering from Rutgers University, New Brunswick,
NJ, USA. He is a University Professor with the De-
partment of Electrical and Computer Engineering,
University of Waterloo, Canada. His research focuses
on network resource management, wireless network
security, Internet of Things, 5G and beyond, and
vehicular ad hoc and sensor networks. Dr. Shen is a
Registered Professional Engineer of Ontario, Canada,

an Engineering Institute of Canada Fellow, a Canadian Academy of Engineering
Fellow, a Royal Society of Canada Fellow, a Chinese Academy of Engineering
Foreign Member, and a Distinguished Lecturer of the IEEE Vehicular Technol-
ogy Society and Communications Society.

Dr. Shen is the 5th in Canada in 2020 Ranking of Top 1000 Scientists in
the field of Computer Science and Electronics, Guide2Research Forum. He
was the recipient of the R.A. Fessenden Award in 2019 from IEEE, Canada,
Award of Merit from the Federation of Chinese Canadian Professionals (Ontario)
presents in 2019, James Evans Avant Garde Award in 2018 from the IEEE
Vehicular Technology Society, Joseph LoCicero Award in 2015 and Education
Award in 2017 from the IEEE Communications Society, and Technical Recog-
nition Award from Wireless Communications Technical Committee (2019) and
AHSN Technical Committee (2013). He was also recipient of the Excellent
Graduate Supervision Award in 2006 and Outstanding Performance Award 5
times from the University of Waterloo, and the Premier’s Research Excellence
Award (PREA) in 2003 from the Province of Ontario, Canada. Dr. Shen was
the General Chair for ACM Mobihoc’15, the Technical Program Committee
Chair/Co-Chair for the IEEE Globecom’16, the IEEE Infocom’14, the IEEE
VTC’10 Fall, the IEEE Globecom’07, the Symposia Chair for the IEEE ICC’10,
and the Chair for the IEEE Communications Society Technical Committee
on Wireless Communications. Dr. Shen is the elected IEEE Communications
Society Vice President for Technical and Educational Activities, Vice President
for Publications, Member-at-Large on the Board of Governors. He was/is the
Editor-in-Chief of the IEEE INTERNET OF THINGS JOURNAL, IEEE NETWORK,
IET Communications, and Peer-to-Peer Networking and Applications.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 16,2021 at 15:33:10 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TSC.2020.2978063

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

