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Abstract— Information freshness is essential to industrial wire-
less networks (IWNs) and can be quantified by the age-of-
information (AoI) metric. This paper addresses an AoI-aware
spectrum sharing (AgeS) problem in IWNs, where multiple
device-to-device (D2D) links opportunistically access the spec-
trum to satisfy their AoI constraints while maximizing primal
links’ throughput. Particularly, we orchestrate the access of
D2D links in a distributed manner. Since distributed scheduling
results in incomplete observation, D2D links share the spectrum
with uncertainty on the transmission environment. Therefore,
we propose a distributed scheduling scheme, called D-age, to deal
with the transmission uncertainty in the AgeS problem, where an
adaptation of actor-critic method is adopted with AoI constraints
tackled in the dual domain. To address the non-stationary
environment and multi-agent credit assignment issue, cooper-
ative multi-agent reinforcement learning (MARL) approach is
developed, where multiple local actors are designed to guide
D2D links to make real-time decisions via distributed scheduling
policies, which are evaluated by an edge-assisted global critic
with action-aware advantage functions. Integrated with graph
attention networks (GATs), the critic selectively learns contextual
information by assigning different importances to neighboring
links, which enables the evaluation of scheduling policies in a
scalable and computation-eficient manner. Theoretical guaran-
tee of the time-averaged AoI constraints is provided and the
effectiveness of D-age in terms of both AoI violation ratio and
the capacity of primal links is demonstrated by simulation.
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I. Introduction

INDUSTRIAL wireless networks (IWNs) enable ubiqui-
tous connection and automated information transmission

for tremendous devices, which have sensing, processing, and
communication capabilities to support various monitoring
applications. The performance of monitoring systems depends
heavily on the freshness of state update packets, which can be
captured by age of information (AoI) [1], also referred to as
age. Age measures the time elapsed since the generation of
the last packet delivered to the destination and is a paramount
timeliness metric in industrial monitoring systems [2].

Moreover, as a promising solution for IWNs, the beyond
fifth-generation (5G) networks are expected to support ubiq-
uitous state monitoring, where the spectrum sharing paradigm
can be utilized to improve both spectrum and energy efficiency.
As an indispensable technique, the device-to-device (D2D)
communication can enable multiple sensor-actuator device
pairs to communicate directly via the LTE-A interface over
cellular spectrum [3] and thus can provide real-time transmis-
sion with reduced communication hops due to the proximity
of devices. However, each D2D link selfishly competes for the
restricted resources in a fully distributed manner, which may
lead to adverse effects on the transmissions of not only other
D2D links but also traditional cellular uplinks.

As an emerging technology, edge intelligence (EI) has
received lots of interest. The physical proximity between com-
puting servers and information-generation sources promises
several benefits, e.g., comprehensive data processing and
resource management [4]. By pushing the artificial intelligence
frontier to the edge, EI is also envisioned to boost a wide range
of flexible scheduling strategies by hierarchical learning across
end devices, edge nodes, and cloud datacenters [5]. Therefore,
the potential of edge-assisted IWNs can be excavated, where
the base station (BS) is connected with an edge server to
enable intelligent link scheduling. Under this architecture,
we consider a spectrum sharing problem for age-aware mon-
itoring systems, which comprise both D2D links for timely
state update and throughput-oriented cellular uplinks as shown
in Fig. 1. Cellular uplinks, also named primal links, preoccupy
the spectrum to deliver the traffic going outside a field network
e.g., to a remote controller or edge server, whereas D2D links
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Fig. 1. A framework of IWNs based on edge intelligence.

communicate directly within the field network. To improve
spectrum efficiency, D2D links attempt to share the spectrum
occupied by primal links, where the co-channel interference
should be minimized and thus a trade-off between the capacity
of primal links and age guarantee needs to be further explored
by D2D links with the assistance of the BS in the edge.

A. Related Work

Since age was first proposed [6], significant progress on the
centralized age-aware link scheduling has been achieved [7]–
[16]. The sum-age minimization problem was considered for
broadcast networks in [7], [8], where the BS delivered updates
over a single wireless link and could update at most one
user for each time slot. Based on packet successful deliv-
ery probabilities, the age-aware scheduling problem under
unreliable channels was firstly studied in [8]. To improve
spectrum efficiency, the problem of constructing compatible
link sets was investigated to enable the concurrent delivery of
several links over a wireless channel under given interference
models [9]–[11] or channel state information (CSI) [12].
Considering heterogeneous transmission demands, there are
some works dealing with the joint optimization of age and
throughput [11], [14]–[16]. Specifically, the works [14], [15]
addressed the age minimization with throughput constraints,
where scheduling policies were proposed in [14] based on
dual or Lyapunov optimization. The authors in [15] defined
a virtual queue as the difference between the required and
actual throughput. Then, the long-term average constraint
was turned into a queue stability requirement and the dual
decomposition was utilized to develop an iterative method.
Analogously, a centralized scheduler was proposed [11] to
construct compatible link sets with throughput captured by the
virtual queue. Then, this scheduler optimized the linear combi-
nation of the virtual-queue length and weighted-average age.
The work [16] solved a multi-criteria optimization problem
to minimize the time-averaged age and maximize throughput,
where a linearized algorithm was proposed to transform this
problem into mixed-integer linear programming so that a
weakly Pareto-optimal point can be found by commercial
software.

The above-mentioned works assume the network setup is
known a priori. In practice, complete information on network
state may not always be available, especially in emerging

networking paradigms such as cognitive radio networks and
ad-hoc networks. These networks are inherently distributed,
where myopic devices autonomously access the networks with
uncertainty on transmission environment (i.e., unknown link
quality and interference from others). To address it, age-aware
distributed solutions have gained attention recently due to the
advantages of latency and overhead reduction [17]. Among
them, many works adopted the method of orthogonal multiple
access [17]–[23]. With this contention-based random access,
most works were dedicated to enhance the CSMA [18]–[20] or
ALOHA [21] framework, where the transmission probabilities
of devices in each contention slot were designed based on
local age information. Moreover, the authors in [22] proposed
to reject some devices’ access based on Whittle’s index, which
was identified as an important enhancement for current random
access channel with massive connectivity. In cellular systems,
a stochastic crowd avoidance algorithm was proposed [17] to
schedule the uplink communication so as to avoid duplicated
usage of resource blocks (RBs). The work [23] implemented
the distributed semi-persistent scheduling scheme with a col-
laboration method to reduce packet collisions. To coordinate
the multiple access of devices, the studies [17], [20], [23]
allowed exchanging some age-related information through
e.g., broadcasting [17], piggyback-based messages [23] and
a common transmission tax signal [20].

The above age-aware distributed solutions [17]–[22] are
well-suited to data collection tasks based on star topology.
Different from these works as well as the previously discussed
centralized solutions, we deal with the spectrum sharing
problem under non-orthogonal multiple access [24], where
adjacent D2D device pairs can reuse RBs within the cell
to improve spectrum efficiency and thus potentially interfere
with each other. A similar scenario was considered in [13]
where multiple vehicle-to-vehicle links share the spectrum
under the guidance of a centralized policy with global CSI.
Since this age-aware spectrum sharing problem is correlated
in successive time slots due to the age evolution of D2D links,
distributed scheduling is more advantageous than centralized
allocation since D2D links can instantly make scheduling
decisions based on their current age states. Therefore, the
distributed inband mode of D2D communication is adopted,
where D2D packets are not delivered across the BS and thus
conventional pilot signals for channel estimation cannot be
utilized, resulting in no prior knowledge of transmission envi-
ronment. In this respect, the problem of age-aware distributed
spectrum sharing with transmission uncertainty needs further
investigation.

B. Challenges and Contributions

As shown in Fig. 1, we consider a monitoring system
with multiple D2D links in cellular-based IWNs, where local
devices can transmit over multiple non-overlapping RBs. Due
to the diversity of age requirements of D2D links, avoiding the
violation of age constraints is more beneficial than minimizing
the average age [25]. Moreover, we consider a cooperative
age-aware optimizing problem so that competitive D2D links
are encouraged to sacrifice for the greater good, which is
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different from the previous distributed solutions. Specifically,
the global objective is to design an age-aware and distributed
spectrum sharing scheme for D2D links with the assistance
of EI so that diverse age constraints of D2D links can
be guaranteed while the capacity of primal links can be
maximized.

To achieve it, each D2D link should autonomously sample
and transmit state packets based on its current age state
without prior knowledge of global CSI and scheduling strate-
gies of other D2D links. Hence, we opt for model-free
reinforcement learning (RL) approaches to deal with this
transmission uncertainty [25]–[27]. One way to tackle the
distributed spectrum sharing problem is to apply traditional
RL methods for each agent of D2D links to learn transmission
environment. This is the idea behind independent Q-learning
(IQL), where multiple agents learn distributed policies from
their own action-observation history. However, the environ-
ment keeps changing from the perspective of each agent as
other co-learners update their policies, which is evidenced
by the non-stationary environment issue. To circumvent it,
deep multi-agent reinforcement learning (Deep-MARL) has
gained lots of attention recently [20], [28]–[34], where deep
neural networks (DNNs) are introduced for complex learning
tasks. These works mainly focus on competitive learning
problems.

Inspired by the development of Deep-MARL, we aim to
design a learning-based spectrum sharing scheme so that
the transmission uncertainty of D2D links can be efficiently
addressed and the above cooperative objective can be satisfied.
To this end, the following challenges need to be solved. Chal-
lenge (i): Gradient-based learning methods are not directly
applicable to our problem with age constraints. Challenge (ii):
Different from the previous MARL-related works, our problem
aims to solve a cooperative MARL task, where the optimiza-
tion of individual D2D links’ scheduling policies is performed
based on a global objective. As a result, the learning gradient
for each partial-observable D2D link does not explicitly reflect
how its action contributes to the global reward, which is known
as the multi-agent credit assignment problem. Challenge (iii):
Learning capacity is another problem of large-scale schedul-
ing for D2D links, where key environment information can
be extracted to enable the efficient learning of distributed
policies.

To solve these challenges, an age-aware spectrum sharing
scheme, namely, D-age, is proposed for edge-assisted IWNs
and our major contributions can be summarized as follows.

• According to the cooperative objective, an age-aware
spectrum sharing (AgeS) problem is firstly formulated for
diverse QoS provisioning, where transmitting spectrum
and power are co-designed for individual D2D links.
Then, this problem is addressed in the dual domain such
that age constraints are handled in a distributed and
adaptable manner and an analytical global objective for
the learning-based policy optimization can be obtained.

• To tackle transmission uncertainty, D-age is designed
by utilizing the framework of centralized training with
decentralized execution. In specific, D-age contains mul-

tiple local actors to learn distributed scheduling policies
for D2D links and a shared critic. The latter locates
in the edge-assisted BS and takes the responsibility for
information integration of primal links as well as policy
evaluation via action-aware advantage functions. This
collaborative hierarchy is efficiently integrated into the
design of EI solutions for the AgeS problem. As a result,
the non-stationary environment issue and multi-agent
credit assignment problem are addressed.

• To enhance scalability, we further integrate the
edge-assisted critic with graph attention networks
(GATs). In this way, contextual information (e.g., the
location and co-channel interference information of
D2D links) can be efficiently utilized and extracted
by the attention and graph mechanisms. As a result,
the critic can intelligently select relevant knowledge
when estimating the policies of local actors. This makes
D-age computationally efficient and well amenable to
large-scale graph-structured IWNs.

The remainder of this paper is organized as follows The sys-
tem model and problem formulation are proposed in Section II.
Then, primal-dual learning is introduced in Section III to
address Challenge (i). The detail of D-age is proposed in
Section IV, which elaborates on the learning framework in
terms of solving Challenge (ii). To address Challenge (iii),
a novel GAT-based critic is designed in Section V. Finally,
the performance analysis of D-age is provided in Section VI
and Section VII concludes this paper.

II. SystemModel and Problem Formulation

In this section, we firstly describe the system model and
then elaborate on the AgeS problem formulation and its dual
counterpart. The key notations are summarized in Table I.

A. System Model

Consider a monitoring system in IWNs, which contains a set
of cellular primal links K = {1, . . . ,K} for throughput-oriented
uplink transmission and a set of transmitter-receiver D2D links
N = {1, . . . ,N} for timely status update. A D2D link is denoted
either by just device n ∈ N or by pair (n, n′). The devices
of both primal and D2D links are equipped with the LTE-A
interface under the coverage of an edge-assisted BS b, where
several consecutive subcarriers are grouped to form orthogonal
spectrum sub-bands, referred to as RBs. Primal links have been
preassigned RBs with a fixed transmission power p0, i.e., the
kth primal link occupies the kth RB, and thusK denotes the set
of RBs as well. Moreover, a time-slotted system is considered,
which is indexed by t, and time slots are synchronized across
all the devices by the BS.

For D2D links, state update packets usually contain a small
amount of information, however, requiring stringently fresh
data, which can be captured by the metric of age. Formally,
the age of D2D link n ∈ N at time slot t is defined as qn,t.
It measures the time elapsed since the generation of the packet
that was most recently delivered to the destination. We let D2D
link n be characterized by an age constraint with its age limit
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An, given by,

qn,t ≤ An, ∀n ∈ N . (1)

In this work, we consider that D2D links are non-buffer
systems, which focus on the freshest information. Thus, the
generate-at-will policy [9] is employed such that whenever n
is chosen to transmit a state packet at a certain time slot,
it samples the packet at the beginning of that time slot.
Based on the generate-at-will policy, the packet sampling and
transmission can be jointly designed for D2D links and thus
the age evolution of qn,t can be written as,

qn,t =

⎧⎪⎪⎨⎪⎪⎩ qn,t−1 + 1, if rn,t = 0,

1, if rn,t � 0,
(2)

where rn,t denotes the data rate of D2D link n at time slot t,
which will be introduced in the next. Note that qn,t will reduce
to 1 if a state packet is sampled and successfully received in
the receiver of D2D link n at time slot t. Otherwise, qn,t will
increase linearly with t.

B. Communication Model

The spectrum-power joint scheduling action is defined for
D2D link n ∈ N as the tuple φn,t := {cn,t, pn,t} ∈ Φ composed
of the operating RB variable cn,t and transmit power variable
pn,t, where Φ is the action space and Φ = {K × P}. For
the sake of practical circuit restriction, the power control
option is discretized and limited to four levels,1 i.e., P =
[23, 10, 5,−200]dBm, where the choice of −200dBm denotes
no packet sampling and delivery [3]. To improve spectrum
efficiency, D2D links are allowed to reuse the RBs, where
colliding links transmit together resulting in interference.
Hence, the signal to interference plus noise ratio (SINR) of
D2D link n or primal link k at time slot t is given by

ζn,t =
pn,tgnn′[cn,t]

σ2 +
∑

m∈{Ccn,t \n} pm,tgmn′[cn,t]
,

ζk,t =
p0gkb[k]

σ2 +
∑

m∈{Ck\k} pm,tgmb[k]
, (3)

where σ2 is the power of the additive white Gaussian noise.
Ck ⊂ N ∪ {k} is the link set including both primal link k
and the D2D links operating over the kth RB. Similarly, Ccn,t

includes the links operating over the cn,tth RB. We consider
channel fading is the same within an RB and independent
across different RBs. During one time slot, the stochastic
process of channel gain, gnm[k], of the link between transmitter
n and receiver m over the kth RB, is defined as α f

nmhnm[k].
Specifically, hnm[k] is the frequency dependent small-scale
fading power component whereas α f

nm denotes the frequency
dependent large-scale fading effect and consists of path loss
and shadowing. To ensure the successful decoding of packets,
we set the SINR thresholds for both primal and D2D links as

1The partition granularity of power level can be increased for more
fine-grained power control. However, it will take more time for the critic to
explore the joint action space of multiple D2D users, which has the cardinality
of |Φ|N .

ζp,min and ζd,min. ω is the bandwidth of each RB and the data
rates of D2D links and primal links are defined as,

rn,t =

⎧⎪⎪⎨⎪⎪⎩ω log(1 + ζn,t), if ζn,t ≥ ζd,min,

0, if ζn,t < ζd,min,

rk,t =

⎧⎪⎪⎨⎪⎪⎩ω log(1 + ζk,t), if ζk,t ≥ ζp,min,

0, if ζk,t < ζp,min.
(4)

C. AgeS Problem Formulation

Recall from the cooperative objective that we aim to design
a spectrum sharing scheme for D2D links such that the data
rates of primal links are maximized while guaranteeing the age
constraints for D2D links. Thus, the primal AgeS problem, P,
can be formulated with respect to the probability distribution
of channel gain g as,

P : max
φt

Eg

⎡⎢⎢⎢⎢⎢⎣
K∑

k=1

rk(φt, g)

⎤⎥⎥⎥⎥⎥⎦
s.t. Eg

[
qn(φt, g|qt−1)

] ≤ An, ∀n ∈ N , ∀t = 1, . . . , T,

(5)

where φt = {φ1,t, . . . , φN,t} is a vector of joint scheduling
decisions of D2D links at time slot t. Intuitively, the data
rate of primal link k is determined by global CSI g and link
scheduling decision φt, re-written as the function rk(φt, g).
Similarly, the age of D2D link n is the function of g and φt as
well as the previous age state qt−1, denoted as qn(φt, g|qt−1).
Both rk(φt, g) and qn(φt, g|qt−1) can be inferred by Eqn. (2)-(4).

To tackle the constrained problem P, we opt for dual
optimization by firstly forming its Lagrangian dual as,

L(φt, λt) = Eg

⎡⎢⎢⎢⎢⎢⎣
K∑

k=1

rk(φt, g) +
N∑

n=1

λn,t
(
An − qn(φt, g|qt−1)

)⎤⎥⎥⎥⎥⎥⎦
where λt = (λ1,t, . . . , λN,t)T is a vector of Lagrangian dual
variables at time slot t. Define the dual objective D(λt) as
an unconstrained maximization of L(φt, λt). Then, the dual
problem formulation D can be defined as,

D : min
λt

D(λt) where D(λt) = max
φt

L(φt, λt)

s.t. λt ≥ 0, ∀t = 1, . . . , T. (6)

When rk(φt, g) is concave and qn(φt, g|qt−1) is convex, standard
convex optimization results can guarantee that P and D have
the same optimal value (i.e., P∗ = D∗). In such a case, there
is zero duality gap, also named strong duality.

D. Strong Duality Analysis of the AgeS Problem

In the non-convex optimization of multi-user multi-carrier
systems as in Eqn. (5), the duality gap may exist (i.e.,
P∗ ≤ D∗). However, the duality gap can be zero under some
conditions despite of non-convexity. To show this, the concept
of time-sharing condition is firstly introduced.

Definition 1 Time-Sharing Condition [35]: Let x∗t and y∗t
be the optimal scheduling decisions to the primal AgeS prob-
lem in Eqn. (5) at time slot t with corresponding A = Ax and
A = Ay, where A = (A1, . . . , AN)T is a vector of age limits. The
AgeS problem is said to satisfy the time-sharing condition if
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TABLE I

The List of Key Notations

for any Ax and Ay, and for any 0 ≤ v ≤ 1, there always exists
a feasible decision zt , such that

Eg[qn(zt, g|qt−1)] ≤ vAx
n + (1 − v)Ay

n, ∀n ∈ N

Eg[
K∑

k=1

rk(zt, g)] ≥ vEg[
K∑

k=1

rk(x∗t , g)] + (1 − v)Eg[
K∑

k=1

rk(y∗t , g)].

The multi-user multi-carrier spectrum optimization, e.g., the
AgeS problem, has theoretically been proved to satisfy the
time-sharing condition and the detail can be seen in [35].
The intuition behind this is that the maximum value P∗ is
an increasing function of the age limit A, which implies P∗
is a concave function of A. Based on the characteristic of
time-sharing condition, the AgeS problem is then proved to
have the property of strong duality if feasible solutions exist
as proposed in the following proposition.

Proposition 1: Define Amin
n,t := minztEg

[
qn(zt, g|qt−1)

]
as the

minimum achievable age limit An for D2D link n. For the
non-convex AgeS problem at time slot t as shown in Eqn. (5),
if the age limit satisfies A > Amin

t = (Amin
1,t , . . . , A

min
N,t )T, it fulfills

the characteristic of strong duality.
Proof: The proof’s details are provided in the Appendix.

Therefore, the AgeS problem can be solved in the dual
domain with additional variables λn,t introduced for each age
constraint to form an unconstrained formulation.

III. Primal-Dual Learning for the AgeS Problem

Although age constraints can be effectively addressed in the
dual domain, finding a solution directly is not feasible since
1) the one-slot optimization problem should be solved in time
sequence, where age evolution is correlated in successive time
slots; 2) D2D links have no prior knowledge of transmission
environment. In this section, we propose to harness the model-
free primal-dual RL method to address the AgeS problem from
the centralized and long-term perspective. Based on it, the
distributed deployment will be proposed in the next section.

A. Primal-Dual Learning With DNN Parameterization

Taking age evolution into consideration, we firstly define a
centralized policy πc〈φt|qt−1, g〉, which outputs the scheduling
solution φt for D2D links based on global CSI and previous
age state. As a result, the dual AgeS problem as shown in
Eqn. (6) becomes a functional optimization problem, which
entails a large computational complexity. Hence, a surrogate

with the use of parameterization is utilized, accomplished by
introducing a parametrization of πc〈φt|qt−1, g, θ〉. θ ∈ Θ is
defined as the primal parameter vector, where Θ ∈ Rw is
the space of primal parameters with a finite dimension w.
For simplicity, we denote the centralized scheduling policy
as πc〈θ〉. Accordingly, the dual problem is re-formulated as,

Dθ: min
λt

max
θ
L(πc〈θ〉, λt), s.t. λt ≥ 0, θ ∈ Θ, (7)

where

L(πc〈θ〉, λt)

= Eg

⎡⎢⎢⎢⎢⎢⎣
K∑

k=1

rk(πc〈θ〉, g) +
N∑

n=1

λn(An − qn(πc〈θ〉, g|qt−1))

⎤⎥⎥⎥⎥⎥⎦ .

Consequently, this optimization problem is performed over θ
rather than the policy πc〈θ〉 directly.

Solving such a surrogate incurs some inevitable loss of opti-
mality. Nevertheless, this issue can be mitigated by exploiting
well-known parametric functions with near-universal approx-
imation property, e.g., deep neural networks (DNNs) [36],
[37]. Moreover, Theorem 1 in [37] implies that the duality
gap satisfies P∗ − D∗θ ≤

∥∥∥λ∗∥∥∥
1

Lε.
∥∥∥λ∗∥∥∥

1
is the multiplier

norm, which is related to the assumption stating that service
demands can be provisioned with some slack. The positive
constant L is introduced to guarantee Lipschitz continuity of
scheduling policies. ε is defined as the error of approximating
the scheduling policy with DNN parameterization. According
to the universal approximation theorem of DNNs, a large class
of functions can be approximated with an arbitrarily small ε
using a DNN with only a single layer of arbitrarily large size.
Therefore, the duality gap theoretically can be very small when
using near-universal DNN parametrization.2

To address the dual problem in Eqn. (7), the method of
stochastic gradient descent (SGD) is utilized to iteratively
update both the primal parameters of DNN and dual variables

2DNNs cannot be arbitrarily large due to computation limitation, especially
for large-scale D2D links, which may lead to unsatisfactory learning capabil-
ity, i.e., large ε. This scalability issue will be addressed in Section V.
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at each time slot t as,

θi+1 = ΠΘ{θi + α∇θiEg

[
∑

k

rk(πc〈θi〉, g) +
∑

n

λn,t,i(An − qn(πc〈θi〉, g|qt−1))

︸������������������������������������������������������������︷︷������������������������������������������������������������︸
d(πc〈θi〉,g|qt−1)

]},

(8)

λn,t,i+1 =
[
λn,t,i − β(An − qn(πc〈θi+1〉, g|qt−1))

]+ ∀n, (9)

where i denotes the iteration number, α, β are the update
stepsizes for primal parameters and dual variables, and ΠΘ is
the projection operator to Θ. The gradient primal-dual updates
in Eqn. (8)-(9) successively move primal and dual variables
towards the maximum and minimum points of the Lagrangian
function, respectively. λn,t,i+1 is updated using a zeroth-order
representation, which is guaranteed to converge to the optimal
as long as β is sufficiently small [38].

As for primal update, the gradient of d(πc〈θi〉, g|qt−1) is
needed, which can be considered as a function to output
the dual value dt :=

∑
k rk,t +

∑
n λn,t(An − qn,t).3 However,

due to the unknown CSI g, the straightforward evaluation of
Eqn. (8) is intractable since neither the functions rk(πc〈θi〉, g)
and qn(πc〈θi〉, g|qt−1) nor their gradients are explicitly known
a priori. Hence, the above primal-dual learning method is
considered as a baseline method upon which we can develop
a model-free algorithm.

B. Model-Free RL for the AgeS Problem

For primal update, the policy gradient method of RL is
adopted with the aim to maximize the following expected
long-term discounted reward4 at time slot t0:

Eg[
T∑

t=t0

γt−t0 dt],

where πc〈θt〉 is learned by continuous interactions with the
environment and is used to make scheduling decisions in
time sequences according to the age evolution of D2D links.
Specifically, the primal parameters of πc〈θt〉 are updated at
each time slot based on Policy Gradient Theorem [37], where
the gradient of d(πc〈θt〉, g|qt−1) can be inferred as,

∇θEg[
∑

t

γt−t0 d(πc〈θt〉, g|qt−1)] = Eg
[∑

t

γt−t0 dt∇θt log πc〈θt〉].
dt is the feedback of dual value and can be considered as the
scheduling reward for spectrum sharing at time slot t. Then,

3To extend this work to the case where the age constraints of primary links
are considdered, extra dual variables λk,t can be introduced with dual value
dt :=

∑
k rk,t +

∑
k λk,t(Ak − qk,t) +

∑
n λn,t(An − qn,t).

4Depending on the value of T , there are three cases: (1) T = t0, which is
the degenerating case. In this case, D2D users will not sample and transmit
state packets if their age constraints are not violated without considering the
long-term influence. (2) 1 < T < ∞ and (3) T →∞, which are the finite and
infinite-horizon cases, respectively. Planning algorithms with finite horizon are
forced to maintain different plans for different time slots, leading to undesired
complexity. For example, the optimal policy near the end of the time horizon,
might differ substantially from the optimal choice earlier in time, even under
identical conditions (e.g., same state). Moreover, our problem is a continuous
scheduling task without obvious ending points, and thus the RL-based AgeS
problem aims to maximize the long-term discounted reward with infinite-
horizon, that is T → ∞.

the primal update can be performed based on SGD similar to
Eqn. (8) to maximize the long-term discounted reward.

IV. D-Age: An Edge-Assisted Distributed Scheduling
Orchestrator for the AgeS Problem

There are some challenges that limit the implementation of
the centralized scheduling policy in large-scale D2D-enabled
IWNs, e.g., 1) the exploration of large action space is time-
consuming; and 2) high latency from waiting for the orders of
the BS may lead to outdated decisions. Hence, a distributed
scheduling orchestrator, D-age, is proposed. Under the guid-
ance of D-age, D2D links independently learn their scheduling
policies, which forms an MARL problem. However, traditional
RL approaches such as Q-Learning or policy gradient are
poorly suited to this multi-agent learning environment because
1) the dual value is not accessible at D2D links since only
the BS has the information on the capacity of primal links;
and 2) the non-stationarity and multi-agent credit assignment
problem may cause instability during the distributed learning
of the cooperative AgeS problem. D-age deals with these
problems by adopting the edge-assisted learning framework of
centralized training and decentralized execution (CTDE) [30].

A. Edge-Assisted Distributed Scheduling for D2D Links

1) Partially-Observable Markov Decision
Process (POMDP) of D2D Links: Under MARL problem,
each D2D link n makes decisions based on the distributed
scheduling policy defined as πd

n〈φn,t|on,t, θn,t〉, which is
parametrized with its own primal parameters θn,t and
also referred to as πd

n〈θn,t〉 for simplicity. It inputs local
observations and takes decisions without the information on
other D2D links known a prior, which can be described as a
POMDP, given by:

• The observation space O, where on,t = {λn,t−1, ξn,t−1} ∈ O
is defined as the local observation of D2D link n at time
slot t. ξn,t−1 is calculated as the age margin to capture the
trend of age violation and ξn,t−1 := An − qn,t−1.

• The action space Φ, where φn,t = {cn,t, pn,t} ∈ Φ is the
scheduling decision at time slot t.

• The transition probability Pr(ot+1|on,t, φn,t) denotes the
probability of transiting to ot+1 at the next time slot by
performing the decision φn,t under the current state on,t.

• The instantaneous reward dt, which is the global dual
value shared by all D2D links.

• The discount factor γ ∈ (0, 1).

Since the global state, defined as st, is partially-observed
by each D2D link n with local observation on,t, the transition
probability Pr(on,t+1|on,t, φn,t) may not be stationary as other
D2D links update their policies. As a result, the transmission
environment is non-stationary from the perspective of any
individual D2D link. Moreover, all scheduling policies of D2D
links πd

n〈θn,t〉 are trained with the global reward dt, which
encourages D2D links to sacrifice for greater common benefits.
However, the multi-agent credit assignment problem exists.
As a result, each D2D link’s policy is learned in a way that
is not explainable by the global feedback.
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Fig. 2. Learning framework overview.

2) Actor-Critic Learning Based on the CTDE Framework:
To deal with non-stationary environment, we propose to train
a single meta-critic that can criticise each scheduling policy
under the CTDE framework. In specific, each D2D link has
a local actor and all the actors share a global critic which
estimates the action-state function at each time slot t,

Qc(st, at) = Eg

⎡⎢⎢⎢⎢⎢⎣∑
t

γt−t0 (
∑

k

rk,t +
∑

n

λn,tξn,t)|s0 = st, a0 = at

⎤⎥⎥⎥⎥⎥⎦ ,
where st = (o1,t, . . . , oN,t) and at = (φ1,t, . . . , φN,t) are the
global state and action of D2D links at t, respectively. Based
on Qc(st, at), the critic outputs the Q value as a prediction
of long-term discounted reward

∑
t γ

t−t0 dt with the beginning
state and action s0 = st and a0 = at. Since only the BS has
the access to the data rates of primal links, the critic is set to
be located in the BS, where computationally complex works
can be done with the assistance of edge computing.

The action-state function is trained with the deep Q net-
work (DQN) algorithm, where the skills of off-line training
and experience replay can be performed due to the stable
environment brought by the global critic [39]. Formally, the
Q network of Qc(st, at) is trained by the temporal-difference
(TD) error with the learning rate η,

Lossc
t = Eg

[Qc(st, at) − Γt
]
, (10)

where

Γt = dt + γQc′(st+1, π
d′〈st+1〉). (11)

Qc′ is the target Q network and πd′〈st+1〉 denotes the joint
action in the next scheduling outputted by the target policy
networks πd′

n of local actors. This off-policy learning is able to
improve the training stability of both actors and the critic [40].

3) Advantage Functions of Critic: The distributed schedul-
ing policy of local actor n is trained with the feedback Q value
based on policy gradient methods and thus sometimes suffers
from high variance of gradient estimates. Therefore, a state-
dependent bias bc(st) is often adopted so that the distributed
policy is updated with the advantage function Ac(st, at) rather
than just Qc(st, at), where Ac(st, at) = Qc(st, at) − bc(st).

Algorithm 1 The Workflow of Local Actors

Input: Set Da, α, β, τ; Initialize πd
n, πd′

n ;
for t = 1, 2, 3 . . . do

1. Get the local observation on,t and output the
scheduling decision φn,t via πd

n〈φn,t|on,t, θ
a
n,t〉;

2. Compute age margin ξn,t locally and update dual
parameter λn,t in an adaptive manner based on

λn,t =

{
λn,t−1 − βξn,t , if ξn,t < 0

0 , if ξn,t ≥ 0

3. Deliver on,t, φn,t, ξn,t, λn,t, and π̂n,t to the critic;
4. Receive the advantage function from the critic and
then generate a sample {on,t,Ac

n} ;
if Get a batch of Da samples for an episode then

Update primal parameters to renew the estimated
policy network πd

n based on

2θn,t+1=ΠΘ{ θn,t + αEg,πd−n
[Ac

n(st, at)∇θn,t log πd
n〈θn,t〉]};

(12)

end
5. Update the target policy network πd′

n based on

θ′an,t ← τθa
n,t + (1 − τ)θ′an,t.

end

However, the multi-agent credit assignment problem in our
fully cooperative task will cause exacerbated high-variance
issues. For example, a local actor cannot distinguish the per-
formance of an action when receiving a low reward Qc(st, at)
since it may be caused by other links’ unsatisfactory actions.
To mitigate this issue, an action-dependent advantage function
is proposed for each D2D link, defined as,

Ac
n(st, at) = Qc(st, at) − bc

n(st, a
−n
t ). (13)
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Algorithm 2 The Workflow of the Edge-Assisted Critic

Input: Set γ,Dc,M, η, τ; Initialize Qc, Qc′;
for t = 1, 2, 3 . . . do

1. Keep collecting local information and get a
mini-batch {ei}i∈{1...M};
2. Output corresponding advantage functions for each
actor Ac

n according to Eqn. (13)-(14);
3. Observe the primal links’ data rates and get the
instantaneous dual value dt;
4. Train the estimated Q network Qc based on
{ei}i∈{1...M} according to Eqn. (10)-(11);
5. Update the target Q network Qc′ based on

θ′ct ← τθc
t + (1 − τ)θ′ct .

end

bc
n(st, a−n

t ) is the counterfactual multi-agent baseline [31],
which is calculated as,

bc
n(st, a

−n
t ) =

∑
φn

πd
n〈φn|on,t, θn,t〉Qc(st, a

−n
t , φn). (14)

where a−n
t and πd−n denote the joint action and scheduling

policy of actors except n, respectively. The impact of other
D2D links is excluded inAc

n(st, at) so that only the actions that
directly influence the rewards are encouraged. Accordingly, the
gradient of local actor n is re-written as,

Eg,πd−n

[
Ac

n(st, at)∇θn,t log πd
n〈θn,t〉

]
.

Although the global Qc(st, at) is shared among all D2D links,
Ac

n(st, at) is customized to each D2D link. Moreover, this
action-dependent baseline is theoretically shown to be better
than the state-only baseline in terms of variance reduction [31].

To learn Qc(st, at) and output Ac
n(st, at), the following

information is required by the critic: 1) the local observation
on,t and scheduling action φn,t; and 2) the action distribution
π̂n,t = (πd

n〈φ1|on,t, θn,t〉, πd
n〈φ2|on,t, θn,t〉, . . . , πd

n〈φ|Θ||on,t, θn,t〉).
The critic collects this information to generate an experi-
ence et = {st, at, dt, st+1, at+1}, and accumulates a dataset of
experiences. At each time slot, the critic randomly selects
a mini-batch of experiences with the batchsize M to train
Qc(st, at). Then, Ac

n(st, at) should be outputted by the critic to
D2D links so that distributed policies can be trained. All the
information can be delivered after scheduling decision making
since the training of DNNs is off-line.

B. Framework Overview and Workflow of D-Age

The learning framework overview of D-age is delineated in
Fig. 2. For local actors, the packet management module is in
charge of monitoring state sampling and data encapsulation.
Each local actor also has a memory module, which stores
training samples of an episode. The sizes of memory for
both the critic and actors are set to Dc and Da, respectively.
Moreover, multiple DNNs are constructed for both policy
networks in local actors and Q networks in the critic with the
parameters θa

n,t and θc
t as well as θ′an,t and θ′ct for their target

networks. Formally, the workflows of actors and the critic are

summarized in Alg. 1 and Alg. 2, respectively. Each actor
iteratively updates its primal parameters of DNNs in the primal
module and dual variables in the dual module. Dual variables
are trained locally while primal parameters are learned based
on advantage functions. To improve learning stability, target
networks for both actors and the critic (i.e., πd′

n and Qc′) are
renewed using the soft target update as in DDPG [40]. Thus,
target networks are updated by slowly tracking their estimated
networks (i.e., πd

n and Qc) with τ � 1 according to Step 5 in
Alg. 1 and Alg. 2. Based on the updated policy networks,
actors autonomously make scheduling decisions for D2D links
with local observations at the beginning of each time slot so
that reactions can be made in a timely and distributed manner.

C. Convergence Analysis of D-Age

Comparing Eqn. (12) with Eqn. (8), the distributed primal
update for D2D link n includes the extra stochastic process
πd−n, which denotes the transmission interference from other
D2D links. However, the global training of the critic guaran-
tees the stationary environment for learning regardless of local
scheduling policy changes. As a result, the following theorem
can be introduced to validate the convergence of distributed
scheduling policies in an ergodic manner considering the
stochastic processes of channel and other D2D links’ policies.

Theorem 1: For the long-term AgeS problem, where D2D
links follow the local actors and the edge-assisted critic of D-
age with γ → 1, if the learning rates of actors and the critic
satisfy,

∞∑
t=0

αt = ∞,
∞∑

t=0

α2
t < ∞,

∞∑
t=0

ηt = ∞,
∞∑

t=0

η2
t < ∞ and lim

t→∞
αt

ηt
= 0, (15)

(i) the policy gradient of each D2D user n follows,

lim inf
t
Eg,πd−n

[Ac
n(st, at)∇θn,t log πd

n〈θn,t〉] = 0

with probability 1; and (ii) by setting a smaller age limit A′n <
An for D2D link n, its ergodic age constraint can be feasible
with probability 1, i.e.,

lim
T→∞

1
t

T∑
t=0

qn,t < An w.p.1.

Proof: The proof’s details are provided in the Appendix.

Although optimal solutions may not be achieved due to
transmission uncertainty, the SGD-based primal update can
guide D2D links to find local maximum of long-term dis-
counted reward and their scheduling policies asymptotically
converge with the almost sure feasibility of time-averaged
age constraints. However, respecting the age constraints in
an ergodic manner does not imply that the instantaneous one
will always be satisfied, which is inevitable due to multiple
stochastic processes. Alternatively, enforcing D-age with A′n <
An,∀n, will increase the probability of satisfying instantaneous
age constraints. Here, we define the age limit margin as
Amar

n =An − A′n and its influence on the performance of D-age
is evaluated in Section VI.
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V. Architecture Design of Learning Networks for D-Age

It is still challenging to directly implement D-age for large-
scale D2D links due to unsatisfactory learning capability.
To improve the learning efficiency of D-age, GATs are inte-
grated in this section to address the scalability issue brought
by the centralized training of critic.

A. GAT-Based Critic With Edge Computing

The edge-assisted critic is trained through the methods of
DQN to provide advantage functions for each actor where
DNNs are constructed for Q networks. However, the central-
ized training of the critic may suffer from dimension disaster
[32] and thus achieve unsatisfactory learning accuracy, making
D-age not applicable to large-scale IWNs. Although this issue
can be mitigated with edge computing, the learning capability
of traditional multi-layer perception (MLP) layers is limited
due to the insufficient action exploration of D2D links. Hence,
a more computationally efficient network should be consid-
ered. In light of the graph-structured communication pattern of
D2D links, GATs [41] are utilized to establish a novel network
architecture of Qc(st, at). The traditional MLP is replaced with
GATs as shown in Fig. 3(b). With the mechanisms of attention
models and graph neural networks, GATs are well-suited
to our AgeS problem since the interference from remote
links is insignificant. Therefore, the key idea is to design
the Q network from a link-level perspective, which enables
the critic to deal with the features of neighborhoods with
different attention coefficients and thus redundant parameters
(i.e., connections between neurons) can be pruned.

Specifically, GATs only operate on groups of spatially close
neighbors and thus there is no need to know the graph structure
upfront. Therefore, a neighborhood set for each D2D link and
primal link n is defined in advance as Sn ∈ {N ∪ K} where
n ∈ {N ∪ K}. Abusing the notation a bit, we will also use
n,m to denote the primal user if no confusion can be caused.
Based on Sn, the critic learns a specific attention pattern for
each link n so that it can focus on the most relevant part of
the feature input as shown in Fig. 3(a). Formally, the input
to the GAT layer is a set of links’ features, defined as ρt ={
ρ1,t, ρ2,t, . . . , ρN+K,t

} ∈ R(N+K)×F , where F is the cardinality
of features. Each link feature then passes through a shared
weight matrix Ws ∈ RF′×F , which is an MLP layer and serves
as a linear transformation of ρn,t into a higher-level feature ρ′n,t
with the cardinality F′. Accordingly, the attention coefficient
anm between any two links can be obtained via an MLP-based
attentional mechanism, given by anm,t = ac

(
WsρT

n,t,W
sρT

m,t

)
.

The attention mechanism ac(·) :RF′ ×RF′ → R consists of mul-
tiple MLP layers to calculate the similarity between n and m,
which well captures the dynamical non-linear relation between
two links’ performance. Then, the neighbor set Sn is utilized
to obtain the masked and normalized attention coefficient a′nm,t
for link n so as to drop the redundant information from remote
links, given by [41]

a′nm,t = softmax
(
anm,t

)
=

exp
(
LeakyReLU(anm,t)

)
∑

i∈Sn
exp

(
LeakyReLU(ani,t)

) ,
where softmax(·) is the softmax function and LeakyReLU(·) is
the LeadkyReLU activation function used to add nonlinearity.

a′nm,t indicates the importance of m’ feature to n, based on
which the output of GAT layer κn,t for n is computed as the
weighted sum of the higher-level features of its neighbors,

κn,t = LeakyReLU

⎛⎜⎜⎜⎜⎜⎜⎝
∑
m∈Sn

a′nm,tρ
′
m,t

⎞⎟⎟⎟⎟⎟⎟⎠ .
To analyze the neighbors’ features from multiple perspectives,
κn,t can also be obtained by concatenating L independent
attention mechanisms, followed as,

κn,t = ‖Ll=1 LeakyReLU

⎛⎜⎜⎜⎜⎜⎜⎝
∑
m∈Sn

a′lnm,tρ
′l
m,t

⎞⎟⎟⎟⎟⎟⎟⎠ .
The overall architecture of Qc(st, at) is shown in Fig. 3(b).

To obtain an advantage function, a global state-action pair
(st, at) serves as an input for the embedding layer to output
the feature ρn,t for each link by the concatenation ρn,t =

(MLP(on,t) + Lookup(φn,t) + MLP(locn)), where locn is the
device location of link n.5 The embeddings {ρn,t}N+K

n=1 of both
D2D and primal links are fed into the GAT layer. Then, the
output features {κn,t}N+K

n=1 are generated, which are divided into
two flows for the prediction of long term primal links’ data
rate and D2D links’ dual punishment, respectively. Finally,
Q values are obtained by combining these two parts,

Qc(st, at) =
∑

k

Qc
k(κk,t) +

∑
n

Qc
n(κn,t). (16)

Qc
k/n(·) denotes the 2-layer MLP for calculating the component

of Qc(st, at) of each link, which is evaluated by considering
the non-linear relation with other links. Based on GATs, this
Q value can be obtained with the refined decomposition rep-
resentation from a link-level perspective, which corresponds
to the dual problem shown in Eqn. (7).

By leveraging GATs, the learning capability of Qc(st, at) can
be largely improved compared with the one with traditional
MLP layers. The intuition behind this is that traditional MLP
layers may face the over-fitting issue due to the incomplete
sampling of large joint-action space while the GAT-based critic
handles this problem by changing the network architecture,
which learns the hidden representations of each link through
the masked attention mechanism. Moreover, the multi-head
GATs allow for assigning different importances to links of the
same neighborhood, enabling a leap in model capacity.

B. Complexity Analysis

Recall that scheduling decisions can be made instantly based
on local information (defined as the feature with cardinality
F). Hence, for local actors with the action space of |Φ|, the
time complexity mainly stems from both the forward process
of policy networks and action distribution sampling, where the
time complexity of O(nDNN + |Φ|nl + log|Φ|) is required. nDNN

is the number of parameters in the DNN-based policy network
except the output layer, which linearly scales with F, and nl is
the input cardinality of the output layer. Compared with that
in centralized scheduling, which scales with the joint-action

5Both on,t and locn are passed through a 1-layer MLP and φn,t passes
through an embedding layer for feature reconstruction.
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Fig. 3. Illustration of GATs and network architecture of GAT-based critic.

TABLE II

Simulation Parameters

space cardinality |Φ|N , the time complexity of actors decreases
from exponential with |Φ| to linear with |Φ| [3].

To guarantee the learning efficiency of local actors, most
computational tasks are offloaded to the critic. This global
GAT-based critic is computationally efficient and scalable to
the networks that cover arbitrarily large geographical areas
if the number of links per unit area remains upper bounded.
Specifically, the time complexity of Q value computation
comes from two parts: the GAT attention layer and 2-layer
MLP. The time complexity of a single GAT attention head is
expressed as O ((N + K)FF′ + |S|F′), where |S| denotes the
maximum size of Sn for all links [41]. For multi-head atten-
tion, the critic just needs to multiply the storage requirements
by a factor of L since individual head’ computation is indepen-
dent and thus can be parallelized. Then, the time complexity of
2-layer MLP is O(niF′), where ni is the output cardinality of its
input layer. As shown in Eqn. (16), Q value computation can
also be parallelizable from a link-level perspective and thus
the total time complexity is O ((N + K)FF′ + |S|F′ + niF′).
The last step is to calculate the advantage function Ac

n(st, at)
for each link with |Φ| times the time complexity of Q value
computation and still can be parallelly calculated. Therefore,
edge computing can assist the parallel operation and makes
the GAT-based critic work more efficiently.

VI. Performance Evaluation

A. Simulation Setup

In this section, the performance of D-age is evaluated with
the relevant parameters for wireless settings listed in Table II
[42]–[44], where d is the distance between a transmitter
and a receiver, f is the operating frequency. Specifically,
both D2D and primal links are randomly positioned inside a
600×600m2 industrial service area, where the distance and age
limit of D2D device pairs are randomly set from [0, 30]m and
[4, 8], respectively. All devices operate based on the WINNER
II indoor model, which is a link-level channel model for LTE
system design [43]. In the non-line of sight (NLOS) path
loss model, Nwall denotes the number of walls between two
locations and is set to be d/50. Both the SINR thresholds
ζd,min and ζp,min are set to be 0dB [3].

The related parameters of D-age are shown in Table III.
To improve learning capability from the sequences of obser-
vations, actors are designed based on the long short term
memory (LSTM) to address the partially-observable issue [28].
Hence, the skill of clipping gradient is used, which efficiently
solves the gradient explosion issue caused by LSTM. For the
GAT-based critic, Sn is defined as the links within the distance
of 200m. Since we deal with a non-episodic task, which has
no clear ending point, γ is set to be 0.5 to focus more on
the recent rewards. Both actors and the critic are trained with
Adam optimizer. For local actors, the learning rate is set as
α = 0.0002 while for the critic, η is set to be 0.001 for the
first 400 time slots and then to 0.0005 for the remaining.

B. Simulation Results

To evaluate the performance of D-age, the following metrics
are considered: 1) age violation ratio, the percentage of D2D
links whose age constraints are violated; 2) capacity, calculated
as the sum of primal links’ data rates; 3) dual value dt; 4)
average power consumption and sleep ratio of D2D links,
where the latter denotes the percentage of D2D links choosing
−200dBm; and 5) learning capability, that includes the clas-
sification error and the binary cross entropy loss (BCELoss)
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TABLE III

List of Learning Hyperparameters

Fig. 4. Performance of D-age β = 1 with different sizes (N, K).

of the critic. Based on those metrics, D-age is compared with
the following schemes,

• Shared [37], where only policy gradient and primal-dual
learning are used and all D2D links share the same
feedback reward dt to train their scheduling policies;

• Individual, which is an improved version of Shared and
has customized reward for each D2D link, calculated as∑K

k=1 rk,t + λn,tξn,t to focus on individual age constraints;
• DRQN [28], [29], where independent learning is per-

formed via LSTM-based DQN for each D2D link to deal
with partially-observed environment.

To clearly show the trend of data, we smoothen some curves,
which are prefixed by m.

1) Performance of D-Age With Different Parameters: The
performance of D-age is firstly evaluated under three network
scenarios with different number of D2D links and primal links,
denoted by the tuple (N,K) (i.e., (50,3), (50,5), (30,5)), shown
in Fig. 4. Here, the average capacity (per RB) is evaluated
due to the different numbers of RBs. It can be observed
that the results of D-age with 5 RBs are much better than
that with 3 RBs in terms of three metrics. This shows the
importance of the resources/links density since D-age can help
D2D links find suitable RBs to lessen the interference only
if there are enough RBs. Moreover, D-age (30,5) achieves a
greater solution in terms of data rate (up to the maximum value
27.32) and age violation ratio (down to 0.02) compared with
D-age (50,5). Although D-age (50,5) has a slower convergence
due to the larger number of D2D links, both D-age (50,5) and
(30,5) can guide D2D links to learn stable scheduling policies.
Moreover, D-age (50,3) has the highest age violation ratio
and largest fluctuation due to insufficient resources. However,

D-age (50,3) still can reach the maximum average capacity
despite the longer learning process.

D-age with different dual learning steps β is evaluated under
the network size (50,3) in Fig. 5(a). Note that the learning rate
of dual variables has a great influence on the convergence rate
of age violation ratio. Although β should be small enough to
guarantee the optimal solution, a larger learning rate β0 = 2 can
help accelerate the age violation ratio reduction since more
dual punishment is imposed. To be specific, D-age with a
suitable learning rate can guide a D2D link to rank the RBs
that may cause severe interference to primal links low, and
also pay attention to the RBs with high interference from other
D2D links so as to reduce age violation ratio. Accordingly, the
dual value of D-age β0 = 2 is larger and more stable than that
with β0 = 0.1 despite the larger degree of dual punishment.
Then, the performance of D-age with different age limit
margins is evaluated in Fig. 5(b). It can be clearly seen that
D-age Amar

n = 2 can largely improve the final age violation
ratio compared with D-age Amar

n = 0 since D-age Amar
n = 0 only

ensures the expected age constraints. As a result, the dual value
of D-age Amar

n = 0 keeps fluctuating due to unsatisfactory age
violation ratio.

2) Comparison of D-Age With Different Scheduling Poli-
cies: D-age is compared with different scheduling policies in
Fig. 6(a). In specific, Shared, the policy with the same reward
for all D2D links, performs worst despite the global reward
feedback since the global action space is not fully explored.
As a result, useful information cannot be efficiently excavated
due to the misleading credit assignment of D2D links. The
curve of Shared’s age violation ratio will deteriorate in the
end, leading to the worst dual value. Individual functions better
than Shared in three metrics as it pays more attention to age
states. In other words, D2D links can be more selfish under the
guidance of Individual so that age can be decreased. However,
it is still confusing for D2D links because they cannot differ-
entiate the influence of their actions on the capacity of primal
links. Consequently, the age violation ratio performance of
Individual is unstable in the end. As for D-age, the customized
and action-dependent advantage Ac

n,t can effectively mitigate
this weakness. Hence, more stable and better performance on
three metrics can be achieved.

In Fig. 6(b), the performances of average power consump-
tion and sleep ratio based on the last 800 time slots are
evaluated. Compared with Individual and Shared, D-age has
a lower average power consumption and higher sleep ratio in
most networks since D-age gives advantage functions from
the long-term and comprehensive perspective. Moreover, the
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Fig. 5. Performance of D-age with different parameters.

Fig. 6. Comparison of D-age with different scheduling policies.

power consumption of D-age in the network (30,5) is higher
than that in the networks (50,3) and (50,5) as D-age will
encourage some D2D links that are far from primal links to
increase their power and awake time in order to enhance the
possibility of successful delivery. In the network (50,3) with
the larger density of links, D-age tends to choose lower power
levels to decrease the co-channel interference. It also prefers to
guide the D2D links who are less likely to violate their age lim-
its to shut down the sampling and delivering processes to save
energy, leading to the highest sleep ratio. A similar trend is
also seen in the results of Shared. Nevertheless, there is much
misleading information for D2D links under the guidance of
Shared, resulting in high power consumption and low sleep
ratio. Individual performs the completely opposite solutions.
For example, it achieves the highest power consumption in the
most crowded network (50,3) as selfish D2D links only aim
to increase power levels for successful delivery.

D-age is compared with DRQN in Fig. 7. Since there is no
centralized critic in DRQN, the same reward as Individual is
adopted and only the performances of age violation ratio and
capacity are delineated. Although there is a little improvement
of capacity after network training for DRQN, the result of age
violation ratio gets worse, which is even worse than random
scheduling (data before the start of training). This implies
that DRQN is unable to find out useful information with

Fig. 7. Comparison of D-age with DRQN.

only LSTM-based policy networks, while D-age can tackle
the non-stationary issue using the CTDE learning framework.

3) Results of GAT-Based Critic: To evaluate the learning
accuracy, we compare the function approximation capability of
critic with GAT (Critic-GAT, L= 1) and that with conventional
MLP layers (Critic-MLP, i.e., the block of GAT in Fig. 3
is replaced by a 3-layer MLP). To be specific, the critic
predicts whether D2D links will have successful delivery at
each time slot with a decreasing learning rate (‘lr’) under the
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Fig. 8. Learning capability of GAT-based critic.

network size (50,5). The performance in terms of classification
error and BCELoss is delineated in Fig. 8. It can be seen
that the learning accuracy of Critic-GAT is much better than
that of Critic-MLP as the training of Critic-MLP tends to be
over-fitting due to insufficient action exploration. As a result,
Critic-MLP cannot decrease the testing classification error
down to 15. As for Critic-GAT, the curves of both classification
error and BCELoss can rapidly converge to a lower level since
Critic-GAT just pays attention to the neighbors of links rather
than the whole 55 links. Therefore, useless network branches
can be cut out to some degree to avoid over-fitting.

VII. Conclusion

In this paper, we have investigated the age-aware spectrum
sharing problem for the edge-assisted IWNs and proposed
a learning-based distributed spectrum scheduling scheme, D-
age, to jointly optimize the transmitting RB and power for
D2D links. The AgeS problem has been formulated as a coop-
erative MARL problem, where the non-stationary environment
and multi-agent credit-assignment problem are tackled by the
CTDE framework with local actors and an edge-assisted critic.
Local actors learn individual scheduling policies for D2D
links. These policies are assessed by the critic via action-aware
advantage functions, obtained by GAT-based Q networks to
filter out unimportant information. In general, the scalability
of GAT-based critic makes D-age well-suited for distributed
learning systems. Moreover, D-age provides a potential solu-
tion for future studies on the scheduling of graph-structured
IoT networks with ubiquitous monitoring requirements. For
our future work, we will consider the age-aware multi-hop
communication for monitoring tasks, where the routing should
be optimized based on the graph network topology.

Appendix

Proof of Proposition 1: We follow the proof of Theorem
1 in [35]. Firstly, Amin

n,t := minztEg
[
qn(zt, g|qt−1)

]
is defined as

the minimum achievable age limit of D2D link n in the worst
case. This guarantee that the slater’s condition holds [36] i.e.,
for any An,t > Amin

n,t ,∀n, there is a strictly feasible solution zt

satisfy Eg
[
qn(zt, g|qt−1)

]
< An,∀n. Since the proposed AgeS

problem satisfies the time-sharing conditions, we could get
that, for two distinct achievable upper bounds Ax,Ay ≥ Amin

t

with the optimal decisions x∗t , y∗t , we could find a feasible
scheduling decision zt with an age limit Az = vAx + (1− v)Ay

for arbitrary constant v ∈ [0, 1] that satisfies

Eg[qn(zt, g|qt−1)] ≤ vAx
n + (1 − v)Ay

n, ∀n

2Eg[
K∑

k=1

rk(z∗t , g)] ≥ Eg[
K∑

k=1

rk(zt, g)]

≥ vEg[
K∑

k=1

rk(x∗t , g)]+(1 − v)Eg[
K∑

k=1

rk(y∗t , g)].

With the guarantees of slater’s condition and time-sharing
conditions, it can be concluded that the optimal objective r∗(A)
is a concave function of A with A ≥ Amin

t . According to
Theorem 1 in [35], the primal problem and dual problem have
the same optimum (i.e., P∗ = D∗). �

Proof of Theorem 1: The proof follows two steps. The first
step is to prove the D-age with action-dependent advantages
will converge under the framework of CTDE, i.e., at each
iteration t, the total policy gradient of N local actors,

Gt = Eg,π

⎡⎢⎢⎢⎢⎢⎣∑
n

Ac
n(st, at)∇θn,t log πd

n〈φn,t|on,t, θn,t〉
⎤⎥⎥⎥⎥⎥⎦ (17)

will converge to 0 w.p.1.
In detail, the proof of the first step follows the convergence

analysis in [31]. Formally, the gradient in Eqn. (17) is re-
written as,

Gt = Eg,π[
∑

n

Qc(st, at)∇θn,t log πd
n〈φn,t|on,t, θn,t〉

︸������������������������������������������︷︷������������������������������������������︸
P1

−
∑

n

bc
n(st, a

−n
t )∇θn,t log πd

n〈φn,t|on,t, θn,t〉
︸�������������������������������������������︷︷�������������������������������������������︸

P2

]

First, we consider the expected contribution of P2. For sim-
plicity, we will omit the time slot superscript. Hence, we have

GP2

= Eg[
∑

n

∑
φ−n

πd
−n〈φ−n|o−n, θ−n〉

∑
φn

πd
n〈φn|on, θn〉

× ∇θn log πd
n〈φn|on, θn〉bc

n(st,φ−n)]

= Eg[
∑

n

∑
φ−n

πd
−n〈φ−n|o−n, θ−n〉

∑
φn

∇θnπ
d
n〈φn|on, θn〉bc

n(st,φ−n)]

= Eg[
∑

n

∑
φ−n

πd
−n〈φ−n|o−n, θ−n〉bc

n(st,φ−n,t)∇θn 1] = 0.

where φ−n is the same with a−n. This means that P2 does not
change the expected gradient due to the bias-free baseline.
Thus, the convergence of P1 is guaranteed by the traditional
single-agent actor-critic policy gradient. Specifically, P1 can
be inferred as,

Gt,P1 = Eg,π[
∑

n

Qc(st, at)∇θn,t log πd
n〈φn,t|on,t, θn,t〉]

= Eg,π[Qc(st, at)∇θt logΠnπ
d
n〈φn,t|on,t, θn,t〉]

= Eg[Qc(st, at)∇θt log πc〈φt|ot, θt〉]
where πc〈φt|ot, θt〉 denotes a global policy corresponding to
Qc(st, at) and outputs the joint scheduling action φt. This yields

Authorized licensed use limited to: University of Waterloo. Downloaded on November 22,2022 at 21:38:20 UTC from IEEE Xplore.  Restrictions apply. 



7750 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 9, SEPTEMBER 2022

the standard single-agent actor-critic policy gradient, which is
proved to converge to a local maximum, given that [45], 1)
the policy π is differentiable; 2) Qc is a compatible TD(μ)
critic, where μ = 1 and is a decay parameter denoting the
impact of previous states on the current state, and Qc uses a
representation compatible with πd

n; 3) The step size of actors
should be negligible compared to that of the critic so that
the actor looks stationary as far as the critic is concerned.
Moreover, all learning rates of actor and critic should be
non-increasing so that the learning process could slow down
gradually while not stop (ensuring that stochastic processes are
ergodic). To this end, the convergence conditions of learning
rates should be followed as in Eqn. (15) [45].

The second step is to prove that the converged policies with
a smaller age limit A′n can guide D2D links to satisfy their
time-averaged age constraints. We define −λn,tξn,t as a positive
cn,t for each actor upon convergence. Let {cn,t}t≥0 be a sequence
of positive real numbers. Before proceeding, we make the
following mild assumptions: A1)

lim inf
T→∞

1
T

T∑
t=0

cn,t = lim sup
T→∞

1
T

T∑
t=0

cn,t,

which denotes that the limit of the average of the sequence
{cn,t}t≥0 exists, and A2) the discount factor γ used is such that

lim inf
ν↑1

(1 − ν)
∞∑

t=0

νtcn,t ≤
∞∑

t=0

γtcn,t + M0

for some 0 < M0 < ∞ [46]. Then, we consider the following
lemma of Abel theorem [47] as,

Lemma 1 Abel theorem [47]: Let {ct}t≥0 be a sequence of
positive real numbers, then

lim inf
T→∞

1
T

T∑
t=0

cn,t ≤ lim inf
ν↑1

(1 − ν)
∞∑

t=0

νtcn,t.

Follows (A1)-(A2) and Lemma 1 that

lim
T→∞

1
T

T∑
t=0

cn,t ≤ lim inf
ν↑1

(1 − ν)
∞∑

t=0

νtcn,t ≤
∞∑

t=0

γtcn,t + M(γ)

for some γ→ 1 and a small M(γ) = M0 > 0.
Recall that once Qc and πd

n converged, limt Qc(st, at) =
Qc

0(st, at) w.p.1, denoting that Q values almost surely converge
to fixed values and πd

n will guide D2D links to choose
the actions with the maximal Q value, i.e., the long-term
reward Eg[

∑∞
t=0 γ

t(
∑K

k=1 rk,t−∑N
n=1 cn,t)]. Based on it, we define

limt
∑∞

t=0 γ
tcn,t = M1 as the small value that the learning

converges to and set M = M1 + M0. Then, we have,

lim
T→∞

1
T

∞∑
t=0

λn,tξn,t = lim
T→∞

1
T

∞∑
t=0

λn,t(A′n − qn,t) ≥ −M.

and we can get,

lim
T→∞

1
T

∞∑
t=0

A′n + M/λn,t = A′n + M/λn,t ≥ lim
T→∞

1
T

∞∑
t=0

qn,t.

Based on it, we can conclude that by setting some smaller
A′n with A′n + M/λn,t ≤ An, the time-averaged age constraints
can be satisfied and thus we finish the proof. �
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