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Channel-Aware Latency Tail Taming
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Abstract— In this paper, we propose a novel channel-aware
latency taming scheme, called Optimal Transmission Latency
Taming (OTLT), to detect hidden channel state and tame the
distribution tail of the packet sojourn time in Industrial Internet
of Things (IIoT) devices. Specifically, we design a forward
algorithm based on a hidden semi-Markov model to detect the
hidden channel state, with a particular emphasis on the state
sojourn duration, and to calculate the corresponding channel
access probability. Then we develop a time-sensitive model
to investigate the minimum sojourn time a packet spends in
the IIoT device before leaving successfully. With the obtained
channel access probability, the first passage probability of the
proposed model is explored to find the maximum probability of a
packet being successfully transmitted in a given back-off sojourn
duration (BSD). The distribution tail of the packet sojourn
time can be tamed by minimizing the cumulative summation
of each BSD in consideration of the quadratic penalty latency
constraints. Simulation results demonstrate that, in the industrial
environment, the OTLT scheme can keep the packet’s sojourn
duration within a quantifiable limit and variance. It can also
obtain considerably efficient control over packet transmission
latency in a time-varying wireless propagation channel even with
the increasing number of IIoT devices.

Index Terms— Industrial IoT, latency taming, hidden semi-
Markov model, first passage probability.

I. INTRODUCTION

RECENT advance in wireless communications and com-
putation have extended the Internet of Things from home

and working environments to the industrial domain [1], [2],
[3]. To enable automation applications in Industrial Internet of
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Things (IIoT), numerous devices (sensors) have been deployed
to collect and transmit data in real-time for the operation opti-
mization and strategic decision-making [4], [5], [6]. However,
to ensure quality control throughout the production process,
packet transmission must fulfill stringent latency requirements
of specific industrial applications [7]. Transmission protocol
design based on conventional average latency is insufficient
to meet the stringent latency requirements since average
latency often ignores the occurrence of extreme high latency
events [8]. A transient latency spike can be identified by the
sharp rise of the latency distribution tail, which results in an
increase in transmission latency and a detrimental influence
on overall performance [9]. Hence, controlling the tail of
the latency distribution is of paramount importance to meet
extremely low latency requirements and keep latency within a
quantifiable variance for industrial manufacturing.

In IIoT networks with a star topology, the packet transmis-
sion latency can be separated into a deterministic component
and a random component [10], [11], [12]. The deterministic
component specifies the minimum latency, and random com-
ponents influence the latency distribution and, in particular,
its distribution tail [13]. In this paper we focus on the random
component, i.e., the packet sojourn time, which refers to the
total amount of time a packet spends in the device waiting
for an idle channel and, if required, attempting retransmis-
sion until the packet is successfully transmitted. Medium
access control (MAC) protocols (e.g., IEEE 802.15.4 protocol)
play an important role in limiting packet sojourn time by
coordinating channel detection and managing packet trans-
mission. In the protocol, a transmission cycle consists of
packet back-off sojourn duration (BSD), carrier sensing access
(CCA) processing delay, data transmission delay and ACK
transmission delay, among which only BSD is the random
component. We define the BSD as the time duration in which
a packet waits for channel detection in a transmission cycle.
The packet sojourn time is the cumulative summation of all
the BSDs of this packet until being transmitted successfully.

However, it is challenging to shorten the distribution tail
so as to control the random component of packet transmission
latency in the harsh industrial environment. First, IIoT devices
cannot accurately determine the channel state, with a particular
emphasis on the state sojourn duration, and properly integrate
the corresponding channel access probability into the BSD
control strategy. In the industrial environment, the channel
can be contaminated by impulse noise and interference effects,
which change the channel states over time between a finite set,
with the changing occurring at unknown periods in time [14].
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Each occurrence of a particular state has a random sojourn
duration, which can be modelled as a random variable accord-
ing to a probability distribution associated with that state. The
channel state sojourn duration is rarely taken into account
in the conventional channel detection schemes. In addition,
the channel impairments can distort the transmission signal,
causing the channel to be interfered in a set of time slots
grouped in bursts [15]. Thus, the statistics of the fading process
may be non-stationary over a period of time. It means there can
be a channel state hidden behind the detected results, which
leads a device to mistake a “Busy” channel for an “Idle” one.
As a result, packets will crowd into the network, create more
collisions, affect the packet BSD control decision, perturb the
packet sojourn time’s standard deviation and finally result in
long tail of latency distribution in each device.

Second, it is difficult to regulate the timing bounds of the
packet sojourn time distribution, in particular the distribution
tail, because the packet sojourn time inherits a heavy-tailed
distribution from collision and channel access failure [16].
In the conventional MAC schemes, the current BSD is decided
only on the basis of the present system state instead of
historical BSD results [17]. That means there is no quan-
tified limitation on controlling the distribution tail of the
packet sojourn time. But according to the collision avoidance
defined in 3GPP Release 15, the packet BSD is determined
by generating random numbers from uniform distribution
over a pre-designed time slot [18], [19]. The BSD should
be generated based on previous BSD results, which results
in an impact on the aggregate total BSD load. Therefore,
to analyze the packet sojourn time and model its distribution
tail, a new time-sensitive model (TSM) should be built, which
considers the memory property, channel access probability and
the packet BSD in each transmission cycle.

Third, the delay-insensitive back-off control strategy based
on examining BSD average values is unable to tame the
distribution tail of the packet sojourn time, because latency
variance and extreme high latency events are always neglected
when evaluating only average [8]. Because of this tail, the
average value becomes larger than the distribution’s most
probable value. The fluctuation around the maximum of this
distribution becomes greater. If we still design the control
strategy based on the average value, the generated BSD results
will lead to a negative impact on overall performance [20].
Thus, to maintain the packet sojourn time within the timing
limitations, the BSD must be fine-grainedly updated through
computing the optimal BSD in the direction of the control
gradient, which can lead to the minimum packet sojourn time.
These challenges motivate our design to fulfill the latency
requirement in IIoT.

In this paper, we focus on how to detect the hidden channel
state considering the industrial noise and interference effects,
and minimize the distribution tail of the packet transmission
latency. We propose a channel-aware latency taming scheme,
called Optimal Transmission Latency Taming (OTLT), to esti-
mate the channel condition and tame the latency distribution
tail through controlling the packet BSD. Specifically, the
OTLT scheme is built on a channel detection module and a
packet BSD control module. In the channel detection module,

we build a hidden semi-Markov model (HSMM) to character-
ize the industrial channel properties and a forward algorithm to
detect the hidden channel state. Considering obtained channel
detection result and corresponding channel access probability,
in the packet BSD control module, we utilize semi-Markov
model to develop a TSM to analyze the distribution tail of the
packet sojourn time and calculate the optimal packet BSD to
tame the tail of packet sojourn time. The following are the
paper’s primary contributions.
• We investigate the channel fading duration and consider

it as the sojourn duration of each hidden state in the pro-
posed HSMM. All the related parameters in the HSMM
are iteratively updated by a proposed Expectation Max-
imization (EM) algorithm in the result that the channel
detection accuracy can be improved.

• We develop a TSM to describe the distribution tail of the
packet sojourn time and build the relation between the
packet BSD and the historical BSD decisions to solve
the BSD memoryless shortage. In particular, we inven-
tively find that the extreme value probability which can
be used to characterize the latency tail probability is
closely related to the first passage time probability of
the proposed time-sensitive model. We evaluate the first
passage probability (FPP) by calculating the probability
of the first passage time (FPT) that a packet transfers
from one system state to the state that indicates the
successful delivery of the packet for the first time in
a given packet BSD. Then, we investigate the FPP to
find the best timing to transmit the packet with a proper
packet BSD. We find that, in each transmission cycle,
there is always an optimal packet BSD corresponding to
the maximum FPP.

• We investigate the average packet sojourn time by accu-
mulating all the historical BSD with corresponding FPP
and calculate the optimal BSD by minimizing the sojourn
time in consideration of quadratic penalty latency con-
straints. The optimum packet BSD is found by iteratively
investigating the optimal control scale in the direction
of the control gradient, which can minimize the packet
sojourn time and shorten the latency distribution tail.

The remainder of this paper is organized as follows. The
related works are discussed in Section II. Section III describes
the system model, and Section IV presents the problem formu-
lation. In Section V, we discuss the proposed OTLT scheme.
Simulation results are presented in Section VI to evaluate the
proposed solution. Finally, in Section VII, we conclude this
research work.

II. RELATED WORK

Various schemes have been investigated for detecting chan-
nel state, analyzing the performance and applicability of
collision avoidance schemes, as well as controlling the packet
transmission latency in a delay constrained network. A pro-
posed latency control scheme in optimizing the packet trans-
mission delay consists of a channel detection phase and a
BSD control phase. In the channel detection phase, the device
measures the channel quality to verify whether the channel is
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idle. If the channel is busy, the BSD control phase is then used
to avoid packet collisions through delaying the transmission
for a time period.

The channel state detection plays a critical role in decreasing
the packet collision ratio and improving the efficiency of wire-
less resource utilization. Bhowmick et al. designed a channel
estimation scheme for predicting future channel state based
on historical channel estimation results in order to enhance
the channel access efficiency [21]. Given a set of historical
channel observations, Eltom et al. modeled the channel state
into a hidden Markov model (HMM) and proposed a scheme
to predict the channel state by recursively calculating the pos-
terior probability of the HMM [22]. However, little attention
is paid to build a channel detection scheme for devices in
an industrial environment, where the wireless channel state
is time-varying due to the multipath fading and interference
effects. These fading dips can reverse the channel state by
dropping considerably below the proper threshold in a short
period. In addition, the average duration of the channel state
and the latent parameters of the related proposed model are
rarely jointly taken into account.

Apart from the channel detection phase, when the channel
state is busy, the BSD control phase is utilized to avoid
packet collision. A plenty of BSD resolution approaches have
been proposed for reducing the number of packet collision
and minimizing the packet transmission delay. The studies
on deterministic backoff [23] and centralized random back-
off [24] indicate that the collision probability can approach
zero. Deterministic backoff scheme prepares a collision-free
timetable in a fully decentralized way with a predetermined
backoff stage for each devices after successfully accessing the
channel [23]. By contrast, centralized random backoff scheme
schedules the packet transmission using an acknowledgment
packet that specifies the backoff stage generated by a virtual
backoff algorithm running in the access-point [24]. Gomes
et al. designed a smart guaranteed time slot allocation scheme
to improve the utilization of the contention free period in a
super-frame which starts with a beacon frame sent by the
coordinator [25]. By employing these active periods, the aver-
age transmission latency for message delivery among devices
(e.g., sensors) is supposed to meet the industrial application
requirements.

However, due to the impact of the interference effects in
the industrial environment, the devices can miss their assigned
transmission slot and aggravate the long-tailed features of the
transmission latency. When the device with time-critical traffic
continues to detect a busy channel state and contends with
other devices in remaining time slots, it will be difficult for
devices demanding time-critical service to transmit packets on
time. In an industrial environment with a large number of
devices, the existing works show that the collision probability
decreases as the minimum backoff window size grows [7]. But,
when the backoff window size grows, the channel idle time,
i.e., vacant time slots, grows as well. The enormous delay
time will result in the increment of high latency events, which
expands the latency distribution tail and increases the packet
deadline miss ratio. Liu et al. characterizes the tail of the
latency distribution using the extreme value theory to measure

Fig. 1. Network model.

the delay behavior of the sensor devices in the industrial IoT
networks [26]. But very few of works study the impact of the
historical BSD results latency on the distribution tail with the
consideration of channel state in an industrial environment.

All the aforementioned works provide interesting results but
pay little attention to the joint investigation of the channel
detection methods and the impact of the channel detection
results on generating the packet BSD in the industrial envi-
ronment. Questions remain open regarding characterizing the
distribution of packet sojourn time and taming the distribution
tail of the packet sojourn time by iteratively controlling the
packet BSD in each transmission cycle. In this paper, our target
is to detect the channel state hidden in the noisy channel and
tame the distribution tail of the packet sojourn time within a
stringent bound.

III. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, two types of components make up
the entire network: one access point (AP) and several IIoT
devices. The network is built using a star topology, in which all
devices connect with the central AP. There are many scatters
uniformly distributed in the environment. The transmitted
signal from devices is vulnerable to heavy multipath fading
effects caused by reflections from these scatters. In this star
network, a large amount of packets are transmitted from the
devices to the AP. There is only one active device occupying
the medium after successfully accessing the channel. All the
other devices have to wait and keep their data packets in
their transmitting buffer until an idle channel state is detected.
IEEE 802.15.4 standard governs the AP-device association
mechanisms and the medium access strategies [17].

B. Channel State Detection Model

When a device sends data packets to an AP, all other
devices within this device’s coverage continuously detect the
channel to check the channel state i.e., idle or busy state for
packet transmission. Since the channel state is recurrent, when
the devices and AP are in a similar industrial environment,
revisiting the same channel state may return almost same
channel detection results. Thus, we design an HSMM to build
the process of transitioning among different hidden channel
states in accordance with their sojourn durations in order to
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Fig. 2. Hidden semi-Markov model.

estimate the hidden channel state and calculate the appropriate
channel access probability.

Let N+ = 1, 2, . . ., N = N+ ∪ {0} be the sequence number
of the occurrent event in the considered model. Denote by T =
(Tn)n∈N a sequence of independent time instants at which
the IoT device detects the channel for packet transmission,
where Tn is the time instant when the channel is detected
for the nth time. Specifically, we define t < Tn ≤ t+dt,
where t is a discrete and integer time scale corresponding
to the beginning of a time slot and dt is an infinitely short
time interval. Denote by D = {0, 1} a countable state space,
where D = 0 represents the device detects an idle channel
state, whereas D = 1 represents the device detects a busy
one. Denote by o = (on)n∈N = o(Tn)n∈N a sequence of
conditionally independent channel detection results, where on

is the nth detected channel state on the state space D at
time instant Tn. Due to the impact of noise and interference
effects, there are underlying channel state hidden behind o.
Denote by H = {AF,FF, AB,FB} the state space of
the hidden channel state, where AF and FF represent the
detection results are accurate and false, respectively, when
the channel state is idle. In contrast, when the channel state
is busy, AB and FB represent the detection results are
accurate and false, respectively. Denote by C = (Cn)n∈N =
C(Tn)n∈N the successive hidden channel states at the time
instant Tn, where Cn ∈ H, H = (Hi)i≤4,i∈N+ . Denote by
τ = (τn)n∈N+ a sequence of sojourn time in each hidden
channel state, where τn = Tn − Tn−1, n ∈ N+. The basic
structure of the proposed HSMM is illustrated in Fig. 2. The
HSMM ((C,T),o) = ((Cn, Tn), on)n∈N is the extension
of stochastic process (On)n∈N with the embedded hidden
Markov chain (Cn, on)n∈N by allowing the underlying process
to be a semi-Markov chain (Cn, Tn)n∈N with a sojourn time
(τn)n∈N+ for each state.

Denote by b(on) = P{on|Cn = Hi} the emission proba-
bility of on given the current hidden channel state Hi at Tn.
Denote by aij = P{Cn = Hi|Cn−1 = Hj} the transition
probability of the embedded hidden Markov model from state
Hj at Tn−1 to state Hi at next time instant Tn, where
i, j ≤ 4, i, j ∈ N+. According to the IEEE 802.15.4 standard,
the device waits for τn, which follows uniform distribution,
and then detects the channel state at Tn. Denote by fij(t)

the probability density function (PDF) of the sojourn time
τn in a given state Hi conditioned on transferring from state
Hj , where fij(τ)dτ = P{τ < Tn − Tn−1 ≤ τ + dτ |Cn =
Hi, Cn−1 = Hj}. The probability that channel state Cn−1

transits to state Cn at time Tn is P{Cn = Hi, t < Tn ≤
t+ dt|Cn−1 = Hj}. Hence, denote by αi(t)dt the probability
that the device predicts the hidden channel state Hi at the N th
time instant TN joint with all the historical detected channel
states o{0:N} from T0 to TN , which is

αi(t)dt = P{CN = Hi, t < TN ≤ t + ∆t, O{0:N}}

=
∑

He∈H

b(oN )aie

∫ t

0
αe(t− τ)fie(τ)dτdt (1)

Suppose we have recorded all the detected channel states.
We can calculate the maximum value of αi(TN )dt at the
time instant TN under the condition of each state in H with
the historical states to find the most proper hidden channel
state. The maximum probable hidden channel state is Hi =
argmax

Ci∈H,t∈T
αi(t), in which αi(TN )dt refers to the probability

of channel state CN = Hi at time instant TN . If the channel
state is idle, we denote by αi(TN )dt the corresponding channel
access probability, otherwise we denote by 1 − αi(TN )dt.
All the latent parameters,

[
αi, fij(t), bi(on), aij

]T
, can be

iteratively learned by observations and acknowledgements
based on the EM algorithm.

C. Time-Sensitive Model

Consider the association mechanisms between the AP and
devices while using the IEEE 802.15.4 carrier-sensing mul-
tiple access with collision avoidance (CSMA/CA) procedure.
To control the packet BSD and prevent collisions with signals
produced by other IoT devices, five coefficients are employed:
the number of times that the device fails to access into the
channel and starts a new back-off stage (NB_); the number of
times the device detects the channel state (CW_); the back-off
exponent (BE_), which initiates the timer of Backoff_; the
waiting duration that the device has to wait before detecting the
channel state (Backoff_); and the number of retransmission
times (Retry1_). The device counts down Backoff_ to
0 from a number which is uniformly generated in the range
[1, 2BE_ − 1] and executes Clear Channel Assessment (CCA)
procedure. The initial value of NB_, CW_, and BE_ is set as
0, 2, and 3, respectively. The details of CSMA/CA procedure
and parameter settings can be read from [17]. Suppose that all
the devices are capable of detecting the channel state during
CCA slots. After counting down the Backoff_ which is
initiated randomly according to the standard, the device will
run the CCA procedure. The device has to perform twice
CCA procedures before transmitting the packets. Both of the
channel state detection results should be idle so that the device
can enable the packet transmission. If either of the detection
result is detected as busy, the device will increase BE_, initiate
a random number between [1, 2(BE_+1) − 1] and start a new
back-off stage. If the device fails to send the packet, it will
reset NB_ and BE_ to 0 and 3 to begin a new back-off stage.
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Fig. 3. Semi-Markov model with time-sensitive characteristics.

When building the model for the aforementioned CSMA/CA
technique, time-sensitive variables such as packet back-off
waiting process and the number of retransmissions should
be considered. Assume that all devices are saturated. Denote
by be(Tn) the stochastic process representing the number of
BE_′′ for a given device. Denote by r(Tn) the stochastic
process representing the number of Retry_” at Tn. Let E =
{r(Tn) = i, be(Tn) = j} be the state space of the bi-
dimensional process, where 0 ≤ i ≤ N and 0 ≤ j ≤
M , {N |N ≤ maxRetry_′′} is the maximum number of
retransmission and {M |M ≤ maxBE_′′−3} is the maximum
number of back-off process. Note that the value of b(Tn)
corresponds to BE_′′ − 3 in the proposed model. Denote
by X = X(Tn)n∈N = (Xn)n∈N a sequence of random
variable describing the state of the bi-dimensional process at
time Tn. Let (X, T ) = (Xn, Tn)n∈N be the semi-Markov
chain with a sojourn time {τn|τn = Tn+1 − Tn, n ∈ N} for
each state. Denote by S = (Si,j)0≤i≤N,0≤j≤M the transition
state of the semi-Markov model if the number of retrans-
mission is i and the number of back-off exponent j, where
(Xn, Tn)n∈N = (Si,j , Tn), Si,j = {r(Tn) = i, b(Tn) = j}
and Si,j ∈ E. Fig. 3 shows the proposed semi-Markov model.
In the proposed semi-Markov model, each state represents a
back-off waiting process. After entering a state, the device
remains in that state for a random time period determined
by a uniform distribution with a pre-defined interval limit.
In the semi-Markov model, if the device detects a busy channel
state in either of the two channel assessments, it will not
access the wireless channel. Instead, the device will transfer its
back-off state to the next state to refresh the packet BSD with
BE_+1 but the Retry1_ will remain the same. Additionally,
if the device successfully accesses the wireless channel but
fails to send the packet, the device will proceed to the state
with increased Retry1_ but the BE_ will be initialized as
3 corresponding to be(Tn) = 0 in the semi-Markov model, and
a new BSD for the packet will be generated. The device will
return to state S00 in the semi-Markov model if it successfully
accesses the wireless channel and sends the packet. Denote by

µ1 the probability of detecting a busy channel state at the first
CCA. Denote by µ2 the probability of detecting an idle one at
the first CCA but a busy one at the second CCA. The µ1 and
µ2 are

µ1 = ai(TN )
where TB = argmax

Hi∈H
ai(TN ) (2)

µ2 = ak(TN+1)

where TB = argmax
Hk∈H,Ci=TF

b(o(Tn+1))pki

∫ t

0

aifki(t− τ)dτ

(3)

Following the semi-Markov model in Fig. 3, we denote by
PB the probability that the device detects a busy channel
state and proceeds to the next back-off process. Let PR

be the probability that the device successfully accesses the
channel but fails to transmit the packet. Denote by PS the
probability that the device successfully transmit the packet.
All the proceeding transition probabilities in the semi-Markov
model are

PB = P (j, i|j, i− 1) = P (0, 0|j,M)
= µ1 + (1− µ1)µ2, 0 ≤ i < M, 0 ≤ j ≤ N (4)

PR = P (j, 0|j − 1, i) = P (0, 0|N, i)
= (1− µ1)(1− µ2)(1− p), 0 ≤ i ≤M, 0 ≤ j < N

(5)
PS = P (0, 0|j, i)

= (1− µ1)(1− µ2)p, 0 ≤ i ≤M, 0 ≤ j ≤ N (6)

where p is the probability of the packet not acknowledged by
an ACK message.

The packet BSD at a given state conditioned on the next
transition state is derived from a uniform distribution deter-
mine by the back-off exponent BE_”. Let FSlk,Sji

(t) be the
probability function of the sojourn time in a given state Sji

with the next visiting state Slk, which is

FSlk,Sji(t) = P{Tn+1 − Tn ≤ t|Xn+1 = Slk, Xn = Sji}

=


0, t < 1

t−1
2BE_+i−1−1 , 1 ≤ t < 2BE_+i−1

1, t ≥ 2BE_+i−1

(7)

The PDF of FSlk,Sji(t) can be given as:
1) If system transits into state Slk at time T0, the PDF is

fSlk,0(t)dt = P{t < T0 < t + dt|X0 = Slk} (8)

2) If system transits into state Slk from state Sji at time
Tn, the PDF is

fSlk,Sji
(t)dt = P{t < Tn < t + dt|Xn

= Slk, Xn−1 = Sji} (9)

Denote by q the associate semi-Markov kernel.

q = qSlk,Sji
(t)

= lim
dt→0

P{Xn = Slk, t < Tn ≤ t + dt|Xn−1 = Sji}/dt

(10)
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where Slk, Sji ∈ E and t ≥ 0. Then, the probability that the
state Sji transits to state Slk during (t, t + dt) is qSlk,Sjidt +
o(dt), where dt→ 0 and o(dt) means the fact that probability
to have the transition in the time dt is negligible with respect to
qSlk,Sji

dt. Eq. 10 can be further extracted into the production
between the state transition probability and the sojourn time
PDF, which is

qSlk,Sji
dt + o(dt)

= P{Xn = Slk, t < Tn ≤ t + dt|Xn−1 = Sji}
= P{t < Tn ≤ t + dt|Xn = Slk, Xn−1 = Sji}
·P{Xn = Slk|Xn−1 = Sji}

= fSlk,Sji
(t)pSlk,Sji

dt + o(dt) (11)

where pSlk,Sji
is the transition probability from the state

Xn−1 = Sji to state Xn = Slk.
Let wSlk,Sji(t)dt be the probability entering state Slk during

(t, t + dt) conditioned on transiting from state Sji, where
Sji, Slk ∈ E, then (12), shown at the bottom of the next
page. If X0 = Sji, then leaving state Sji in interval (t, t+dt)
is either:
• The system never leaves state Sji before time t and

emerges for the first time at (t, t + dt), which is
wSji,Sji(t)dt = f0,Sji(t)dtδSji,Slk

.
• The system comes into state Slk during (t, t + dt)

conditioned on transiting from state Sef , where the
system stays for (t − τ, t − τ + dt) with the distri-
bution as fSlk,Sef

(τ)dτ . Hence, by accumulating all
medium transient states in this situation, we have∑

Sef∈E pSlk,Sef

∫ t

0
wSef ,Sji(t− τ)fSlk,Sef

(τ)dτdt.
In short, wSlk,Sji

(t) can be summarized as:

wSlk,Sji(t)dt = f0,Sji(t)dtδSji,Slk

+
∑

Sef∈E
pSlk,Sef

∫ t

0

wSef ,Sji
(t− τ)

× fSlk,Sef
(τ)dτdt (13)

The probability distributions of latency tail can be charac-
terized by the maximum latency extreme values (EV) within
a given time interval. The probability distribution of latency
EV is related to its FPP. Suppose the relation between Xn

and the corresponding τn is τn = T (Xn), where τn grows
with the increase of Xn according to the backoff algorithm
defined in IEEE standard 802.15.4. The EV probability is the
probability that Xn ≥ ξ, for a given ξ, such that τn ≥ T (ξ).
Thus, the maximum EV of the latency process T (Xn) is
M(t) = max

0≤n≤N
(Xn). The cumulative distribution function

of EVs is F (ξ, t|X0) = P{M(t) < ξ|X0 = Sji}. Denote
by T (ξ) = min

τn ̸=0
{τn|Xn = ξ} the first passage time, which

is the time required for transiting to state Xn = ξ for the
first time. Since F (ξ, t|X0) is the probability that Xn never
crosses ξ during time 0 ≤ T (Xn) ≤ t, it can be related to the
first passage time, which is F (ξ, t|X0) = P{T (ξ) > t|X0 =
Sji}. The relation between the probability distribution of the
extreme latency tail and the first passage time can be expressed
as P{M(t) < ξ|X0 = Sji} = 1 − P{T (ξ) < t|X0 = Sji}.
Thus, if P{T (ξ) < t|X0 = Sji} is minimized, P{M(t) <

ξ|X0 = Sji} is maximized correspondingly. The probability
density function of F (ξ, t|X0) deduces that P{ξ < M(t) <
ξ+dξ|X0 = Sji} = P{t < T (ξ) < t+dt|X0 = Sji}. Denote
by TSlk,Sji

(t) the average time required for the proposed
semi-Markov process transitioning from the initial state Sji

to state Slk for the first time, which corresponds to the FPT
when the packet is successfully transmitted.

T (ξ) ⇒ TSlk,Sji
(t)

= inf{u > 0 : X(t + u) = Slk|X(t) = Sji} ∀t ≥ 0
(14)

Let gSlk,Sji(t) be the PDF of TSlk,Sji(t), that is

gSlk,Sji
(t)dt = P

{
X(Tn) = Slk, X(Ti:i∈{n−1,...,1}) ̸= Slk,

× t < Tn ≤ t + dt|X(T0) = Sji

}
(15)

which can be defined as the subtraction between two parts.
The first part is the probability that after the nth time instant
Tn, the system comes into state Slk without any restriction,
conditioned on the transition from state Sji. The second part
is the multiplication between the probability that after the mth
time instant Tm, the system first comes to state Slk conditioned
on transiting from state Sji, and the probability that the system
comes to state Slk without any restriction conditioned on
transiting from state Slk. Thus, we have gSlk,Sji

(t)dt in Eq. 16,
shown at the bottom of the next page. The probability that the
system first comes to state Slk conditioned on transiting from
state Sji after the mth time instant Tm can be defined as
wSlk,Slk

(τ) which equals to P{Xn = Slk, τ < Tn − Tm <
τ + dτ |Xm = Slk}. Hence, based on Eq. 16, FPP can be
expressed as:

gSlk,Sji
(t) = wSlk,Sji

(t)−
n−1∑
m=1

Xm=Slk

∫ t

0

wSlk,Slk
(τ)

·gSlk,Sji
(t− τ)dτ (17)

Fig. 4 shows a case study of the simulation results of the
FPP to successfully send the packet conditioned on initiating
from each state in the proposed semi-Markov model. The FPP
is the maximum probability of a packet being successfully
transmitted in a given backoff sojourn duration. We evaluate
the FPP within dt based on the PDF of FPT. We set the
maximum limitation of maxBE_” to 3 and maxRetry_” to 3,
respectively. Fig. 4 shows that the packet can always wait for a
proper BSD (x-coordinate of each subfigure) thereby achieve
the maximum value of FPP. For example, the subfigure in the
top row and first column shows that, if the device initiates from
the state S00, the device can successfully transmit the packet
with the maximum probability after waiting for a proper BSD
(20ms). In addition, as shown in Fig. 4, if the device detects
a busy channel, the proper packet BSD for the maximum FPP
increases with the growth in BE_. Moreover, retransmission
has modest impact on the packet BSD corresponding to the
maximum FPP. Also note that, when the device continues
to detect a busy channel, the maximum FPP to successfully
transmit the packet decreases gradually.
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IV. PROBLEM FORMULATION

As shown in Fig. 4, the proper decision on the packet BSD,
t, can be obtained by maximizing the FPP in Eq. 17. In this
section, we first investigate the concavity property of Eq. 17.
Then, we formulate the problem of minimizing the average
packet sojourn time based on the accumulation of all the
determined BSD corresponding to the maximum FPP in each
transmission cycle.

Lemma 1: Function gSlk,Sji
(t) is concave if time t is in a

convex set.
Proof: Refer to Appendix A. □

We can conclude that there is always a t∗ satisfying t∗ ∈
argmax

t
gSlk,Sji

(t). Refer to gSlk,Sji
(t) as gn(t) the FPP at time

instant Tn. Denote by ĝn(t) the probability that at transmission
cycle n, the device detects an idle channel state, generates the
packet BSD corresponding to the maximum FPP, and then
sends the packet until the BSD is counted down to zero,
but unsuccessfully transmits the packets. Thus, ĝn(t) can be
expressed as
The average packet BSD at the nth transmission cycle is

n = 1, D1 = t1g1(t)
t1 ∈ argmax

t
g1(t), t1 < T

n > 1, Dn = t1ĝ1(t1) + t2ĝ1(t1)ĝ2(t2) + . . .

+ tn

n−1∏
i=1

ĝi(ti)gn(t)

tn∈{1,...,n} ∈ argmax
t

gn∈{1,...,n}(t),
∑

n

tn < T (19)

where we define that the accumulative summation of all the
historical packet BSD should be smaller than a pre-determined
time limitation T . Based on Eq. 19, our objective is to
minimize the average packet sojourn time, which can be
expressed as argmint

∑
n Dn. We provide quadratic penalty

function as the augment element to constrain the sum of all

the BSD. Please refer to Appendix B for more details. Then,
the objective function is

argmin
t

n∑
i=1

(1− gi(t) + Bitigi(ti) + (n− i)Ai)

+
ε

2
∥

n∑
i=1

ti − T∥2

s.t. Bi =
i−1∏
j=1

ĝj(tj), Ai =
i∏

j=1

ĝj(tj)

ti∈{1,...,n} ∈ argmax
t

gi∈{1,...,n}(t),
n∑

i=1

ti < T

(20)

Lemma 2: Each BSD iteration are forced to keep away
from the proposed latency boundary if the positive penalty
coefficient ε is less than (1−Biti)∇2

titi
gi(ti)−2Bi∇ti

gi(ti).
Proof: Refer to Appendix B. □

Our objective is to find the optimal packet BSD for the
packet corresponding to the maximum FPP to successfully
transmit the packet in the current transmission cycle. In a
nutshell, first we determine the hidden channel state based on
the state with the maximum probability which is calculated
from the proposed channel detection method, and further
use the corresponding channel access probability as the state
transition probability in the proposed TSM. Then, considering
the FPP conditioned on beginning from the n-th transmission
cycle, we investigate the optimum packet BSD corresponding
to the maximum FPP. We assume that the packet sojourn time
should not exceed the delay restriction of the time-sensitive
industrial applications. We design a constrained objective
function based on the penalty method by taking the mean of
the packet sojourn time. Specifically, the proposed function is
composed of the original objective function plus one additional
barrier for the constraint, which is positive when the current
produced BSD make the overall packet sojourn time violate

wSlk,Sji(t)dt

= P{Xn = Slk, t < Tn ≤ t + dt|X0 = Sji}
= P{Xn = Slk, X{n−1,...,1} = Sji, t < Tn ≤ t + dt|X0 = Sji}

+
∑

Sef∈E

P{Xn = Slk, τ < Tn − Tn−1 ≤ τ + dτ |Xn−1 = Sef}︸ ︷︷ ︸
fSef ,Slk

(τ)dτpSef ,Slk

·P{Xn−1, t− τ < Tn−1 ≤ t− τ + dτ |X0 = Sji} (12)

gSlk,Sji
(t)dt = P{Xn = Slk, t < Tn < t + dt|X0 = Sji}

−
n−1∑
m=1

P{Xn = Slk, t− τ < Tn − Tm < t− τ + dt|Xm = Slk}

·P{Xm = Slk, Xn−1 ̸= Slk, · · · , X1 ̸= Slk, τ < Tm ≤ τ + dτ |X0 = Sji}︸ ︷︷ ︸
gSlk,Sji(t− τ)dτ

(16)
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Fig. 4. The FPP of a 4x4 TSM.

Fig. 5. Overview of the OTLT Scheme.

the delay constraint and zero otherwise. By multiplying a
positive coefficient to the penalty terms, we penalize constraint
violations more severely with a larger coefficient, thereby force
the minimizer of the penalty function to get closer to the
feasible region of the packet sojourn time.

V. OPTIMAL TRANSMISSION LATENCY TAMING SCHEME

As depicted in Fig. 5, the OTLT scheme consists of a
channel detection module and a packet BSD control mod-
ule. In the channel detection module, we investigate all of
the unknown parameters in the proposed HSMM using the
EM algorithm in Alg. 1, where the observations utilized to
correct these unknown parameters are collected from real-life
detection measurements in an industrial environment. Based
on the derived HSMM, we utilize Alg. 2 to estimate the hidden
channel state with the current detected observations and com-
pute the corresponding channel access probability ai(TN )dt.
In the packet BSD control module, considering the collision
avoidance procedure, the obtained channel access probability
is then utilized to build the TSM. The maximum FPP shown
in Eq. 17 is investigated in accordance with the proposed

Algorithm 1 Expectation Maximum Parameter Esti-
mation

Require: Observation set o = on=1:N ;
Hidden Channel States C = Cn=1:N ;
Time instants T = Tn=1:N ; Sojourn time

τ = τn=1:N−1 = {T2 − T1, . . . , TN−TN−1}
Ensure: πi;i∈E, fi,i∈E(t), aji;j,i∈E, fji;j,i∈E(t),

bj;j∈E(on;n=1:N ).
1: initiate: η = 0
2: for each i ∈ E do
3: πi ← 1

Size of E , fi,i∈E(t)←
∑N

n=1
{τn:Cn=i}

TN
,

bj(on)← ♯{on:Cn=j}
N

4: for each j ∈ E do
5: pji ← ♯{n:Cn+1=j|Cn=i}

N ,
fji(t)←

∑N
n=1

{τn:Cn+1=j|Cn=i}
TN

,
6: end for
7: end for
8: η ← η + 1
9: repeat

10: [πi, fi(di), aji, fji(t), bi(ot = j)]← Eq. 23-Eq. 27,
11: until Q

(
θ, θ(η+1)

)
−Q

(
θ, θ(η)

)
< ϵ

12: return πi;i∈E, fi,i∈E(t), aji;j,i∈E, fji;j,i∈E(t),
bj;j∈E(on;n=1:N ).

TSM. A cumulative summation of each BSD in consideration
of the quadratic penalty latency constraints is formulated to
calculate the gradient of the BSD control function dn and
the corresponding control scale αn. The BSD for the next
transmission cycle is renewed by tn+1

i = tni +αn+1
i dn+1

i . The
OTLT scheme counts down BSD to 0 and then returns to the
channel detection module re-estimate the hidden channel state
using Alg. 2. Alg. 3 explains the OTLT scheme in more detail.

A. Parameter Estimation in HSMM

The EM algorithm is a broadly applicable approach
to the iterative computation of maximum likelihood (ML)
estimation, useful in variety of incomplete data problems [27].
We introduce a complete data set {o,C,T} with o =
[o1, . . . , oN ]T , C = [C1, . . . , CN ]T , T = [T1, . . . , TN ]T , τ =
[τ1, . . . , τN−1]T = [T2 − T1, . . . , TN−TN−1]. The complete
data log-likelihood function can be easily expressed as
ln(Q(θ, θ′)) = ln

(∏
C

∏
τ P (o,X|θ)P (o1:N , C1:N |θ(η))

)
,

where θ is the estimation parameter set of[
πC0 , fC0(t), aCn+1,Cn

, fCn+1,Cn
(t), bCn

(on)
]T

, θ(η) is
the parameter set obtained from the ηth iteration. In θ, πC0

is the stationary probability at time instant T0 under the
state C0; fC0(t) is the PDF of sojourn time at the state C0;

ĝn(t) = P{X(Tn) ̸= Slk, X(Tn−1) ̸= Slk, · · · , X(T1) ̸= Slk, t < Tn ≤ t + dt|X(T0) = Sji}

=
∑

X(Tn) ̸=Slk

X(Tn)∈E

wSlk,Sji
(t)−

n−1∑
m=1

X(Tm)=Slk

∫ t

0

wSlk,Slk
(τ) · gSlk,Sji

(t− τ)dτ

 (18)
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aCn+1,Cn
is the transition probability from state Cn to state

Cn+1 during time duration Tn+1 − Tn; fCn+1,Cn(t) is the
PDF of sojourn time when transiting from state Cn to state
Cn+1; bCn

(on) is the emission probability from the hidden
state Cn to the observation on at time instant Tn. The idea
behind the EM criterion is to estimate θ iteratively in two
steps: an expectation (E)-step and a maximization (M)-step.
In the first step, ln(Q(θ, θ(η))) is taken with respect to
the conditional probability of the latent variables. In the
second step, the conditioned expectation is decomposed and
maximized with respect to the parameters of interest. The
two steps iterate until a predetermined convergence condition
is met. In the following, we explain the calculation flow and
present the EM algorithm in Alg. 1.

E-step: Considering the preceding expression (1), we have
the objective function as

ln Q(θ, θ(η)) =
∑
C∈E

∑
τ∈T

log
(

πC0fC0

N−1∏
n=1

aCnCn+1

·fCnCn+1(t− τn)bCn(on)
)

P (o,C|θ(η))

(21)

M-step: Derived from Eq. 21, we estimate the hidden
parameters by exploring the maximum problem on the (η)th
iteration:

argmax
θ

ln Q(θ, θ(η))

s.t.
∑

i

πi = 1,
∑

t

fji(t) = 1,

×
∑

i

aji = 1,
∑

j

bi(j) = 1 (22)

Solving Eq. 22, the stationary probability πC0 , the PDF of
sojourn time fC0(t), the transition probability aCn+1,Cn

of the
proposed HSMM, the PDF of sojourn time fCn+1,Cn

(t), and
the emission probability bXn

(on) can be calculated as
Considering Eq. 23 – Eq. 27, shown at the bottom of the

next page, the proposed EM parameter estimation algorithm
is summarized in Alg. 1. Alg. 2 shows the pseudocode of
the proposed forward algorithm method for hidden channel
state detection. Given the observation sequence, the embedded
Markov transition matrix, the sojourn time distribution of each
state and the emission transition probability of the observation,
when the packet BSD count down to zero, Alg. 2 outputs the
forward probability αCN

(TN ) and also the most likely hidden
channel state CN by calculating the maximum likelihood of
all the hidden states over the historical detection results. In this
way, by tracking the hidden state with the highest likelihood
in each step, the hidden channel state at time instant TN can
be discovered.

B. Packet BSD Control Gradient

Denote by di the control gradient and further suppose
zi−ti = di. We define a quadratic function of zi−ti with

Algorithm 2 Forward Algorithm-Based Hidden Chan-
nel Detection

Require: Observation set, o; Steady state probability, π;
Sojourn time distribution, f(t);

Steady state Sojourn time distribution, fπ(t);
Transition matrix, p; Emission transition

probability, b(o)
Ensure: Hidden channel state CN . Related probability

αCN
(TN )

1: for each state i ∈ H do
2: αi(T0)← bi(o(T0))πifπi

(t);
3: Ci ← 0;
4: end for
5: for each time step n ∈ {1, . . . , N} do
6: for each state Cn ∈ H do
7: αCn

(Tn)←
max
s∈H

bCn(on)ps,Cn−1

∫ Tn−Tn−1

0
αCn−1(Tm−1 +

τ)fs,Cn−1(τ)dτ ;
8: Cn ←

argmax
Cn∈H

bCn(on)ps,Cn−1

∫ Tn−Tn−1

0
αCn−1(Tn−1 +

τ)fs,Cn−1(τ)dτ ;
9: end for

10: end for
11: return [CN , αCN

(TN )]

the constrained of J̄ (ti, µ), which is defined in Eq. 44, as

min
zi

1

2
(zi − ti)

′H(zi − ti) + (zi − ti)∇ti J̄ (ti, µ) + J̄ (ti, µ)

s.t. (zi − ti)∇ti J̄ (ti, µ) ≤ 0

⇒ min
zi

1

2
(zi − ti)

′H(zi − ti) + (zi − ti)

(
∇tigi(ti)(Biti − 1)

+ Bigi(ti) + max
[
ε
( n∑

i=1

ti − T
)

+ µ, 0
]
εdi

)
s.t. (zi − ti)∇J̄ (ti, µ) ≤ 0 (28)

where H is a positive definite symmetric matrix, which can be
given as (0, 1)-matrices to simplify the calculation complexity.
Substituting Eq. 44 in Appendix B into Eq. 28 and taking
integrative with respect to z, we can obtain the BSD control
gradient as

0 = (zi − ti)H+
(
∇ti

gi(ti)(Biti − 1) + Bigi(ti)

+ max
[
ε
( n∑

i=1

ti − T
)

+ µ, 0
]
cdn

i

)
(29)

dn+1
i = zi − ti (30)

= −

(
∇ti

gi(ti)(Biti − 1) + Bigi(ti)
)
HT

HHT

−
max

[
ε
(∑n

i=1 ti − T
)

+ µ, 0
]
cdn

i HT

HHT
(31)
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C. Packet BSD Control Scale

Considering descent lemma, the difference between J̄ (tni +
αn

i dn+1
i , µ) and J̄ (tni , µ) is

J̄ (tni + αn
i dn+1

i , µ)− J̄ (tni , µ)

≤
∫ αn

i

0

dn+1
i ∇ti

J̄ (tni + αn
i dn+1

i , µ)dαn
i

+
∣∣∣∣ ∫ αn

i

0

dn+1
i

(
∇ti
J̄ (tni + αn

i dn+1
i , µ)

−∇ti
J̄ (tni , µ)dαn

i

∣∣∣∣
≤ αn

i ∇ti
J̄ (tni , µ)dn+1

i + ∥dn+1
i ∥

∫ αn
i

0

Ln
i αn

i ∥dn+1
i ∥dαn

i

= αn
i ∇ti

J̄ (tni , µ)dn+1
i +

1
2
αn

i Ln
i ∥dn+1

i ∥2 (32)

where dn is the changing direction of the packet BSD at the
nth transmission cycle, Ln is some scalar which satisfies

Ln
i ≥
J̄ (tni + αn

i dn+1
i , µ)− J̄ (tni , µ)

αn
i ∥d

n+1
i ∥

(33)

Taking derivative of Eq. 32 with respect to αn, we have the
optimal step size, ᾱ, based on descent direction dn, that is

min
αn

i

αn
i ∇ti

J̄ (tni , µ)dn+1
i +

1
2
αn

i Ln
i ∥dn+1

i ∥2

s.t. αn
i ≥ 0 (34)

Solving Eq. 34, we obtain

αn+1
i

=
∣∣(V+max

[
ε
(∑n

i=1 ti−T
)
+µ,0

])
dn+1

i

∣∣
Ln

i ∥d
n+1
i ∥2 (35)

where V = ∇tigi(ti)(Biti−1)+Bigi(ti). Combining Eq. 31
and Eq. 35, we have

tn+1
i = tni + αn+1

i dn+1
i (36)

Alg. 3 shows the overall scheme to obtain the optimal
back-off time for the next transmission cycle. Given the
distribution of the FPT, gi(t), its inverse, ĝi(t), and a positive
definite symmetric matrix, the algorithm outputs the best
packet BSD, tn+1

i . Step 12 in Alg. 3 wraps up the objective

Algorithm 3 Optimal Transmission Latency Taming

Require: Positive Definite Symmetric Matrix ≜ H;
First Passage Time Distribution ≜ gi(t);

Ensure: The Optimal Packet BSD tn+1
i

1: n← 0, αn ← vec[0]1:n, dn ← vec[0]1:n,
µn ← vec[1]1:n, ε← 100,

2: Randomly Initial t0i ← rnd[1, 2BE_ − 1]
3: Initial CSMA/CA
4: [Channel, Transition_Probability] ← Alg. 2
5: if Channel == Idle then
6: TX == ON
7: else
8: repeat
9: J (t, z, µ)← Eq. 44

10: dn+1
i ← Eq. 31, αn+1

i ← Eq. 35
11: tn+1

i ← Eq. 36, µk+1 ← Eq. 45
12: Initial CSMA/CA
13: if Channel == Idle then
14: TX == ON
15: else
16: CONTINUE
17: end if
18: until n > maxMacCSMABack-off
19: end if
20: return tn+1

i

function with the average packet sojourn time in Eq. 40 and
the quadratic delay barrier in Eq. 46 which is used to limit
the transmission delay. Then, the optimal control gradient
in the current transmission cycle is calculated based on the
objective function. The optimal control scale is obtained in
Step 14, which can yield a delay reduction along the control
gradient. Note that the average packet sojourn time is renewed
in each transmission cycle. To tame the distribution tail of the
packet sojourn time, the proposed OTLT scheme investigates
the best BSD control gradient and the corresponding scale on
the current channel access probability and the FPP distribution
of packet BSD. Therefore, the packet sojourn time can be
limited within a determined delay bound.

πi =
P (o, C0 = i|θ(η))

P (o|θ(η))
(23)

fC0(de) =
P (o, C0 = e, τ0 = de|θ(η))

P (o, C0 = i|θ(η))
, (24)

aji =
∑N−1

n=1 P (o, Cn+1 = i, Cn = j|θ(η))∑N−1
n=1 P (o, Cn = i|θ(η))

(25)

fji(t) =
∑N

n=1 P (o, Cn+1 = j, Cn = i, τ < Tn+1 − Tn < τ + dτ |θ(η))∑N
n=1

∑
τ∈T P (o, Cn+1 = j, Cn = i, τ < Tn+1 − Tn < τ + dτ |θ(η))

(26)

bi(ot = j) =

∑N
n=1

(∑
τ∈T P (o, Cn = i, τ < Tn+1 − Tn < τ + dτ |θ(η))δotj

)
∑N

n=1

∑
τ∈T P (o, Cn = i, τ < Tn+1 − Tn < τ + dτ |θ(η))

(27)
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D. Discussion

The produced tail taming problem is solved by introducing
the multiplier method, where the quadratic penalty term is
added to the Lagrangian function of the objective function.
We show that when the penalty function is of quadratic, the
sequence of objective function outcomes generated by the
multiplier method converges to the finest quality point at a
linear rate proportional to the number of iterations as the
number of iterations increases. It implies that the multiplier
method can significantly reduce the computation time. The
proving steps are as follows.

We simplify Eq. 40 and Eq. 45, which results in tk+1 =
argmint{g(tk) − (µk)T (Qtk − p) + εk

2 ∥Qtk − p∥2} and
µk+1 = µk − εk(Qtk+1 − p), where Q and p are matrix
penalty parameter of the proposed penalty function, k is the
k-th iteration of the proposed penalty method. Note that the
Lagrange function of the problem is G(t, µ) = g(t)−µT (Qt−
p). A pair (t, µ) ∈ T × ℜm is dual feasible if and only if
(t′ − t)T (▽g(t) − QT µ + QT ε(Qt − p)) ≥ 0,∀t′ ∈ T . Set
t = tk+1 and substitute µk+1 = µk − εk(Qtk+1 − p) into the
above variational inequality, we have (t′−t)T (▽g(t)−QT µ+
QT ε(Qt − p)) = (t′ − tk+1)T (▽g(tk+1) − QT µk+1) ≥ 0,
where ∀t ∈ T . Using the convexity of function g(t) we obtain

G(tk+1, µk+1)− G(t, µ)
≥ µT Q(tk+1 − t) + µt(Qt− p)− (µk+1)T (tk+1 − t)
= ∥µk − µk+1∥2(εk)−1 + (µ− µk)T (εk)−1(µk − µk+1)

(37)

By setting (t, µ) = (t∗, µ∗), in which (t∗, µ∗) is dual feasible
solutions, Eq. 37 can be turned into (µk − µ∗)T (εk)−1(µk −
µk+1) ≥ ∥µk−µk+1∥2(εk)−1 +(G(t∗, µ∗)−G(tk+1, µk+1)).
Using the above inequality, the sequence {G(t∗, µ∗) −
G(tk+1, µk+1)}, which can be used to explain the rationale
of estimating the convergence rate of the proposed quadratic
penalty function method, has the features like ∥µk+1 −
µ∗∥2(εk)−1 ≤ ∥(µk−µ∗)∥2(εk)−1−∥(µk−µk+1)∥2(εk)−1−
2(G(t∗, µ∗) − G(tk+1, µk+1)). Using the fact G(t∗, µ∗) −
G(tk+1, µk+1) ≥ 0 and summing this relation over j =
0, . . . , k − 1, we can have

2

k−1∑
j=0

G(tj+1, µj+1)− kG(t∗, µ∗)


≥ ∥(µk − µ∗)∥2(εk)−1 − ∥(µ0 − µ∗)∥2(ε0)−1

+
k−1∑
j=1

∥(µj − µj+1)∥2(εj)−1 (38)

Considering Eq. 42, let k = j, (t, µ) = (tj , µj), we have
2jG(tj+1, µj+1) − G(tj , µj) ≥ 2j∥(µj − µj+1)∥2(εj)−1.
Summing Eq. 44 over j = 0, . . . , k − 1, we can deduce

2
∑k−1

j=1

[
jG(tj+1, µj+1)− jG(tj , µj)

]
into Eq. 39, shown at

the bottom of the next page.
Specifically, Eq. 39 show that the sequence of function value

{G(tk, µk)} converges to the optimal value G(t∗, µ∗) at a rate
of convergence that is no worse than O(1/k).

VI. PERFORMANCE EVALUATION

In this section, the proposed OTLT scheme is evaluated
by comparing with other back-off control schemes. These
schemes include: 1) a predefined back-off scheme in which
the packet back-off duration in each transmission cycle is
predefined as a constant value; 2) IEEE 802.15.4 MAC scheme
in which the packet BSD is randomly selected from a uniform
distribution. We use OMNET++ to evaluate the OTLT scheme.
Specifically, we use the average packet sojourn time and
deadline-miss ratio (DMR) to evaluate the performance of the
proposed OTLT scheme. We define the DMR as the proportion
of packets that do not arrive on time to the total number
of packets [28]. The devices are uniformly deployed in a
100×100m area. The IIoT network is built on a star topology
with all IIoT devices linked to a single central AP. The initial
transmission power of each IIoT device is 0 dB. We evaluate
and compare the proposed scheme to the two preceding
schemes by changing the interference effects, the number of
IIoT devices and the pre-defined packet transmission deadline.

As shown in Fig. 6, the channel model is defined as
the sum of the power gains reflected from different scat-
ters in the industrial environment. Considering the properties
of time-varying and mulitpath propagation, we express the
channel model as h(t) =

∑M
m=0 αm(t) · δ(t − τm(t)) ·

ej(2πfmt−ϕm(t))+J(t), where τm(t) is the delay caused by the
m-th scatter at time t, αm is the power gain factor from the
m-th scatter, ϕm(t) is the phase shift caused by the vibration
of the m-th scatter and fm is the corresponding Doppler
shift, J(t) is the summation of the noise and interference
effects [15], [29]. We develop a two-state Markov model to
simulate the noise and interference effects, which is defined
as J(t) = b(t)Jg(t) + (1− b(t))Jb(t), where b(t) is a random
variable with state space {0, 1}. Let Jg(t) =

√
2ejt be a

good channel state in which the device can correctly detect
the channel state. Let Jb(t) =

∑N
n=0

√
2βnejϕn(t) +n(t) be a

bad channel state where the channel is distorted by interference
signals from other wireless systems operating on the similar
frequency band, where

∑N
n=0

√
2βnejϕn(t) is the summation

of N interference signals, βn is the n-th interference power,
ϕn(t) is the corresponding phase shift at time t, n(t) is
the noise following Gaussian distribution with zero mean.
The transition probability of the two-state Markov process is
pi,j = P{b(t+1) = i|b(t) = j}, for i, j ∈ {0, 1}. Fig. 7 shows
the channel fading process produced by the simulator, where
the average fading duration of the channel fading induced
by the impulse noise does not exceed 1 second. Fig. 7 also
shows the results of the number of level crossing (LCN) per
0.1 second and the average duration of fading (AFD) per
second. See [30] for details on the channel modelling. The
details of simulation settings can be found in Table I. The path-
loss exponent and shadowing variance parameters are obtained
from real-life measurements in an industrial environments.

Fig. 8 shows the PDF of the packet sojourn time for
different schemes. It can be seen that, in contrast to the
determined time and random exponential scheme, the proposed
OTLT scheme can successfully deliver most packets within
10 ms and confine the packet sojourn time to a specific time
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Fig. 6. Time-delay wireless channel model.

Fig. 7. Simulator Results labelled AFD and LCN.

boundary. This indicates that by managing the packet BSD
in each transmission cycle and considering the corresponding
maximum FPP, the distribution tail of the packet sojourn
time can be controlled. In particular, the proposed TSM can
combine each of the determined packet BSDs together in a
way that characterize the entire feature of the packet sojourn
time. Fig. 9 shows that the proposed OTLT scheme can reduce
the packet sojourn time when compared to other schemes.
Rather than acquiring a back-off duration in the other schemes,
we attempt to minimize the objective function in order to
obtain the optimal gradient and scale for controlling the packet

TABLE I
SIMULATION SETTINGS

BSD while meeting the delay requirement. In addition, Fig. 9
shows that the OTLT scheme can also maintain the packet
sojourn time within a stringent delay limitation. The reason is
that, considering Eq. 19, the packet BSD is generated within
the range of [0, argmaxgn(t)] to minimize the packet sojourn
time while maximizing the transmission FPP. As a result, the
proposed OTLT scheme can always meet the packet’s latency
stability criteria.

If the pre-configured packet deadline is gradually changed,
as shown in Fig. 10, the OTLT scheme can still confine the
packet sojourn time within the quantifiable delay limitation
and variance requirements compared to other schemes. The
number of devices, the probability to detect an interference

2
k−1∑
j=1

[
jG(tj+1, µj+1)− jG(tj , µj)

]
≥ 2

k−1∑
j=1

2j∥(µj − µj+1)∥2(εj)−1

⇒ 2
[
kG(tk, µk)− G(tj , µj)−

k−1∑
j=1

G(tj+1, µj+1)
]
≥ 2

k−1∑
j=1

2j∥(µj − µj+1)∥2(εj)−1

⇒ 2k

[
G(tk, µk)− G(t∗, µ∗)

]
≥ ∥(µk − µ∗)∥2(εk)−1 − ∥(µ0 − µ∗)∥2(ε0)−1 +

k−1∑
j=0

(2j + 1)∥(µj − µj+1)∥2(εj)−1

⇒ G(t∗, µ∗)− G(tk, µk) ≤
(
∥(µ0 − µ∗)∥2(ε0)−1 − ∥(µk − µ∗)∥2(εk)−1 −

k−1∑
j=0

(2j + 1)∥(µj − µj+1)∥2(εj)−1

)
/(2k)

⇒ G(t∗, µ∗)− G(tk, µk) ≤ ∥(µ
0 − µ∗)∥2(ε0)−1

2k
(39)
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Fig. 8. PDF of packet sojourn time.

Fig. 9. Average packet sojourn time of different schemes.

and the pre-configured packet deadline in Fig. 10 are set
as 10, 0.2 and 90 ms, respectively. The underlying reason
is when the packet deadline is increased, the limitation of
the total time constraint in Eq. 27 is also increased. Since
the solution space is enlarged, it is necessary to generate the
packet BSD along the control gradient of Eq. 27 in a larger
control scale for the next transmission cycle. Fig. 11 shows
the average packet sojourn time when the constraint of the
packet transmission deadline is gradually increased. It can be
seen that, when the deadline is extended, the average packet
sojourn time of both the proposed OTLT scheme and the
random exponential scheme increases, but the performance of
the predefined back-off scheme does not change much. The
reason is that the packet BSD derived from the OTLT scheme
is calculated based on the quadratic barrier method with the
deadline constraint. When the constraint space is expanded, the
range of the available back-off result is also increased, which
leads to an increase in the average packet sojourn time. When

Fig. 10. PDF of packet sojourn time, deadline = 90 ms.

Fig. 11. Average packet sojourn time vs deadline.

the IIoT network employs the predefined back-off scheme, the
time slot for each device to access the channel is assigned
at the beginning of packet transmission. Thus, the average
packet sojourn time with predefined back-off scheme remains
unchanged when increasing the packet transmission deadline.

In Fig. 12, when the probability to detect a BUSY chan-
nel increases, the OTLT scheme performs better than other
schemes in terms of latency. The reason is, at first, the OTLT
scheme can detect the hidden channel state by the forward
learning algorithm in Alg. 2. The learning method in the
OTLT scheme can increase the detection accuracy. Then,
according to the exact channel state and the corresponding
access probability, the proposed TSM can generate a much
proper value of the packet BSD through minimizing the packet
sojourn time. Fig. 13 shows that the packet sojourn time
increases as the number of devices increases. The busier the
network becomes, the more collisions there will be, especially
in an industrial environment. It also shows that the proposed
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Fig. 12. Average packet sojourn time vs interference effect.

Fig. 13. Average packet sojourn time vs number of devices.

OTLT scheme outperforms the other schemes. The reason is
twofold. First, the fact that an IIoT device detects the channel
as free and wants to transmit does not mean the channel is
free around the receiver area. Through establishing the relation
between the average duration and the transition probability
among different hidden channel states, the OTLT scheme can
proactively avoid the collision. Second, the OTLT scheme
determines the packet sojourn time according to not only the
limited latency constraints but also the maximum probability
to successfully transmit the packet. Even when the device fails
to access the channel, OTLT scheme can renew the objective
function based on the preceding obtained packet BSD and
search the new BSD results in the updated feasible region of
the packet sojourn time by considering the penalty method.

As shown in Fig. 14, the DMR values of different schemes
are compared in terms of the packet deadline. The DMR
decreases with the increase in the pre-defined deadline. Com-
pared with the benchmarks, the performance gain achieved by

Fig. 14. DMR vs different deadline.

Fig. 15. DMR vs number of devices, deadline = 200ms.

the proposed OTLT scheme becomes obvious when shortening
the deadline. Fig. 15 shows that the DMR increases with the
increment of the devices. Two important observations can be
drawn from the simulation results. First, when the number of
devices is less than 40, the proposed OTLT scheme can 100%
meet the packet transmission deadline. The random exponen-
tial schemes also present acceptable delay performance on
meeting the deadline. Second, when the number of devices
exceeds 40, the DMR of the conventional schemes increase
significantly when compared to the OTLT scheme. One reason
is that the OTLT scheme improves the successful channel
access probability of IIoT devices. On the other hand, the
deadline constraint of Eq. 20 is renewed in each transmission
cycle, which refreshes the objective function in Eq. 40 and
allows the OTLT scheme to keep track of the remaining
time for packet transmission. As a result, regardless of the
increasing number of devices, the OTLT scheme can always
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generate the proper packet BSD to meet the transmission
deadline.

VII. CONCLUSION

In this paper, we have proposed a hidden channel
learning-based latency taming scheme, called OTLT, in IIoT.
In particular, we have developed an HSMM to increase the
channel detection accuracy and proposed a TSM to charac-
terize the distribution tail of the packet sojourn time so that
the proper packet BSD can be generated in each transmis-
sion cycle while adhering to a pre-defined latency limitation.
Simulation results have demonstrated that the distribution tail
of the packet sojourn time can be tamed through investi-
gating the average cumulative summation of all historical
packet BSDs and the corresponding FPP. We expect this
work can further promote research interests in tail taming
of latency distribution, whose importance will be adamant in
IIoT networks with the slew of unforeseen applications. Due
to the stringent requirements of new industrial applications,
the concepts of next-generation IIoT networks have shifted
from reactive and centralized network towards proactive, large
scale and fine-grained metrics like the delay distribution and
probability bounds. Achieving one performance requirement
is no longer an option but a necessity. Moreover, it becomes
increasingly important to take into account several different
requirements at the same time. For the future work, we are
going to investigate the tradeoff between the network scale
and the stringent latency distribution tail.

APPENDIX A
PROOF OF LEMMA 1

The sojourn time of each state follows a uniform distribu-
tion. Suppose fij(t) equals A, when t ∈ C; and equals 0,
otherwise. If C is a convex set, x, y ∈ C, and 0 ≤ t ≤ 1, we
have tx + (1 − t)y ∈ C. Hence, fij(x) = fij(y) = fij [tx +
(1−t)y] = A, which yields that fij [tx+(1−t)y] ≥ tfij(x)+
(1− t)fij(y). When x or y is not in C, we have fij(x) = 0 or
fij(y) = 0, which also yields that fij [tx+(1−t)y] ≥ tfij(x)+
(1 − t)fij(y). Therefore, we can see that the sojourn time
distribution in Fig. 3 follows concavity property. When n = 1,
wSlk,Sji

= pSlk,Sji
fSlk,Sji

(t). Since pSlk,Sji
is a positive con-

stant value and fSlk,Sji(t) follows concavity property, wSlk,Sji

also follows concavity property. If fSlk,Sji(t) and wSlk,Sji is
concave, the convolution,

∫ t

0
wSlk,Sji

fSlk,Sji
(t− τ)dτ , is also

concave [31]. Since a nonnegative weighted sum of concave
function is concave [31], after n iteration, we obtain that
wSlk,Sji

keeps its concavity property. As shown in Eq. 17,
it can be easily seen that, the subset of wSlk,Sji

, gSlk,Sji
(t)

also follows a concave property.

APPENDIX B
PROOF OF LEMMA 2

We use a quadratic penalty term to prevent feasible iterates
from moving too close to the limitation of packet BSD in
each device. A constant, ε, is multiplied by the suggested
quadratic penalty function to determine the penalty severity for
breaching the constraint. Then, we add the quadratic penalty

term to the Lagrangian function of the objective function.
The sequence of objective function outcomes generated by the
multiplier method converges to the optimum result at a linear
rate proportional to the number of iterations. It implies that
the multiplier method can significantly reduce the computation
time. Convert Eq. 20 to equality constrained problem

argmin
t

n∑
i=1

(1− gi(t) + Bitigi(ti) + (n− i)Ai)

+
ε

2
∥

n∑
i=1

ti − T + z2∥2

s.t. Bi =
i−1∏
j=1

ĝj(tj), Ai =
i∏

j=1

ĝj(tj)

ti∈{1,...,n} ∈ argmax
t

gi∈{1,...,n}(t),

n∑
i=1

ti−T + z2 = 0 (40)

where z is additional variable. We use u instead of z2 and
minimize the unconstrained minimizations of Eq. 40 with
respect to z as

J̄ (t, µ) = min
u
J (t, u, µ)

=
n∑

i=1

(1− gi(t) + Bitigi(ti) + (n− i)Ai)

+ min
u≥0

{
µ

[
n∑

i=1

ti − T + u

]

+
ε

2
∥

n∑
i=1

ti − T + u∥2
}

(41)

The constrained minimum of Eq. 41 is u∗ = max{0, û}, where
û is the unconstrained minimum with the derivative of 0.

0 = ∇uJ (t, u, µ) = µ + ε(
n∑

i=1

ti − T + u)

⇒ û = −µ

ε
−

(
n∑

i=1

ti − T

)
(42)

Thus, we have

u∗ = max{0,−µ

ε
−

(
n∑

i=1

ti − T

)
}

⇔ −µ

ε
−

(
n∑

i=1

ti − T

)
+ u∗ = max{

n∑
i=1

ti − T,−µ

ε
}

(43)

Substituting (43) into (41), we obtain

J̄ (t, µ) =
n∑

i=1

(1− gi(t) + Bitigi(ti) + (n− i)Ai)

+
1
2ε

{[
max(ε

(
n∑

i=1

ti − T

)
+ µ, 0)

]2 − µ2

}
(44)
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Taking derivatives of Eq. 44 with respect to µ, the Lagrange
multiplier µ∗ can be updated as

µk+1 = µk + max(εk

(
n∑

i=1

ti − T

)
,−µk) (45)

Thus, if εk is less than (1− Biti)∇2
titi

gi(ti)− 2Bi∇ti
gi(ti)

in accordance with ∇2
titi
J̄ (t, µ) > 0, the penalty function can

force the BSD to remain away from the latency boundary and
can be expressed as

1
2ε

[
max(ε

(
n∑

i=1

ti − T

)
+ µ, 0)

]2
− 1

2ε
µ2 (46)

From Eq. 46, if the summation of all past BSD of the
packet

∑n
i=1 ti is smaller than T − µ

ε , no extra punishment is
provided. In each transmission cycle, ti should be initialized
based on the value of T − µ

ε . When
∑n

i=1 ti is larger than
T , Eq. 46 gives a large punishment to Eq. 44 with iteratively
difference between

∑n
i=1 ti and T .
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