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Abstract—In this article, we present a novel content caching and
delivery approach for mobile virtual reality (VR) video streaming.
The proposed approach aims to maximize VR video streaming
performance, i.e., minimizing video frame missing rate, by proac-
tively caching popular VR video chunks and adaptively scheduling
computing resources at an edge server based on user and network
dynamics. First, we design a scalable content placement scheme for
deciding which video chunks to cache at the edge server based on
tradeoffs between computing and caching resource consumption.
Second, we propose a machine learning-assisted VR video delivery
scheme, which allocates computing resources at the edge server
to satisfy video delivery requests from multiple VR headsets. A
Whittle index-based method is adopted to reduce the video frame
missing rate by identifying network and user dynamics with low
signaling overhead. Simulation results demonstrate that the pro-
posed approach can significantly improve VR video streaming
performance over conventional caching and computing resource
scheduling strategies.

Index Terms—Virtual reality, deep reinforcement learning,
caching, content delivery, resource scheduling.

I. INTRODUCTION

A S a promising use case in sixth-generation (6G) communi-
cation networks, mobile virtual reality (VR) is anticipated

to reshape the way people study, work, and entertain via the dig-
ital transformation of the physical world [1]. A myriad of novel
applications can be enabled by mobile VR, such as immersive
gaming, telesurgery, metaverses, etc. [2]. With mobile VR, users
can watch 360° stereoscopic videos through VR headsets and
access the digital world with a fully immersive experience.

Delivering VR videos to mobile VR headsets in real time can
be challenging. VR videos are characterized by their ultra-high
resolutions (up to 11520 × 6480 pixels for panoramic videos),
while conventional videos typically have a resolution of 4K or
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less [3]. From a communication perspective, VR video streaming
consumes considerable bandwidth on both backhaul and wire-
less links for delivering high-resolution videos to VR headsets.
In addition, VR headsets play 360° stereoscopic videos, i.e., two
different videos for the left and right eyes, respectively, creating
the perception of depth that people experience in the real world.
To reduce storage resource usage, monoscopic videos, which
consist of flat two-dimensional equirectangular video frames,
can be stored at the cloud server and projected into stereoscopic
videos in content delivery [4]. Extensive VR video processing
requires powerful computing capabilities, and computing capa-
bilities in VR headsets are usually insufficient for low-latency
video processing [5].

The aforementioned challenges in VR video delivery can
be addressed using two main approaches: tile-based content
delivery and mobile edge computing. First, in tile-based content
delivery, VR videos are divided spatio-temparlly into small
video chunks (VCs). Only the VCs that cover the user’s current
viewing area, i.e., the field of view (FoV), are sent to and played
on the VR headset [6]. Such a tile-based solution can signifi-
cantly reduce the data sizes of videos to be downloaded from
the cloud server while satisfying users’ requests. Second, mobile
edge computing (MEC), as an innovation in the fifth-generation
(5G) networks, leverages storage and computing resources at
access points near VR headsets to reduce content delivery delay.
Edge servers are located at access points to cache popular VCs
and project monoscopic VCs (MVCs) into stereoscopic VCs
(SVCs) for resource-limited VR headsets [7]. While MEC and
tile-based content delivery make VR video streaming possible,
the following questions need to be answered:
� Given limited storage space, which VCs should be cached

at an edge server?
� How should computing resources at the edge server be

scheduled to meet video delivery requests from multiple
VR headsets?

Addressing the first question necessities the effective selec-
tion of VCs cached at an edge server, referred to as content
placement. Determining the optimal caching solution can be
complicated [8]. The edge server can cache MVCs, which
have smaller data sizes than the corresponding SVCs covering
the same spatial area, to reduce caching resource usage given
limited cache size. Alternatively, the edge server can cache
SVCs, which are processed VCs and ready to send to VR
headsets, to reduce video processing time in content delivery [9].
Furthermore, spatio-temporally partitioning a short video can
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produce a large number of VCs. These VCs may be spatially
overlapped and stitched together to produce the video covering a
user’s FoV [6]. The vast number of potential caching options and
coupling among VCs complicate content placement at the edge
server.

Regarding the second question, managing limited computing
resources for satisfying multiple content delivery requests is
non-trivial due to the dynamics in VR video streaming. Mil-
limeter wave (mmWave) communications are widely adopted
to enable high-speed VR content delivery in many research
works [10]. However, physical obstacles in the propagation
environment, including the user’s body, can disrupt communi-
cation links, resulting in a time-varying transmission rate. In
addition, proactive content delivery can facilitate smooth VR
video streaming by requesting and downloading VCs in advance
based on predicted user viewing trajectories [11]. The spatial
area in a video displayed to a user changes over time as the
user’s head orientation changes, and the viewing trajectories can
be different for different videos depending on the content (e.g.,
sports or movies) and for different users due to the user viewing
preference. The dynamic of user viewing trajectories introduces
additional uncertainty in computing resource management at
the edge server [12]. Allocating computing and communication
resources for satisfying VR content delivery requests based on
inaccurate viewing trajectory predictions may degrade resource
utilization and result in a poor VR video streaming experience
for all nearby VR headsets sharing the resources.

In this article, we study content caching and delivery for mo-
bile VR video streaming. The research objective is to optimize
VR video streaming performance, i.e., reducing the frame miss-
ing rate, for multiple VR users given limited communication,
caching, and computing resources. First, we propose a content
placement scheme to determine the optimal caching solution,
given a content delivery delay threshold, channel quality and
processing rate statistics, and VC data sizes. The proposed
heuristic scheme uses a distributed optimization technique, i.e.,
alternating direction method of multipliers (ADMM), to facil-
itate parallel content placement. Using the caching solution,
we propose a machine learning-based scheduling scheme to
allocate limited computing resources at the edge server to reduce
the frame missing rate in satisfying content delivery requests
generated by multiple VR headsets. Finally, we study adaptive
video quality adjustment to maximize the cached video quality at
the edge server. This study covers the main aspects of VR video
streaming, and our contributions are summarized as follows:
� We develop a caching placement and computing re-

source management approach to effectively improve video
streaming performance for mobile VR.

� We propose a content placement scheme for caching VCs
by trading off caching resource utilization and content
delivery delay. The proposed scheme is proven to achieve
a near-optimal caching solution.

� We propose a deep reinforcement learning (DRL)-based
content delivery scheduling scheme for computing re-
source management. The scheme minimizes the frame
missing rate in video streaming by adapting to network
and user dynamics in a distributed manner.

The remainder of this article is organized as follows. Section II
introduces related works. In Sections III and IV, we present
the system model and problem formulation, respectively. In
Sections V and VI, we propose content caching and content
delivery scheduling schemes, respectively. We then discuss
adaptive video quality adjustment in Section VI. Simulation
results are presented in Section VII. Section VIII concludes this
study.

II. RELATED WORKS

MEC can reduce content delivery and processing delay in VR
video streaming by providing storage and computing capabili-
ties near mobile VR headsets. An edge server can cache both
MVCs and SVCs. A caching solution was evaluated in [9] to
minimize average content delivery delay based on the tradeoffs
among communication, computing, and caching resource usage.
A similar problem was investigated in [13] considering caching
capabilities at VR headsets. A mixed-integer problem was for-
mulated and solved to determine whether and where to cache
MVCs and SVCs. Additionally, some works take into account
the correlations among VCs in order to reduce resource usage
in caching and delivering videos covering users’ FoVs, and the
correlations vary depending on the granularity of partitioning a
VR video. When a VR video is spatially partitioned into small
segments, multiple VCs need to be stitched together to generate
the video covering a user’s FoV. In such a case, a tile-based con-
tent placement solution was proposed in [14]. A Choquet integral
method was applied to identify the popularity of individual VCs
based on user viewing behavior statistics, and popular VCs were
cached at the edge server. The estimation of VC popularity was
also studied in [15] and [16] for caching popular and high-quality
VCs, while minimizing content delivery delay. When a video is
coarsely partitioned in the spatial dimension, a single VC can
cover a user’s FoV, whereas multiple VCs may cover overlapped
spatial areas. A study of content placement in such a case was
presented in [6], where a group of cached VCs are synthesized
to generate VCs that are not cached yet. The objective was
to minimize content delivery delay, while maximizing caching
resource utilization by properly selecting VCs to cache. From
the existing works, VR content placement is a complex problem
with different types of VCs (different quality levels, monoscopic
or stereoscopic, etc.), and a scalable content placement solution
is necessary for effectively caching VCs given a large number
of potential caching options.

In addition to content placement, real-time content delivery
scheduling and computing resource management can further im-
prove video streaming performance by maximizing computing
resource utilization at the edge server. To prevent users from feel-
ing spatially disoriented and dizzy in VR video streaming, the
time difference between the user’s movement and corresponding
display at the VR headset, referred to as motion-to-photon
(MTP) delay, should be less than 20 ms [17]. In order to meet
this strict requirement, a VR headset can predict user viewpoints
based on historical viewpoint trajectories and request the VCs
proactively [18], [19]. As a result, the VR video streaming
experience depends on viewpoint prediction accuracy. In [20],
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Fig. 1. Network model.

the viewpoint prediction window was determined to maximize
users’ VR experience, and computing resource allocation was
jointly determined. Furthermore, machine learning algorithms
were adopted in [21] and [22] to determine computing resource
scheduling policies, given user viewpoint trajectories. In spite of
the research efforts, designing a lightweight scheduling scheme
remains an open issue when network dynamics and viewpoint
prediction uncertainty are taken into account [12].

III. SYSTEM MODEL

The considered VR video caching and delivery scenario is
shown in Fig. 1. An edge server, located at the access point,
connects and serves U mobile VR users. Each user has a VR
headset that plays 360° 3D stereoscopic VR videos at f̂ frames
per second (fps). We refer to the time interval between the play-
back of two adjacent frames as a time slot, and the length of a time
slot is δ = 1/f̂ . In each time slot, each VR headset predicts the
location of future user viewpoints, generates a content delivery
request for the VC to be played, and sends the request to the edge
server. Video processing, including stitching multiple VCs and
projecting 2D monoscopic videos to 3D stereoscopic videos, can
consume extensive computing resources and is conducted at the
edge server.

The edge server is equipped with E computing units, and
each computing unit can conduct video processing for only one
content delivery request at any time. Moreover, the edge server
has a cache with size C for storing popular VCs. For retrieving
VCs that are not cached, the edge server connects to the cloud
server via a wired link with data rate RB . When transmitting
the requested VC from the edge server to the corresponding
VR headset, a mmWave band is used with high-speed rate RH ,
and a sub-6 GHz band acts as a backup with low-speed rate
RL if the high-speed mmWave band is in outage [7]. We use a
two-stage Markov chain to model the data rate between the edge
server and a VR headset. The probabilities of the high-speed state
transiting from and to the low-speed state are denoted by pL and
pH , respectively. As a result, the average data rate from the edge
server to a VR headset is R̄E = (RL +RH)/(pL + pH).

A. VR Video Model

Tile-based content caching and delivery are considered. As
shown in Fig. 2, each VR video has two dimensions. In the spatial
dimension, a video can be divided into I tiles, and we denote the

Fig. 2. VR video model.

number of tiles needed to cover an FoV by Î . In the temporal
dimension, videos can be divided into J time segments with
a constant duration in seconds1 [23]. Accordingly, VR videos
are divided into VCs along both dimensions. In the temporal
dimension, the playback time of a VC is the duration of a time
segment.

In the spatial dimension, there are two types of VCs: MVCs
and SVCs. An MVC contains the monographic content of a spa-
tial tile. For MVCs, layered encoding is adopted to differentiate
the video quality [3]. There are two types of MVCs: layer-0
MVCs, which have a low resolution to satisfy the minimum
video quality requirement, and layer-1 MVCs, which can be
added on top of layer-0 MVCs for quality improvement. We
denote the sets of layer-0 and layer-1 MVCs for all VR videos by
T0 and T1, respectively. Tuple t = (i, j, y) represents the MVC
corresponding to the i-th tile, j-th time segment, and y-th layer,
where i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, and y ∈ {1, 0}.

There areX MVCs, including both layer-0 and layer-1 MVCs,
to be stitched and projected to an SVC, and the projection is
facilitated by using auxiliary files (e.g., depth map). SVCs are
delivered by the edge server to mobile VR headsets. To obtain the
SVC centering on tile i, X0 layer-0 MVCs and X −X0 layer-1
MVCs, corresponding to the tiles closest to tile i, are stitched
and projected. In the spatial dimension, the area covered by an
SVC depends on the parameter X0, which must be at least Î to
ensure that an SVC can fully cover the area of an FoV. The video
quality of an SVC can be enhanced by encoding a large portion
of layer-1 MVCs [24], [25]. On the other hand, a VR headset
can play the videos covering multiple FoVs when an SVC is
encoded with a large portion of layer-0 MVCs (corresponding
to a large X0), enabling the VR headset to adapt to frequent
viewpoint changes [26].

Denote the set of all SVCs by TS , and denote the sets of layer-
0 and layer-1 MVCs for generating SVC f by B(f,X0) and
E(f,X0), respectively, where B(f,X0) ⊆ T0 and E(f,X0) ⊆
T1. Since an SVC contains videos for both eyes, the overall data
size of all MVCs used to generate an SVC is smaller than the
data size of the SVC. Therefore, caching SVCs consumes more
cache spaces at the edge server but decreases video processing

1As time slots are measured in milliseconds (e.g., for a 60 fps video, a time
slot lasts 17 milliseconds), a time segment contains hundreds of time slots.
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Fig. 3. Content delivery process diagram.

delay when delivering SVCs to VR headsets. In the considered
scenario, the cloud server stores all MVCs, and the edge server
can cache some MVCs and SVCs to reduce content delivery
delay. The sets of MVCs and SVCs cached at the edge server
are denoted byM and S , respectively.

B. Content Delivery Model

The VR content delivery process diagram is illustrated in
Fig. 3. Each VR headset has a local buffer to store the down-
loaded SVCs. In each time slot, a VR headset tracks the user
viewpoint and plays the SVC covering the user’s FoV. Denote the
viewpoint of user u in time slot k by vu,k = (iu,k, ju,k), where
iu,k and ju,k represent the spatial tile at the center of user u’s
FoV in time slot k and the time segment of the video played by
the VR headset in time slot k, respectively. When an SVC covers
a larger area than an FoV, i.e., X0 > Î , multiple viewpoints can
be rendered by an SVC. Denote the set of viewpoints that can be
rendered by SVCf byRf . In time slotk, if SVCf in the buffer of
VR headset u can render the current viewpoint, i.e., vu,k ∈ Rf ,
the SVC is fetched and played by the VR headset. Otherwise, if
no SVC in the buffer can render the viewpoint, the VR headset
fails to play the correct video frame, and an frame missing event
occurs. In addition, to identify which SVC will be requested
proactively, in each time slot, each VR headset consecutively
predicts user viewpoints to be rendered after the current slot,
until it finds the next future viewpoint that cannot be rendered
by any SVCs in the current local buffer. Such a predicted
viewpoint is referred to as the desired viewpoint. Then, the VR
headset generates a VR content delivery request proactively for
obtaining the SVC to render the desired viewpoint. Denote the
predicted viewpoint of time slot k for VR headset u by v̂u,k.
The content delivery request from VR headset u in time slot k is
denoted by du,k = v̂u,k′ |k′>k, where k′ is the time slot to render
desired viewpoint v̂u,k′ . Since the historical information of the
past viewpoint trajectories is updated after each time slot, a VR
headset conducts predictions for future viewpoints in each time
slot. Only the prediction result obtained in the current time slot
is used to generate the content delivery request.

The edge server receives content delivery requests from multi-
ple VR headsets in each time slot. A scheduler at the edge server
identifies which request to respond first when a computing unit
is available. If a computing unit is allocated to a request, i.e.,
the request is scheduled, there are two possible scenarios for
fetching and processing the VCs to satisfy the request:

1) Case 1: The edge server caches an SVC that can satisfy
the request, i.e., {∃f |f ∈ S, du,k ∈ Rf}. In this case,
the SVC is fetched from the cache and delivered to the
corresponding VR headset2.

2) Case 2: No SVC cached on the edge server can satisfy
the request. In this case, the edge server fetches MVCs in
B(f,X0) and E(f,X0) from the cache or the cloud server,
processes the MVCs for generating SVC f , and delivers
SVC f to the corresponding VR headset.

Regardless of whether the request from a VR headset is sched-
uled or not, the VR headset tracks and predicts the viewpoints
in each time slot. If the viewpoint prediction result changes
before the request is scheduled, the VR headset sends an updated
content delivery request to the edge server, and the previously
unscheduled request becomes obsolete and discarded.

C. Delay Model

A content delivery delay is the duration from the instant that
a request is scheduled to the instant that the SVC rendering the
desired viewpoint is downloaded to the VR headset. The delay
includes three parts: the transmission delay for downloading
MVCs that are not cached from the cloud server to the edge
server, the computing delay for stitching and processing the
MVCs, and the transmission delay for downloading the SVC
from the edge server to the VR headset. When the request from
VR headset u in time slot k, i.e., request du,k, is scheduled, a
computing unit is allocated to process the request and obtain the
SVC. The delay for transmitting the SVC from the edge server
to the VR headset is

T E(du,k;R) = wS
fR
−1, du,k ∈ Rf (1)

where the value ofR can be eitherRL orRH . ParameterwS
f rep-

resents the data size of SVC f , which can be approximated by the
overall data size of MVCs in set C(f) = B(f,X0) ∪ E(f,X0).
Let wM

t denote the data size of MVC t. Then,

wS
f =

∑
t∈C(f)

αwM
t (2)

where parameter α represents the ratio of data size change from
MVCs to the corresponding SVC. If no cached SVC can satisfy
the request, i.e., Case 2 in Subsection III-B, the edge server needs
to generate SVC f from MVCs. Firstly, the MVCs not in the
cache are downloaded from the cloud server. The transmission
delay is

TB(du,k) =
∑

t∈{C(f)\{C(f)∩M}}
wM

t R
−1
B , du,k ∈ Rf . (3)

When all MVCs in set C(f) are available at the edge server, the
MVCs are stitched and projected to SVC f . The corresponding
computing delay is

TC(du,k) =
∑

t∈C(f)
wM

t χ
−1, du,k ∈ Rf (4)

2In Case 1, a computing unit is still needed to process the SVC to satisfy
the video requirements of the corresponding VR headset [27], whereas the
processing delay is negligible.
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where parameter χ denotes the time to process each data bit
in MVC stitching and monoscopic-to-stereoscopic projection.
Therefore, the overall delay of content delivery for request du,k
is

T (du,k) = TB(du,k) + TC(du,k) + T E(du,k, R). (5)

IV. PROBLEM FORMULATION

Our main objective is to minimize the frame-missing rate
when playing VR videos on multiple VR headsets. Achieving the
objective requires that the edge server efficiently caches VCs to
reduce the average content delivery delay and dynamically allo-
cate computing resources to individual content delivery requests
in real time. Therefore, we formulate two optimization problems
for caching content placement and content delivery scheduling,
respectively.

A. Content Placement

The objective of content placement is to maximize the proba-
bility that content delivery delay T (du,k) is lower than the delay
requirement H , i.e., P (T (du,k) < H), by selecting proper VCs
to cache. The corresponding problem can be formulated as:

max
{M,S}

∑
d∈V

p(d)P (T (d) < H) (6a)

s.t.
∑

t∈{M}
wM

t +
∑
f∈S

wS
f ≤ C, (6b)

M⊆ {T0 ∪ T1},S ⊆ TS (6c)

where set V denotes all possible viewpoints. In (6a), p(d) repre-
sents the probability that request d is generated by a VR headset.
Such probability can be obtained from historical viewpoint
popularity profiles, which reflect the average fraction of time
that a user viewpoint falls onto a specific tile in a specific time
segment [28]. The problem is a non-linear combinatorial opti-
mization problem since multiple viewpoints may be rendered
by an SVC. It is similar to the maximal coverage problem [29],
which is proved to be NP-hard. Furthermore, the number of VCs
is large, which makes the problem more complex. We propose
a two-stage solution for solving the content caching problem.
We first present a heuristic algorithm to solve (6) given a fixed
cache size. Then, we adopt an iterative optimization method to
enable parallel and scalable content placement.

B. Content Delivery

Due to limited computing resources, the scheduler at the edge
server should allocate the computing resource to satisfy content
delivery requests that can reduce the frame missing rate as much
as possible. We refer to the probability that an SVC in the buffer
matches the current viewpoint as the hit probability. A higher hit
probability means a lower frame missing rate at a VR headset.
Define scheduling variable au,k, where au,k = 1 if the request
from VR headset u is scheduled in time slot k, and au,k = 0
otherwise. The scheduling variables are determined to maximize
the hit probability, i.e., minimize the time-averaged number of
events where SVCs in the local buffers of VR headsets can

render the viewpoints of the corresponding users. The objective
function is

max
au,k,∀u,k

lim
K→∞

1

K
E

[
U∑

u=1

K∑
k=1

1[vu,k ∈ Uu,k(au,k−1)]
]

(7)

where Uu,k(au,k−1) denotes the set of viewpoints that can
be rendered by SVCs in VR headset u’s buffer in time slot
k. Such a set depends on the scheduling decisions au,k−1 =
[au,1, . . . , au,k−1]. Function 1[x] is equal to one if x is true and
zero otherwise. Due to the limited number of computing units,
we formulate a stochastic constraint:

lim
K→∞

1

K
E

[
U∑

u=1

K∑
k=1

au,k

]
≤ E × δ

T̄
(8)

where T̄ represents the average content delivery delay, i.e., T̄ =∑
d∈V p(d)T (d). The average number of time slots for delivering

an SVC is T̄ /δ. The constraint in (8) is a relaxed constraint
imposing that, on average, at most (E × δ)/T̄ computing units
can be scheduled in a time slot.

Several factors affect the scheduling decision. Generally, the
edge server should first schedule the request that needs to be
satisfied urgently. However, if the channel quality is poor or
receiving the SVC from the edge server takes a long time, the
VR headset may not receive the requested SVC on time. In
addition, high viewpoint movement dynamics pose a challenge
to accurate viewpoint prediction. As a result, downloaded SVCs
may not be played, resulting in a waste of computing and
communication resources. Both network and user viewpoint
movement dynamics should be taken into account in computing
resource management.

V. MOBILE VR CONTENT CACHING

In this section, we first propose a content placement scheme
to solve Problem (6) given the predefined video quality setting
X0, while taking into account the trade-offs among multiple
resources. Then, we extend the scheme for caching a large
number of VCs and solve Problem (6) in a parallel manner.

A. Content Placement Scheme

We first identify the properties of content placement for
different types of VCs. Let F =M∪S . Let function L(F)
represent the overall probability of delay requirement satisfac-
tion as follows:

L(F) =
∑

d∈R(F)
p(d)P (T (d) < H) (9)

where R(F) represents the set of viewpoints that can be
rendered by the VCs in set F , and R(F) = {∪f∈SRf} ∪
{∪f∈{f |C(f)⊆M}Rf}. The following lemmas can be obtained.

Lemma 1: If the edge server caches only SVCs, i.e., F =
S , the real-valued set function L(F) is a non-decreasing and
submodular function, i.e.,

L(S ∪ {f})− L(S) ≥ L(S′ ∪ {f})− L(S′) (10)
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Algorithm 1: Content Placement Scheme (Part 1).
% Placing MVCs to fill the cache

1: Initialize setM← ∅.
2: while w(M) ≤ C do
3: Find MVCs in set C(f ∗), f ∗ ∈ TS , where:

f ∗ = argmaxf l(C(f)|M).

4: if w(C(f ∗) ∪M) ≤ C then
5: M← C(f ∗) ∪M.
6: else
7: Break
8: end if
9: end while

10: Return setM.

where S ⊆ S′ ⊆ TS and f ∈ TS\S′.
Proof: See Appendix A. �
Lemma 2: If the edge server caches only MVCs, i.e., F =

M, the real-valued set function L(F) is a non-decreasing and
supermodular function, i.e.,

L(M∪ {t})− L(M) ≤ L(M′ ∪ {t})− L(M′) (11)

whereM⊆M′ ⊆ {T0 ∪ T1} and t ∈ {T0 ∪ T1}\M′.
Proof: See Appendix B. �
Problem (6) is a maximal coverage problem when only SVCs

are cached. A greedy algorithm can be applied to obtain a
near-optimal solution to the maximal coverage problem [29],
[30]. However, when caching both MVCs and SVCs, the sub-
modularity of function L(F) no longer holds. Therefore, we
design a heuristic algorithm to cache different types of VCs.
The main idea is to successively increase the value of L(F) by
updating the sets of VCs cached at the edge server, i.e.,M and
S . The proposed content placement algorithm has three parts, as
presented in Algorithms 1 to 3, respectively. The three parts aim
to trade off content delivery delay reduction, by caching SVCs,
and cache resource usage minimization, by caching MVCs. In
the algorithms, we introduce an index as a basis for placing the
VCs in the cache, which is defined by

l(C|F) = L(C ∪ F)− L(F).

The index, l(C|F), represents the increased probability of delay
requirement satisfaction by caching the VCs in set C, given that
the VCs in setF are already cached. In addition, the overall data
size of the VCs in set F is defined by

w(F) =
∑
t∈M

wM
t +

∑
f∈S

wS
f .

First, in Algorithm 1, MVCs are cached to maximize the prob-
ability of delay requirement satisfaction. The algorithm provides
an initial caching solution in which the edge server caches as
many VCs as possible, since MVCs have smaller data sizes
than the corresponding SVCs. Specifically, the algorithm selects
MVCs with the highest indexes to increase L(F) greedily. For
simplicity, in each iteration, a group of MVCs are cached based
on the SVC that they can be stitched and projected to. MVCs

Algorithm 2: Content Placement Scheme (Part 2).
% Replace MVCs with SVCs

1: Initialize set D ← ∅.
2: Run Algorithm 1, obtainM, and F ←M.
3: while L(F′) ≥ L(F) do
4: F ← F′.
5: Find SVC f ∗1 or MVCs C(f ∗1), where:

{f ∗1 , f ∗2}=argmax
{f1,f2}

{
l(f1|F\C(f2)), where f1 /∈ S,
l(C(f1)|F\C(f2))

and C(f2) ⊆M.
6: D ← C(f ∗2).
7: while w({f ∗1} ∪ {F\D}) ≥ C do
8: D ← C(f3), where f3 can be obtained as follows:

f3 = argmax
f

L(F\{D ∪ {C(f)}), C(f) ⊆M.

9: end while
10: Let F′ ← {f ∗1} ∪ {F\D}, if an SVC was selected in

Line 4, or F′ ← {C(f ∗1)} ∪ {F\D}, if MVCs were
selected in Line 4.

11: end while
12: Return set FA ← F and ΩA = L(F).

Algorithm 3: Content Placement Scheme (Part 3).
% Fill the cache by SVCs to avoid local optimum

1: Run Algorithm 2, obtain FA.
2: Delete all MVCs in set FA, and the result is denoted by
FB .

3: while w(FB) ≤ C do
4: Find stereoscopic video f ∗, where:

f ∗ = argmaxf l(f |FB).

5: if w({f ∗} ∪ FB) ≤ C then
6: FB ← {f ∗} ∪ FB .
7: else
8: Break
9: end if

10: end while
11: if L{FB} < ΩA then
12: F ← FA.
13: else
14: F ← FB .
15: end if
16: Return set F as the final caching solution, and update
M and S accordingly.

with the highest indexes are sequentially cached until the cache
is full. Then, based on the initial caching solution provided by
Algorithm 1, Algorithm 2 replaces cached MVCs with SVCs
and other MVCs that are not cached. The objective is to further
increase the probability of delay requirement satisfaction by
reducing the computing delay until no MVCs can be replaced to
further improve the probability. At the end of Algorithm 2, a local
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optimum of Problem (6) can be obtained. In order to prevent the
algorithm from being trapped into a local optimum, Algorithm 3
evaluates the probability of delay requirement satisfaction when
only SVCs are cached. We select the caching solution, i.e., F ,
which has the highest probability of delay requirement satisfac-
tion from two cases: jointly caching SVCs and MVCs (i.e.,FA in
Algorithm 2) and caching SVCs only (i.e., FB in Algorithm 3).

The reason for comparing the two cases is given in the fol-
lowing proposition. Let ω ∈ [0, 1] denote the percentage of the
cache space assigned for caching SVCs, i.e.,

∑
f∈S w

S
f = ωC.

The probability of delay requirement satisfaction by caching
SVCs with size ωC and MVCs with size (1− ω)C through
Algorithm 2 is denoted by L(ω). Let LM (1− ω) and LS(ω)
represent the probabilities of delay requirement satisfaction by
caching MVCs and SVCs, respectively, whereL(ω) = LM (1−
ω) + LS(ω).

Proposition 1: The following assumptions are made:
� The same type of VCs has the same data size.
� The ratio ω can be any real value between 0 and 1, and
LM (1− ω), and LS(ω) are differentiable.

If the cache is initially filled by MVCs, and the MVCs are
gradually replaced by the SVCs, i.e., increasing ω, there are no
more than two local maximizers of ω for Problem (6). If two
local maximizers exist, one of them is either ω = 1 or ω = 0.

Proof: See Appendix C. �
As shown in Proposition 1, Algorithm 2 may find a local

optimum under mild conditions. Therefore, we need to compare
it with the probability of delay requirement satisfaction when
ω = 1 in Algorithm 3. The output of Algorithm 3 provides a
near-optimal caching solution given the limited cache size.

B. Parallel Content Placement

Spatio-temporally dividing VR videos that are several minutes
in length may generate thousands of VCs. Although Algorithm 3
can provide a near-optimal caching solution, its complexity can
be significant for caching a large number of VCs. Observing
the independence among VCs in different time segments, we
propose a parallel content placement scheme. Specifically, we
first divide the whole VC catalog A = {T0, T1, TS} into G
VC subsets, in which the g-th subset is denoted by Ag . Each
subset contains VCs in one or multiple time segments. Then, we
iteratively determine the cache size allocated for caching VCs
in each subset at the edge server. The allocated cache size for
VCs in subset Ag is denoted by Cg . Based on Cg , Algorithm 3
can be used to place VCs in a parallel manner. The optimiza-
tion problem for determining the optimal cache sizes for the
subsets is

max
{Cg,∀g}

G∑
g=1

Pg(Cg) (12a)

s.t.
G∑

g=1

Cg ≤ C, (12b)

Cg ≥ 0, ∀s (12c)

where function Pg(Cg) represents the probability of delay re-
quirement satisfaction for caching VCs in subsetAg with cache
size Cg . The function is defined by

Pg(Cg) =
∑
d∈Vg

p(d)P (T (d) < H)

whereVg denotes the set of viewpoints to be rendered by the VCs
in subset Ag . The function is quasi-convex and monotonically
increases as cache size Cg increases. While the closed-form
formulation of Pg(Cg) is intractable, we can solve Problem (12)
via an optimization method.

We use a relaxed heavy ball ADMM technique to decouple
Problem (12) into sub-problems, which maximize the prob-
ability of delay requirement satisfaction for caching VCs in
individual subsets, i.e.,Pg(Cg), ∀g. The problem decomposition
is presented in Appendix D. The algorithm for placing VCs in
multiple subsets is Algorithm 4. In Lines 3 and 4, the auxiliary
variables (provided in Appendix D) and cache sizes allocated
for subsets are determined iteratively. The cache size for the g-th
subset, i.e., Cg , obtained in the m-th iteration is denoted by Cm

g .
From (21a), obtaining the value ofCm+1

g requires the knowledge
of the gradient of Pg(C

m+1
g ). We estimate the function through

a piece-wise linear function P̂g(C
m+1
g ). In each iteration, when

Cm+1
g is updated, we use Algorithm 3 to obtain the probability of

delay requirement satisfaction, as shown in Lines 7 to 9. Accord-
ingly, function P̂g(Cg) is updated by (13) shown at the bottom
of the next page, in Line 10, where C−g represents the maximum
cache size for subset g obtained in a previous iteration which is
lower than Cm+1

g . Note that C+
g represents the minimum cache

size for subset g obtained in a previous iteration, which is higher
than Cm+1

g . As the number of iterations increases, the estimated

function P̂g(C
m+1
g ) approaches the actual function Pg(C

m+1
g ).

For exploring the actual value of Pg(Cg) in the approximation,
we apply a zero-mean variance-attenuated Gaussian noise on
Cm+1

g in Line 5. The noise, following a normal distribution,
N (0, σ2), has variance σ2 attenuated in each iteration, as shown
in Line 11. The algorithm is stopped when the Lagrangian of
the problem, as shown in (20), converges and the exploration on
P̂g(Cg) completes.

The aforementioned problem decomposition and parallel
computing significantly reduce the decision space as com-
pared to solving Problem (12) directly. Without parallel con-
tent placement, the worst time complexity of Algorithm 3 is
(|V|(M1 +M3) + 2|V|2M2), where M1, M2, and M3 are the
iteration numbers in Algorithms 1, 2, and 3, respectively. With
an increase in the number of viewpoints, the time complexity in-
creases quadratically. In Algorithm 4, the content placement for
different video subsets is in parallel. If the popularity functions
{Pg(Cg), ∀g} are known in advance, the number of iterations
for running the relaxed heavy ball ADMM algorithm can be low,
and the worst time complexity of content placement for a subset
becomes (|Vg|(M1 +M3) + 2|Vg|2M2).

VI. DRL-BASED CONTENT DELIVERY

The content placement scheme proposed in Section V maxi-
mizes the probability of delay requirement satisfaction through
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Algorithm 4: Parallel Content Placement Scheme.

1: Initialize estimation function P̂ 0
g (Cg), m = 0.

2: while 1 do
3: Calculate Cm+1

g {P̂ k
g (Cg)} by (21a).

4: Update variables in set Γ by (21b)-(21h).
5: Cm+1

g ← Cm+1
g +N (0, σ2), ∀g.

6: for g ∈ G do
7: Place VCs in subset g given cache size Cm+1

g by
Algorithm 3.

8: P̂m+1
g (Cm+1

g ) = Pg(C
m+1
g ).

9: end for
10: Update P̂m+1

g (Cg) by (13).
11: σ ← αattnσ, m = m+ 1.
12: if |L(Γ)m+1 − L(Γ)| and σ are less than thresholds

then
13: Break.
14: end if
15: end while
16: Return the caching solution with cache capacity Cg for

all VC subsets.

caching VCs at the edge server. However, a viewpoint may not be
always rendered in time, especially when unpopular videos are
requested. Therefore, we propose a content delivery scheduling
scheme to solve Problem (7) in this section, given the caching
solution and predefined video quality setting X0. Specifically,
we design a Whittle index (WI) based scheduling policy in
restless multi-armed bandit (RMAB) and a DRL-based scheme
to evaluate the WI in the scheduling policy.

A. Whittle Index Formulation

Problem (7) with stochastic constraint (8) is an RMAB prob-
lem. For U VR headsets, we define U corresponding controlled
Markov chains. The state of the Markov chain for VR headset
u in time slot k is denoted by su,k, and the state space for
VR headset u is denoted by Yu. State su,k consists of 1) the
historical viewpoint trajectory of VR headsetu, i.e., {vu,k∗ , k∗ =
k − P, . . . , k}; 2) the SVCs in the local buffer of VR headset u;

3) the request du,k; and 4) the sets of VCs cached at the edge
server.

Denote the binary control variable for the Markov chain by
au,k, where au,k = 1 if the request of headset u is scheduled
in time slot k, and au,k = 0 otherwise. Consider the average
time length for a state transition as an epoch, which is de-
noted by φ. The average number of time slots in an epoch
is φ = T̄ /(E × δ), which is utilized to find tractable state
transition probabilities. The probability of transiting from state
su,k to su,k+φ is approximated by P (su,k+φ|su,k, au,k), where∑

su,k+φ∈Yu P (su,k+φ|su,k, au,k) = 1. The reward of schedul-
ing a request is set as the number of future viewpoints that can
be rendered from granting the request, given by (14). shown
at the bottom of the this page, The discounted reward model
is applied in (14), where κ is a discount factor. Problem (7)
with constraint (8) is now an RMAB problem. Whenever a
computing unit is available, we select one request from one
of the U VR headsets to schedule with unknown transition
probabilities.

Our method of solving the RMAB problem is based on
the WI, which is a heuristic solution with excellent empirical
performance [31]. Specifically, the WI-based method defines a
subsidy, i.e., the WI, for each VR headset if its current request
cannot be scheduled by the edge server immediately according to
the current state of the VR headset. The edge server can receive
a higher long-term reward by scheduling the requests with a
higher subsidy, i.e., higher WI. Therefore, the edge server can
allocate computing resources to requests by comparing the WIs
of requests. The WI of state su,k can be obtained from (15).
In (15), Q(su,k, au,k) is the state-action value, i.e., the Q value,
for state su,k, and action au,k. Eq (15) shown at the bottom
of the this page, presents the WI of VR headset u in time
slot k.

In time slot k, the edge server collects the WIs {λ(su,k), ∀u}
from all VR headsets and schedules the request of the VR headset
with the highest WI value if a computing unit is available.
As shown in Appendix E, the RMAB problem is indexable if
the content delivery delay for all requests is the same. Even
though the content delivery delay can be different in practice, the
standard deviation of the delay is usually small as compared to

P̂m+1
g (Cg) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P̂m+1
g (Cm+1

g )−P̂m
g (C−g )

Cm+1
g −C−g

(Cg − C−g ) + P̂m
g (C−g ), for C−g ≤ Cg < Cm+1

g

P̂m
g (C+

g )−P̂m+1
g (Cm+1

g )

C+
g −Cm+1

g
(C+

g − Cg) + P̂m+1
g (Cm+1

g ), for Cm+1
g ≤ Cg < C+

g

P̂m
g (Cg), Otherwise.

(13)

R(su,k, au,k) =

{∑∞
k′=k+φκ

k′−kf(v;Bu,k)1[v ∈ Uu,k(au,k−1)], if au,k = 1;

0, if au,k = 0.
(14)

λ(su,k) = R(su,k, 1)+κφ

{ ∑
su,k+φ∈Yu

P (su,k+φ|su,k, 1)max
au,k+φ

{Q(su,k+φ, au,k+φ)}

−
∑

su,k+φ∈Yu

P (su,k+φ|su,k, 0) max
au,k+φ

{Q(su,k+φ, au,k+φ)}
}
. (15)
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Fig. 4. DRL-based content delivery scheduling scheme diagram.

the average content delivery delay3, and the proposed WI-based
solution can still be applied.

B. DRL-Based Scheduling

Since the state-action transition probability is unknown for
the RMAB problem, the value of the WI in (15) cannot be
obtained straightforwardly. We adopt the DRL approach to
approximate the WI value for each VR headset in each time
slot. Two neural networks are constructed for each VR headset.
One neural network approximates the Q value, and the other
neural network approximates the WI value. The weight vectors
of the two neural networks corresponding to the Q value and the
WI value are denoted by θQ and θW , respectively.

The proposed DRL-based content delivery scheduling scheme
is illustrated in Fig. 4. At the beginning of time slotk, VR headset
u observes its state su,k, predicts the future user viewpoints
using viewpoint prediction techniques [19], and obtains content
delivery requests. The Q value and WI evaluation networks
approximate the set of Q values and WI values regarding state
su,k, denoted by Q(su,k, au,k|θQ) and λ(su,k, au,k|θW ), re-
spectively. With the set of requests, the approximated WI values
are sent to the edge server, and the edge server schedules the
request with the highest WI when a computing unit is available.
Furthermore, at each time slot, the weight vectors θQ and θW

are updated according to the reward obtained in content delivery
scheduling. In particular, if the request of VR headset u is
scheduled, the VR headset observes the reward as given by (14).
Otherwise, we use the approximated WI λ(su,k|θW ) as the
reward, which represents the difference of Q values between
two successive states when a request is not satisfied. According
to [32], weight vector θQ is updated by minimizing the loss
function for evaluating the Q value, given by

L(θQ)=[Q(su,k, au,k|θQ)−Q(su,k+φ, au,k|θQ)

×λ(su,k|θW )(1− au,k)−R(su,k, au,k)au,k]
2.
(16)

Furthermore, we generate a reference WI value based on the
outputs of the Q value and WI value neural networks, where

λ̂(su,k) = λ(su,k|θW )− ϕ[Q(su,k, 0|θQ)−Q(su,k, 1|θQ)].
(17)

In (17), ϕ is the step size for approximating the WI value.
From (17), if the approximation of λ(su,k) is accurate,

3The standard deviation of the content delivery delay is bounded by half of
the computing delay, which is only a portion of the content delivery delay under
mild conditions.

Algorithm 5: DRL-Based Content Delivery Scheduling
Scheme.

1: Initialize weight vectors θW and θQ for all VR headsets.
ε = 1.

2: for time slot k = 1, . . . ,K do
3: for VR headset u = 1 : U do
4: Request the new SVC and report WI set

{λ(su,k; θW )}.
5: end for
6: if any computing unit is available then
7: With probability ε, randomly schedule a request;

otherwise, schedule request d∗ from the VR headset
with the highest WI.

8: end if
9: for VR headset u = 1 : U do

10: Update the Q value evaluation network by
θQ ← θQ − ϕQ∇L(θQ).

11: Update the WI evaluation network by
θW ← θW − ϕW∇L(θW ).

12: end for
13: If ε > εmin, ε← βattnε.
14: end for

Q(su,k, 0|θQ) should be equal to Q(su,k, 1|θQ). Thus, weight
vector θQ is updated by minimizing the loss function for eval-
uating the WI value, given by

L(θW ) = [ϕ(Q(su,k, 0|θQ)−Q(su,k, 1|θQ))]
2. (18)

The proposed DRL-based content delivery scheduling scheme is
summarized in Algorithm 5, where ϕQ and ϕW are the learning
rates for evaluating weight vectors θQ and θW , respectively.
At each time slot, a VR headset calculates WI, which is a float
number (4 bytes), in a distributed manner and uploads a WI for
content delivery scheduling. Compared to sending the full VR
headset state to the edge server for scheduling, the proposed
scheme can significantly reduce communication overhead.

VII. ADAPTIVE VIDEO QUALITY ADJUSTMENT

The edge caching and content delivery scheduling schemes
proposed in Sections V and VI are based on a predefined video
quality setting, i.e., a givenX0. In this section, we discuss how to
optimize video quality in content delivery while meeting frame
missing rate requirements. For simplicity, we assume that the
data sizes of different MVCs are similar [23], and the data size
of an SVC does not depend on X0. The frame missing rate is
jointly determined by the following three factors, as illustrated
in Fig. 5:

1) Request waiting time: The request waiting time can be
obtained by the time difference between the instant when
a content delivery request is generated and the next instant
when a request is scheduled by the edge server. The
average request waiting time is denoted by W .

2) Content delivery delay: When a request is scheduled by
the edge server, a computing unit is occupied to process
and deliver the corresponding SVC. The content delivery
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Fig. 5. Illustration of content delivery processes for a VR headset.

TABLE I
METADATA OF VR VIDEOS [28]

delay for request du,k, i.e., T (du,k), is evaluated as in
Section III.C.

3) Request deadline: The request deadline is the time slot
when the requested video will be played on the VR head-
set. In the example shown in Fig. 5, slot k′ is the request
deadline of the request generated in slot k.

The request waiting time depends on the content delivery
scheduling scheme and the number of VR headsets in the system.
The request deadline depends on the viewpoint dynamics of
the corresponding user and parameter X0 (since X0 impacts
the number of viewpoints that can be rendered by the VR
headset using the SVCs in the local buffer). Let random variable
N(X0) denote the number of frame missing events between two
successive content delivery for a VR headset given X0, with
mean denoted by N̄(X0). The relation between N̄(X0) and the
video quality setting, i.e., X0, is given by the following lemma:

Lemma 3: N̄(X0) monotonically decreases as X0 increases,
under the assumption that the data sizes of MVCs are constant.

Proof: See Appendix F. �
Based on Lemma 3, parameter X0 can be adjusted tentatively

to maximize video quality, while satisfying the frame missing
rate requirement. Specifically, a VR headset can monitor the
real-time frame missing rate and upload it to the edge server. If
the average frame missing rate is higher than the frame missing
rate requirement, X0 should be increased to reduce the frame
missing rate by degrading video quality. Otherwise, X0 can be
decreased to improve the video quality, until the frame missing
rate requirement is no longer satisfied.

VIII. SIMULATION RESULTS

A. Parameter Settings

In the simulation, we use a viewpoint-tracking data set com-
posed of 48 users watching three spherical VR videos [28]. The
details of the VR videos are provided in Table I. The 360°
× 180° equirectangular video is divided into 24 × 12 spatial
tiles. A user’s FoV spans 7 × 5 tiles. The length of a time
segment, i.e., the playback duration of a VC, is 4 seconds. For
each time segment, we map the spatial locations of viewpoints

TABLE II
NETWORK STRUCTURE FOR EVALUATING THE WI VALUE

TABLE III
NETWORK STRUCTURE FOR EVALUATING THE Q VALUE

into tiles to obtain the probability that request d is generated,
i.e., p(d). The data size of MVCs is randomly generated based
on a Gaussian distribution, in which the mean is 30 Kbits and
the standard deviation is 10 Kbits, and the value of α is 1.3.
The content delivery delay threshold H is 85 ms. The wired
transmission rate from the cloud server to the edge server is
700 Mbits/s. In parallel content placement, VCs corresponding
to the same time segment, i.e., the playback duration of a VC,
form a VC subset, and there are 163 subsets for the three videos.
In the parallel content placement, the parameters of the relaxed
heavy ball ADMM algorithm are set to ε1 = 0.8, ε2 = 0.85, and
ρ1 = ρ2 = 0.3.

In the content delivery, there are 10 VR users with VR
headsets. The length of a time slot is 33 ms. For each user, the
viewpoint trajectory is randomly selected from the viewpoint-
tracking data set. For processing the content delivery requests
from users, the edge server has one computing unit, i.e., E =
1. The transition probabilities of the communication channel
between the edge server and users, i.e., pH and pL, are 0.6
and 0.3, respectively. In the DRL algorithm for content delivery
scheduling, the learning rates of the networks for evaluating
the Q value and the WI value are 5e-4 and 1e-4, respectively.
Neural network structures used to evaluate the Q value and the
WI value are presented in Tables II and III, respectively. At each
VR headset, a long short-term memory (LSTM) network with
50 neurons predicts the user’s future viewpoint with an accuracy
of around 94%.

B. Performance of the Content Placement Scheme

We first evaluate the performance of the proposed content
placement scheme (i.e., Algorithms 1-3) for caching VCs within
a VC subset. We compare our proposed scheme with three
benchmark schemes: MVC only and SVC only, in which only
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Fig. 6. The probability of delay requirement satisfaction with various com-
puting rates, where RL = 50 MB/s.

Fig. 7. The probability of delay requirement satisfaction with various channel
transition probabilities, where RL = 50 MB/s.

MVCs or SVCs are cached, respectively; brute-force, which
searches the best cache size for caching SVCs, i.e., the best
ω, from set {0, 0.1,..., 1}. The probability of delay requirement
satisfaction with various computing rates χ is shown in Fig. 6,
and the probability of delay requirement satisfaction with vari-
ous channel transition probabilities, i.e., pH , is shown in Fig. 7.
In comparison with the MVC-only and SVC-only schemes, the
proposed content placement scheme can significantly improve
the delay requirement satisfaction probability. This is because
the proposed scheme can find the near-optimal caching solu-
tion by balancing computing delay and cache resource usage.
Furthermore, the proposed scheme outperforms the brute-force
scheme, which is a computationally intensive scheme based
on exhaustive search, in satisfying the delay requirement. In
addition, in both Figs. 6 and 7, the performance of the MVC only
scheme improves significantly as the computing rate increases,
whereas the performance improvement of the SVC only scheme
is not significant, especially when the transmission rate RH is
low. This is because the edge server may frequently download
MVCs from the cloud server, and the performance bottleneck in
the SVC only scheme is on the transmission delay for delivering

Fig. 8. The correlation between the popularity of VC subsets, and the allocated
cache sizes for VC subsets.

Fig. 9. The correlation between the popularity of VC subsets in two different
videos and the allocated cache sizes for VC subsets. (a) video 1; (b) video 2.

VCs in both wireless and wired links. When the edge server
has sufficient computing resources, caching more MVCs can
increase the probability of delay requirement satisfaction.

The performance of the parallel content placement scheme
(Algorithm 4) for caching VCs associated with multiple time
segments is presented in Figs. 8 and 9, where RH = 88 MB/s
and RL = 50 MB/s. Fig. 8 shows the correlation between the
popularity of VC subsets, i.e., {

∑
d∈Vg p(d), ∀g}, and the allo-

cated cache sizes for the subsets, i.e., {Cg, ∀g}, in which all
163 subsets are taken into account. Popular VC subsets are
allocated with larger cache sizes than less popular VC subsets.
We observe that even if the popularity of different VC subsets
is the same, the allocated cache sizes can be different since
viewpoint popularity distributions are different among subsets.
The correlation between the popularity of VC subsets in two
different videos and the allocated cache sizes is shown in Fig. 9.
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Fig. 10. The average hit probability with LSTM-based prediction and dynamic
channel.

We use 35 VC subsets for both videos 1 and 3 in Table I and
assign random popularity for the VC subsets. Compared to
video 1 (performance video), the popularity and the allocated
cache size for a subset in video 3 (film video) are not strongly
correlated, especially for the subsets with high popularity. The
reason is, compared to video 1, user viewpoints in video 3 are
more concentrated. In such a case, increasing the cache sizes for
popular VC subsets may not significantly improve the overall
probability of delay requirement satisfaction.

C. Performance of the Content Delivery Scheduling Scheme

The performance of the proposed WI-based content delivery
scheduling scheme is compared with three benchmark schemes:
urgent-request-first (URF), in which the edge server always
schedules the request for the SVC that will be played in the
nearest future first; round-robin, in which the edge server sched-
ules requests in a circular order; and random, in which the edge
server schedules requests randomly. We generate two different
video selection and viewpoint movement profiles based on the
viewpoint-tracking data set: one for training the neural networks;
another for testing the learning-based scheme performance. For
each profile, we generate requests for 2,000 seconds. With the
viewpoint movement prediction by LSTM, the performance
of the average hit probability for the four schemes is shown
in Fig. 10, in which the test profile is applied. The results in
Fig. 10 are the moving average of the hit probability in 1,000
preceding decision epochs (around 8,000 time slots) for each
decision epoch. As shown in the figure, the proposed WI-based
content delivery scheduling can significantly improve the hit
probability. When the transmission rate from the edge server
to a headset is low, the proposed WI-based scheme can im-
prove the hit probability by up to 30% compared to URF and
round-robin schemes. Our proposed WI-based scheme improves
performance because, compared to the benchmark schemes, our
proposed WI-based scheme evaluates viewpoint and network
dynamics in making content delivery scheduling decisions. The
relation between video quality and average hit probability is
shown in Fig. 11. As the portion of layer-0 MVCs in an SVC,

Fig. 11. The average hit probability versus various video quality settings.

i.e., X0, decreases, the hit probability decreases accordingly,
while the video quality is improved. The proportional relation
is consistent with Lemma 3. When implementing content place-
ment and scheduling schemes, parameter X0 should be adapted
to achieve the optimal balance between the video quality and
the hit probability.

IX. CONCLUSION

In this article, we have studied content caching and delivery
schemes for mobile VR video streaming. Given limited network
resources, a scalable content placement scheme has been de-
signed to obtain caching solutions for VR videos by trading
off caching and computing resources. In addition, we have
developed a novel distributed learning-based content delivery
scheduling scheme to coordinate real-time content delivery for
multiple VR headsets. The proposed content delivery solution
identifies the priority of content delivery among the requests
from multiple VR headsets based on the network and user
viewpoint dynamics, thereby maximizing resource utilization.
Simulation results have demonstrated that the proposed solution
outperforms benchmark content caching and delivery schemes.
In the future, we will investigate efficient computing resource
allocation and caching schemes for interactive VR applications,
where the dynamics of VR user interactions will be evaluated.

APPENDIX A
PROOF OF LEMMA 1

It can be directly proved by using (9) and the definition of
submodularity. Let S1 and S2 be the subsets of S satisfying
S1 ⊆ S2. For any f ∈ TS\S2, we have

L(S1 ∪ {f})− L(S1) = L(X1)

where

X1 = {∪f ′∈S1∪{f}R(f ′)}
⋂
{∪f ′∈S1R(f ′)}.

Similarly,

X2 = {∪f ′∈S2∪{f}R(f ′)}
⋂
{∪f ′∈S2R(f ′)}

and L(S2 ∪ {f})− L(S2) = L(X2). Since S1 ⊆ S2, some
viewpoints that can be rendered by the VR headset using SVC
f and cannot be satisfied by SVCs in set S1 may be satisfied
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by SVCs in set S2. Therefore, X2 ⊆ X1, and L(S1 ∪ {f})−
L(S1) ≥ L(S2 ∪ {f})− L(S2).

APPENDIX B
PROOF OF LEMMA 2

It can be proved similarly to Lemma 1. LetM1 andM2 be
the subsets of M satisfying M1 ⊆M2, and L(M1 ∪ {t})−
L(M1) = L(X1). In this case, X1 can be defined by

X1 = ∪f ′∈{f |C(f)⊆{M1∪{t}},t∈C(f)}R(f ′).

Similarly, let L(M2 ∪ {t})− L(M2) = L(X2), where

X2 = ∪f ′∈{f |C(f)⊆{M2∪{t}},t∈C(f)}R(f ′).

SinceM1 ⊆M2, by MVC t, more SVCs can be stitched when
MVCs inM2 are cached as compared to when MVCs inM1 are
cached. Therefore, X1 ⊆ X2, and L(M1 ∪ {t})− L(M1) ≤
L(M2 ∪ {t})− L(M2).

APPENDIX C
PROOF OF PROPOSITION 1

Let functions LM (ω|x) and LS(ω|x) denote the probabilities
of delay requirement satisfaction by caching MVCs and SVCs
with data size ωC, respectively, given that the same type of
videos with data size x has been cached. If both LM (1− ω) and
LS(ω) are differentiable, L(ω) can be differentiated as follows:

∇ωL(ω) = ∇ωL
S(ω) +∇ω[L

M (1)− LM (ω|1− ω)]

= ∇ω[L
S(ω)− LM (ω|1− ω)]

= lim
Δ→0

1

Δ

{
LS(ω +Δ)− LS(ω)

+ LM (ω +Δ|1− ω −Δ)− LM (ω|1− ω)
}

= lim
Δ→0

1

Δ

{
LS(Δ|ω)− LM (Δ|1− ω −Δ)

}
.

Assuming that all SVCs have the same data size, LS(Δ|ω)
monotonically decreases as ω increases due to submodularity
proved in Lemma 1. Moreover, it can be directly proved that
LS(Δ|ω) is convex on ω. This is because, when caching an
additional SVC, with fewer SVCs cached at the edge server,
viewpoints that can be rendered by VR headsets using the addi-
tional SVC are less likely to intersect with viewpoints rendered
by the cached SVCs, i.e.,

LS(Δ|ω + δ)− LS(Δ|ω) ≥ LS(Δ|ω + 2δ)− LS(Δ|ω + δ).

Similarly, it can be shown that function LM (Δ|1− ω −Δ)
monotonically decreases as ω increases due to supermodularity
proved in Lemma 2, and the function is concave on ω.

If a local optimal ω∗ exists, ∇ωL(ω
∗) = 0. In such case,

LS(Δ|ω) = LM (Δ|1− ω −Δ) holds for any Δ. Therefore, as
shown in Fig. 12, there are three possible cases in finding the
local optimal ω∗:
� Case 1: No intersection betweenLS(Δ|ω) andLM (Δ|1−
ω −Δ). Thus, no local optimum between the region ω ∈
(0, 1). The global maximizer of L(ω) is located either in
ω = 0 or ω = 1.

Fig. 12. Illustration of the proof of Proposition 1.

� Case 2: Two intersections between LS(Δ|ω) and
LM (Δ|1− ω −Δ) (i.e., points A and B in Fig. 12). Thus,
there are two local optimums when ω ∈ (0, 1), and only
one of the local optimums is the local maximizer, denoted
by ω∗. If ω∗ ∈ (0, 1) is not the global maximizer, the
global maximizer is located at ω = 1. This is because,
as ω increases from zero to the first intersection (i.e.,
intersection A in Fig. 12), ∇ωL(ω) has to be greater than
zero. Therefore, the value of L(ω) at intersection A has to
be greater than L(ω).

� Case 3: Only one intersection between LS(Δ|ω) and
LM (Δ|1− ω −Δ) (i.e., point C in Fig. 12). There is at
most one local maximizer when ω ∈ (0, 1), and the other
local maximizer is either ω = 1 or ω = 0.

In summary, based on the three cases, there are mostly two
local maximizers of ratio ω for Problem (6).

APPENDIX D
PROBLEM DECOMPOSITION FOR (12))

The first step of parallel content placement is to decouple
Problem (12) into subproblems for caching the VCs in individual
subsets. Introducing auxiliary variables z1 and {z2,g, ∀g}, we
reformulate constraints (12b) and (12c) as

C̄ − Cg

|G| − z1 = 0, (19a)

Cg − z2,g = 0, ∀g (19b)

respectively, where C̄ represents the mean value of {Cg, ∀g}.
We formulate the augmented Lagrangian of the problem as

L(Γ)= −
∑
g∈G

Pg(Cg)+u1

(
C̄− Cg

|G| − z1

)

+
∑
g

u2,g(Cg − z2,g)

+
ρ1
2

(
C̄ − C

|G| − z1

)2

+
ρ2
2

∑
g

(Cg − z2,g)
2 (20)

where u1 and {u2,g, ∀g} are the Lagrangian multipliers for
Constraints (19a) and (19b), respectively. Parameters ρ1 and ρ2
are penalty factors. The term Γ represents the set of variables,
i.e., Γ = {{Cg, z2,g, u2,g, ∀g}, z1, u1}. We then adopt relaxed
heavy ball ADMM [33] to update the variables in an iterative
and parallel manner, where decoupled subproblems for iteration
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e+ 1 are as follows:

Ce+1
g =argmin

Ce+1
g

{−Pg(C
e+1
g )+ue

1

(
C̄e−Ce

g+Ce+1
g − C

|G| −z
e
1

)

+ue
2,g(C

e+1
g −z2,g)+

ρ1
2

×
(
C̄e − Ce

g + Ce+1
g − Cg

|G| − ze1

)2

+
ρ2
2
(Ce+1

g − ze2,g)
2}, (21a)

ze+1
2,g = max{ε1Ce+1

g +(1− ε1)ẑ
e
2,g +

1

ρ2
ûe
2,g, 0}, ∀g, (21b)

ue+1
1 = ûe

1 + ρ1[ε1

(
C̄e+1 − C

|G|

)
+ (1− ε1)ẑ

e
1 − ze+1

1 ],

(21c)

ue+1
2,g = ûe

2,g + ρ1[ε1C
e+1
g + (1− ε1)ẑ

e
2,g − ze+1

2,g ], ∀g,
(21d)

ûe+1
1 = ue+1

1 + ε2(u
e+1
1 − ûe

1), (21e)

ûe+1
2,g = ue+1

2,g + ε2(u
e+1
2,g − ûe

2,g), ∀g, (21f)

ẑe+1
1 = ze+1

1 + ε2(z
e+1
1 − ẑe1), (21g)

ẑe+1
2,g = ze+1

2,g + ε2(z
e+1
2,g − ẑe2,g), ∀g (21h)

where 0 ≤ ε1 ≤ 1 and 0 ≤ ε2 ≤ 1.

APPENDIX E
INDEXABILITY OF THE RMAB PROBLEM

Let P(λ∗) denote the set of state Y for which the VR
headset stays passive, i.e., au,k = 0, according to subsidy
λ∗(su,k), su,k ∈ Y . If the RMAB problem is indexable, the
following condition should be satisfied:
� Set P(λ∗) of the corresponding single-armed bandit pro-

cess increases monotonically from the empty set to the
whole state space as subsidy λ∗ increases from −∞ to
+∞ [34].

To prove the indexability, we assume that the content delivery
delay for all requests is the same, which is denoted by φ. If the
following condition holds, the problem is indexable [34]:

dQ(su,k, 0)

dλ
≥ dQ(su,k, 1)

dλ
. (22)

Define function Bλ(su,k) =
dV (su,k)

dλ
, where V (su,k) =

max{Q(su,k, 0), Q(su,k, 1)}. Denote the SVC that is scheduled
in time slot k by b. The condition in (22) is equivalent to

1 + κφBλ(su,k+φ) ≥ κφBλ(su,k+φ ∪ {b}). (23)

To prove the above relation, we first assume that b is the last SVC
that can be downloaded, i.e., all SVCs have been downloaded
in the buffer except b. The left-hand side (LHS) of (23) can be
rewritten as

LHS = 1+κφ max[1 + κφBλ(su,k+φ), κ
φBλ(su,k+2φ∪{b})]

≥ 1 + κ2φBλ(su,k+2φ ∪ {b}). (24)

The right-hand side (RHS) of (23) can be rewritten as

RHS = κφ(1 + κφBλ(su,k+2φ ∪ {b})). (25)

It can be observed that the value of the LHS is greater than the
value of the RHS since κ < 1.

Moreover, we assume that b is the last h-th SVCs to be
downloaded from the edge until the SVCs are fully downloaded
in the buffer, and (23) holds in such a case. In time slot k′,
where n′ < n, the last (h+ 1)-th SVC is requested by the VR
headset, which is denoted by b′. The LHS of (23) for skipping
to download b′ in time slot k′ can be represented as

LHS=1 + κφ max

[1 + κφBλ(su,k′+2φ), κ
φBλ(su,k′+2φ ∪ {b∗})] (26)

where b∗ can be either b′ or b. Moreover, the RHS of (23) for
downloading b′ in time slot n′ can be represented as

RHS=κφmax

[1+ κφBλ(su,k′+2φ ∪ {b′}),κφBλ(su,k′+2φ ∪ {b′,b})]. (27)

Since b is the last h-th SVCs to be downloaded, the following
condition holds:

1 + κφBλ(su,k′+2φ ∪ {b′}) ≥ κφBλ(su,k′+2φ ∪ {b′, b}) (28)

where the RHS is equal to κφ[1 + κφBλ(su,k′+2φ ∪ {b′})]. If
b∗ = b′, it is straightforward that the LHS is greater than the
RHS. If b∗ = b, and the SVC b′ is never requested again in
the subsequent time slots, state su,k′+2φ ∪ {b′} is equivalent to
su,k′+2φ. The condition that the value of the LHS is not less than
the value of RHS still holds. If SVC b′ will be requested again
in the subsequent time slots, for both state su,k′+2φ ∪ {b} in the
LHS and state su,k′+2φ ∪ {b′} in the RHS, there are h SVCs left
to be downloaded, and Bλ(su,k′+2φ ∪ {b}) = Bλ(su,k′+2φ ∪
{b′}). In such a case, the value of the LHS is no less than the
value of the RHS. Therefore, when the content delivery delay is
the same for different requests, the indexability of the problem
holds.

APPENDIX F
PROOF OF LEMMA 3

The distribution of request deadline N(X0) for a VR headset
can be obtained by a Markov chain on viewpoint movement,
as shown in Fig. 13. Denote the probability that the spatial
location of a viewpoint moves out of a tile along a direction
within a time slot by p, as shown in Fig. 13(a). The viewpoint
can move either up, down, left, or right from the current tile.
The user’s watching behavior and the video they are watching
are factors that influence this probability. Furthermore, denote
the probability that the spatial location of a viewpoint moves
into the tiles and the viewpoint can be rendered by downloading
SVC by q, where the probability depends on the number of
videos downloaded in the buffer. To simplify the notations, we
define index ζ as a tier in the spatial area of an SVC, as shown in
Fig. 13(a), and the number of tiles in tier ζ is denoted by M(ζ).
Then, we define parameter F as the maximal tier of tiles where
the located viewpoints can be rendered by an SVC. Then, we
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Fig. 13. (a) Illustration of viewpoint movement, where shadowed areas area
are the video spatial area covered by two different videos; (b) Markov chain on
viewpoint movement.

model the viewpoint movement across tires as a Markov chain as
shown in Fig. 13(b), where state V (k) represents the minimum
tier where the viewpoint is located and the tiles are covered by
downloaded SVCs in time slot k. The transition probabilities
between states are defined by

P (1|0) = 4p(1− q0);P (0|0) = 1− 4p(1− q0); (29a)

P (V (k)+1|V (k)) = p

(
1−

β∑
t=0

qζ

)
, V (k) > 0; (29b)

P (V (k)−1|V (k))=p

(
1−

β−1∑
t=0

qζ + 4qV (k)−1

)
,V (k)>0;

(29c)

P (ζ|V (k)) = 4pqζ , 1 < ζ ≤ β, V (k) > 0; (29d)

P (V (k)|V (k))=1−2p

⎛
⎝1 +

β−1∑
ζ=0

qζ

⎞
⎠+ pqV (k),V (k) > 0

(29e)

where qζ = qM(ζ)/
∑F

ζ ′=0 M(ζ ′), and β = min{V (k), F}.
The probability mass function of N(X0) can be obtained from
evaluating the number of times that state V (k) > F within
(W +H) time slots, given V (0) = 0. As shown in (29e), states
are more likely to transit to the states with higher values than F
when viewpoints move faster, i.e., higher p. When X0 increases,
F increases since more viewpoints can be rendered by the same
SVCs, and N̄(X0) decreases accordingly. We can tentatively
decrease X0 whenever the frame missing rate is higher than a
requirement.
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