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Abstract—This article introduces an on-demand collaborative
sensing scheme for industrial Internet of Things (IIoT) sensors
in time-varying sensing environments, aiming to optimize the
sensing performance by effectively allocating communication
resources for sensory data sharing. Particularly, we propose a
novel digital twins (DTs)-empowered resource allocation solution
to facilitate scalable and flexible collaborative sensing. First,
DTs create mathematical models using real-time network data
to characterize the dynamic resource demands in collaborative
sensing. Second, the performance of mathematical models in
DTs is evaluated through data-driven methods. Building on
our DT design, we propose a joint collaborative sensing and
DT management scheme to optimize the resource allocation for
sensory data sharing and DT operation. Furthermore, we develop
a DT evaluation method featuring a variational autoencoder
to evaluate the accuracy of DTs and enable closed-loop DT-
based resource allocation. Numerical results demonstrate the
effectiveness of our proposed collaborative sensing scheme in
optimizing the sensing performance for all sensors.

Index Terms—Collaborative sensing, digital twins (DTs),
genetic algorithm, on-demand resource allocation, variational
autoencoder (VAE).

I. INTRODUCTION

INDUSTRY 5.0 is expected to facilitate customized,
reliable, and resilient manufacturing processes through

the enhanced collaboration between humans and machines
with cutting-edge technologies, including collaborative robots
(cobots) [1], [2] and cloud manufacturing [3]. Smart sensors,
such as cameras on cobots, play a critical role in these
new technologies, in which sensors can perceive changes
in their surroundings to ensure productivity and safety in
manufacturing. However, the reliability of sensing is impacted
by the unpredictable dynamics of the manufacturing envi-
ronment, such as human movement [4], and thus meeting
the sensing performance requirements of industrial Internet of
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Things (IIoT) networks in Industry 5.0 presents a substantial
challenge.

Collaborative sensing provides a foundational solution via
enabling intelligent connections among sensors to aggregate,
orchestrate, and share sensory data, which helps mitigate
sensing blind spots and enhances sensing capabilities in IIoT
networks [5]. The implementation of collaborative sensing has
yielded significant benefits in enhancing sensing precision and
facilitating greater automation in diverse Internet of Things
(IoT) applications, including autonomous driving [6], [7] and
environment monitoring [8]. Previous research has primar-
ily focused on striking a balance between sensing quality
and the network resource utilization associated with data
aggregation and sharing. To this end, the network controller
should properly identify the sensors that need additional
sensory data to improve their sensing quality and allocate
communication resources to support efficient sensory data
exchange. In IIoT, scalability emerges as a critical metric for
collaborative sensing due to the need for supporting massive
sensors and low-latency industrial control. In the context
of cobot applications, human motion detection must be on
the order of milliseconds to effectively mitigate risks [9].
This necessitates streamlined collaborative sensing capable of
promptly identifying and meeting the demands of individual
sensors in a dynamic sensing environment.

Model-driven approaches for collaborative sensing tackle
the scalability challenge by offline sensor selection and
resource allocation based on mathematical models and sta-
tistical network information. For example, graph-theoretic
methods were applied to select sensors for performing sensing
and disseminating sensory data to their peers, aiming to
minimize the energy consumption for sensing [10] or reduce
sensory data aggregation complexity [11]. These approaches
are usually explainable and applicable in a variety of scenarios
but assume the known sensing quality of individual sensors
and simplified (e.g., static) sensing environments. Moreover,
statistical network information, such as sensing quality can
be difficult to obtain, especially in highly dynamic sensing
environments.

Data-driven approaches for collaborative sensing, enabled
by advancements in machine learning, leverage real-time data
to detect changes in the sensing environment [6] and use neural
networks to learn the corresponding dynamics [12], [13].
While data-driven approaches adapt well to dynamic sensing
environments, their performance can be adversely affected
when the dynamics in the sensing environment are no longer
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Fig. 1. Overview of DT-based collaborative sensing.

stationary or when handling a large number of sensors.
Additionally, data-driven approaches are contingent on the
regular updates of sensor status for neural network refinement,
and the extensive data collection and processing can exert
significant network resource consumption without a judicious
design.

Digital twins (DTs), as a transformative paradigm for
network management, have the potential to seamlessly inte-
grate data-driven and model-driven approaches to empower
collaborative sensing. The general idea involves creating
a virtual replica for each sensor at a network controller,
embedding data sets and mathematical models to capture the
sensor status, operations, and demands for network resource
management [14]. These models and data sets are periodically
refined to reflect the changing network and sensor status [15].
The overview of DT-based collaborative sensing is presented
in Fig. 1, which highlights the synergy between data and
model within the DTs as follows.

1) Model Construction From Data: The network controller
samples the status of each sensor, such as its sensing
quality, and records this information in the sensor’s
DT. Statistical methods enable the controller to utilize
the data to construct mathematical models that capture
the sensor’s demand for collaborative sensing, thereby
providing on-demand resource allocation.

2) Data Generation via Model: The mathematical models
within the DT allow for the prediction of future sensor
statuses and the offline emulation of resource demands
under varied collaborative sensing policies. This allows
model-driven approaches to adapt to dynamic sensing
environments.

3) Model Evaluation via Data: Data stored in the DT is
used to assess the accuracy of the mathematical mod-
els in capturing sensor status and adapting to sensing
demand dynamics, based on which the data collection
strategy and the mathematical models are refined.

In this article, we propose a novel hybrid data- and model-
driven solution for collaborative sensing in IIoT. Our objective
is to optimize the sensing performance for all sensors by
allocating communication resources for sensory data shar-
ing while adapting to dynamic sensing environments. We
achieve the objective in three phases. First, we establish
a DT-based collaborative sensing framework that monitors

sensor status and analyzes the sensing performance for poten-
tial collaborative sensing policies. This phase involves model
construction and data generation for capturing the communi-
cation resource demand in on-demand collaborative sensing.
In the second phase, we propose a joint collaborative sensing
and DT management scheme that simultaneously determines
the collaborative sensing policy and communication resource
allocation. The scheme also optimizes the communication
resource allocated to data collection for establishing DTs while
balancing the overall collaborative sensing performance and
the DT operation costs, aiming to enhance adaptivity and
scalability of resource management for an IIoT system with
a large number of sensors. Finally, we adopt a variational
autoencoder (VAE) to evaluate the quality of models in DTs
and predict future communication resource demand based on
historical data stored in the DTs. The contributions of this
article are summarized as follows.

1) Empowered by DTs, our collaborative sensing
framework innovatively integrates data-driven and
model-driven approaches. The framework enables on-
demand collaborative sensing for a large number of
sensors.

2) The proposed joint collaborative sensing and DT man-
agement scheme can optimize sensing performance
while meeting the constraints of sensing collaboration
delay. The performance of the proposed collaborative
sensing scheme is derived in a closed form.

3) We develop a VAE-based model prediction and DT
evaluation method to evaluate the quality of DTs
based on the noisy DT data. The proposed method
enables closed-loop resource allocation that proactively
enhances sensing performance while taking into account
the accuracy of DTs.

The remainder of this article is organized as follows.
Section II provides an overview of related studies. Section III
presents the considered system model. Sections IV and V
present the DT-based collaborative sensing optimization
problem and corresponding solutions, respectively. Section VI
presents the simulation results, followed by the conclusion in
Section VII.

II. RELATED WORK

Collaborative sensing has been investigated in the fields of
IoT and wireless sensor networks [16], [17]. Initially, the focus
was on efficiently collecting and fusing sensory data from
multiple sensors to capture information related to a specific
spatial region [18]. With the advancement of computer vision
technologies, sensors became more intelligent, capable of
extracting more information, such as sensing angles [19] and
occupancy of sensing blocks [20], from complex sensory data,
such as LiDAR images [20], [21]. Correspondingly, the target
of collaborative sensing shifted from maximizing sensing
coverage to improving the quality of sensory data within
the area of interest. To efficiently utilize the communication
resources in sensory data exchange, the sensory data from
multiple sensors is aggregated according to their sensing
quality, and the result is delivered to the sensors in need.
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Fig. 2. System scenario for collaborative sensing.

However, such a collaborative sensing pattern faces challenges
due to the dynamic nature of the sensing environment and
the corresponding sensory data captured by each sensor. To
address this challenge, reinforcement learning methods were
adopted to select sensors that can capture useful sensory data
to participate in collaborative sensing, aiming to maximize
the overall sensing quality while minimizing resource con-
sumption in the long term [6], [22], [23]. In IIoT, the massive
scale of sensors necessitates prompt collaborative sensing
decisions with low signaling overhead [24]. While machine
learning has shown promise in solving complex collaborative
sensing problems, pure data-driven approaches cannot provide
insights regarding sensor-level demands. Moreover, the data-
driven approaches may not perform well in scenarios where
the number of active sensors varies over time and network
environments change frequently [14], [25].

The DT technology provides a framework for the synergy of
data-driven and model-driven approaches in network resource
management. In our visionary paper [14], we envisioned a
DT-based resource allocation architecture, wherein DTs are
established for individual devices and network slices. These
DTs capture device-specific service demands and enable the
emulation of networking policies, leading to proactive network
performance optimization. Utilizing the network status and
demand data models provided by DTs, a network controller
can tailor resource allocation methods to precisely meet the
quality of service requirements for each device [26] and further
improve the quality-of-experience for network users [27].
In [28], DTs were created to simulate complex and changing
network environments in IIoT and facilitate reinforcement
learning for adaptive resource allocation. In our paper, we
answer the question of how to integrate the data-driven and
model-driven approaches to build precise sensor DTs for
optimizing collaborative sensing performance.

III. SYSTEM MODEL

The considered IIoT collaborative sensing scenario is illus-
trated in Fig. 2. There is a single access point (AP) equipped
with a network controller to cover a limited area, e.g., the
workspace of a manufacturing facility. The entire area can be
divided into SX × SY subareas, and the set of all subareas is
denoted by L. A set of sensors, denoted by N = {1, . . . , N},
are deployed in the area. Each sensor (e.g., a camera or

radar) covers a part of the area and connects with the AP
via a wireless link. The set of subareas covered by sensor
n is denoted by Ln. The sensing coverage areas of different
sensors may overlap, and the number of subareas covered by
a sensor is a constant denoted by L. We adopt time-slotted
sensing and denote the slot index and the slot duration by
t and τ , respectively. In each time slot, every sensor senses
and perceives its surrounding environment to safeguard the
operations of human workers and IIoT devices, such as cobots.

The sensory data captured by each sensor is referred to as
local sensory data. The AP aggregates local sensory data to
create a comprehensive sensory data set for the entire area,
referred to as global sensory data. Due to the obstacles in
the physical environment and the movements of devices and
workers, the sensors may not always successfully sense all
the covered subareas, and the local sensory data captured by
individual sensors may be incomplete. To address this issue,
the AP identifies sensors with low sensing quality and delivers
the corresponding parts of global sensory data to them.1 If a
sensor receives the global sensory data, the sensor merges the
data with its own local sensory data to potentially enhance
sensing quality; the resulting sensory data of the sensor is
referred to as the sensor’s final sensory data. To keep the
global sensory data up-to-date, the AP sequentially prompts
the sensors to upload their local sensory data and then merges
the received data with the global sensory data successively.

In time slot t, the quality of local sensory data for subarea l
captured by sensor n is denoted by Qn,t,l, where Qn,t,l ∈ {0, 1}.
The value of Qn,t,l equals one if sensor n can successfully
sense subarea l without blockage, and the value equals zero
otherwise. The local sensing quality of sensor n in time slot t
is defined as the average quality of its local sensory data over
all subareas in Ln, denoted by Q̄n,t. In addition, the quality
of the global sensory data and the final sensory data at sensor
n for subarea l in time slot t are denoted by QG,t,l and Gn,t,l,
respectively. Similarly, the global sensing quality in time slot
t is defined as the average quality of the global sensory data
at the corresponding time slot over all subareas in L, denoted
by Q̄G,t; the final sensing quality of sensor n in time slot
t is defined as the average quality of the final sensory data
over all subareas in Ln, denoted by Ḡn,t. The sizes of the
local sensory data generated by any sensor and the part of
global sensory data within any sensor’s sensing coverage are
a constant, denoted by V .

To identify which sensors to receive the global sensory
data, we adopt a threshold-based collaborative sensing policy
defined as follows.

Definition 1 (Threshold-Based Collaborative Sensing): The
AP generates a threshold denoted by ρ. The AP delivers the
corresponding part of the global sensory data to the sensor
if the sensor’s current local sensing quality is below the
threshold, i.e., Q̄n,t < ρ.

Using a threshold allows the AP to quickly identify targets
in collaborative sensing when managing a large number of
sensors in the IIoT scenario. By selecting an appropriate

1Unicast transmission is used to deliver a part of the global sensory data
to each identified sensor.
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threshold, the overall sensing quality across all sensors can
be maximized subject to the constraints on communication
resources, when sensors are evenly distributed throughout the
entire area. The threshold needs to be adjusted periodically to
adapt to the dynamics in the sensing environment. The interval
between time slots when the threshold is adjusted is considered
a decision window, and we denote the set of time slots within
decision window k as Wk. The threshold for collaborative
sensing applied to decision window k is denoted by ρk.

Due to the large number of sensors, it is difficult to have
each sensor update its sensing quality information to the AP
in every time slot for collaborative sensing. The AP maintains
a DT for each sensor to monitor the sensor status and estimate
its sensing quality in each time slot. This approach allows
the AP to identify sensors with low sensing quality and
deliver the corresponding global sensory data to them. The
sensing quality of sensor n estimated by its DT is denoted
by Q̂n,t. Additionally, the DT of the sensor also analyzes
the sensor status for resource allocation, to be detailed in
Section III-C. To accurately monitor the sensor status, the AP
may collect the sensors’ real-time sensing quality to update the
DTs. Therefore, communication resources should be properly
allocated to sensors for uploading the real-time quality of
local sensory data, referred to as quality status, in addition to
aggregating local sensory data and delivering global sensory
data.

A. Sensing Quality Model

Next, we model the global sensing quality achieved by
aggregating local sensory data. The AP continuously prompts
sensors to upload their local sensory data and updates the
received local sensory data for subareas, which has higher
quality than the current global sensory data for those subareas,
into the global sensory data. Specifically, when the prompted
sensor successfully senses subarea l, the global sensory data
for that subarea is updated, increasing its corresponding qual-
ity. In contrast, if the prompted sensor fails to sense subarea
l or if subarea l is not in the sensor’s sensing coverage, the
existing global sensory data is reused, and the corresponding
quality of the subarea degrades over time. We denote the set
of sensors whose local sensory data is received and processed
by the AP in time slot t as ut, as multiple sensors may upload
their local sensory data to the AP within a time slot. As a
result, the evolution of the quality of the global sensory data
for subarea l over time slots can be modeled as follows:

QG,t+1,l =
⎧
⎨

⎩

η−τ QG,t,l, if l /∈ {∪n∈utLn}
max

{
η−τ QG,t,l, {η−hτ Qn,t−h,l ∀n ∈ ut}

}

if l ∈ {∪n∈utLn}
(1)

where η represents a degradation parameter and h is the
number of time slots elapsed from the moment when the
selected sensor n uploaded its local sensory data till time slot
t + 1.

Based on the threshold-based collaborative sensing policy
in Definition 1, we then model the final sensing quality of the
sensor with collaborative sensing. In each time slot, the AP
estimates the local sensing quality of each sensor using the
DTs. If the estimated local sensing quality of the sensor is

greater than threshold ρk, the AP will not deliver the global
sensory data to the sensor. The processing time for sensors to
analyze their local sensory data is considered to be one time
slot. In such a case, the quality of the final sensory data for
subarea l at sensor n in time slot t is

Gn,t,l = η−τ Qn,t,l, if Q̂n,t ≥ ρk. (2)

Otherwise, the sensor receives the global sensory data from
the AP. The sensor keeps the received global sensory data
in a subarea, which has a higher quality compared to the
corresponding local sensory data, as the final sensory data for
the subarea. To ensure that the global sensory data can be
timely delivered, we consider a delay constraint that the delay
for delivering the global sensory data to the corresponding
sensor cannot exceed τ , i.e., the duration of a time slot. Thus,
the final sensing quality of sensor n for subarea l in time slot
t can be estimated as

Gn,t,l = max
{
η−τ Qn,t,l, η

−τ QG,t,l
}
, if Q̂n,t < ρk. (3)

B. DT Model

A higher threshold for collaborative sensing enables more
sensors to receive global sensory data, potentially enhancing
the sensing quality. However, delivering global sensory data
to more sensors within the specified latency could exceed
the available bandwidth. On-demand collaborative sensing
is necessary for maximizing resource utilization. Therefore,
we establish a DT for each sensor to monitor its real-
time local sensing quality, capture the sensing environment
dynamics, and identify the resource demands of the sensor in
collaborative sensing.

Denote the DT of sensor n in time slot t by
{In,t,Mn,t,Dn,t,On,t}, where the four elements represent the
set of inputs, mathematical models, the data set, and outputs in
DT n. The DT model is illustrated in Fig. 3(a) and elaborated
as follows:

1) Inputs In,t: The input to the sensor’s DT is the quality
status. The DT of a sensor can obtain such information of
the sensor from the uploaded local sensory data. In addition,
the AP also occasionally collects the quality status from the
sensor directly. We define the number of time slots between
two successive updates of the quality status of the sensor, due
to the upload of either local sensory data or quality status, as
an update interval, denoted by Tk. The length of the update
interval depends on the communication resources allocated to
uplink transmissions. A short update interval enables the DT
to accurately capture the sensor status.

2) Mathematical Models Mn,t: In the DTs, mathematical
models are generated from four functions: 1) monitoring;
2) abstraction; 3) prediction; and 4) evaluation. The models
from these four functions are represented as MM

n , MA
n , MP

n ,
and ME

n , respectively. The parameters of the models are
updated periodically according to the inputs and the data sets
of DTs.2

Monitoring: The status monitoring function uses a mathe-
matical model, i.e., MM

n , to estimate the local sensing quality

2We assume that the types of mathematical models are determined in
advance for simplicity.
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(a)

(b) (c)

Fig. 3. Overview of the DT for a sensor. (a) DT structure. (b) CSD models of sensor n in time window k. (c) Future CSD models of sensor n for time
window k + 1.

of the sensor at time slot n, i.e., Q̂n,t, based on the historical
sample inputs to the DT, i.e., the local sensing quality status.
The mathematical model can be a regression model, a Kalman
filter, or other data exploitation methods. We assume the model
is given and pretrained, while the estimation is imperfect due
to the nonzero update interval.

Abstraction: Moving objects and obstacles in the sensing
environment result in time-varying sensing quality among
subareas. Therefore, instead of modeling each moving object,
we model the collaborative sensing demand (CSD) dynam-
ics of individual sensors, which reflect the sensing quality
fluctuations, for a lower complexity. In the DT of sensor
n, the abstraction function updates the mathematical model
MA

n as illustrated in Fig. 3(b). Model MA
n involves a set of

two-stage on-off Markov models to approximate the demand
for receiving global sensory data from the AP. The settings of
the on-off models in MA

n are as follows: Each DT discretizes
the continuous threshold into D levels, resulting in a set of
threshold candidates ρ = {ρ1, . . . , ρD}, where ρ1 = 0 and
ρD = 1. For each threshold ρd ∈ ρ, an two-stage on-off
Markov model is established, referred to as the CSD model
corresponding to threshold ρd. States Son and Soff represent the
estimated quality Q̂n,t are less than and greater than threshold
ρd, respectively. When the state is Son, the AP should deliver
the corresponding global sensory data to the sensor at V bits
per time slot, i.e., the size of the corresponding global sensory
data. The transition rates from Soff to Son and from Son to Soff,
denoted by α

(k)
n,d and β

(k)
n,d, respectively, are updated periodically
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at the end of each decision window as the parameters in model
MA

n . The term (α
(k)
n,1:D, β

(k)
n,1:D) represents the pair of transition

rates for all thresholds ρ at decision window k. The transition
rates for each threshold candidate can be estimated empirically
by counting the number of transitions via comparing the
estimated sensing quality, i.e., {Q̂n,t|t ∈ Wk}, from the data.
The abstracted CSD models can reveal the communication
resources that would be consumed for collaborative sensing
with different thresholds in the preceding decision window.

Status Prediction: We use a VAE, to be detailed in
Section V-C, as a status prediction function to update the
mathematical model MD

n . Model ME
n involves a set of

predicted CSD models in the upcoming decision window and
is referred to as future CSD models. The structure of ME

n
is similar with model MA

n , as illustrated in Fig. 3(c), while
the transition rates of ME

n are predicted from the historical
transition rates of CSD models periodically. Specifically, at the
beginning of decision window k + 1, the transition rates in the
future CSD models, denoted by (α̂

(k+1)
n,1:D , β̂

(k+1)
n,1:D ), are predicted

according to the CSD models in the W preceding decision
windows, i.e., {(α(k−W+1)

n,1:D , β
(k−W+1)
n,1:D ), . . . , (α

(k)
n,1:D, β

(k)
n,1:D)}.

The future CSD models are used by the network controller to
allocate the communication resources for the upcoming time
window proactively.

Evaluation: The aforementioned CSD models are con-
structed based on the estimated local sensing quality which
is provided by the state monitoring function. Note that these
estimates may deviate from the ground truth. The model
evaluation function updates the mathematical model ME

n to
assess the distribution of estimation errors, represented as an
unbiased Gaussian distribution, i.e., �(T̄k) ∼ N (0, σn(T̄k)

2).3

The standard deviation, σn(·), is a nondecreasing function
of the update interval, parameterized by a set of parameters
Kn. This evaluation function reuses the VAE from the status
prediction function and deduces Kn by comparing the gener-
ated CSD models across various update intervals. The details
are presented in Section V-C. Model ME

n enables the AP to
allocate communication resources and efficiently update the
DTs.

3) Data Set Dn,t: A data set is adopted at each DT to store
the data of the corresponding sensor. The data in a DT includes
the estimated sensing quality of the sensor, corresponding
updating intervals, and model parameters, including the tran-
sition rates of the CSD models in the preceding W decision
windows. The data set is continuously updated over time slots
for recording the real-time state of the sensor, allowing the
functions in the DT to capture the changes in the CSD models
and refine the models accordingly.

4) Output On,t: Each DT provides three outputs to the
network controller for resource allocation. The first output is
the estimated local sensing quality of the sensor in current time
slot n, i.e., Q̂n,t, from the status monitoring function in the DT.
Based on this, the network controller determines whether to
deliver the global sensory data to the sensor. The second output
is the predicted future CSD models, i.e., (α̂

(k+1)
n,1:D , β̂

(k+1)
n,1:D ), at

3Note that, the distribution of the unbiased estimation error in the proposed
solution is not limited to the Gaussian distribution.

Fig. 4. Illustration of the communication bandwidth allocation.

the beginning of each decision window. The third output is
the estimation error distribution �(T̄k). The network controller
gathers these outputs from DTs to allocate communication
resources for sensory data collection and delivery, as well as
to adjust the update interval for the DTs.

C. Communication and Computing Model

Communication resources need to be allocated for three
types of traffic: 1) downlink transmissions for global sensory
data delivery; 2) uplink transmissions for local sensory data
aggregation; and 3) uplink transmissions for uploading quality
status. The communication bandwidth allocation model is
illustrated in Fig. 4. The overall communication bandwidth,
denoted by B, is divided for uplink and downlink transmis-
sions. In decision window k, the bandwidths allocated for
downlink and uplink transmissions are denoted by Dk and
B − Dk, respectively. The latter is further divided into two
different types of uplink transmissions.

1) Downlink Transmission: Sufficient bandwidth should be
allocated to global sensory data delivery to ensure that the
global sensory data can be delivered in a time slot. Given the
downlink bandwidth Dk, the data rate that can be achieved for
global sensory data delivery, denoted by RD,k, is

RD,k = Dk log

(

1+ SD

DkN0

)

(4)

where SD denotes the received communication power at the
sensor and N0 represents the noise power spectral density. The
received communication power is identical for all sensors via
proper power control. The AP has a transmission buffer to
store the data that is to be transmitted to the sensors. The state
of the transmission buffer, i.e., the number of bits in the buffer,
in time slot t, is denoted by μt. According to the threshold in
collaborative sensing ρk, the evolution of the buffer state can
be formulated as

μt+1 = max{μt − τRD,k, 0} + V
∑

n∈N
1
[
Q̂n,t < ρk

]
(5)

where the function 1[x] is one if x is true and zero otherwise.
The buffer state μt should always be lower than the maximum
number of bits in the buffer μmax with at least probability
	 to ensure that the global sensory data can be delivered on
time. To ensure that the global sensory data is delivered to
a sensor within a time slot, we have μmax = τRD,k − V .
We assume that the sensing environment is similar among all
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sensors within the considered area during a decision window.
Under this assumption, the buffer overflow probability can be
obtained based on the average transition rates of the CSD
models over the sensors, provided by DTs. Specifically, let
ᾱ

(k)
d = (1/N)

∑
n α̂

(k)
n,d and β̄

(k)
d = (1/N)

∑
n β̂

(k)
n,d for all

threshold ρd ∈ ρ. The utilization factor of allocated downlink
bandwidth is


 =
(

ᾱ
(k)
d

ᾱ
(k)
d + β̄

(k)
d

)
N

Ck
< 1 (6)

where Ck represents the number of sensors to receive the
global sensory data in a time slot and Ck = (τRd,k/V). The
probability of buffer state exceeding μmax is given by [29]

P(l > μmax) ≈ AN
Ne−rβ̄(k)
d μmax/V (7)

where parameter r is defined by

r =
(1−
)

(
1+ ᾱ

(k)
d /β̄

(k)
d

)

1− Ck/N

and parameter AN is defined by

AN = �
N−	Ck
−1
i=1

zn

zn + r
. (8)

In (8), zn is the nth eigenvalue of a matrix F =MD−1, where
M is an (N + 1)× (N + 1) matrix and the nonzero elements
are defined as follows:

M[i, i] = −
[
iβ̄d,k + (N − i)ᾱ(k)

d

]
, i ∈ {0, . . . , N}

M[i− 1, i] = iβ̄d,k, i ∈ {1, . . . , N}
M[i, i+ 1] = (N − i)ᾱ(k)

d , i ∈ {0, . . . , N − 1}.
Furthermore, D is defined as follows:

D = diag
[−Ckβ̄d,k, (1− Ck)β̄d,k, . . . , (N − Ck)β̄d,k

]
. (9)

The derivation is given in [29] and omitted here. A proper
threshold and downlink bandwidth should be selected to
ensure the buffer overflow probability is within acceptable
limits.

2) Uplink Transmissions: We consider a time-division
model for each sensor to upload its status data, either local
sensory data or its quality status, to the AP. Specifically, the
AP randomly selects a sensor to upload its status data based
on a uniform distribution, where each sensor have probability
1/N to upload their data. After the sensor is selected, with
probability ok, the selected sensor uploads its current local
sensory data for updating the global sensory data at the AP and
its DT. With probability 1− ok, it uploads the current quality
status for updating its DT only. After the AP receives the
status data from a sensor, it processes the status data, and the
processing time follows exponential distributions. Specifically,
the expected processing rates for processing local sensory data
and the quality status are constants and denoted by λH and λL,
respectively. Thus, the expected delays for uploading the local
sensory data, denoted by E[Hk], and for updating the quality
status, denoted by E[Lk], are

⎧
⎨

⎩

E[Hk] = V
(

1
RU,k
+ 1

λH

)

E[Lk] = VL

(
1

RU,k
+ 1

λL

) (10)

Fig. 5. AoI evolution of the global sensory data for subarea l.

respectively. In (10), RU,k is the uplink transmission data rate
and can be defined by

RU,k = (B− Dk) log

(

1+ SU

(B− Dk)N0

)

(11)

where SU denotes the received communication power at the
AP. Furthermore, VL represents the data size of the quality
status, and VL < V . Then, we have the expected update interval
as follows:

T̄k = okE[Hk]N + (1− ok)E[Lk]N. (12)

According to (12), frequently sending the quality status, i.e.,
choosing a small ok, can reduce the update interval and
improve the accuracy of the DT at the cost of a longer interval
for updating the global sensory data. The quality of the global
sensory data depends on the time elapsed since the latest
update of the local sensory data for each subarea, i.e., the Age
of Information (AoI) of the global sensory data.

IV. DT-ENABLED PERFORMANCE EVALUATION

AND PROBLEM FORMULATION

In this section, we first evaluate the final sensing quality
of sensors using the CSD models from their DTs. Then, we
formulate the optimization problem of maximizing the final
sensing quality.

A. Performance Evaluation

In each time slot, the final sensing quality of a sensor
depends on the quality of both the local sensory data and the
received global sensory data. The quality of global sensory
data for a subarea evolves over time, which can be captured
by the AoI of the global sensory data. Let At,l and Āl represent
the AoI of the global sensory data for subarea l in time slot t
and the expected AoI of the global sensory data for subarea l
over time, respectively. The expected quality of global sensory
data in subarea l over time slots, denoted by Q̌G,l, can be
represented as

Q̌G,l = E
[
ηAt,l

] ≥ ηĀl . (13)

The inequality is achieved due to the convexity of ηAt,l on At,l

when 0 < η. We use the lower bound to analyze the sensing
quality, i.e., Q̌G,l = ηĀl . The evolution of AoI regarding the
global sensory data for subarea l is illustrated in Fig. 5. Let Yl
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be a random variable representing the interval between events
when a sensor senses and updates the sensory data for subarea
l to the AP. The expected AoI of the global sensory data for
subarea l can be derived as [30]

Āl =
{

1

2
E

[
(Yl + Hk)

2
]
− 1

2
E

[
H2

k

]}

/E[Yl]

=
{

E[YlHk]+ 1

2
E

[
Y2

l

]}

/E[Yl]. (14)

The numerator in (14) represents the average value of the
shadowed area in Fig. 5.

The interval Yl depends on the number of times that sensors
upload data to the AP within this interval and the update
interval Tk. Let Il denote the number of times that sensors
upload their status data to the AP within the interval Yl after a
sensor senses and updates local sensory data for subarea l. The
value of Il depends on the probability that the local sensory
data for subarea l is updated by a sensor, which is denoted by
gl. According to the communication and computing model in
Section III, gl can be obtained as

gl = κ × ok|Nc,l|/N, where Nc,l = {n|l ∈ Ln} (15)

where parameter κ represents the average local sensing quality
for a subarea and can be derived from the statistics of historical
local sensing quality. Accordingly, Il follows a geometric
distribution, where the probability mass function (PMF) is

P(Il = i) = (1− gl)
igl, i ≥ 0. (16)

From Fig. 5, the interval Yl includes the time that a sensor
senses subarea l to update its local sensory data, i.e., Hk, and
the interval that other sensors update their status data except
for updating the sensory data for subarea l, i.e., Il × Tk.
Therefore, the mean of Yl is

E[Yl] = E[Hk]+ E[IlTk]. (17)

In addition, considering the independence between update
interval Tk and the update times Il, we can obtain E[YlHk]
in (14) as

E[YlHk] = E

[
H2

k

]
+ E[HkTk]E[Il]

where E[HkTk] can be rewritten from evaluating the conditions
of Tk

E[HkTk] = okE[HkTk|Tk = Hk]+ (1− ok)E[HkTk|Tk = Lk]

= okE

[
H2

k

]
+ (1− ok)E[Hk]E[Lk]. (18)

Similarly, E[Y2
l ] in (14) can be obtained as follows:

E

[
Y2

l

]
= E

[
H2

k

]
+ 2E[HkTk]E[Il]+ E

[
I2
l

]
E

[
T2

k

]
.

Thus, the expected AoI of the global sensory data for subarea
l is

Āl = 2E[Il]E[HkTk]+ 3
2E

[
Y2

l

]+ 1
2E

[
I2
l

]
E
[
T2

k

]

E[Hk]+ E[Il]T̄k
. (19)

The AoI in (19) can be used to determine the quality of the
global sensory data for a subarea in (13).

The quality of final sensory data for subarea l at sensor n,
i.e., Gn,t,l, depends on the quality of both local sensory data
and received global sensory data from the AP of the sensor.
From (1)–(3), in each time slot, there are four possible cases
in determining the quality of final sensory data as follows.

1) Case 1: No global sensory data is received at the sensor
since its local sensing quality exceeds the threshold for
collaborative sensing, i.e., Q̄n,t ≥ ρk. In this case, the
quality of the final sensory data for subarea l is the same
as that of the local sensory data, i.e., Gn,t,l = η−τ Qn,t,l;

2) Case 2: The sensor receives the global sensory data for
subarea l, and the corresponding global sensory data is
obtained from the local sensory data updated by other
sensors within one time slot. The condition of such a
case can be estimated as IlT̄k + E[Hk] ≤ τ , and the
quality of the final sensory data for subarea l is the same
as that of the received global sensory data.

3) Case 3: The sensor receives global sensory data and
successfully senses subarea l. In addition, the received
global sensory data cannot be obtained within one time
slot, i.e., IlT̄k +E[Hk] > τ. The quality of final sensory
data for subarea l is the same as that of the corresponding
local sensory data.

4) Case 4: The sensor receives global sensory data and
cannot successfully sense subarea l due to the blockage.
In addition, the received global sensory data cannot be
obtained within one time slot, i.e., IlT̄k + E[Hk] ≥ τ .
The quality of the final sensory data for subarea l is the
same as that of the corresponding global sensory data.

Denote the expected quality of the final sensory data for
subarea l at a sensor over time by Ǧl. According to the above
four cases, Ǧl can be determined as follows:

Ǧl = 1

N|Wk|
∑

n∈N

∑

t∈Wk

Gn,t,l =
4∑

c=1

PG
l,cη
−Ll,c (20)

where c ∈ {1, 2, 3, 4} is the index of the case (i.e., one of the
aforementioned four cases) and Ll,c represents the expected
AoI of the final sensory data. In (20), PG

l,c represents the
probability of case c occurring in a time slot. In terms of the
expected AoI of the final sensory data, for the first and fourth
cases, the local sensory data is used. Thus, the corresponding
expected AoI, i.e., Ll,1 and Ll,4, are equal to the length of a
time slot τ . The expected AoI in the second and third cases,
i.e., Ll,2 and Ll,3, depend on the condition whether IlT̄k+E[Hk]
is greater or less than τ . Let Î = (τ − E[Hk])/T̄k. The value
of Ll,2 and Ll,3 can be obtained from

Ll,2 =
2E

[
Il|Il ≤ Î

]
E[HkTk]+ 3

2E
[
Y2

l

]+ 1
2E

[
I2
l |Il ≤ Î

]
E
[
T2

k

]

E[Hk]+ E

[
Il|Il ≤ Î

]
T̄k

(21a)

Ll,3 =
2E

[
Il|Il > Î

]
E[HkTk]+ 3

2E
[
Y2

l

]+ 1
2E

[
I2
l |Il > Î

]
E
[
T2

k

]

E[Hk]+ E

[
Il|Il > Î

]
T̄k

(21b)

respectively. In (21a) and (21b), the mean and second moment
of Il with the conditions Il ≤ Î and Il > Î are derived,
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respectively, in Appendix A. Furthermore, given threshold for
collaborative sensing ρd, PG

l,1 through PG
l,4 can be formulated

as follows:

PG
l,1 =

κβ̄
(k)
d

ᾱ
(k)
d + β̄

(k)
d

;PG
l,2 =

P
(

Il ≤ Î
)
ᾱ

(k)
d

ᾱ
(k)
d + β̄

(k)
d

(22a)

PG
l,3 =

(1− κ)P
(

Il > Î
)
ᾱ

(k)
d

ᾱ
(k)
d + β̄

(k)
d

;PG
l,4 =

κP
(

Il > Î
)
ᾱ

(k)
d

ᾱ
(k)
d + β̄

(k)
d

. (22b)

By (20), given a resource allocation strategy, the network
controller can use the predicted CSD models from DTs to
evaluate the final sensing quality of all sensors with different
thresholds for collaborative sensing.

B. Problem Formulation

We aim to maximize the final sensing quality achieved by
collaborative sensing for sensors, where both the threshold for
collaborative sensing, i.e., threshold ρk, and the corresponding
communication resource allocation need to be jointly deter-
mined. For decision window k, the optimization problem can
be formulated as follows:

[P] max
ρk,Dk,

ok

1

NL|Wk|
∑

t∈Wk

∑

n∈N

∑

l∈Ln

Gn,t,l (23a)

s.t. P(μt < μmax) ≥ 	 (23b)

Dk ≤ B, 0 ≤ ok ≤ 1 (23c)

ρk ∈
[
ρ1, . . . , ρD

]
. (23d)

The objective of P is to maximize the expected final sensing
quality for all sensors. The optimization problem is solved at
the beginning of decision window k. Meanwhile, in each time
slot during the decision window, DTs estimate the real-time
local sensing quality of the sensors. If there is no estimation
error, all uplink resources are allocated to local sensory data
aggregation, i.e., ok = 1. Otherwise, the estimation error
leads to the degradation of the expected local sensing quality
that was evaluated at the beginning of the decision window.
Therefore, the objective function (23a) can be rewritten in two
parts

[P0] max
ρk,Dk,ok

∑

l∈L

|Nl|
NL

Ǧl

︸ ︷︷ ︸
Part1

− 1

N

∑

n∈N
Resn

(
G̃n, T̄k

)

︸ ︷︷ ︸
Part2

s.t. (23b)−(23d) (24)

where set Nl represents sensors that cover subarea l, where
Nl = {n|l ∈ Ln, ∀n}. In (24), G̃n = (1/L)

∑
l∈Ln

Ǧl

represents the expected final sensing quality can be achieved
at sensor n over time, if the estimation is accurate. Part 1
represents the expected final sensing quality analyzed by DTs
at the beginning of decision window k, which is equivalent
to (23a) if DTs can perfectly estimate the local sensing
quality for the sensors. In Part 2, Resn(G̃n, T̄k) represents the
expected performance degradation resulting from inaccurate
estimation by the DT of sensor n, which is related to estimation
error �(T̄k). Such a performance degradation occurs when
the ground truth local sensing quality, Q̄n,t, is less than

the threshold for collaborative sensing while the estimated
value, Q̂n,t, is not, i.e., the DT of sensor n overestimates the
local sensing quality of the sensor. Given threshold ρk, the
probability that such an overestimation error occurs is

PE
n

(
T̄k
) = P

(
ρk −�(T̄k) < Q̄n,t < ρk|�(T̄k) > 0

)
. (25)

Thus, the function Res(T̄k) can be estimated as follows:

Resn

(
G̃n, T̄k

)
=
∫ ∞

0
On,tP

(
ρk − δ < Q̄n,t < ρk

)
f�+(T̄k)(δ)dδ

(26)

where On,t = G̃n − Q̄n,t represents the loss of final sensing
quality when overestimating the local sensing quality. The
random variable �+(T̄k) represents the estimation error �(T̄k)

under the condition that �(T̄k) > 0.

C. Problem Decomposition

At the beginning of decision window k, the network con-
troller solves P0 to generate the threshold for collaborative
sensing and the resource allocation policy based on the outputs
from DTs. We decouple the problem into two subproblems:
1) collaborative sensing optimization and 2) DT management.
Specifically, the collaborative sensing optimization problem is
defined as follows:

[P1] max
�,G̃n,T̄k

∑

l∈L

|Nl|
NL

Ǧl (27a)

s.t. G̃n = 1

L

∑

l∈Ln

Ǧl (27b)

G̃n = Zn, T̄k = Jn,k ∀n
(23b)−(23d) (27c)

where � = {ρk, Dk, ok} represents the set of optimization vari-
ables in P0. In (27c), Zn and Jn,k are the auxiliary optimization
variables that should be equal to the expected final sensing
quality of sensor n and the expected update interval T̄k,
respectively. These two auxiliary variables are determined by
solving the following DT management problem for minimizing
performance degradation due to the overestimation error in the
DT for each sensor:

[P2] min
Zn,Jn,k

Resn
(
Zn, Jn,k

)
(28a)

s.t. Zn = G̃n, Jn,k = T̄k ∀n. (28b)

Both P1 and P2 are nonconvex. Solving P1 requires predicted
CSD models provided by all DTs in a centralized manner
at the network controller, and P2 can be solved by each DT
individually based on the estimation error approximated by
the DT.

V. PROPOSED DT-BASED COLLABORATIVE

SENSING SOLUTION

In this section, we present a DT-based collaborative sensing
solution to solve P0. At the beginning of decision window
k, DTs predict the CSD models of the corresponding sensors
to solve P1. The algorithm for solving this problem is
detailed in Section V-A. Furthermore, each DT approximates
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Algorithm 1 Collaborative Sensing Scheme With ok = 1

1: Initialize population binary matrix D
1 for e = 0.

2: Obtain ᾱ
(k)
d and β̄

(k)
d from DTs.

3: for episode e = 1 : Emax do
4: Convert binary population matrix D

e to the correspond-
ing decimal vector be = [be

1, . . . , be
NP

]. Each element
represents a candidate downlink bandwidth solution.

5: for threshold ρd = ρ1:ρD do
6: Calculate buffer overflow probability pd,v = P(μt >

μmax) from (7) for all individuals.
7: end for
8: Update be ← be\{be

v|pd,v > 1− 	,∀d}.
9: if be = ∅ then

10: Return Dk = 0.
11: end if
12: Update ρe ← {ρd|pd,v ≤ 1−	, pd′,v > 1−	,∀d′ > d}.
13: for subarea l ∈ L do
14: Calculate the final sensing quality for subarea l, i.e.,

Ǧv
l , using (20) for all individuals.

15: end for
16: Obtain f e

v =
∑

l
|Nl|
NL Ǧv

l , ∀v
17: Find the individual v∗ = argmaxvf e

v .
18: Selection: Random select NP individuals from the

population with probability pv = f e
v∑

v(f
e
v )

, and update

binary matrix D
e+1.

19: Crossover: For each individual in D
e+1, switch each

binary with that of another individual with the probability
pcrossover, and update D

e+1.
20: Mutation: Flip each binary element in D

e+1 with the
probability pmutate.

21: end for
22: Output downlink bandwidth Dk = be

v∗ and the correspond-
ing threshold for collaborative sensing ρk = ρe

v∗

its estimation error. This error model allows for P1 to be jointly
solved with P2, thereby optimizing the collaborative sensing
performance by mitigating the performance degradation due
to inaccuracies in the DTs. The joint collaborative sensing
and DT management scheme is presented in Section V-B.
Finally, we introduce a VAE-based model prediction and DT
evaluation method to predict CSD models and approximate
the estimation error for each DT in Section V-C.

A. On-Demand Collaborative Sensing

We first solve P1 when the uplink resource is fully allocated
to local sensory data aggregation, i.e., ok = 1. In such a
case, DTs are assumed to make accurate estimations on local
sensing quality. The optimal downlink bandwidth Dk and the
corresponding threshold for collaborative sensing ρk are to
be determined to maximize the final sensing quality while
ensuring the global sensory data delivery delay requirement.
A smaller bandwidth allocated for downlink transmissions
results in fewer sensors receiving the global sensory data
timely, whereas a larger bandwidth for downlink transmissions
impedes the local sensory data aggregation.

The proposed resource allocation scheme for on-demand
collaborative sensing, where ok = 1 is presented in
Algorithm 1. The proposed algorithm is developed from the
genetic algorithm. In a genetic algorithm, a population of
individuals is created, with each individual representing a
candidate resource allocation solution Dk. The population
evolves iteratively toward the global optimum, while solv-
ing the problem. In iteration episode e, the population is
represented by a decimal vector be with length NP, or the
equivalent binary matrix D

e with a size of NP × ND, where
NP represents the number of individuals in a population
and ND is the number of binary bits used to represent a
decimal number. The population size NP should be a large
number.

Algorithm 1 consists of three phases. After the population
is initialized, the first phase (lines 4–12) aims to find the best
threshold for collaborative sensing that satisfies (23b) for each
individual of the population. The buffer overflow probability
for threshold ρd and individual v is denoted by pd,v. For each
individual, the highest threshold that satisfies (23b) is selected
for collaborative sensing. This is because the overall final sens-
ing quality improves as the number of sensors receiving the
global sensory data increases. If no individual in the population
can satisfy (23b), it indicates that the communication resources
are insufficient for collaborative sensing, and the algorithm
returns Dk = 0. The second phase (lines 13–17) calculates the
overall final sensing quality for all individuals and selects the
individual that achieves the best final sensing quality. The third
phase (lines 18–21) involves population adjustment, where the
binary representations of the individuals in the population are
modified to improve the quality of the population. Specifically,
in line 18, individuals are randomly selected from the current
population. The individuals who achieve the higher overall
final sensing quality have a higher likelihood of being chosen.
Then, the binary representations of selected individuals are
combined (crossover in line 19) and randomly mutated (muta-
tion in line 20) to create a new population for the next iteration.
Both steps increase population diversity, thereby improving the
chance to further improve the sensing performance in the next
iteration.

B. Joint Collaborative Sensing and DT Management

Next, we solve the joint collaborative sensing and DT
management problem, where ok ≤ 1. Specifically, P1 and
P2 are jointly optimized. Problems P1 and P2 are coupled
through (27c) and (28b). We first relax P2 by approximating
Resn(Zn, Jn,k) into a tractable form. When threshold ρk =
ρd is selected for collaborative sensing, the probability that
the overestimation occurs, i.e., Q̄n,t < ρd and Q̂n,t >

ρd, can be calculated by finding the summation of the
probabilities that such an overestimation occurs under the
condition �+(Jn) > ρd − ρd−j ∀j ≤ d. In particular, if the
ground truth local sensing quality Q̄n,t falls within the interval
[ρd−j, ρd−j+1], the overestimation occurs when �+(Jn) >

ρd − ρd−j. Thus, with threshold ρd for collaborative sensing,
the overestimation probability in (25) can be estimated as
follows:
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PE
n

(
Jn,k; ρd

)
=

d∑

j=0

PE
n,j

(
Jn,k; ρd

)

=
d∑

j=1

P
(
ρd−j < Q̄n,t < ρd−j+1

)
P
(
�+(Jn,k) > ρd − ρd−j

)
.

(29)

Given threshold ρd, Resn(Zn, Jn,k) can be estimated as

Resn

(
Zn, Jn,k; ρd

)
=

d∑

j=1

(
Zn − E

[
Q̄n,t|ρd−j < Q̄n,t < ρd−j+1

])

× PE
n,j

(
Jn,k; ρd

)
. (30)

In (30), the expected ground truth local sensing quality under
the condition that Q̄n,t falls within the interval [ρd−j, ρd−j+1]
can be estimated as

E

[
Q̄n,t|ρd−j < Q̄n,t < ρd−j+1

]
= ρd−j + 1

2

(
ρd−j + ρd−j+1

)
.

(31)

In addition, the probability P(ρd−j < Q̄n,t < ρd−j+1) can be
estimated by the predicted CSD models from DT n as follows:

P
(
ρd−j < Q̄n,t < ρd−j+1

)

= α̂n,ρd−j+1

α̂n,ρd−j+1 + β̂n,ρd−j+1

− α̂n,ρj

α̂n,ρd−j + β̂n,ρd−j

. (32)

In this way, Resn(Zn, Jn,k) can be derived based on the
information provided by DTs given threshold ρd for collabo-
rative sensing.

We then solve P1 and P2 iteratively using the alternating
direction method of multipliers (ADMMs) method [31] for
decoupling the problem and the relaxed heavy ball ADMM (R-
HB-ADMM) method [32] to accelerate convergence. Let W
denote the vector that combines [G̃1, . . . , G̃N] and [T̄k, . . . , T̄k]
with the length of 2N. Let V denote the vector that combines
[Z1, . . . , ZN] and [J1,k, . . . , JN,k]. Let Wn and Vn represent
vectors [G̃n, T̄k] and [Zn, Jn,k], respectively. Using the R-HB-
ADMM methods, in iteration m, the optimization variables in
P2 are updated using the augmented Lagrangian method by
solving

min
Vn

F2,n = Resn

(
Zn, Jn,k; ρd

)
+ ε

2
‖Vn − W̌m + ǔm‖22. (33)

Similarly, the optimization variables in P1 are updated in
iteration m by solving

max
�,W

F1 =
∑

l∈L

|Nl|
NL

Ǧl

− ε

2
‖ω1Vm+1 + (1− ω1)W̌m −W+ ǔm‖22

s.t. (23b)−(23d). (34)

In (34) and (33), the auxiliary variables W̌m and ǔm in R-HB-
ADMM are updated using the following rules:

um+1 ← ǔm + ω1Vm+1 + (1− ω1)W̌m −Wm+1 (35a)

ǔm+1 ← um+1 + ω2

(
um+1 − um

)
(35b)

W̌m+1 ← W̌m+1 + ω2

(
W̌m+1 − W̌m

)
. (35c)

Algorithm 2 Collaborative Sensing Scheme With ok ≤ 1

1: Initialize u0, W̌0, W0, and V0.
2: Obtain ᾱ

(k)
d and β̄

(k)
d from DTs

3: for iteration m = 1 : Mmax do
4: for sensor n = 1 : N do
5: Update the auxiliary variables in mth iteration

using (35) to obtain W̌m(ρd) and ǔm(ρd), ∀ρd ∈ ρe.
6: Find Zm+1

n (ρd), ∀ρd ∈ ρe using (36),.
7: Apply the genetic algorithm to solve (33) and obtain

Vm+1
n (ρd), ∀ρd ∈ ρe.

8: end for
9: Initialize binary population matrices D

1 and O
1 with

size NP × ND, respectively.
10: for episode e = 1: Emax do
11: Convert matrices D

e and O
e to corresponding deci-

mal vectors be and oe, respectively.
12: Find threshold for collaborative sensing ρe using

Lines 5-12 of Algorithm 1.
13: Obtain objective function value Fe

1,v for all indiviuals
of the population using Vm+1

n (ρe).
14: Find the individual v∗ = argmaxvFe

1,v.
15: Diversify the population in D

e and O
e using Lines

18-20 of Algorithm 1.
16: end for
17: Update Wm+1(ρe) based on resource allocation policy

Dk = be
v∗ and ok = oe

v∗ .
18: end for
19: Output optimal resource allocation policy Dk and ok and

the threshold for collaborative sensing ρk = ρe
v∗ .

In (34), (33), and (35), ε, ω1, and ω2 are the parameters in
the R-HB-ADMM method.

Inspired by R-HB-ADMM, we develop a joint DT man-
agement and collaborative sensing scheme, as presented in
Algorithm 2. This algorithm aims to balance the expected final
sensing quality and performance degradation resulting from
DT estimation error. First, for the DT of each sensor, lines 6–8
compute the solutions to (33) for all potential thresholds for
collaborative sensing. The optimal Zn in each iteration can be
obtained directly by solving ∇Zn F2,n = 0, where Zm+1

n given
threshold ρd can be obtained as follows:

Zm+1
n

(
ρd
)
← G̃m

n − um
h −

d∑

j=1

PE
n,j

(
Jm

n,k; ρd
)
/ε. (36)

The optimal Jm
n,k, given ρd, is obtained using a genetic algo-

rithm. After solving (33), lines 11 to 18 solves (34). This part
of Algorithm 2 generates and evolves two populations, one for
finding Dk and another for finding ok. Similar to Algorithm 1,
the optimal threshold for collaborative sensing is determined
for each individual in line 14. The optimization variables in
the two problems, i.e., (33) and (34), are updated iteratively
till the maximum iteration number is reached, i.e., Mmax.
Note that, Algorithm 2 is executed at the beginning of every
decision window. The output provides the policy for real-
time collaborative sensing over time slots in the subsequent
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Fig. 6. Structure of the proposed VAE.

decision window. The processing time of Algorithm 2 can be
considered negligible since it operates once in each decision
window which contains multiple time slots.

C. VAE-Based Model Prediction and DT Evaluation

The solutions provided in Algorithms 1 and 2 are based on
the predicted future CSD models (α̂

(k)
n,d, β̂

(k)
n,d) and the known

estimation error model �(T̄k), which are generated by DTs.
In this section, we introduce a VAE to generate the above
information based on the historical CSD models and the
average update intervals in preceding W decision windows.
Compared to other prediction methods like recurrent neural
networks, the VAE allows DTs to learn the intrinsic dynamics
of environmental changes from noisy estimated local sensing
quality data. Additionally, DTs can assess their estimation
error corresponding to different update intervals using the
proposed VAE.

The proposed VAE structure is illustrated in Fig. 6. Each
DT deploys a VAE for model prediction and DT evaluation.
The VAE takes the historical CSD models and update intervals
of the corresponding sensor in the preceding W decision
windows as the input, denoted by vector x. The proposed
VAE consists of an encoder and a decoder. The encoder is a
neural network trained to learn a latent variable space Z as the
data feature from the input, in which the latent variable space
can be represented by a probability density function Pθ (z)
for a latent variable z ∈ Z . In [33], the latent variable z is
modeled as a normal distribution denoted by R̂(z|x). Thus, the
encoder learns the encoded vector, i.e., the mean and standard
deviation of R̂(z|x), denoted by μz and �z, to represent
Pθ (z). In addition, the decoder is another neural network
that reconstructs the input from the distribution R̂(z|x). With
this approach, the encoder can capture the randomness of
estimation errors in historical demand models and explore the
true dynamics of resource demand for collaborative sensing.

In addition, we introduce a prediction function within the
decoder. This function predicts the CSD models in time
slot k based on a given expected update interval T̄k, using
information from R̂(z|x). If the VAE is well-trained, when
the input T̄k is zero, the decoder will generate accurate
future CSD models for resource allocations. Furthermore,
the potential expected update intervals T̄k can be fed to the
decoder to emulate the CSD models with estimation errors
caused by the corresponding update intervals, allowing the
DT to approximate the estimation error given the expected
interval T̄k.

The proposed VAE-based model prediction and DT evalua-
tion involves three parts: 1) VAE inference; 2) estimation error
evaluation; and 3) VAE retraining. First, in VAE inference, at
the beginning of decision window k, DT n retrieves historical
CSD models from decision windows k − W to k − 1, along
with the corresponding historical update intervals. The encoder
generates encoded vector (μz, �z) to determine a normal dis-
tribution that allows a sampler to draw a sampled vector z from
this distribution. The sampled vector and candidate T̄k serve as
inputs to the decoder, which produces the recovered and future
CSD models as well as the recovered update interval. When
predicting the future demand models for making collaborative
sensing and resource allocation decisions, we set T̄k to zero as
the input of the decoder to generate the CSD models without
the estimation error.

Second, in estimation error evaluation, each DT uses its
VAE to approximate the estimation error by emulating CSD
models with T̄k > 0. This is achieved by sampling multiple T̄k

values as the possible update intervals and using them as input
for the decoder. Since we consider an unbiased estimation in
which the mean of �(T̄k) is 0, we can have the following
relation on the CSD models generated with input T̄k = y and
T̄k = 0 fed to the decoder:

P
(

G̃n +�(y) < ρd|T̄k = y
)
= P

(
G̃n < ρd|T̄k = 0

)
. (37)

The left-hand side of the equation can be rewritten as follows:

P
(

G̃n < ρd −�(y)|T̄k = y
)

=
∫

δ

P
(

G̃n < ρd − δ|T̄k = y
)

f�(y)(δ)dδ.

Given the small gap between the thresholds in set
[ρ1, . . . , ρD], we can replace ρd − δ by an element from
[ρ1, . . . , ρD], denoted by ρx. This allows us to estimate (37)
as follows:

D∑

x=1

P
(

G̃n < ρx|T̄k = y
)
Q

(
�(y), ρd, ρx

)

= P
(

G̃n < ρd|T̄k = 0
)
. (38)

In (38), Q(�(y), ρd, ρx) represents the probability of the
estimation error falling within the interval (ρd, ρx) when
ρd < ρx or (ρx, ρd) when ρx < ρd. This probability can be
calculated by

Q

(
�(y), ρd, ρx

)
=
∣
∣
∣
∣Q

(
ρd

σn(y)

)

− Q

(
ρx

σn(y)

)∣
∣
∣
∣

where Q(·) is the Q-function in statistics. The conditional
probability in (38) can be obtained from the proposed VAE
with different T̄k fed to the decoder

P
(

G̃n < ρx|T̄k = y
)
= α̂n,x

(
k|T̄k = y

)

α̂n,x
(
k|T̄k = y

)+ β̂n,x
(
k|T̄k = y

) .

The ideal parameters Kn in the parameterized function σn(T̄k)

should ensure that the left-hand of (38) equals to right-hand
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sides. Thus, the parameters Kn can be obtained through the
information provided by the VAE as follows4:

K∗n = argminKn

D∑

d=1

{
D∑

x=1

P
(

G̃n < ρx|T̄k = y
)
Q

(
�(y), ρd, ρx

)

− P
(

G̃n < ρd|T̄k = 0
)
}2

. (39)

Finally, in VAE retraining, the neural networks in the VAE
model are retrained at the end of each decision window. Each
DT fetches historical CSD models from decision windows
k −W to k and inputs them into the encoder and decoder. The
loss function for retraining the VAE is defined as follows [33]:

L =
∑

w

{
KL

[
R̂λ(z|xw)||Pθ (z)

]

− Eε∼N (0,I)
[
Pφ(xw|z(ε, xw))

]}
(40)

where λ and φ represent the weights of the neural networks
in the encoder and decoder, respectively. Additionally, ε is
an auxiliary noise variable sampled from a standard normal
distribution. In the equation, z(ε, xi) represents the sampled
value of z from the encoded vector μz and �z for input data
point xi, which can be obtained from z(ε, xi) = μz(xi) +
�z(xi)ε.

The proposed VAE-based data prediction and DT evaluation
play a critical role in establishing a closed-loop resource
allocation in collaborative sensing. The VAE forecasts future
resource demands using historical data to support proactive
resource allocation. Additionally, the VAE analyzes the system
performance, i.e., historical CSD models, on the historical
resource allocation decision, i.e., update interval Tk, and
evaluates the estimation error resulting from DTs. This evalu-
ation enables the network controller to optimize collaborative
sensing policies through the DTs while taking into account
DT estimation error and maintenance costs.

VI. SIMULATION RESULTS

We consider a 100 m × 100 m workspace with N = 50
sensors. Each sensor is capable of sensing its surroundings
within a radius of 10 m, and its sensing coverage may
be occasionally blocked by moving objects traversing the
workspace. The number of moving objects accessing the
workspace among decision windows is time-varying, where
the pattern is generated by an autoregressive integrated moving
average (ARIMA) model. The speeds of the moving objects
are uniformly selected from [1, 4] m/s. The duration of a time
slot τ is 1 s, and a decision window contains 120 slots. Within
each time slot, the number of moving objects is constant. The
size of local sensory data V and the quality status VL are
2 and 0.3 MB, respectively. For both uplink and downlink
transmissions, the noise power is set at -160 dBm/Hz, and the
received signal power SU and SD are 50 dBm. The constraint
on the downlink buffer overflow probability 1 − 	 is 0.1. In

4We use a linear model to approximate the function σn(T̄k), where
σn(T̄k) = Kn × T̄k , and the parameter Kn > 0. However, the proposed model
evaluation method is not limited to a linear model.

Fig. 7. Expected final sensing quality per sensor versus overall bandwidth
B.

Algorithm 1, the genetic algorithm operates with the following
parameters: NP = 100, Emax = 10, pcrossover = 0.8, and
pmutate = 0.003. For R-HB-ADMM in Algorithm 2, the
parameters are set as follows: ε = 1, ω1 = 0.8, and ω2 = 0.1.

A. DT-Based Collaborative Sensing and Resource Allocation

In this section, we demonstrate the performance of the
proposed collaborative sensing scheme achieved by DTs. The
sensing performance, i.e., the expected final sensing quality
per sensor within a decision window, under the condition that
ok = 1 is shown in Fig. 7. We first compare the analytical
performance using the models in DTs, denoted by “DT” in the
figure, with the simulated collaborative sensing performance.
Two degradation parameters are evaluated, i.e., η = 0.95 and
η = 0.8. We observe that the difference between the analytical
and the simulated results is very small, which validates that
our proposed DT framework can accurately characterize the
resource demand in collaborative sensing. In addition, we
compare the performance of our proposed DT-based scheme
with two benchmark schemes as follows.

1) Greedy: The AP delivers the global sensory data to
all sensors, i.e., ρk = ρD = 1, with a fixed amount
of communication resources allocated to the downlink
transmissions.

2) No-Collaboration: No sensor receives the global sensory
data from the AP, i.e., ρk = ρ1 = 0.

Compared to the no-collaboration scheme, the proposed col-
laborative sensing scheme can significantly enhance sensing
performance through sensory data sharing. Furthermore, com-
pared to the greedy scheme, our proposed scheme improves
the final sensing quality by optimizing resource allocation and
thresholds for collaborative sensing. In the greedy scheme,
when Dk/B = 0.9, less bandwidth resource is allocated to

Authorized licensed use limited to: University of Waterloo. Downloaded on December 06,2024 at 18:56:13 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: DIGITAL-TWIN-EMPOWERED RESOURCE ALLOCATION FOR ON-DEMAND COLLABORATIVE SENSING 37955

Fig. 8. Buffer overflow probability versus overall bandwidth B.

Fig. 9. Global sensing quality versus overall bandwidth B.

sensing data aggregation. The performance gap between the
DT and greedy schemes increases as overall bandwidth B
increases due to the low global sensing quality, especially
when η is low. Meanwhile, when Dk/B = 0.3, more bandwidth
resource is allocated to sensing data aggregation. However,
it may lead to low final sensing quality due to insufficient
downlink bandwidth for timely delivering the global sensory
data.

The downlink buffer overflow probability for both the
proposed DT scheme and the greedy scheme is shown in
Fig. 8. Although the final sensing quality in the Greedy case
is comparable to that of the proposed scheme when overall
bandwidth B is small, the greedy case does not consistently
maintain the overflow probability under the required limit
1− 	. In contrast, the proposed scheme effectively limits the
overflow probability, simultaneously maximizing the overall
sensing performance.

The comparison between the analytical performance pro-
vided by DTs and the simulated performance on the global
sensing quality is shown in Fig. 9. The simulation results
demonstrate the accuracy of the analytical performance evalu-
ated by the mathematical models in DTs. Furthermore, when
the overall bandwidth is below 200 MHz, the quality of the
sensory data exhibits fluctuations. This is because the threshold
for collaborative sensing is selected from a discrete ρ. The
results of the selected threshold for collaborative sensing ρk

and resources allocated to the downlink transmissions Dk are
shown in Fig. 10. Below the 200 MHz bandwidth, the selected
threshold increases as the overall bandwidth increases. As
the optimal threshold may reside within the interval between

Fig. 10. Resource allocation results and the selected threshold for collabo-
rative sensing versus overall bandwidth B.

(a) (b)

(d)(c)

Fig. 11. (a) Final sensing quality versus overall bandwidth B with the
DT estimation error when K = 0.1. (b) Overall estimation error costs when
K = 0.1. (c) Final sensing quality versus overall bandwidth B with the DT
estimation error when K = 0.3. (d) Overall estimation error costs when
K = 0.3.

two adjacent thresholds in ρ, the corresponding resource
allocation is subject to fluctuations. As the difference between
two adjacent thresholds in ρ decreases, the quality of global
sensory data is expected to increase steadily with overall
bandwidth since sufficient resources are allocated for data
aggregation without violating the constraints on the global
sensory data delivery.

We next demonstrate the resource allocation results for DTs
with estimation errors. In this scenario, ok ≤ 1. We utilize
a linear model for the standard deviation of the estimation
error distribution, where σn(T̄k) = KT̄k and Kn = K ∀n.
The sensing performance when K = 0.1 and K = 0.3
is shown in Fig. 11(a) and (c), respectively. We compare
the performance with a data-driven resource management
approach, in which the AP directly uses the data set in the DTs
for resource allocation without evaluating the data accuracy.
The performance degradation resulting from inaccurate status
estimation, i.e.,

∑
n Resn(G̃n, T̄k), is shown in Fig. 11(b) and

(d). As shown in Fig. 11, in comparison with the greedy
scheme and the data-driven approach, our proposed scheme
achieves the highest final sensing quality with a low estimation
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Fig. 12. MSE between the predicted CSD model parameters and the derived
estimated error parameters across training epochs.

error. This is because our proposed scheme can fine tune
the resource allocation policy for joint resource and DT
management while taking into account the estimation accuracy
of DTs. A sufficient amount of resource is allocated to collect
additional data for DTs to compensate for their inaccuracies.

B. VAE-Based Data Prediction and Model Evaluation

In this section, we demonstrate the efficacy of our proposed
VAE-based model prediction and DT evaluation method. We
consider a time-varying number of moving objects across
decision windows. The VAE examines the historical data in
the past 50 decision windows to capture the dynamics and
forecast future CSD models with a learning rate of 0.0002. The
encoder structures in the VAE includes an LSTM layer with 20
units, followed by four fully connected layers with [518, 256,
128, 20] neurons. The decoder structures in the VAE includes
three fully connected layers with [128, 256, 518] neurons,
followed by an LSTM layer with 20 units. A linear model on
the standard deviation of the estimation error is adopted with
σn(T̄k) = KT̄k and K = 0.03. The VAE undergoes retraining
once every five decision windows, referred to as a training
epoch.

We compare the proposed VAE-based method with an
LSTM method in terms of model prediction accuracy, and
the comparison results are shown in Fig. 12. The mean-
squared error (MSE) between the VAE predicted and the actual
CSD models in a decision window decreases significantly as
the index of training epochs increases. On the contrary, the
LSTM-based method struggles to learn the dynamics from the
historical CSD models with the estimation error. Moreover, the
efficiency of our proposed estimation error evaluation method
is shown in the figure. After 90 training epochs, the DT
successfully learns the parameter K = 0.03 by analyzing the
predicted CSD models with varying candidate time slot length
T̄k as the input of the decoder.

VII. CONCLUSION

In this article, we have developed a novel resource allo-
cation solution for collaborative sensing in an IIoT scenario.

Our proposed hybrid data- and model-driven resource allo-
cation framework, empowered by DTs, facilitates on-demand
resource allocation by efficiently characterizing sensor-level
resource demand into resource allocation policies. Within
this framework, we have developed a joint collaborative
sensing and resource allocation scheme to coordinate resources
allocated for enhancing sensing performance and supporting
DT operations. In addition, we have created a VAE-based
data prediction and DT evaluation model, which enables a
closed-loop collaborative sensing approach that evaluates the
model accuracy of DTs. The proposed DT-based solution sets
an example for on-demand resource allocation to efficiently
support the extensive intelligent connections expected in next-
generation networks. Our future research will delve into
leveraging DTs to enhance reliability in communication and
sensing and enable secure interactions between humans and
machines in Industry 5.0.

APPENDIX

PROOF OF (20)

We prove (20) based on the following four cases.

A. Case 1

No global sensory data is delivered to the sensor. With the
probability of κ , the sensor can sense subarea l successfully,
and the maximum AoI of the local sensory data is τ . The
probability of such a case occurring is PG

l,1 = κP(Q̂n,t ≥ ρd),
which can be further simplified in (22a).

B. Case 2

The sensor receives the global sensory data for subarea l,
and the global sensory data is from the local sensory data
captured by other sensors within a time slot. In such a case,
Il ≤ Î. The corresponding probability on Il ≤ Î is P(Il ≤ Î) =
1− qÎ+1

l , where ql = 1− gl. Accordingly, the probability that
case 2 occurs can be obtained as (22a). In addition, since Il

follows a geometric distribution, the PMF of Il when Il ≤ Î
can be formulated as:

P
(

Il = x|Il ≤ Î
)
=

P
(

Il = x ∪ Il ≤ Î
)

P
(

Il ≤ Î
) = qx−1

l gl

1− qÎ+1
l

.

To determine the expected AoI of the received global sensory
data for subarea l as (19), we calculate the mean and the
second moment of Il given that Il ≤ Î. The mean is derived
as follows:

E
[
Il|Il ≤ Î

]
=

∑Î
i=0 iqi

lgl

1− qÎ+1
l

= glql

1− qÎ+1
l

d

dq

Î∑

i=1

qi
l

=
ql

(
1− qÎ

l − ÎqÎ−1
l

)

gl

(
1− qÎ+1

l

) . (41)

The second moment of Il with Il ≤ Î is

E
[
I2
l |Il ≤ Î

]
=

∑Î
i=0 i2qi

lgl

1− qÎ+1
l

= E
[
Il|Il ≤ Î

]
+ (TA + TB)

gl

(
1− qÎ+1

l

)
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where

TA = ql

gl

[

2ql +
(

Î − 1
) (

Î + 2
)

q

(
Î+1

)

l − Î
(

Î + 1
)

qÎ
l )

]

(42a)

TB = ql

g2
l

[
2
(

1− qÎ
l

)
q2

l − Îglq
Î+1
l

]
. (42b)

Using (19), the expected AoI of the global sensory data for
subarea l received at a sensor is determined by (21a).

C. Case 3

The sensor cannot successfully sense subarea l and receives
the global sensory data from the AP with Il > Î. In this
case, the global sensory data is used at the sensor as the final
sensory data. Consequently, the probability of such a case can
be formulated as

PG
l,3 = (1− κ)P

(
Q̂n,t < ρd

)
P
(

Il > Î
)
. (43)

To obtain the closed-form expected AoI of the received global
sensory data, we can derive the mean of Il under the condition
Il > Î as

E
[
Il|Il > Î

]
=

ql

(
qÎ

l + ÎqÎ−1
l

)

gl

(
qÎ+1

l

) (44)

and the corresponding second moment is

E
[
I2
l |Il > Î

]
= 2− gl

qÎ+1
l g2

l

−
E
[
I2
l |Il < Î

](
1− qÎ+1

l

)

qÎ+1
l

. (45)

The derivation process is similar to Case 2 and omitted.

D. Case 4

The sensor can successfully sense subarea l and receive the
global sensory data from the AP with Il > Î. The received
global sensory data for subarea l is outdated compared to the
local one. In this case, the sensor uses the local sensory data
for subarea l as the final one, and the probability that such a
case occurs is (22b).
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