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Abstract— Network function virtualization is a key enabling
technology in future wireless networks for flexible and efficient
sharing of network resources. Due to the increasing heterogeneity
of network resource providers, a blockchain-based distributed
architecture is a promising solution to enable reliable and
transparent virtualized network function (VNF) management.
However, since on-chain storage and computation are costive,
it becomes a challenging task to achieve efficient VNF manage-
ment with blockchain. In this paper, we first introduce a con-
sortium blockchain for collaborative VNF management among
network resource providers. Then, we propose an authenticated
VNF dictionary that can be stored as a succinct authenticator
on blockchain to support rich VNF query functionalities and
efficient verifications of query results. Moreover, we design a
dictionary pruning strategy to securely generate a compact
authenticator for a given query, which reduces unnecessary
memory accesses of the original dictionary when VNF queries are
represented as arithmetic circuits. Finally, we conduct extensive
experiments with a consortium blockchain network. The experi-
mental results demonstrate that our pruning strategy is efficient
for both on-chain and off-chain VNF management.

Index Terms— Network function virtualization (NFV),
blockchain, authenticated dictionary, dictionary pruning.

I. INTRODUCTION

FUTURE wireless network is envisioned to have a highly
dynamic and heterogeneous architecture that integrates a

wide range of radio access technologies and physical network
resources [1]. To achieve flexible, efficient, and cost-effective
sharing of physical network resources, network function vir-
tualization (NFV) is a key enabling technology [2]. More
specifically, network resource providers (including wireless
operators, edge, and cloud servers) abstract network functions
into virtualized functions (VNFs) [3], such as firewall or
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packet inspection function at the cloud [4]. To support a par-
ticular application, a network slice can be formed that consists
of a chain of VNFs, a network topology on VNF nodes,
switches, and links, and networking protocol supports [5]–[7].
Service-level agreement (SLA) corresponds to Quality of
Service (QoS) requirements that a user expects from a service
provider. In NFV-enabled network management, an SLC for a
particular service should specify a network slice with sufficient
computing, storage, and transmission resources. To this end,
network virtualization can achieve flexible programming of
service functionalities and efficient resource management in
the future wireless networks.

With the development of the NFV techniques, it is critical
to have a reliable and secure NFV controller to orches-
trate VNFs and manage network slices for different network
applications [8]. Due to the increasing heterogeneity in wire-
less networks, NFV is envisioned to have a multi-provider
and multi-tenant paradigm [9]. As a result, compared with a
centralized controller, distributed controllers are a more practi-
cal and promising solution to provide reliable and transparent
VNF management [10], [11]. Recently, extensive research
efforts have been directed towards building the distributed
VNF management using the emerging blockchain technol-
ogy [11]–[16]. Blockchain is a distributed ledger maintained
by a peer-to-peer network [17], [18]. With consensus pro-
tocols and light-weight cryptography, blockchain provides a
consistent and shared view of the ledger among blockchain
nodes. Moreover, smart contract technique [19] provides
programing capability to securely and automatically update
ledger states when conditions or terms are met. On the
one hand, a blockchain-based VNF management can boost
trustworthiness among network stakeholders to collaboratively
manage VNFs and reduce the risk of single point failure of a
centralized VNF controller [20]. On the other hand, it can
enhance service fairness by implementing and monitoring
service agreements on smart contracts [21].

At the heart of blockchain-based VNF management is
VNF dictionary management. A VNF dictionary consists of
useful information of VNFs, including VNF name, location,
capabilities, version, and available resources [14]. Network
resource providers can collaboratively manage a VNF dictio-
nary on the blockchain and use the smart contract to support
on-demand VNF placement, resource allocation, and slice
configurations. As a result, the VNF dictionary should support
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rich lookup functionalities and efficient dictionary updates.
Unfortunately, existing blockchain-based solutions for VNF
management often directly store the VNF dictionary on the
blockchain storage. First, a blockchain node must maintain
local copies of the ledger and verify each ledger update. As the
size of the VNF dictionary can increase dramatically, the cost
of directly storing and querying the dictionary on-chain can
be expensive [22]. Second, the on-chain storage is open to
the blockchain nodes, while some VNF information can be
sensitive and should be kept private, such as VNF location
and subscription.

To address the challenges, authenticated dictionary [23]
on blockchain can be applied for the VNF management.
Specifically, the VNF dictionary can be digested as a succinct
cryptographic authenticator to be stored on the blockchain.
Later, VNF lookups over the dictionary can be conducted
off-chain and results can be verified efficiently on-chain with
the authenticator and a succinct proof. Succinct non-interactive
argument of knowledge (snark) [24]–[27] can support verifi-
able dictionary lookups represented by arithmetic circuits with
a succinct dictionary authenticator. Moreover, verifications of
snark proofs are efficient, which makes it a suitable candidate
to construct blockchain-based VNF dictionary. At the same
time, the snark-based authenticated dictionary may increase
the computation overhead for generating a proof of correct
VNF lookups. The is because the snark-based solution cannot
efficiently support flexible programming of lookup functions.

In this paper, we present an authenticated and prunable
dictionary for blockchain-based VNF management (Block-
VNF). We utilize a consortium blockchain as a shared ledger
between network stakeholders to conduct VNF management.
We build a snark-based authenticated VNF dictionary to
address the on-chain efficiency challenges. Most importantly,
we identify and formulate the dictionary pruning problem in
the snark-based dictionary management, and propose a highly
efficient dictionary pruning solution based on Merkle tree. The
main contributions of this paper are summarized as follows:

• We propose an authenticated and transparent VNF dic-
tionary based on vector commitments and snarks on
a consortium blockchain. By enabling succinct digests
of the dictionary in blockchain with verifiable query
proofs, our solution addresses the efficiency challenges
for blockchain-based VNF management;

• We adopt a network of snark systems for verifiable VNF
query. First, a pruning function can be executed with a
sanrk system, and an aggregated authenticator of matched
VNFs can be generated. Second, the aggregated authen-
ticator for a pruned dictionary can be used by another
snark system for fine-grained VNF query. By doing so,
we avoid a large number of unnecessary memory accesses
to the original VNF dictionary;

• We design a verifiable mechanism for generating an
aggregated authenticator based on the Merkle tree.
Specifically, we let VNF providers pre-compute indi-
vidual authenticator for each VNF and store a succinct
Merkle root for all VNF authenticators on blockchain.
The aggregated authenticator of matched VNFs against
the pruning operation can be verified with a Merkle proof

and a snark proof. Moreover, on-chain verification over-
head is further reduced by enabling efficient verifications
of incorrect proofs in VNF management;

• Our security analysis demonstrates that Block-VNF
achieves verifiable VNF lookup. We conduct extensive
experiments based on a real-world consortium blockchain
network and snark implementations. Our experimental
results demonstrate that our pruning solution obtains a
significant performance gain in computational overhead
when generating verifiable VNF lookup results.

The remainder of this paper is organized as follows.
In Section II, we summarize the related works. In Section III,
we present the building blocks of Block-VNF, including vector
commitments and succinct non-interactive argument of knowl-
edge (snark). We present system model and threat model, and
formulate verifiable VNF lookup in Section IV. We discuss
our design techniques and present detailed constructions in
Section V. In Section VI, we demonstrate security properties
of Blod-VNF. In Section VII, we present experimental results.
Finally, we conclude this work in Section VIII.

II. RELATED WORKS

In this section, we summarize existing studies in
blockchain-based VNF management, and blockchain-based
authenticated dictionary.

A. Blockchain-Based VNF Management

There were extensive studies on efficient resource manage-
ment for VNFs, for vehicular networks [5], [8] and Internet
of Things [7]. More specifically, abstractions of network
functionalities as VNFs can help a network controller to
improve the overall resource utilization efficiency. In a multi-
provider multi-tenant setting with a preference of distributed
VNF controllers, using blockchain as a broker was first studied
in [28] to enable dynamic and automatic VNF management.
Later, a framework for blockchain-based VNF auction was
studied in [13]–[15]. VNF management was modeled as an
auction process and blockchain was utilized to build a regu-
latable auction framework. In their works, VNF information of
network resource providers was recorded on the blockchain,
and a smart contract was utilized to manage VNF requests.
A blockchain-based auditing architecture for VNF manage-
ment was proposed in [16]. The blockchain was utilized as a
trusted log system to record activities of VNF stakeholders.

Early attempts explored the VNF management solutions
on blockchain for auction and regulatory purposes. Since the
existing solutions usually adopted blockchain as a trusted
and distributed database, the expensive on-chain storage and
computation overhead was not fully considered.

B. Blockchain-Based Authenticated Dictionary

Blockchain-based verifiable dictionary enabled transparent
certificate [23], where an accumulator-based authenticator was
stored on the blockchain to achieve the membership proof
of certificate issuance. Existing accumulator-based solutions
focused on an efficiently searchable blockchain-based dictio-
nary [29], [30]. Specifically, an authenticated data structure
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based on cryptographic accumulator was constructed [30]
and the searchable index based on symmetric searchable
encryption (SSE) or hidden vector encryption (HVE) was
adopted [29], to support keyword query and range query.

In an account-based blockchain architecture, a blockchain-
based dictionary plays an important role. Compared with
a blockchain architecture based on the unspent transaction
output (UTOX) model, the account-based blockchain uses an
account dictionary, such as a Merkle tree, to record public keys
and balances of blockchain accounts. Due to the inefficient
proof size of the Merkle tree, it was proposed to utilize vector
commitments [31] to construct the account-based blockchain.
Specifically, the Pedersen-like commitments were used to store
account information, which can be succinctly opened at a
subset of vector positions [32] based on efficient polyno-
mial evaluations. The vector commitment-based mechanism
usually required verifications in plaintext. The commitment
schemes can also be combined with the snark techniques for
efficient proof verifications [33], [34]. For blockchain-based
VNF management, the VNF lookup should be flexible and
require efficient on/off-chain lookup operations.

Zk-snark can translate arithmetic circuits into a proof system
with succinct and efficient verifications. Zk-snark was first
proposed in [35], which utilizes a quadratic arithmetic pro-
gram (QAP) to represent circuit evaluations with installation
in bilinear groups. Later, a toolchain that compiled a subset
of C programs to QAP was proposed in [24], [25], [36]. The
proof size of QAP-based snark was further reduced in [37].
Zk-snark can be combined with Pedersen-like vector commit-
ments to construct an authenticated dictionary. In [38], it was
observed that, for the zk-snark with structured generators,
an offline digest of inputs can be adopted to support general
computations. Composite arguments [39] or commit-and-prove
snarks [40] were studied, where either the input or the output
of a snark system can be replaced by a cryptographic com-
mitment. By doing so, the snark system can be compatible
with other zero-knowledge proof systems for achieving rich
functionalities in practice.

In the snark-based authenticated dictionary, a challenging
issue came from the random access memory (RAM) for
circuit-based computations. In a non-RAM snark system [24],
[25], only static memory access was supported in a subset of
C programs. As a result, dynamic array access or loop breaks
cannot be achieved, which results in a linear search of all
dictionary entities. RAM-enabled zk-snark was studied in [26],
[27], which usually relied on a permutation proof system that
may increase the circuit complexity. By contrast, Block-VNF
addresses the inefficiency of the snark-based dictionary for
VNF management via a dictionary pruning strategy.

III. BUILDING BLOCKS OF Block-VNF

In this section, we summarize the building blocks of
Block-VNF, including vector commitments and succinct non-
interactive arguments.

A. Notations

Denote G = (G1, G2, GT ) with a prime order p and an
efficient bilinear paring e : G1 × G2 → GT . Denote g as a

TABLE I

ABBREVIATIONS

TABLE II

NOTATIONS

generator from G and the tilde form g̃ as a generator from
G2. We use [m, n] to represent integers from m to n, and
vn = (v1, v2, . . . , vn) ∈ Zn

P to represent an n-dimension
vector from ZP . Key abbreviations and notations are listed
in Table I and II, respectively.

B. Vector Commitments

Cryptographic commitment schemes [41] are widely used
to generate commitment of secret values. Given a vector, vn,
and a set of generators, (g0, g1, . . . , gn), a vector commitment
can be constructed as a Pedersen-like commitment [32], [42]:

C = gr
0

n∏
i=1

gvi

i , (1)

where r is a random number from ZP . The following two
properties are usually considered for vector commitment:

• Binding – If the generators are randomly chosen, each
position in the commitment is bound to a specific value
and cannot be efficiently opened to different values.

• Computational Hiding – The committed values cannot
be derived from the commitments by a computationally-
bounded adversary.

C. Succinct Non-Interactive Argument

Succinct Non-interactive Argument of knowledge
(snark) [24], [40] enables a prover (P) to convince a
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verifier (V) that an instance (x, w) holds on a relation (R).
It is succinct, if the argument size is related only to the
security parameter λ, regardless of the complexity of R. It is
non-interactive if the argument is a one-move proof system.
In the following, we introduce the snark system for relations
represented by arithmetic circuits.

1) Arithmetic Circuit: An arithmetic circuit (C) consists
of addition/multiplication gates interconnected as a directed
acyclic graph. An arithmetic circuit can be used to eval-
uate a function (F) at points (x1, x2, . . . ., xn), where
(x1, x2, . . . ., xn) are the inputs of C and F(x1, x2, . . . ., xn) is
the output of C. Given circuit C with assigned values of input
wires, a verifier can evaluate the circuit with an increasing
complexity with the number of (multiplication) gates in the
circuit.

2) Quadratic Arithmetic Program (QAP): Evaluation of C is
formulated as checking the divisibility of its equivalent QAP
(Q) [35]. We denote the number of multiplication gates in
C as d, which is also the degree of Q. We denote v as the
number of wires in C, which can be further divided into two
sets: (1) Iio = (c1, c2, . . . , cu), input/output wires of C; (2)
Iim = (cu+1, cu+2, . . . , cv), wires of the intermediate multi-
plication gates. Q computes polynomials: {Ak(x)}, {Bk(x)}
and {Ck(x)}, k ∈ [0, 1, . . . , v], as well as a target polynomial
t(x) [25].

Given {Ak(x)}, {Bk(x)}, {Ck(x)}, and t(x), Iio is a valid
assignment of C iff Iim can be found, such that t(x)
divides p(x):

p(x) = (A0(x) +
v∑

i=1

ciAi(x)) × (B0(x) +
v∑

i=1

ciBi(x))

−(C0(x) +
v∑

i=1

ciCi(x)). (2)

It should be noted that the polynomials in {Ak(x)} that
correspond to the input/output wires should be instantiated as
linearly independent [25]. By doing so, the consistency check
in the later snark system can be more efficient for a verifier.

3) Succinct Non-Interactive Argument of Knowledge: The
QAP formulates evaluation of circuit C as checking the divis-
ibility of Q, which can be efficiently instantiated in bilinear
groups with a snark system, ΩQ. Recall the constructions from
the Pinocchio framework [24] in asymmetric groups with an
augmented QAP generation [25], [39]. Prover P can evaluate
C with input/output Iio and generate a proof, π. Verifier V can
efficiently check whether Iio is a valid assignment of C with
π. Specifically, a snark system includes three algorithms:

• Setup(G,F) → (EK, V K) – The algorithm takes into
bilinear group G and function F represented by arith-
metic circuit C, to output an evaluation key (EK) and
a verification key (V K). Specifically, the algorithm con-
verts C into QAP Q and encodes polynomials Ak(x),
Bk(x), and Ck(x) at a trapdoor secret (s).

• Prove(xI , EK) → (xO, π) – The algorithm takes a vector
(xI) of inputs and the evaluation key, and evaluates circuit
C with xI to obtain values of intermediate wires xM and
output wires xO. It also generates proof π;

Fig. 1. System model.

• Verify(xI , xO, V K, π) → (0, 1) – The algorithm takes
the input vector, output vector, the verification key, and
the proof. It outputs either accept or reject.

Detailed constructions can be found in [24], [25].

IV. SYSTEM MODEL, THREAT MODEL

AND DESIGN GOALS

In this section, we present system model and threat model
of Block-VNF with design goals.

A. System Model

In Fig. 1, there are five entities in Block-VNF: VNF Provider
(VNF-P), VNF Tenant (VNF-T), VNF Manager (VNF-M),
Supervising Authority (SA) and a consortium blockchain:

• VNF-P is an owner of virtual network resources [16], e.g.
a wireless operator that controls radio spectrum resources.
VNF-P lists its VNFs at the repository of VNF-M [15]
to provide VNF repository services for VNF-T;

• VNF-T is a user of VNFs, and enjoys on-demand and
pay-as-you-go network services from VNF-M, which
may consist of a set of VNFs from different VNF-Ps.
For example, an HD map service may consist of VNFs
deployed at edge servers or base stations;

• VNF-M can be a third-party company, e.g., a cloud
datacenter [16]. Specifically, VNF-M acts as a broker
between VNF-P and VNF-T [13] for VNF repository
services;

• SA is a set of supervising nodes (SN) belonging to
multiple network stakeholders, e.g., wireless operators
and cloud centers in future wireless networks. SA is
responsible for maintaining a consortium blockchain and
for setting up public parameters.

• A consortium blockchain is maintained by SA. It is
responsible for listing VNFs and recording VNF query
instances.

Block-VNF works with the following steps: (1) Setup – SA
sets up a consortium blockchain and public system parameters;
(2) VNF Listing – VNF-Ps register their VNFs at VNF-M,
build a VNF dictionary with an authenticator, and upload
the authenticator onto the blockchain; (3) VNF Lookup –
VNF-Ts query the VNF dictionary based on VNFs’ locations,
functionalities, resources, prices, etc. VNF-M processes the
VNF queries from VNF-Ts and returns verifiable query results.
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VNF-Ts can verify the query results off the blockchain and
send complaints to the blockchain if an incorrect query result
is identified. In the following, we define the VNF dictionary
and VNF query.

Definition 1 – VNF dictionary D is a collection of VNF
information vectors Vi:

D = {Vi = (attr1, attr2, . . . , attrn)}i∈[1,m]. (3)

The dictionary consists of m VNF information vectors. Each
vector, Vi, consists of n attributes, including id, availability,
configurations, price, and so on. The attributes are represented
by integer values for numeric attributes or keyword attributes.
Specifically, an attribute can be a non-zero integer for the
availability, or an integer encoding of a string.

Definition 2 – VNF lookup F is a function defined as
follows:

F : (D, Q) → R. (4)

In Equ. 4, D is the VNF dictionary, and Q =
(q1, q2, . . . , qn) is an n-dimension query vector that specifies
VNF requirements, including functionalities, locations, com-
puting/storage/bandwidth resources, prices, and so on. The
lookup function executes Q over D, and outputs a lookup
result R = (id1, id2, . . . , idm∗) of m∗ identifiers of matched
VNFs, where m∗ is the number of matched VNFs.

B. Threat Model

Block-VNF focuses on security issues of the VNF query
services, to increase the transparency and audit of the VNF
management. SA is honest and trustworthy in Block-VNF,
which ensures the security of the system setup and the
blockchain. VNF-Ps are audited by SA and follow pre-defined
service agreements. They faithfully provide VNF information,
and construct a VNF dictionary and the authenticator. VNF-Ts
are rational users, who correctly construct their VNF queries
and accept query results if the queries are correctly executed
over the VNF dictionary. VNF-M is a third-party broker. Since
VNF queries are executed locally by VNF-M, it may not
always follow the pre-determined query rules for VNF lookup
services [16]. For example, VNF-M can deliberatively allocate
VNFs of high prices with a higher priority.

C. Design Goal

Under the system model and the threat model, we identify
design goals of Block-VNF.

Verifiable VNF Lookup – In a distributed environment
where VNF-Ps and VNF-Ts come from different domains and
VNF queries are executed off-chain by VNF-M, a reliable
and transparent auditing framework for VNF management is
required [23]. Within this framework, VNF lookup should
be verifiable with two properties: (1) Input authenticity – D
and Q should be authenticated by VNF-Ps and VNF-Ts; (2)
Execution correctness – F should be correctly executed over
D and Q with a pre-determined matching rule.

Efficient VNF Management – First, on-chain costs for stor-
ing a VNF authenticator and verifying VNF queries should
be low; Second, off-chain processing of VNF queries with
generations of correctness proofs should be efficient.

V. THE PROPOSED Block-VNF SCHEME

In this section, we discuss design challenges, and present
detailed constructions of Block-VNF.

The lookup function can be represented by an arithmetic
circuit to be instantiated using the setup function of the snark
algorithm by SA. Later, VNF-M can evaluate VNF query Q
on VNF dictionary D, and generate a result with a proof.
The lookup result can be efficiently and securely verified
using the verification function of the snark. Unfortunately, the
straightforward solution can significantly decrease the prover
efficiency when the size of D is large. First, on the VNF-T
(verifier) side, the verification requires the inputs of the whole
dictionary in plaintext, which can incur heavy verification cost.
Second, on VNF-M (prover) side, when the lookup function
is represented by an arithmetic circuit, it is difficult to have
an efficient snark-based dictionary lookup as discussed in the
related works. To address the challenges, we present Block-
VNF, which consists of three phases: System Setup, VNF
Listing, and VNF Lookup.

A. System Setup

To address the first challenge, we let the VNF-P pre-
compute an authenticator, AutD, of D using the vector com-
mitment technique. The authenticator can serve as a digest of
D to be used in the proof verification. As a result, we obtain
a modified snark [40] as follows:

• Setup(G,F) → (CK, EK, V K) – The algorithm addi-
tionally generates a set of commitment keys CK for the
dictionary;

• Commit(D, CK) → AutD – The algorithm generates a
commitment AutD for the dictionary;

• Prove(xQ,D, EK) → (xO, π) – It takes the evaluation
key, the query vector, and the dictionary, and generates a
result xO with proof π. Note that input xI is split into D
and a query xQ.

• Verify(AutD, xQ, xO, V K, π) → (0, 1) – Based on the
dictionary commitment, query xQ, matching results xO,
the verification key, and the proof, the algorithm makes
a decision either to accept or to reject.

With the modified snark system, SA can securely set up the
system:

First, SA sets up a consortium blockchain based on Hyper-
ledger Fabric. All VNF-Ps, VNF-Ts, and VNF-M can obtain
an identity to communicate with the blockchain and each other
from Hyperledger Fabric’s membership service. In Block-VNF,
we assume all communications between the VNF-Ps, VNF-Ts,
VNF-M, and the blockchain are secure and authenticated.

Second, SA sets up a dictionary template for the
modified snark. Based on Definition 1, attribute domain
(attr1, attr2, . . . , attrn) of a VNF information vector (Vi)
can be divided into two parts: keyword attribute and numeric
attribute. To represent keywords as integers, SA defines a
dictionary (W) that maps each keyword to an integer (wx).
vy is an integer that represents a numeric attribute. As a result,
dictionary D is refined as:

D = {Vi = ({wx ∈ W}x∈[1,n1], {vy}y∈[n1+1,n])}i∈[1,m], (5)
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where n is the dimension of VNF information vector Vi, n1 is
the number of keyword attributes in Vi, and m is the number
of VNFs in D. It should be mentioned that one numeric value
of each Vi can be set as a unique random number, such as
the VNF ID. By doing so, different VNFs can have different
VNF information vectors.

A VNF query, Q = (q1, q2, . . . , qn), can also be divided
into two sets: keyword query and range query. For the keyword
query, qi is represented by an integer from W . A range query
can be represented by [a, b], where a, b are two integers. Given
D and Q, VNF lookup function F in Definition 2 checks
each item in Q against that in each VNF of D. We take a
VNF information vector Vj to illustrate the lookup process.
Specifically, for keyword query qx, x ∈ [1, n1], the lookup
function checks if qx = wx ∈ Vj ; for range query qy =
[a, b], y ∈ [n1 + 1, n], the lookup function checks if vy ∈ Vj

lies in [a, b]. VNF Vj is matched with Q if all the checks pass.
To address the second challenge for the prover inefficiency

of the existing snark with/without the RAM, we propose
a dictionary pruning strategy. The strategy is based on an
observation that there usually exists a key query item, q∗,
in query Q that can significantly prune dictionary D to a
smaller dictionary, D′. More specifically, SA breaks original
function F into three functions:

F1 : (D, q∗) → R1,F2 : (D′, Q) → R2,

P rune(D, AutD, R1) → (D′, AutD′ , πp). (6)

In Equ. 6, F1 takes original dictionary D and key query item
q∗ ∈ Q. For each Vi ∈ D, F1 checks that if q∗ is matched
and outputs indexes of m∗ matched VNFs in R1; F2 takes
query Q and pruned dictionary D′ based on q∗. It outputs the
indexes of final VNFs in R2.

For the pruning function Prune, based on the original
dictionary (D), its authenticator (AutD) and the result R1,
the function generates a pruned dictionary (D′) with its
authenticator (AutD′), and a correctness proof (πp). There
also exists a polynomial-time verifying function that takes the
authenticators, result R1, and the proof to check if the pruning
function is correctly conducted.

SA defines two modified snark systems: Ω1 and Ω2 for
functions F1 and F2, respectively. SA chooses system security
parameter λ and bilinear groups G = (G1, G2, GT ) with a
bilinear pairing (e) and a prime order (p). SA chooses two
random generators, g ∈ G1 and g̃ ∈ G2, and a collision-resist
hash function H : (0, 1)∗ → (0, 1)512, such as SHA-512.
SA instantiates functions F1 and F2 by running Setup algo-
rithm of the modified snark:

Setup(G,F1) → (CK1, EK1, V K1)
Setup(G,F2) → (CK2, EK2, V K2). (7)

For Ω1, inputs of Prove function include q∗ and D; For Ω2,
inputs of Prove function include Q and D′;

Finally, SA publishes λ, G, g, g̃, e, p, H, V K1, V K2 on the
blockchain, and sends CK1 and CK2 to VNF-Ps, and
EK1 and EK2 to VNF-M. To support efficient verifications,
CK1 and CK2 should be instantiated from an augmented
QAP with linearly independent generators; Otherwise, they

can be instantiated from an external commitment scheme and
be linked with the modified snark system with a CP-link
algorithm [40]. Details of the pruning function are presented
in the next subsections.

B. VNF Listing

To design the pruning function, we have some strawman
solutions from the existing works. We start with the design of
the pruning function using a modified snark. The snark can
check the key query item q∗, and directly copy the satisfied
VNF information vectors into the new dictionary. However,
such a mechanism is not efficient since this still requires
RAM to the matched VNF information vectors in the original
dictionary. Since AutD and AutD′ are vector commitments
from bilinear groups, we may model the pruning function as a
subvector commitment scheme [42]. However, the state-of-the-
art subvector proposals are mainly designed for membership
testing, which are difficult to encode the pruning strategy based
on q∗. Moreover, verification of the subvector commitments
requires the inputs of the dictionary and a large size of public
parameters.

As a result, it is a challenging task to design a pruning func-
tion only from the two authenticators, which either requires an
efficient snark system with RAM or an efficient vector com-
mitment scheme. To address the challenge, we construct an
auxiliary dictionary, Daux, that stores each VNF information
vector Vi of D as an individual authenticator. The modified
snark scheme Ω1 conducts the key query on D, and generates
indexes of VNF information vectors that satisfy q∗ in R1. With
the output indexes and Daux, a new authenticator, AutD′ , can
be verifiably generated based on Merkle tree [43]. By doing
so, we reduce the computation cost at VNF-M for conducting
the pruning operation. In the following, we present detailed
constructions of D, AutD and Daux.

For illustrative simplicity, we consider a single VNF-P in
constructing D, which can be easily extended to multiple
VNF-Ps by allocating each of VNF-Ps a set of entries in
the dictionary. The VNF-P constructs VNF dictionary D =
{Vi}i∈[1,m] for its VNFs. The VNF-P uses CK1 ∈ Gm∗n

1

to commit dictionary D. We denote m∗
max as the maximum

number of VNFs in D′. Therefore, we have CK2 ∈ G
m∗

max∗n
1 ,

since D′ is at most m∗
max∗n dimension. The VNF-P computes:

AutD =
m∏

i=1

n∏
j=1

(CK1[i][j])Vi[j],

AutVi,j =
n∏

x=1

(CK2[j][x])Vi[x], ∀Vi ∈ D, j ∈ [1, m∗
max],

Authi,j = H(i||j||AutVi,j ), ∀Vi ∈ D, j ∈ [1, m∗
max]. (8)

CK1[i][j] represents a generator in CK1 for the j-th attribute
in the i-th VNF information vector in D. Vi[j] is the value of
j-th attribute in Vi. CK2[j][x] represents a generator for the x-
th attribute in the j-th VNF information vector in D′. AutVi,j

is an individual authenticator for Vi ∈ D if Vi is the j-th VNF
in D′. Since the VNF-P does not know the exact position of
Vi in D′ before the pruning function is executed, the VNF-P
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Fig. 2. An illustration of VNF dictionaries.

needs to pre-compute m∗
max authenticators for each Vi ∈ D.

As a result, there are total m∗m∗
max individual authenticators.

The VNF-P then generates a Merkle tree for all m ∗m∗
max

authenticators. For illustrative simplicity, assume that m ∗
m∗

max = 2h−1 is the exponentiation of 2 and h is the height
of the Merkle tree. If not, we can pack items to Authi,j to
make it a fully balanced binary tree. The VNF-P computes a
Merkle hash tree for all Authi,j to obtain a Merkle tree as
the auxiliary dictionary Daux and a root Root. An illustrative
construction of the dictionary and authenticators is shown in
Fig. 2.

Finally, the VNF-P sends D, Daux, and
AutVi,j , i ∈ [1, m], j ∈ [1, m∗

max] to VNF-M. The VNF-P
uploads the AutD and Root onto the blockchain.

C. VNF Lookup

We present detailed constructions of the VNF lookup,
including Query Construction, Query Processing, and Query
Verification.

1) Query Construction: A VNF-T constructs a VNF query:

Q = (q∗, {wi}i∈[1,n1], {[aj, bj ]}j∈[n1+1,n]), (9)

where wi is a keyword query (e.g., location, functionalities),
and [aj , bj ] is a range query (e.g., computing resource, and
bandwidth resource). We consider (a fixed) one of wi as key
item query q∗. The VNF-T sends query Q to a VNF lookup
contract on the blockchain. The contract checks the query
completeness and adds the query, the ID of the VNF-T, and a
processing flag on the blockchain. The ID is used to uniquely
identify the query and the flag is used to record the status of
the query processing.

2) Query Processing: The Merkle-tree-based auxiliary dic-
tionary can introduce additional communication overhead for
on-chain verification of proof πp for the pruning function.
To reduce the on-chain verification overhead, we enable
efficient off-chain verifications with on-chain complaints for
incorrect proofs [21] in the lookup contract. Specifically,
VNF-M processes the VNF query and sends the results with
proofs off-chain to the VNF-T. The VNF-T verifies the results
and proofs, and only makes complaints on the blockchain
when any verification fails.

Upon receiving Q, VNF-M first searches dictionary D with
q∗ using F1. VNF-M generates a result and a proof using the
snark system Ω1 as follows:

Ω1.P rove(D, q∗, EK1) → (R1, π1). (10)

As the definition of the modified snark system, inputs of
Prove of Ω1 include D and q∗. Output R1 consists of indexes
of m∗ VNFs (in an increasing order) that match the key query
q∗. We denote R1 = (i1, i2, . . . im∗), where Vix,x is the ix-th
VNF in D and is the x-th VNF in R1. Then, VNF-M constructs
a pruned dictionary authenticator as follows:

AutD′ =
m∗∏
x=1

AutVix,x . (11)

VNF-M computes a Merkle proof πp as in Algorithm 1.
The algorithm is used to demonstrate that the authenticators of
VNFs in R1 are consistent with the committed authenticators
from the VNF-P. Specifically, the algorithm finds a Merkle
path for each authenticator of Vi in R1 from Daux and returns
the siblings along the path, which is essentially a membership
proof of Merkle tree.

A pruned dictionary D′ is constructed from all VNF infor-
mation vectors indicated by R1. After that, VNF-M performs
query Q over D′ using F2. VNF-M generates a final result
R2 with a proof π2 using the snark system Ω2 as follows:

Ω2.P rove(D′, Q, EK2) → (R2, π2). (12)

R2 consists of indexes of VNFs from R1 (in an increasing
order) that match the query Q.

Finally, VNF-M sends π1, π2, πp, R1, {AutVix,x}ix∈R1

and R2 to the VNF-T via a secure and authenticated
channel.

3) Query Verification: The VNF-T retrieves AutD
and Root from the blockchain, and runs the following
verifications:

Ω1.V erify(AutD, q∗, R1, V K1, π1),
Ω2.V erify(AutD′ , Q, R2, V K2, π2),

AutD′ =
m∗∏
x=1

AutVix,x . (13)
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Algorithm 1 Merkle Tree Proof
Input: Daux, R1

Output: Proof πp

for ∀i ∈ R1 do
Identify Vi as jth VNF in R1

Find a path from Authi,j ∈ Daux to the root
Add siblings of nodes on the path to πp

The VNF-T also re-constructs the Merkle root from πp and
AutVix,x , and checks if the reconstructed root is equal to
Root. If all the verifications pass, the VNF-T sends the query
information and a correctness confirmation to the VNF lookup
contract. The contract checks that the confirmation and the
original query are sent from the same VNF-T. If all checks
pass, the contract concludes the query is processed correctly.

If any of the proofs fails, the VNF-T can send the received
proof with the corresponding result to the lookup contract.
Since communications between the VNF-T and VNF-M are
authenticated, the contract can check that the proof and the
result are sent from VNF-M. After that, the contract runs
the corresponding verification function to check the received
proof. If the verification by the contract fails, the contract
concludes the query is not processed correctly and enforces
associated accountability against VNF-M.

Remarks: (1) All communications between the VNF-T
and VNF-M are authenticated, which can thus serve as the
evidence in case of any complaint; (2) VNF-M can generate
commitments of R1 and R2 similar to AutD. With R1 and
R2, VNF-T can locally verify that the commitments of R1 and
R2 are correctly computed. By doing so, the verifications
of proofs π1 and π2 require less on-chain communication
overhead; (3) For the Merkle proof, if an incorrect proof
for a VNF is detected, the VNF-T only needs to upload the
corresponding proof and result (instead of the whole proof)
to the blockchain. This can significantly reduce the on-chain
verification overhead.

Discussions: (1) The modified snark system can be
instantiated from online-offline snark systems, such as vari-
ants of Pinocchio [25], [36] or [37]; (2) To generate
relation-independent dictionary authenticators, the modified
snark system can also be instantiated from external generators
with a CP-link scheme [40].

VI. SECURITY ANALYSIS

In this section, we first analyze the security of components
in Block-VNF, including blockchain, vector/Merkle commit-
ment, snark, and the pruning function. Then, we summarize
how the security of verifiable VNF lookup is achieved.

A. Blockchain Security

Blockchain security ensures that (1) the on-chain storage
cannot be maliciously modified, and (2) a valid transaction
will be included in the ledger within a certain time. To achieve
the blockchain security, different blockchain architectures can
utilize different consensus protocols. In Block-VNF, we adopt

a consortium blockchain architecture, i.e., Hyperledger Fab-
ric [18]. Specifically, Hyperledger Fabric supports plug-in
consensus protocols, such as Byzantine Fault Tolerant (BFT).
Since Block-VNF relies on authenticated network stakeholders
to maintain the consortium blockchain, the most of the stake-
holders are honest and the blockchain security is achieved.

B. Security of Vector/Merkle Commitments

For the vector commitment, it should be
computationally-infeasible for an adversary to find two
different vectors that generate the same authenticator if the
commitment keys are randomly constructed. In Block-VNF,
commitment keys are from the common reference strings
of the modified snark system. We can instantiate the snark
system with strong binding [40], or use an augmented QAP
with linearly independent polynomials for I/O wires [25].
Otherwise, we can also use external vector commitments with
a CP-link algorithm for the snark system. Most importantly,
the commitment keys are correctly set up by SA and
VNF authenticators are honestly computed and stored on
the blockchain by VNF-P. Even if the generators are not
necessarily independent, it still does not affect the security of
the snark system as long as the soundness property holds [40]
and the authenticators are honestly computed and stored. For
the hiding, it is not required in Block-DM since we do not
consider zero-knowledge property of the snark system.

For Merkle commitment, given a Merkle root, an efficient
adversary cannot open a specific leaf node to two different
values. Otherwise, the adversary can break the collision resis-
tance of the hash functions for computing the Merkle root.

C. Security of Snark

In Block-VNF, we utilize the modified snark system. Its
security is defined as:

Pr

⎡
⎢⎢⎢⎢⎣

V erify(AutD, Q,R, V K, π) = 1 :
Setup(G,F) → (CK, EK, V K)∧
Commit(D, CK) → AutD∧
F : (D, Q) � R∧
AF (D, Q, EK) → (R, π)

⎤
⎥⎥⎥⎥⎦

= neg(λ). (14)

Commit is a function that honestly computes a dictionary
authenticator. AF is an adversarial function that aims to forge
invalid results and proof. The above definition is similar to
the Soundness definition of QAP-based snarks [24], [25].
Therefore, the security of the snark is guaranteed if (1) the
Setup algorithm is run by a trusted party or a multi-party com-
putation protocol [44]; (2) the snark system is sound, where
an efficient adversary cannot forge a valid tuple that passes the
verification algorithm but is not an instance of the relation; (3)
The Pedersen-like commitment AutD is honestly computed
(by VNF-P). Since VNF-Ts are rational, they will accept
results and proofs if they are correct. We do not require zero
knowledge of the modified snark to be activated in Block-VNF.

D. Security of Pruning Function

Similar to the modified snark, the pruning function should
be verifiable. That is, given a key query item, a Merkle root
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Fig. 3. Computation overhead of snark.

of authenticators of individual VNFs, a result of the pruning
function, and a Merkle proof, an aggregated authenticator of
VNFs in the pruned dictionary can be verified.

The security of the pruning function comes from three
aspects: (1) Dictionary authenticator AutD and a corre-
sponding Merkle root Root for individual authenticators of
VNFs are securely set up by the VNF-P and stored on the
immutable blockchain storage; (2) The security of modified
snark Ω1 ensures that result R1 is correctly computed over D
with q∗.That is, indexes of matched VNFs in R1 are verifiable;
(3) Given that R1 and Root are authentic, a computationally-
bounded adversary cannot return invalid individual authenti-
cators or forge proof πp unless the adversary can break the
security of the Merkle commitment.

E. Security of VNF Lookup

The security of VNF lookup consists of two aspects: input
authenticity and execution correctness.

Input Authenticity: First, all submitted queries, Q, from
VNF-Ts are authenticated since communications among
VNF-Ts and VNF-M are secure and authenticated. Second,
authenticator AutD and Merkle root Root are truthfully com-
puted and uploaded to the blockchain by VNF-P. Since the
blockchain storage is immutable, the input of function F1 is
also authenticated. Due to the security of the pruning function,
inputs AutD′ and Q of function F2 are also authenticated.

Execution Correctness: First, since functions F1 and
F2 are instantiated from secure snark systems Ω1 and Ω2,
the execution correctness of the two functions is ensured.
A computationally-bounded adversary cannot forge invalid
results to pass verifications unless he can break the security of
the snark system. Second, due to the security of the pruning
function, the execution correctness of the pruning function is
also ensured.

VII. PERFORMANCE EVALUATION

First, we give comprehensive evaluations of snark systems
Ω1 and Ω2. The performance metrics include computational
time of setup, prover, and verifier, public parameter size, and
the memory usage. Second, we present the computation and
communication overhead of the pruning function with Merkle
proof. Third, we give the correlated analysis on the query accu-
racy with the snark systems. To demonstrate the efficiency of
the proposed pruning strategy, we compare the performance

between a VNF query without the pruning function and a
VNF query with the pruning function. Finally, to demonstrate
the feasibility of Block-VNF on the blockchain, we set up a
consortium blockchain network and evaluate Block-VNF with
different network settings.

A. Off-Chain Experiments

We implement xjsnark [26] as a program-to-circuit com-
piler and libsanrk [45] as a circuit-to-snark compiler in a
pro-precessing mode [25] with alt-BN128 curve. We conduct
our experiments on a laptop with 2.30GHz processor and 8GB
memory. We set the dimension of VNF information vector
Vi as 20, which includes 10 numeric values and 10 keyword
values. Similarly, query Q is set to a vector of 10 keyword
values and 10 ranges. We set q∗ as VNF availability, and let
F1 check if the corresponding attribute for q∗ in each VNF
vector is non-zero. Query function F2 is implemented as a one-
by-one comparison between each qi ∈ Q and attri ∈ Vi. For
range values, the function checks that if the item of each VNF
in a pruned dictionary D′ lies in the range of corresponding
range values in Q; For keyword values, the function checks
if the query has the same value compared with each VNF
in D′. The outputs of both snark systems are a vector with
the same size of their input dictionaries. Verifications of both
snark systems are implemented with D or D′ as inputs rather
than their authenticators.

1) Snark Complexity: In Fig. 3a, we plot the computation
overhead of the setup, prover and verifier of the snark system
for initial function F without implementing our dictionary
pruning strategy, which changes the number of VNFs (denoted
as m) in D from 29 to 212. While the most expensive cost is
the setup phase, the verifier overhead is around 100 ms. This is
because the setup phase needs to compute the QAP and a large
number of public parameters. It should be mentioned that the
setup phase is conducted once. We present the performance
of the snark systems Ω1 and Ω2 in Fig. 3b and Fig. 3c,
respectively. In Fig. 3b, the number of VNFs in D still
changes from 29 to 212. Since the prover only needs to
conduct comparisons at one out of 20 items between each
VNF information vector and the query vector, the dictionary
pruning incurs much fewer prover overhead as compared with
that in Fig. 3a. In Fig. 3c, we test snark system Ω2 against
the number of remaining VNFs after the pruning. Since the
size of the pruned dictionary is significantly smaller than the
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TABLE III

VNF LOOKUP WITHOUT PRUNING

TABLE IV

SNARK SYSTEM Ω1

TABLE V

SNARK SYSTEM Ω2

original dictionary, the snark system Ω2 is much more efficient
as compared with that in Fig. 3a.

In Table III, IV, and V, the QAP degree refers to the
number of multiplication gates in the generated circuit, that
can represent the complexity of associated functions. The
memory usage includes both the physical and swap memory.
We convert bits to KBs and MBs, where 1 KB = 8,000 bit
and 1 MB = 1,000 KB. The function complexity of Ω1 and
Ω2 is much less than the VNF lookup without the dictionary
pruning, and all performance metrics increase with the number
of VNFs. The PK size is much larger than VK size, which is
important for achieving efficient proof verifications. The size
of VK is affected by the total number of inputs and outputs.
It leads to the same values in Table III and IV with the same
number of VNFs, since we output results for all VNFs in
the two functions. The computation complexity increases with
m for Ω1 while the complexity increases with m∗n for Ω2,
where m is the number of VNFs in the original dictionary
and m∗ is the number of VNFs in the pruned dictionary. n
is the dimension of Vi and is set to 20. In Table IV and V,
we present the performance of Ω1 and Ω2 with different
pruning efficiency, which is the ratio between the sizes of the
original dictionary and the pruned dictionary. As m∗n is larger
than m in our experiments, the complexity of Ω2 is higher
than that of Ω1. Since the memory usage increases with the
computation complexity, the snark system in Table V takes
more memory as in Table IV.

2) Merkle Tree Complexity: For the Merkle tree, we adopt
SHA512 hash function in Java Pairing Based Cryptography
(JPBC) [46] on the same laptop. We test the Merkle tree setup
cost with the height of the Merkle tree (h). The computation
overhead in the setup phase increases with h but is still
very low compared with the computation overhead of the
snark systems. More specifically, it takes a few milliseconds
to generate a Merkle tree when h = 15. For the Merkle
proof generation and the verification, the computation cost

Fig. 4. Proof size of merkle tree.

is negligible. This is because calculating hash functions are
extremely efficient. In Fig. 4, we report the proof size against
the number of VNFs in the pruned dictionary and the height
of the Merkle tree. We take the worst-case scenario where the
size is roughly O(m∗(h − 1)), where m∗ is the number of
VNFs in the pruned dictionary. As shown in Fig. 4, the proof
size is reasonable with a few KBs.

3) Query Accuracy: Block-VNF achieves the same query
accuracy compared with the non-verifiable setting. First, the
VNF lookup function consists of keyword or numeric compar-
isons between a VNF query and the original VNF dictionary,
which can be realized by a circuit without loss of accuracy.
Second, the VNF lookup function is performed over the orig-
inal VNF dictionary to output query results. The authenticator
is a succinct digest of the original dictionary and is only used
in the verification of the query results.

B. Performance Comparison

We compare the straightforward lookup strategy without
the pruning and our pruning strategy at the prover and the
verifier. For the verifier, both strategies have cost around
a few milliseconds due to the verification efficiency of the
snark and the Merkle proof. However, at the prover side, the
proposed pruning strategy is much more efficient. In Fig. 5,
we calculate the computational cost of our pruning strategy
as the summation of prover cost in Ω1 and Ω2 (when the
number of VNFs in the pruned dictionary is 150 and 200,
respectively). The Merkle tree proof generation is extremely
efficient and is thus omitted in the comparison. As we can
see, our strategy has a significant efficiency gain, which
essentially depends on the pruning ratio m∗/m. The reason
is that the pruning strategy reduces many unnecessary but
computationally-expensive comparisons between the query
vector and the original dictionary.

C. On-Chain Experiments

We set up a real-world consortium blockchain network
on Hyperledger Fabric [18] on the same laptop in a Linux
system. Specifically, we use the RAFT consensus protocol [18]
with an ordering node. We test the verification of a single
Merkle proof in different settings: two organizations, two
peers; three organizations, three peers; two organizations, four
peers. We write the verification algorithm in a function of the
chaincode. The function stores the Merkle root and receives
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Fig. 5. Performance gain with pruning.

Fig. 6. Response time.

Merkle proofs from a peer node. We then send a function call
and measure the response time of the blockchain network.

In Fig. 6a, we show the response time when there are two
organizations and each organization has a peer node in the net-
work. We change the Merkle tree height from 12 to 15, which
slightly increases the proof size by one hash element. As we
can see, the response time does not depend on the height but is
mostly affected by the blockchain network. In Fig. 6b, we fix
the tree height to 13 and plot the response time with different
network settings. As the number of peer nodes increases in the
network, the response time in our experiments increases due to
the increasing number of required endorsements. However, the
proposed mechanism does not depend on a specific blockchain
architecture and thus can be tailored to the blockchain designs
with other consensus protocols.

VIII. CONCLUSION

In this paper, we have designed an authenticated and
prunable dictionary for blockchain-based VNF management
in future wireless networks, which achieves rich VNF query
functionalities and succinct on-chain storage and computing
overhead. Our dictionary pruning strategy resolves the RAM
issue and significantly reduces the computational overhead
in processing VNF queries with a significant performance
increase in comparison with the snark-based solution without
pruning. The design and constructions of the authenticated
and prunable dictionary can be of independent interests for
other blockchain-based network resource managements. In the
future, we will further explore blockchain-based VNF con-
figurations and slice formations for NFV-enabled wireless
networks.
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