
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022 12219

Real-Time Search-Driven Caching for Sensing
Data in Vehicular Networks

Mingliu Liu , Member, IEEE, Deshi Li , Huaqing Wu , Member, IEEE, Feng Lyu , Member, IEEE,
and Xuemin Shen , Fellow, IEEE

Abstract—Real-time search is essential for accessing specific
sensing data (SD) in vehicular networks to support safe, efficient,
and intelligent road services. Considering the tremendous data
volume, the SD search process should be carefully devised to
avoid excessive retrieval and transmission delay. To alleviate the
communication and computational burden for sensing devices
and the cloud server, roadside edges are adopted to cache the
SD in advance. Given a short lifetime of SD, the caching scheme
is required to be efficient in facilitating both the search process
and uplink/downlink transmission, which is quite challenging due
to the coupling of resource allocation decisions. To guarantee
the search efficacy and enhance the caching resource utilization,
we propose a real-time search-driven caching (RSC) paradigm
to enable the cooperation among storage-constrained edges. A
hierarchical indexing framework is first introduced for cached
data, based on which we then devise a search utility model to
quantify the expected data freshness and response delay. With the
objective of maximizing the long-term search reward, the RSC
problem is formulated by jointly considering the search requests
and utility model. A deep-reinforcement-learning-based caching
(DRLC) method is proposed to solve the problem. Specifically, an
action transition module is introduced to lower the computational
complexity via reducing the selection space of caching actions.
Extensive simulations are carried out based on the real trace
data in Creteil, France, and results show that the intelligent
DRLC method can improve the real-time search performance
significantly comparing to the benchmark methods.

Manuscript received July 28, 2021; revised November 9, 2021; accepted
November 29, 2021. Date of publication December 14, 2021; date of cur-
rent version July 7, 2022. This work was supported in part by the China
Postdoctoral Science Foundation under Grant 2020M672412; in part by the
National Natural Science Foundation of China under Grant 62002389; in part
by the Natural Science Foundation of Hunan Province, China, under Grant
2021JJ20079; in part by the Young Elite Scientists Sponsorship Program
by CAST under Grant YESS20200238; in part by the Young Talents Plan
of Hunan Province of China under Grant 2021RC3004; and in part by the
Natural Sciences and Engineering Research Council (NSERC) of Canada.
This article was presented in part at the IEEE International Conference on
Communications (ICC) 2021. (Corresponding author: Deshi Li.)

Mingliu Liu is with the School of Electronic Information, Wuhan
University, Wuhan 430072, China, and also with the Electric Power Research
Institute, State Grid Hubei Electric Power Research Institute, Wuhan 430077,
Hubei, China (e-mail: liumingliu@whu.edu.cn).

Deshi Li is with the School of Electronic Information, Wuhan University,
Wuhan 430072, China (e-mail: dsli@whu.edu.cn).

Huaqing Wu is with the Department of Electrical and Computer
Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada (e-mail:
wu482@mcmaster.ca).

Feng Lyu is with the School of Computer Science and Engineering, Central
South University, Changsha 410083, China (e-mail: fenglyu@csu.edu.cn).

Xuemin Shen is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
sshen@uwaterloo.ca).

Digital Object Identifier 10.1109/JIOT.2021.3134964

Index Terms—Cooperative caching, real-time search, sensing
data (SD) caching, vehicular networks.

I. INTRODUCTION

W ITH the breakthrough developments in connection and
information technologies, tremendous smart sensors

are adopted in vehicular networks to characterize the road
traffic and environmental surroundings by the continuously
generated sensing data (SD). Although a large number of
sensors are installed on the roadside infrastructures, the high
maintenance cost and information access right limit the extent
to which the sensing information can be shared among indi-
vidual users [2]. Therefore, on-board sensors that can exploit
the high vehicle mobility to provide wide-coverage and fine
grained sensing services are becoming important sources of
sensing data [1], [3]–[6]. To stupendously benefit the secure
and efficient road services, such as autonomous driving,
remote fleet management, and intersection collision warning,
vehicles need to get access to specific SD in real time [5], [7],
[8]. Studies show that the overall sensor market will become
the fastest growing segment in automotive componentry [9],
which will lead to a rapid growth of the SD volume. The
data traffic is estimated to be roughly 0.6 EB in every month
of 2020 and will increase to 9.4 EB by 2030 [10]. Given
the tremendous data volume, a real-time search that aims at
retrieving requested data promptly [11] is crucial to reduce
response time for drivers and enhance the traffic safety [12].

Due to the dynamic road environments and busy daily
trips, there are massive connections and search interactions
in vehicular networks, which can impose excessive pressure
on backhaul links and degrade the service quality signif-
icantly [13]. To this end, edge caching, which is a well-
recognized solution to relieve the traffic burden for the cloud
server, has been explored to support the real-time search by
deploying contents in close proximity to target users [14].
Nowadays, the majority of vehicles are equipped with onboard
sensors to gather the surrounding information [15], but the
remote traffic status used for navigation needs to be requested
online. With various travel destinations or moving behav-
iors, there will be a huge difference among the requests.
Due to the growing data volume and limited edge caching
size, the caching-assisted search can still sustain data miss-
ing and response failures for some requests. To this end, a
real-time search-driven caching (RSC) paradigm is designed
in this article, where the caching edges are considered to work

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4101-3938
https://orcid.org/0000-0002-8188-9379
https://orcid.org/0000-0002-3497-6437
https://orcid.org/0000-0002-2990-5415
https://orcid.org/0000-0002-4140-287X

12220 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

cooperatively for enhancing the search efficiency and resource
utilization.

In the literature, extensive studies are conducted on the
edge caching to improve data access efficacy [13], [14],
[16], [17]. The users can be served by one or multiple
cooperative nodes [14], [16], and the cooperative caches are
normally assumed as neighboring vehicles or roadside units
(RSUs) [18], [19]. To minimize the data downloading delay,
most caching schemes are determined on the basis of given
popularity. However, as the popularity is predefined or needs
to be predicted with sufficient historical requests [20], [21],
the popularity of SD that have various types and application
cases can hardly be practically achieved. Therefore, moderate
decoupling of caching decisions and popularity information is
critical for data search scenarios. On the other hand, the data
need to be uploaded from distributed sensing devices before
cached in the edges. Given various content preferences, enor-
mous queries, and data volume, the data cannot always be
ensured to be cached in the proximity of target users. Hence,
traditional traversal mechanisms, where the search query will
be forwarded to the local edge, neighbor cache servers, and
content provider in turn, are not applicable for requesting
SD. To support the distributed caching decisions and search
queries, the cloud server is introduced in our work to manage
an index for accelerating the retrieval process.

Compared with infotainment contents, such as video and
game profiles, SD is time sensitive and only valid within a
certain time window [21]–[24]. To this end, to satisfy real-
time search requirements for the temporally variant data, the
cooperative caching scheme needs to be carefully designed for
ensuring data freshness and prompt response at the same time,
which is quite challenging due to the following reasons. First,
with limited knowledge of the search requesting features, the
double requirements in “real time” include the optimization of
both the validity of cached data and response delay, which ren-
ders the problem complicated. Second, for the search-driven
caching, SD has to be uploaded to edge servers in advance,
then be retrieved and downloaded for requesting users. Thus,
the delay performance can be affected by both the searching
and uplink/downlink transmissions during the process, which
should be deeply explored in the scheme design. Third, with
limited edge cache size and the dynamic wireless channels [5],
when and where to cache the up-to-date generated data is non-
trivial because 1) immediate data transmission cannot always
be guaranteed especially when the communication channels
are weak and 2) the expected retrieval time could vary with dif-
ferent caching locations for each data item. Finally, the caching
decisions are generally optimized based on content popular-
ity, while in vehicular networks, the historical search requests
cannot always be collected due to privacy protection. Hence,
the caching edges should be designed to deal with different
cases adaptively.

In this work, we delve into the SD caching design to address
the above-mentioned challenges via fully unleashing the poten-
tial of cooperative edge caching. Our objective is to increase
the result validity and search speed for the widely distributed
SD requesters. Therefore, the association between SD and
interested users is first analyzed in this article, based on which

we propose a hierarchical search framework for the search
service in vehicular networks. With the objective of enabling
delay-sensitive data search, a utility model is then devised to
quantify the expected response delay and freshness for cached
data, as these two factors are crucial in searching performance
evaluation. Next, the RSC problem is formulated within the
constraints of transmission capability and cache storage bud-
get, aiming at maximizing the long-term search reward of
large-scaled SD. To study and utilize the potential data search-
ing rules for optimizing caching decisions, we propose a
deep-reinforcement-learning-based caching (DRLC) method to
solve the problem. In specific, an action transition module is
designed to reduce the computational complexity by decreas-
ing the caching selection space. Finally, extensive simulations
are conducted to demonstrate the efficacy of the proposed
caching method, and results show that it can perfectly support
the real-time search requirements as expected.

Our major contributions can be highlighted as follows.
1) We propose an RSC paradigm based on cooperative

edges. The RSC paradigm can facilitate the efficient
search of SD, which is essential for future vehicular
networks but rarely considered in the literature.

2) We propose a hierarchical search framework for cooper-
ative edges in vehicular networks, in which the caching
servers are indexed according to their spatial distribu-
tion, and the cloud can quickly forward and search the
queries accordingly.

3) We devise a search utility (SU) model to quantify
the contribution of caching decisions for real-time data
search. Then, the DRLC method is proposed to solve
the RSC problem in an intelligent and low-complexity
way.

The remainder of this article is organized as follows.
Section II briefly reviews the related work of content request
features and caching problems in vehicular networks. The
system model, search framework, and utility model are illus-
trated in Section III. The RSC problem and DRLC method are
elaborated in Section IV. In Section V, the proposed methods
are evaluated through abundant simulations, and finally, we
conclude this article and direct our future work in Section VI.

II. RELATED WORK

We review the related work in two categories, i.e., real-time
data request and cooperative edge caching.

A. Real-Time Data Request

Information exchange among vehicles, communication
infrastructures, and the Internet is the basis of providing
emerging services in future vehicular networks, ranging from
collision avoidance, remote vehicle diagnosis in self-driving
to 3-D environment modeling in navigation [5]. In the liter-
ature, there are two main vehicular communications modes:
1) vehicle-to-infrastructure (V2I) and 2) vehicle-to-vehicle
(V2V). As one of the most important restrictions to mea-
sure the Quality of Service (QoS) [11], the transmission delay
is affected by the dynamic communication environment sig-
nificantly [17], thus it needs to be modeled and analyzed

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: REAL-TIME SEARCH-DRIVEN CACHING FOR SENSING DATA IN VEHICULAR NETWORKS 12221

according to different scenarios. For example, Yang et al. [18]
considered a hybrid data dissemination model to acquire the
demanded data from the edge or nearby neighboring vehicles
for automated driving assistance, and the deadlines of acquir-
ing data were adopted to analyze the delay in algorithm design.
Liu et al. [25] proposed a distributed algorithm to minimize
the average download delay, addressing the content placement,
and transmission problem jointly. A similar joint problem
was discussed in [26], where the user’s requests can be for-
warded either to the edge caches or congested backend server
directly. Hence, two delay models were constructed to assess
the different transmitting associations with traffic congestion.
Nevertheless, these works mostly focused on the downlink data
transmission delay, which is insufficient to reflect the freshness
of time-sensitive sensing information.

A myriad of current studies assumed that the request pat-
terns follow the Poisson process or Markov process, which
however, is not applicable to real traffics [21]. Therefore,
the real-world content popularity requires further investiga-
tion since it is an indispensable factor for request abstraction
and content deployment. In existing studies, content popularity
is widely considered for entertainment files such as music or
movies, owing to the abundant data resources [22], [27], while
the proposed models for them may not be suitable to charac-
terize the temporal SD. For example, the generated location
is always included as a dimension of sensing features, thus
the request distance from the data has a stronger impact on
the interest than that from the caching place of entertainment
content. Due to the dynamic nature of traffic systems, exist-
ing studies are concerned more about the temporal analysis
for SD in vehicular networks, such as traffic information and
location-based service information. In [7], to jointly enhance
the data quality and delivery ratio, a temporal data update
and dissemination problem was formulated. In [28], a data
validity model was devised at first, then the authors exploited
the tradeoff between traffic load and data validity for caching
SD at network routers. However, these analyses were con-
ducted under given requests, while seldom considering the
highly dynamic and geographically distributed characteristics
of requests in data search applications.

B. Cooperative Edge Caching

Cooperative caching has been studied recently to enlarge
the set of cached data [13], [14], [16], [17]. Most of
these works focused on minimizing downloading delay of
cached files, and a user can be served by either one or
multiple nodes together [14], [16]. Accordingly, Liu et al. [25]
considered multiple candidate transmission schemes for dif-
ferent users and designed a cache placement strategy to
minimize the average downloading delay. Aiming at opti-
mizing the total reduced backhaul traffic in the long term,
Lyu et al. [13] formulated a WiFi caching gain maximization
problem. Zhang et al. [14] considered a user-centric mobile
network and implemented cooperative edge caching by solv-
ing two fundamental problems, namely, content placement and
edge clustering. Hui et al. [17] studied a heterogeneous vehic-
ular network consisting of cellular base stations and roadside
units. In specific, the base station was considered as the

Fig. 1. Illustration for cooperative SD caching.

cloud server, and the content delivery problem was studied to
improve utilities of participants (i.e., cellular base station, vehi-
cles, etc) in heterogeneous vehicular networks. Apart from data
downloading, the request forwarding is also an essential part
of the content retrieval process for time-sensitive data, which
is designed differently in various cooperative architectures. In
the network model proposed by Xia et al. [16], the fog access
points (F-AP) were clustered to cooperate with each other. If
the requested content was not cached in the serving F-AP,
the request would then be transmitted to the cluster head.
The cluster head can identify the F-AP which had cached the
requested content and coordinate the cooperation between two
F-APs. Dehghan et al. [26] assumed that when the requested
content was not cached in the edge cache, it needed to be
retrieved and downloaded from the backend server, resulting
in a long content access delay. Therefore, to facilitate real-
time data search services, the caching placement and request
forwarding problems should be jointly designed under a coop-
erative architecture. Given the large volume and distributed
generation locations of temporal SD, balancing the tradeoff
between data updating and downloading delay becomes cru-
cial in the delay analysis, and the impact of data retrieving
pattern should be well studied.

III. SYSTEM DESCRIPTION

In this section, we present the system model of caching SD
in vehicular networks and describe the proposed SU model.
The key notations used in this article are listed in Table I.

A. Network Model

To facilitate intelligent services, such as accident detection
and road maintenance, modern vehicles are usually equipped
with various sensors (speedometer, radar, pressure sensor, etc.)
to collect vehicular and environmental information. Fig. 1
illustrates a traffic monitoring scenario, where SD (traffic sta-
tus, road condition, noise decibel, etc.) can be gathered by the
onboard sensors, and we name the vehicles as sensing vehicles
(SVs). RSUs are regarded as edge nodes, which can provide
both network and caching services for vehicles. In specific,
the RSU is named as intended cache for data prepared to be
uploaded in. In this scenario, the gathered SD should be trans-
mitted to intended cache via V2I communication. Let R be the
set of all cache nodes, and the capacity of each cache server
is a preset value, denoted by Ci of node Ri. Particularly, the
cloud server, denoted by R0, is introduced as the backup cache,
providing storage for contents that surpass the edge cache size
to avoid data omission.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

12222 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

TABLE I
NOTATION SUMMARY

Considering the scenario with insufficient edge caching
size, N RSU nodes work cooperatively with the cloud server,
where the allocated caching size is C = {C0, C1, . . . , CN}.
Deployed along the road, RSUs are connected with the back-
bone network and can communicate through backhaul links
with the cloud, i.e., the RSU-to-Cloud (R2C) link. Without loss
of generality, we assume that RSUs can periodically broadcast
heartbeat messages to discover vehicles passing-by, then serve
them through the Vehicle-to-RSU (V2R) links.

When the queried data is not cached in the serving edge,
extra route search and request forwarding delay will increase
dramatically if the same queries are triggered repeatedly at dif-
ferent locations. Caching the most popular content in multiple
edges is an intuitive solution to address this issue, which, how-
ever, is prohibitive due to the insufficient edge caching storage
and laborious exploration of time-varying popularity of SD.
Therefore, to reduce excessive interaction overhead, in our
proposed cooperative caching model, the cloud takes charge
of the forwarding of data requests initiated from multiple loca-
tions via a cache index to speed up the search of request
forwarding path, as discussed in the following section.

B. Searching Framework

A unique feature of SD search is that the searched contents
are highly correlated to the spatial and temporal information.

To devise an effective search framework, we first investi-
gate the spatiotemporal characteristics of search preferences.
Fig. 2(a) and (b) shows that people tend to pay more attention
to surrounding information in the most recent years. According
to statistics in Fig. 2(c), the popularity decreases with the dis-
tance between search queries and special events, i.e., events
are cared more by local residents. As SD is the most direct
reflection of specific events, it is reasonable to assume that
the data is queried more by surrounding users based on these
observations.

Generally, SD should be transmitted to a nearest edge for
reducing the upload delay and ensuring data freshness. To this
end, the monitoring space will be divided as shown in Fig. 1,
where each road segment with a length of Lc will be assigned
with a caching edge. If all data items are cached according
to space segmentation, then they can be retrieved from the
assigned edges directly. However, this can hardly be achieved
due to the limited caching storage and highly dynamic data
requests. Therefore, the cooperative caching is proposed where
some SD can be uploaded to the other edges through the cloud.
Specifically, to avoid data omission and alleviate the traffic
burden for backhaul links at the same time, the cloud server
will provide caching service as a supplement for the edge
nodes, and only hold the uploaded omitting data.

For data not cached in the assigned edges, a hierarchical
search framework is proposed to speed up data retrieval. In
the existing literature, the request will be first forwarded to
the nearest serving edge, when it is not satisfied by the local
cache, it will be forwarded to the neighboring edges, then
be traversed among all caches by the cloud or resort to the
Internet for content access, as shown in Fig. 3(a). However,
as there are distributed search requests, the data cannot be
ensured to be cached near all serving edges of the requesters.
On the contrary, the data should be cached close to the sensing
locations for enhancing data freshness. Therefore, the cloud
will maintain a cache index of the space segmentation rule
in this article and take charge of the index and data manage-
ment. As such, when the serving cache does not contain the
requested data, it will next be forwarded to the cloud server. In
this way, the retrieving space and request forwarding paths can
be reduced under the direction of the index. Fig. 3(b) illustrates
the following hierarchical search process: the cloud will first
forward requests to the indexed cache, i.e., the assigned edge
for SD according to space segmentation, then search the neigh-
bors of indexed cache if the data are not cached as planned.
For the traffic monitoring in vehicular networks, we consider
the two adjacent nodes of Ri as its neighbors, denoted by
RN

i = {Ri−1, Ri+1}. Particularly, in a noncircular scenario, we
have RN

1 = {R2}, RN
N = {RN−1}. Next, the request will be

broadcasted to all the other caches and transmitted back to
the cloud server for searching the results.

C. Utility Model

To facilitate an effective caching scheme for the moni-
toring information, the search gain expectation of caching
solutions with different caching locations should be evaluated
first. Accordingly, the sensing space is divided into several seg-
ments as shown in Fig. 4. When a vehicle passes by a segment,

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: REAL-TIME SEARCH-DRIVEN CACHING FOR SENSING DATA IN VEHICULAR NETWORKS 12223

(a) (b) (c)

Fig. 2. Relationship between the search popularity and request locations in Google. (a) Popularity of “nearby” search queries in different applications.
(b) Popularity of nearby search queries in different countries. (c) CDF for popularity of emergent events versus distance between search queries and event
location.

(a)

(b)

Fig. 3. Data retrieval in cooperative edge caching. (a) Existing search method:
① search at the serving edge; ② search at neighbors of the serving edge; ③
forward to the cloud server; ④ traverse all the edges for searching; ⑤ go
through the Internet; and ⑥ search and retrieve data from the cloud server.
(b) Proposed hierarchical search framework: ① search at the serving edge;
② forward to the cloud server; ③ search at the indexed cache; ④ search at
neighbors of the indexed edge; ⑤ traverse all the other edges for searching;
and ⑥ search the cloud server.

Fig. 4. Data uploading in the sensing area indexed by Ri.

it can generate a data item with the equipped sensors. Let the
number of data items indexed by RSU Ri be Mi, then the total
number of SD would be Ns = ∑N

i=1 Mi. sij denotes the SD
gathered at segment j indexed by Ri. If it is transmitted to
cache k, sij will be marked as sk

ij. Denoting the set of all SD
as ground data set S, which can be partitioned into N disjoint
sets, i.e., S1,S2, . . . ,SN , where Si represents the set of SD
gathered around Ri, and we have Si = {si1, si2, . . . , siMi}.

Based on the proposed search framework, there are four lev-
els of caches in the cooperative edge caching system, including

the indexed edge, neighbors of the indexed edge, other edges,
and the cloud server. To adopt the hierarchical index in assist-
ing real-time information search, we define the following
evaluation model.

Definition 1 (Search Utility): The gain expectation for real-
time search services when caching SD at a specific location.

To respond with fresh data in a short time, the data freshness
and search space become two crucial restrictions to quantify
the SU. The former value can be measured by the freshness
loss as

F = D

�
(1)

where D is the total delay between data generation and the
time when it is accessed by request users, and � = l/v refers
to the data updating interval. l is the distance between SVs of
the same sensing category, and v represents the moving speed.

As one of the most widely adopted index structures in
mainstream database system, B-tree is a self-balancing data
structure that generalizes binary search tree, maintains sorted
data, and allows search in logarithmic time. The search com-
plexity of B-tree-based retrieval can be measured by the
expected search space, i.e., O(logC), where C represents the
space size. Therefore, the SU can be expressed as

Sk
ij =

1

Fk
ij log2

(
1+ Ck

ij

) (2)

where the formation of data freshness Fk
ij and search space Ck

ij

change with sk
ij. Based on the hierarchical indexing framework,

the search space can be measured by the total capacity of all
retrieved caches, i.e.,

Ck
ij =

⎧
⎪⎪⎨

⎪⎪⎩

Ci, k = i
Ci +∑

r∈RN
i
Cr, k ∈ RN

i∑
r∈R Cr − C0, k > 0 and k ∈ R\RN

i∑
r∈R Cr, k = 0.

(3)

For search requesters, the data access time mainly depends
on the transmission delay and request generation time.
However, the search requests could be generated randomly
and arrive in the caches at any time, thus the delay between
the generation of sk

ij and the time when it arrives the cache is
used to measure the expected data caching freshness, denoted

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

12224 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

by Dk
ij. SD transmission will be initiated only when 1) the vehi-

cles are covered by an RSU and 2) the data gathered before
have all been uploaded. Accordingly, several data items need
to be held for a while, thus Dk

ij can be calculated as

Dk
ij = Dk

Hij
+ Dk

Tij
(4)

where Dk
Hij

and Dk
Tij

refer to the holding delay and SD upload
transmission delay, respectively.

Basically, the transmission rate depends on the distance
between the vehicle and the receiving RSU [29]. In gen-
eral, the coverage of an RSU is divided into several zones
based on 802.11p, where vehicles have different transmission
rates in different zones. In this article, we divide the cov-
erage of Ri into O zones and denote the set of zones by
Zi = {z1, z2, . . . , zO}. For zone zα(zα ∈ Zi), the transmission
rate of the V2R link is rzα . Denoting the average transmission
rate under the coverage of Ri as ri, we have

ri =
∑

zα∈Zi

dzα rzα

2Rci
(5)

where Rci is the coverage radius of RSU i and dzα is the length
of zone zα .

Supposing that the vehicle begins to transmit data to the
serving edge once it enters the covered area, then the total
transmitted data size is C = rit, where t refers to the com-
munication time duration. sk

ij can be transmitted only if the
data packets gathered before have already been sent out. Let
the data size generated at a single segment be cd, then before
transmitting sk

ij, the total transmitted data size is (j − 1)cd.
Supposing that the vehicle begins to enter the communication
coverage after generating δ items, then the total uploaded data
size before transmitting sk

ij can also be expressed as

C = ri

(
Dk

Hij
+ tij − tiδ

)
(6)

where tij and tiδ represent the generating time of sij and siδ ,
respectively. Notice that when C > (j − 1)cd, the SD can be
uploaded in real time, which means that it will no longer need
to be held. As shown in Fig. 4, let the first real-time uploading
data be sim, then we have tim = [(m− 1)cd]/(ri)+ tiδ , and the
holding delay can be expressed as

Dk
Hij
=

{
(j−1)cd

ri
+ tiδ − tij, j ≤ m

0, j > m.
(7)

Let rci be the transmission rate between the cloud server
and Ri, thus the data transmission delay can be expressed as

Dk
Tij
=

⎧
⎪⎪⎨

⎪⎪⎩

cd

(
1
ri
+ 1

rci

)
, k = 0

cd
ri

, i = k

cd

(
1
ri
+∑

p∈{i,k} 1
rcp

)
, otherwise.

(8)

IV. PROBLEM FORMULATION AND SOLUTION

In this section, we will first formulate the RSC problem,
then model the problem to be a Markov decision process
(MDP) and design the DRLC method for solving it.

Fig. 5. Working process of caches across time.

A. RSC Problem

Generally, SD is generated continuously and can be
requested repeatedly by users at different locations, thus coop-
erative caching is proposed to alleviate the traffic burden and
enlarge the cache size. In this way, the RSC problem can be
cast as follows.

Definition 2 (Real-Time Search-Driven Caching): Given a
set of cooperative caches and a set of SD that would be gen-
erated in the near future, how to allocate caches for the data
items so that the expected response delay of searching fresh
data can be minimized?

Intuitively, the solution to the RSC problem aims to pro-
vide a caching decision that fulfills the real-time search
requirement. Therefore, prefetching the real-time distribution
of search requests is critical in caching determination, and the
historical request features should first be learned. In general,
the search history of a data item sij can be described by the
request distribution during a given time period, which can be
measured by

pq
ij =

Nrq
ij

∑
Rq∈R Nrq

ij

(9)

where Nrq
ij is the requested times of sij at cache q, and pq

ij is
the corresponding probability.

To study the requesting features from real-time information
and provide online caching decisions, the RSC problem is
modeled as an MDP, which can be defined by a tuple M =
{S,A,�(θ, χ)}.

1) S is the state set, which is expressed by the historical
request information for all SD items, thus we have S :=
{θij|θij = [q, pq

ij] ∀sij ∈ S}, in special, q = arg max pq
ij.

2) A := {χij|χij ∈ {0, 1}N, ‖χij‖1 ≤ 1 ∀sij ∈ S} is the
set of feasible caching actions, where χij is an N × 1
binary vector indicating the caching action of sij. For
clarification, we use xq

ij to denote the qth entry of χij,
which indicates whether Rq decides to cache data sij.

3) ϕ(θ, χ) is the reward function that captures the expected
gain of supporting real-time search if taking action χ

under state θ .
The process for a cache edge to work across time is

described in Fig. 5, where the working period can be divided
into three phases, i.e., state observation, cache decision, and
reward evaluation. In this way, a cache can take actions based
on the experienced states to improve the search efficiency in
the next time slot. Denote Sτ as the set of request state at
time slot τ , and θij(τ) = [q, pq

ij(τ)] as the state of sij, upon

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: REAL-TIME SEARCH-DRIVEN CACHING FOR SENSING DATA IN VEHICULAR NETWORKS 12225

taking action χij(τ) at the cache decision phase, the reward
ϕτ (θij(τ − 1), χij(τ)|θij(τ)) can then be obtained.

Denote π : S → A as the policy function, which maps any
state θ ∈ S to action χ ∈ A. Under policy π , the caching
decision at τ +1 will be carried out via Aτ+1 = π(Sτ). In the
MDP framework, the reward �(S,A) =∑

sij∈S ϕij(θij, χij) is
used to quantify the real-time search effectiveness of a caching
scheme.

As the edge caching is driven by real-time SD search, the
search response delay and expected utility are jointly consid-
ered to formulate the cache reward function. However, the
prediction of accurate and real-time request distribution is
quite difficult. Due to the computational time and discretized
request state, we can hardly get the exact request timestamp
or retrieval delay. Hence, for sij cached at Rk and requested at
cache Rq, where pq

ij(τ) is the maximum requested probability
of θij(τ), the response delay is chosen to evaluate the search
efficacy. Specifically, the delay is defined as the data down-
loading time from the cache to the requester, and denoted by
Dkq

Qij
here. Since the downlink and uplink transmission rates are

considered to be the same in this article, we have Dkq
Qij
= Dk

Tqj
.

But for the requests generated at other locations, the cache gain
would be evaluated by Sq

ij. To further unify the expression, the
total cache reward of action Aτ can be calculated as

�τ (Sτ−1,Aτ |Sτ) =
∑

sij∈S
pq

ij(τ)
�

Dkq
Qij

+
(

1− pq
ij(τ)

)
Sq

ij. (10)

Then, the expected long-term reward can be expressed by

V(Sτ) = E

[∞∑

τ=1

γ τ−1�τ (Sτ ,Aτ+1)

]

(11)

where γ ∈ [0, 1] is a discount factor that determines the
impact of the current action on future rewards. Considering the
conditional independent characteristic among the dynamically
distributed and time-varying requests, the long-term reward
is adopted to quantify the caching efficacy of real-time data
search. To this end, the RSC problem aims to find an optimal
policy π∗ shown as

π∗ = arg max
π∈� V(Sτ) (12)

where � denotes the set of all possible policies. Particularly,
data copies are not considered in this scenario to improve
the monitoring coverage and data diversity, where each data
item is assumed to be cached only once. Therefore, combin-
ing the restrictions of limited cache space and data updating
frequency, the RSC problem is expressed as

max V(Sτ) ∀τ (13)

s.t.
∥
∥
∥χk(τ)

∥
∥
∥

1
≤ Ck/cd ∀k ∈ R ∀τ (13a)

∥
∥χij(τ)

∥
∥

1 ≤ 1 ∀sij ∈ S ∀τ (13b)

xk
ij(τ)Dk

ij ≤ � ∀sij ∈ S ∀k ∈ R ∀τ (13c)

π ∈ � (13d)

where χk is the set of all indicators for data actions in Rk.
In particular, (13a) and (13b) ensure that the caching action is

Fig. 6. Illustration of the DRLC training process.

limited by the storage capacity, (13c) guarantees the validity of
cached data, and the above problem is a sequential decision-
making problem with time-varying parameters.

Intuitively, the feasibility of a given policy can be verified
in polynomial time by checking whether it satisfies the con-
straints in (13), which means that the RSC problem is NP.
Following the demonstration of [30, Th. 1], the RSC problem
can be proved to be NP-hard by using a reduction from
the multiple-choice knapsack problem, which is known to be
NP-complete and usually comes with an exponential com-
putational complexity solution. As an important evaluation
criterion of practical system, especially for the short lifetime
SD, computational complexity is a primary concern that needs
to be reduced.

B. DRLC Method

On the basis of the MDP formulation, the intelligent DRLC
method is designed to lower the computational complexity of
solving the RSC problem. One of the most critical components
in DRLC is the Q-value table Q(S,A), the dimension of which
is |S| × |A|. Hence, when the number of edges and sensing
items are large-scale in the network scenario, the dimension
of state space will be very high. To address this problem, we
introduce the hidden action Ah := {χh

ij |χh
ij ∈ {0, 1}, ‖χh

ij‖1 ≤ 1
∀sij ∈ S ∀τ } into DRLC, reducing the dimension to |S|×2. In
particular, χh

ij = 1 indicates that the sij should be cached at Rq,
where q = arg max pq

ij. Otherwise, the greedy-based algorithm
should be adopted to decide the caching place for sij. As shown
in Fig. 6, the greedy-based algorithm is implemented within
the action transition module and transforms the hidden action
Ah

τ into Aτ .
Accordingly, the Q-value function will be expressed through

the relationship between value function and hidden-action
function

Q
(
Sτ ,Ah

τ ;ωτ

)
= Q

(
Sτ ,Ah

τ ;ωτ

)

+ α

(

�τ + γ max
Ah

Q
(
Sτ+1,Ah

τ+1; ω̂τ

)

− Q
(
Sτ ,Ah

τ ;ωτ

))

(14)

where α ∈ [0, 1) is an introduced parameter, ωτ is a parameter
of the evaluation network, and ω̂τ is a parameter of the tar-
get network. Two networks are adopted to prevent overfitting.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

12226 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

Algorithm 1 DRLC Training Process
Initialize E, In, ε,S0 := {θij|θij = [0, 0], ∀sij ∈ S},

Ah := {χh
ij |χh

ij ∈ {0}, ‖χh
ij‖1 ≤ 1, ∀sij ∈ S, ∀τ },

A := {χij|χij = {0}N , ∀sij ∈ S, ∀τ }.
1: For episode e = 1 to E do
2: For iteration i = 1 to In do
3: Collect the requests and transform into state Sτ .
4: Choose a random probability ξ .
5: If ξ < ε

6: Randomly select an action χh(τ) ∈ Ah.
7: Else
8: Select action with

χh(τ) = arg maxχ∈Ah Q(θ(τ − 1), χ;ωτ−1).
9: End if

****** Action Transition Start ******
10: S

ht := {(kmq, sij)|xh
ij = 1, ∀xh

ij ∈ χh(τ)},
S

hf := {sij|xh
ij = 0, ∀xh

ij ∈ χh(τ)}.
11: Do sy

x = arg maxsk
ij∈Sht Sk

ij

12: If Dk
ij ≤ � and ‖χy(τ)‖1 + 1 ≤ Ck/cd

13: x
kmq
ij = 1,

14: S
ht ← S

ht\{skmq
ij }.

15: Until Sht = ∅

16: Do sy
x = arg maxsk

ij∈Shf Sk
ij

17: If Dk
ij ≤ � and ‖χy(τ)‖1 + 1 ≤ Ck/cd

18: xk
ij = 1,

19: S
hf ← S

hf \{sm
ij :∀Rm ∈ R}.

20: Until Shf = ∅

****** Action Transition End ******
21: Execute action χ(τ) and observe request state θτ .
22: Calculate the reward �τ (θ(τ − 1), χ(τ)|θ(τ)).
23: Add [Sτ ,Aτ , �τ ,Sτ+1] into the tuple Mτ .
24: Randomly sample a mini-batch M̃τ from Mτ .
25: Update the Q network ωτ with ∇(F(ωτ)).
26: End for
27: End for

Specifically, the maximum objective can be temporarily fixed
in the target network, thus the relevance between action selec-
tion and model training can be reduced. The gradient descent
method is utilized to update the parameters, where the loss
function is expressed as

F(ωτ) =
∑

(Sτ ,Aτ)∈M̃τ

(
yi − Q

(
Si,Ah

i ;ωi

))2
(15)

in special, we have yi = �i+γ maxAh Q(Si+1,Ah
i+1; ω̂i), and

M̃τ is a mini-batch of Mτ . Therefore, the update of ωτ can
be expressed as

ωτ+1 = ωτ − ητ∇(F(ωτ)) (16)

where ητ is the learning rate.
The whole training process of DRLC is described in

Algorithm 1. For initialization, the training episode time E,
iteration time of each episode In, ξ -greedy learning parameter,
and the actions will first be set, in particular, all elements in Ah

and A will be set as 0. In each training episode, the location
and content of search requests will first be collected and trans-
formed into state Sτ . Then, a hidden action will be selected
via the evaluation Q-network (lines 4–9), and the caching

action will be generated after action transition (lines 10–20).
According to different values of the hidden actions, the SD
will be separated into two candidate sets, i.e., S

ht and S
hf .

The former packs all the candidate SD with the target cache
together, while S

hf contains all the other data items. However,
constrained by the restrictions in (13), we need to decide which
items in S

ht are able to be uploaded and cached. Then, if the
caching storage is not fully occupied, for items in S

hf , we
need to determine which of them can be uploaded and where
should they be cached. Accordingly, a greedy-based algorithm
will be utilized to determine the final caching actions for these
two candidate sets in turn. Next, the learning agent can calcu-
late the immediate reward and obtain the next state, and store
it into the replay memory buffer (lines 21–23). Finally, a ran-
dom mini-batch Mτ will be sampled to update the evaluation
Q-network.

The training complexity of the standard deep Q network is
O(EInn̄m̄), where n̄ is the total unit number in the training
network [31], [32]. m̄ depends on the state and action size,
and we have m̄ = |M̃τ |. Without the action transition mod-
ule, the feasible space of actions is O(NNs), where Ns denotes
the total size of the SD set. Obviously, this tremendously high
value is unacceptable for practical implementation. Through
the design of hidden actions, the computational complexity
includes two main parts. The feasible space is decreased to
O(2Ns). As Ns =∑N

i=1 Mi, the space can be further decreased
by dividing the data into several categories. For example, the
data can be distinguished by whether it is covered by an RSU,
and the computational space would be O(22N). Since N is
a given constant, the complexity will be acceptable. Then,
through the greedy-based algorithm, the final action can be
selected within O(Nt log Nt + Nf log Nf). In particular, Nt and
Nf are the sizes of Sht and S

hf , respectively.

V. PERFORMANCE EVALUATION

In this section, we will elaborate simulation parameter set-
tings, explore the training performance of DRLC, and evaluate
caching effectiveness for the proposed method.

A. Simulation Settings

The proposed caching method will be verified through three
criteria in this section, including the response delay, result
freshness, and cache hit ratio (CHR). The vehicular mobility
trace of Europarc roundabout, Creteil, France [33] is adopted
to construct the simulation scenario. In particular, SVs are
randomly selected from the data set, which are assumed to
generate data about the surrounding traffics with onboard sen-
sors. Other vehicles are supposed to be search requesters and
need to search for the real-time road status that they will pass
by in the near future. In other words, we assume that the road
status should be accessed in real time for the sake of navi-
gation, thus the search requests and caching actions will be
updated in every other 10 s. In this way, the SD needs to
be well cached in the RSUs to support real-time search from
distributed vehicles. There are six entrances/exits in the round-
about, and one caching edge is assigned for each of them. In
specific, 1 km road length of each entrance/exit charged by an

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: REAL-TIME SEARCH-DRIVEN CACHING FOR SENSING DATA IN VEHICULAR NETWORKS 12227

(a) (b) (c)

Fig. 7. Training performance of DRLC. (a) Average reward versus iteration time. (b) Maximum Q value versus iteration time. (c) Average maximum Q
value versus epoch.

TABLE II
SIMULATION SETTINGS

RSU edge is equally segmented into ten parts, thus each SD
item reflects the road status in a range of 100 m. Due to the
different distances between the cloud server and each RSU, the
transmission rates for R2C links are randomly assigned, fol-
lowing a uniform distribution in the range of [30, 100] Mb/s.
Similarly, the assigned cache capacity for each RSU follows
a uniform distribution in the range of [0.1, 3] Gb. The trans-
mission rate of the fronthaul link, i.e., the V2R link is set
with seven different values as in [17]. To evaluate the caching
performance, the cooperative edge number and SD size will
be changed in three different simulation cases, specifically, the
parameter settings are presented in Table II.

To verify the search efficacy of the DRLC method, the
response and caching performance are compared for the
caching decisions provided by the following benchmark
methods.

1) Greedy SU: The cached SD will be selected with an
objective of maximizing the SU value, where the caching
decisions would be the same under all search requests.

2) Greedy Reward: SD prepared for search requests in the
next time slot will be cached with the objective of max-
imizing the reward value, i.e., �τ , which is calculated
based on current requests.

3) Local Prior Caching (LPC): SD will be cached locally
according to their generating sequence. Only when the
local cache capacity is insufficient will the data select an
available cache from the candidate edge sets randomly.

4) Multiple Copies for Least Recently Used (M-LRU): Each
data item will be cached with multiple copies. Similarly,
they would be cached according to the generation time,
and the cached copies will be selected based on the
greedy algorithm. When the cache size is insufficient,
previously cached data that is used least recently will

Fig. 8. Comparison for the response delay with different search frameworks.

be deleted to make room for new caching data. For sim-
plicity, the number of sensing copies is set as 2 in the
simulation.

5) Multiple Copies for Least Search Utility (M-LSU): Each
SD item will be cached with multiple copies as the same
as M-LRU. Differently, cached data with the least SU
will be deleted when the capacity is insufficient.

Generally, the cloud server provides higher reliability for
search-driven caching system, but it requires extra construction
and interaction costs. Hence, to demonstrate the effective-
ness of the hierarchical caching architecture, we design two
different cooperative modes.

1) Edge-Cloud Caching (ecc): The cloud server will be able
to provide caching services for the uploaded SD, where
the cloud caching size is assumed to be large enough to
cache all the data items.

2) Edge Caching (ec): The caching for SD can only be
served by edge nodes cooperatively. The cloud server
will be in charge of forwarding search requests and
managing the whole system.

In particular, the Greedy SU and Greedy Reward adopt
both ec and ecc as our proposed DRLC method, while the
other benchmark methods are in the ec cooperative mode.
Meanwhile, the two search frameworks presented in Fig. 3 are
compared to demonstrate the necessity of adopting an index
for data searching, where the proposed hierarchical framework
is marked as HI, and the traditional one is TR.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

12228 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

(a) (b) (c)

Fig. 9. Comparison for the search efficiency. (a) Response delay with different cooperative modes. (b) Response delay with different caching methods.
(c) Data freshness with different caching methods.

B. Convergence Analysis

To analyze the convergence performance of the DRLC, the
training process of case 2 is first studied. Fig. 7(a) and (b)
shows the change of reward and the maximum Q value for
several training epochs, respectively. In particular, the learning
rate l is set as 0.001, ξ in the ξ -greedy training process is
0.1, and for the discount factor of reward, we have γ = 0.9.
The optimal reward values are calculated via Greedy Reward,
where the maximum Q value is obtained with the requests
during each time slot. Although the reward values are mostly
smaller than the optimal values, the dynamic characteristics are
quite close when the epoch reaches 20. In Fig. 7(b), results
show that the maximum Q values are similar to each other after
the 15th epoch. The phenomenon demonstrates that DRLC
converges within about 20 training epochs.

To further verify the effectiveness of parameter selection,
we then compare the performance of Q values with differ-
ent training settings. In specific, the average maximum Q
value for all iterations in each epoch is presented. As shown
in Fig. 7(c), the training converges within 20 epochs in all
settings. Even though the intelligent algorithm will converge
faster with a larger learning rate, the increasing of the maxi-
mum Q value shows that overfitting emerges with larger epoch
number. Similarly, larger ξ values also cause the overfitting.
For different discount factors, they mainly affect the converged
maximum Q value, which is reasonable according to (14).

C. Real-Time Search Performance

Since the proposed SU model and DRLC method are based
on the hierarchical indexing structure, the necessity of adopt-
ing this structure for searching should be demonstrated. We
present the response delay for 50 search requests in Fig. 8.
The data are cached according to solutions provided by DRLC,
Greedy SU, and Greedy Reward in the ec mode. Results show
that the caching solutions searched with our proposed frame-
work achieve lower delay than that with TR. The main reason
is that HI can locate the caching edge for requests faster via
the index, and reduce the data search space. Specifically, the
response delay of DRLC is the lowest for most requests, which
proves the efficacy of our proposed caching method.

Based on the above analysis, HI will be used in the
following simulations to search the cached SD. To verify the
real-time search effectiveness of DRLC, the average response

delay and data freshness are chosen as two major evaluation
metrics. Since data requests can be generated by vehicles at
different time slots from different locations, the freshness of
the SD is calculated based on the uploading delay. According
to (1), data freshness is measured by the freshness loss, the
worst value of which is 1. The average statistics for the real-
time search performance are presented in Fig. 9, where the
caching decisions are determined step by step for requests
in each time slot. Fig. 9(a) shows that DRLC costs lower
delay than the Greedy SU and Greedy Reward in all simu-
lation cases. But for all the caching methods, the response
delay of the two cooperative modes is quite close to each
other, which means that a supplement of the cloud caching
size is unused in most cases. This is because that only a
small group of SD can be transmitted successfully during the
limited communication period between SV and the serving
edge. Compared with LPC, M-LRU, and M-LSU, Fig. 9(b)
shows that DRLC costs lower delay in all three cases, and the
advantage is more obvious with more cooperative edges and
larger data size. Specifically, the computational search space
of case 2 and case 3 is larger with more caches. Meanwhile,
the amount of uploading and caching data decreases with a
bigger SD size, thus there are less feasible solutions in case 3.
This phenomenon proves the effectiveness of DRLC in choos-
ing the optimal solution. Similarly, DRLC performs better in
the latter two cases in Fig. 9(c). Therefore, the result demon-
strates that DRLC helps the edges to obtain SD faster, which is
critical to provide an earlier response and support the real-time
search.

D. Cache Hit Ratio

Fig. 10 shows the comparison of the cumulative distribution
function (CDF) statistics of CHR. The best situation is that all
data are cached in the target places, which leads to a vertical
line at CHR = 100%. Hence, the closer the statistical curve to
the point located at the bottom right of the coordinate axis, the
better the performance. The results of the previously defined
three cases are presented in three different subfigures, respec-
tively. Specifically, all the caching methods present a vertical
line in Fig. 10(a), which means that there is no data missing in
case 1. Fig. 10(b) shows that all data are well cached except for
M-LSU and LPC. Although sporadic data missing occurs in
DRLC(ec), the delay and freshness performance can still prove

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: REAL-TIME SEARCH-DRIVEN CACHING FOR SENSING DATA IN VEHICULAR NETWORKS 12229

(a) (b) (c)

Fig. 10. Comparison for the CHR. (a) Case 1. (b) Case 2. (c) Case 3.

the real-time search effectiveness for our proposed caching
method. With the increasing of SD size, only DRLC in the ecc
mode can cache all the requested data, as shown in Fig. 10(c).
On the other hand, even without the extra caching space pro-
vided by the cloud server, DRLC(ec) performs better than all
the other methods. Intuitively, a larger data size means that
less data can be uploaded and cached for searching. Hence,
the performance in case 3 provides more powerful evidence for
the effectiveness of the DRLC in supporting real-time search.

VI. CONCLUSION

To enable a real-time search for SD in vehicular networks,
we have proposed a cooperative edge caching paradigm in this
article. In particular, a hierarchical indexing framework and an
SU model have been devised to measure the expected fresh-
ness of cached data. Then, on the basis of long-term search
reward and historical requests, the DRLC method has been
proposed to solve the RSC problem. The cooperative edge
caching method provides a promising solution to improve data
freshness and support real-time data search, and the proposed
search structure and utility model can be valuable for future
studies on data access and analysis for SD. For future work,
we will focus on the caching of SD that is generated dynam-
ically through various kinds of sensing devices, such as noise
sensor, infrared detector, vibration sensor, and webcam. The
application scenarios can be further expanded as the cache
edges may need to work cooperatively to feed fused sens-
ing information. In addition, when there are multiple matched
results under a large-scale search area, we will delve into the
joint optimization of result selection and transmission.

REFERENCES

[1] M. Liu, D. Li, H. Wu, F. Lyu, and X. S. Shen, “Cooperative edge-cloud
caching for real-time sensing big data search in vehicular networks,” in
Proc. IEEE Int. Conf. Commun. (ICC), Montreal, QC, Canada, 2021,
pp. 1–6.

[2] H. B. Tulay and C. E. Koksal, “Increasing situational awareness in vehic-
ular networks: Passive traffic sensing based on machine learning,” in
Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring), Antwerp, Belgium,
2020, pp. 1–7.

[3] Q. Yuan, H. Zhou, Z. Liu, J. Li, F. Yang, and X. Shen, “CESense: Cost-
effective urban environment sensing in vehicular sensor networks,” IEEE
Trans. Intell. Transp. Syst., vol. 20, no. 9, pp. 3235–3246, Sep. 2019.

[4] X. Qin, Y. Xia, H. Li, Z. Feng, and P. Zhang, “Distributed data collection
in age-aware vehicular participatory sensing networks,” IEEE Internet
Things J., vol. 8, no. 19, pp. 14501–14513, Oct. 2021.

[5] F. Lyu et al., “Towards rear-end collision avoidance: Adaptive beaconing
for connected vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2,
pp. 1248–1263, Feb. 2021.

[6] “C-V2X use cases: Methodology, examples and service level require-
ments,” Munich, Bavaria, 5G Autom. Assoc., White Paper, 2019.

[7] P. Dai et al., “Temporal information services in large-scale vehicu-
lar networks through evolutionary multi-objective optimization,” IEEE
Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 218–231, Jan. 2019.

[8] H. Wu, F. Lyu, C. Zhou, J. Chen, L. Wang, and X. Shen, “Optimal
UAV caching and trajectory in aerial-assisted vehicular networks: A
learning-based approach,” IEEE J. Sel. Areas Commun., vol. 38, no. 12,
pp. 2783–2797, Dec. 2020.

[9] O. Burkacky, J. Deichmann, and J. P. Stein, Automotive Software and
Electronics 2030: Mapping the Sector’s Future Landscape, McKinsey
Company, Munich, Germany, 2019.

[10] P. Lee, D. Stewart, C. Calugar-Pop, and E. Talbot, “Technology,
media and telecommunications predictions,” Delloitte Touche Tohmatsu
Ltd., London, U.K., Rep., 2017. [Online]. Available: https:// www2.
deloitte.com/content/dam/Deloitte/global/Documents/Technology-
Media-Telecommunications/gxdeloitte- 2017-tmt-predictions.pdf

[11] M. Liu, D. Li, Y. Zeng, W. Huang, K. Meng, and H. Chen,
“Combinatorial-oriented feedback for sensor data search in Internet of
Things,” IEEE Internet Things J., vol. 7, no. 1, pp. 284–297, Jan. 2020.

[12] T. X. Tran, D. V. Le, G. Yue, and D. Pompili, “Cooperative hierarchical
caching and request scheduling in a cloud radio access network,” IEEE
Trans. Mobile Comput., vol. 17, no. 12, pp. 2729–2743, Dec. 2018.

[13] F. Lyu et al., “LEAD: Large-Scale edge cache deployment
based on spatio-temporal WiFi traffic statistics,” IEEE Trans.
Mobile Comput., vol. 20, no. 8, pp. 2607–2623, Aug. 2021,
doi: 10.1109/TMC.2020.2984261.

[14] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative
edge caching in user-centric clustered mobile networks,” IEEE Trans.
Mobile Comput., vol. 17, no. 8, pp. 1791–1805, Aug. 2018.

[15] S. Hisaka and S. Kamijo, “On-board wireless sensor for collision avoid-
ance: Vehicle and pedestrian detection at intersection,” in Proc. 14th Int.
IEEE Conf. Intell. Transp. Syst. (ITSC), Washington, DC, USA, 2011,
pp. 198–205.

[16] C. Xia, Y. Jiang, M. Peng, F.-C. Zheng, M. Bennis, and X. You,
“Cooperative edge caching in fog radio access networks: A pigeon
inspired optimization approach,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1–6.

[17] Y. Hui, Z. Su, and T. H. Luan, “Collaborative content delivery in
software-defined heterogeneous vehicular networks,” IEEE/ACM Trans.
Netw., vol. 28, no. 2, pp. 575–587, Apr. 2020.

[18] L. Yang, L. Zhang, Z. He, J. Cao, and W. Wu, “Efficient hybrid data dis-
semination for edge-assisted automated driving,” IEEE Internet Things
J., vol. 7, no. 1, pp. 148–159, Jan. 2020.

[19] J. Wang et al., “Dynamic clustering and cooperative scheduling for
vehicle-to-vehicle communication in bidirectional road scenarios,” IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 6, pp. 1913–1924, Jun. 2018.

[20] J. Song, M. Sheng, T. Q. S. Quek, C. Xu, and X. Wang, “Learning-
based content caching and sharing for wireless networks,” IEEE Trans.
Commun., vol. 65, no. 10, pp. 4309–4324, Oct. 2017.

[21] J. Yao, T. Han, and N. Ansari, “On mobile edge caching,” IEEE
Commun. Surveys Tuts., vol. 21, no. 3, pp. 2525–2553, 3rd Quart., 2019.

[22] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire,
“Femtocaching and device-to-device collaboration: A new architecture
for wireless video distribution,” IEEE Commun. Mag., vol. 51, no. 4,
pp. 142–149, Apr. 2013.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2020.2984261

12230 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

[23] H. Zhu, Y. Cao, X. Wei, W. Wang, T. Jiang, and S. Jin, “Caching
transient data for Internet of Things: A deep reinforcement learning
approach,” IEEE Internet Things J., vol. 6, no. 2, pp. 2074–2083,
Apr. 2019.

[24] K. Suto, H. Nishiyama, and N. Kato, “Postdisaster user location maneu-
vering method for improving the QoE guaranteed service time in energy
harvesting small cell networks,” IEEE Trans. Veh. Technol., vol. 66,
no. 10, pp. 9410–9420, Oct. 2017.

[25] J. Liu, B. Bai, J. Zhang, and K. B. Letaief, “Content caching at the
wireless network edge: A distributed algorithm via belief propagation,”
in Proc. IEEE Int. Conf. Commun. (ICC), Kuala Lumpur, Malaysia,
2016, pp. 1–6.

[26] M. Dehghan et al., “On the complexity of optimal request routing and
content caching in heterogeneous cache networks,” IEEE/ACM Trans.
Netw., vol. 25, no. 3, pp. 1635–1648, Jun. 2017.

[27] G. Li et al., “Understanding user generated content characteristics: A
hot-event perspective,” in Proc. IEEE Int. Conf. Commun. (ICC), Kyoto,
Japan, 2011, pp. 1–5.

[28] S. Vural, P. Navaratnam, N. Wang, C. Wang, L. Dong, and R. Tafazolli,
“In-network caching of Internet-of-Things data,” in Proc. IEEE Int. Conf.
Commun. (ICC), Sydney, NSW, Australia, 2014, pp. 3185–3190.

[29] H. Zhou et al., “ChainCluster: Engineering a cooperative content distri-
bution framework for highway vehicular communications,” IEEE Trans.
Intell. Transp. Syst., vol. 15, no. 6, pp. 2644–2657, Dec. 2014.

[30] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and
L. Tassiulas, “Caching and operator cooperation policies for layered
video content delivery,” in Proc. IEEE INFOCOM 35th Annu. IEEE Int.
Conf. Comput. Commun., San Francisco, CA, USA, 2016, pp. 1–9.

[31] P. Lin, Q. Song, J. Song, A. Jamalipour, and F. R. Yu, “Cooperative
caching and transmission in comp-integrated cellular networks using
reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 5,
pp. 5508–5520, May 2020.

[32] X. Wang, R. Li, C. Wang, X. Li, T. Taleb, and V. C. M. Leung,
“Attention-weighted federated deep reinforcement learning for device-
to-device assisted heterogeneous collaborative edge caching,” IEEE J.
Sel. Areas Commun., vol. 39, no. 1, pp. 154–169, Jan. 2021.

[33] M. A. Lèbre, F. Le Mouël, and E. Ménard, “Resilient, decentralized V2V
online stop-free strategy in a complex roundabout,” in Proc. IEEE 83rd
Veh. Technol. Conf. (VTC-Spring), Nanjing, China, May 2016, pp. 1–5.

Mingliu Liu (Member, IEEE) received the B.E.
and Ph.D. degrees from the School of Electronic
Information, Wuhan University, Wuhan, China, in
2013 and 2019, respectively.

Since July 2019, she has been working as a
Postdoctoral Fellow with the School of Electronic
Information, Wuhan University. Her research
interests include information search service, Internet
of Things, cloud/edge caching, and big data-driven
applications.

Dr. Liu is a member of the IEEE Computer and
IEEE Communication Society.

Deshi Li received the Ph.D. degree in computer
application technology from Wuhan University,
Wuhan, China, in 2001.

He was a Visiting Scholar with the Network Lab,
University of California at Davis, Davis, CA, USA.
He is a Professor with the Electronic Information
School, Wuhan University. He has published more
than 100 research papers. His recent research
projects include National Science and Technology
Major Project of China (973 Program), National
High Technology Program of China (863 Program),

and National Natural Science Foundation of China. His research interests
include wireless communication, Internet of Things, intelligence system, and
SOC design.

Prof. Li currently serves as a member of the Internet of Things
Expert Committee and the Education Committee of Chinese Institute of
Electronics, and the Associate Chief Scientist in Space Communication area
of Collaborative Innovation Center of Geospatial Technology, also is an
Executive Trustee Member of China Cloud System Pioneer Strategic Alliance.
He serves as a reviewer for many international academic journals and an expert
evaluator for the Ministry of Science and Technology of China, Ministry of
Education of China, and NSF China.

Huaqing Wu (Member, IEEE) received the B.E.
and M.E. degrees from Beijing University of
Posts and Telecommunications, Beijing, China, in
2014 and 2017, respectively, and the Ph.D. degree
from the University of Waterloo, Waterloo, ON,
Canada, in 2021.

She is currently a Postdoctoral Research Fellow
with McMaster University, Hamilton, ON, Canada.
Her current research interests include vehicular
networks with emphasis on edge caching, wireless
resource management, space–air–ground integrated

networks, and application of artificial intelligence for wireless networks.
Dr. Wu received the Best Paper Award at IEEE GLOBECOM 2018 and

Chinese Journal on Internet of Things 2020. She received the prestigious
Natural Sciences and Engineering Research Council of Canada Postdoctoral
Fellowship Award in 2021.

Feng Lyu (Member, IEEE) received the B.S.
degree in software engineering from Central South
University, Changsha, China, in 2013, and the Ph.D.
degree from the Department of Computer Science
and Engineering, Shanghai Jiao Tong University,
Shanghai, China, in 2018.

From September 2018 to December 2019 and
from October 2016 to October 2017, he worked as
a Postdoctoral Fellow and was a visiting Ph.D. stu-
dent with the BBCR Group, Department of Electrical
and Computer Engineering, University of Waterloo,

Waterloo, ON, Canada. He is currently a Professor with the School of
Computer Science and Engineering, Central South University. His research
interests include vehicular networks, beyond 5G networks, big data measure-
ment and application design, and edge computing.

Prof. Lyu is the recipient of the Best Paper Award of IEEE ICC 2019.
He currently serves as an Associate Editor for IEEE SYSTEMS JOURNAL

and Peer-to-Peer Networking and Applications, and served as a TPC member
for many international conferences. He is a member of the IEEE Computer
Society, Communication Society, and Vehicular Technology Society.

Xuemin (Sherman) Shen (Fellow, IEEE) received
the Ph.D. degree in electrical engineering from
Rutgers University, New Brunswick, NJ, USA, in
1990.

He is a University Professor with the Department
of Electrical and Computer Engineering, University
of Waterloo, Waterloo, ON, Canada. His research
focuses on network resource management, wireless
network security, Internet of Things, 5G and beyond,
and vehicular ad hoc and sensor networks.

Dr. Shen received the Canadian Award for
Telecommunications Research from the Canadian Society of Information
Theory in 2021, the R.A. Fessenden Award in 2019 from IEEE, Canada,
the Award of Merit from the Federation of Chinese Canadian Professionals
(Ontario) in 2019, the James Evans Avant Garde Award in 2018 from the
IEEE Vehicular Technology Society, the Joseph LoCicero Award in 2015 and
Education Award in 2017 from the IEEE Communications Society (ComSoc),
and the Technical Recognition Award from Wireless Communications
Technical Committee in 2019 and AHSN Technical Committee in 2013.
He has also received the Excellent Graduate Supervision Award in 2006
from the University of Waterloo and the Premier’s Research Excellence
Award in 2003 from the Province of Ontario, Canada. He served as the
Technical Program Committee Chair/Co-Chair for IEEE Globecom’16, IEEE
Infocom’14, IEEE VTC’10 Fall, and IEEE Globecom’07, and the Chair for the
IEEE ComSoc Technical Committee on Wireless Communications. He is the
President Elect of the IEEE ComSoc. He was the Vice President for Technical
and Educational Activities, the Vice President for Publications, a Member-
at-Large on the Board of Governors, the Chair of the Distinguished Lecturer
Selection Committee, and a member of the IEEE Fellow Selection Committee
of the ComSoc. He served as the Editor-in-Chief for the IEEE INTERNET OF

THINGS JOURNAL, IEEE NETWORK, and IET Communications. He is a reg-
istered Professional Engineer of Ontario, Canada, a Fellow of the Engineering
Institute of Canada, Canadian Academy of Engineering, and Royal Society
of Canada, a Foreign Member of the Chinese Academy of Engineering,
and a Distinguished Lecturer of the IEEE Vehicular Technology Society and
Communications Society.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:14:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

