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Abstract— Securing necessary resources for edge computing
processes via effective resource trading becomes a critical tech-
nique in supporting computation-intensive mobile applications.
Conventional onsite spot trading could facilitate this para-
digm with proper incentives, which, however, incurs excessive
decision-making latency/energy consumption, and further leads
to underutilization of dynamic resources. Motivated by this,
a hybrid market unifying futures and spot is proposed to
facilitate resource trading among an edge server (seller) and
multiple smart devices (buyers) by encouraging some buyers to
sign a forward contract with seller in advance, while leaving
the remaining buyers to compete for available resources with
spot trading. Specifically, overbooking is adopted to achieve
substantial utilization and profit advantages owing to dynamic
resource demands. By integrating overbooking into futures mar-
ket, mutually beneficial and risk-tolerable forward contracts
with appropriate overbooking rate can be achieved relying on
analyzing historical statistics associated with future resource
demand and communication quality, which are determined by an
alternative optimization-based negotiation scheme. Besides, spot
trading problem is studied via considering uniform/differential
pricing rules, for which two bilateral negotiation schemes are
proposed by addressing both non-convex optimization and knap-
sack problems. Experimental results demonstrate that the pro-
posed mechanism achieves mutually beneficial player’s utilities,
while outperforming baseline methods on critical indicators, e.g.,
decision-making latency, resource usage, etc.

Index Terms— Futures trading, spot trading, overbooking,
forward contract, mobile edge networks.
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I. INTRODUCTION

THE evolution of wireless technologies and explosive
proliferation of smart devices have enabled a wide

range of mobile applications [1], [2], e.g., online gaming,
augmented/virtual reality and healthcare monitoring, etc.,
which have attracted significant number of users. However,
many of the aforementioned applications are computation-
intensive and require complicated onboard processing, posing
great challenges to smart devices with limited computing
resources and capability. Besides, limited battery power supply
presents another major difficulty for intensive data processing,
exchange, and decision-making on a single mobile device, that
may hinder the application completion in real-time [3]–[5].
One feasible solution to overcome these challenges is cloud
computing, which, however, may potentially incur transmis-
sion delays, and burdens on cloud servers as well as backhaul
links [1]. To further address these drawbacks, edge comput-
ing [3], [4], [6] has become a popular paradigm by exploring
distributed computing/storage/communication capability at the
edge of mobile networks, and thus offers flexible and cost-
effective computing services for resource-constrained smart
devices.

A. Motivation

Ensuring the needed resources for edge-assisted computing
processes often relies on a certain form of resource trading,
where a smart device can offload a certain amount of task
data to the edge server, via wireless link to the nearby
access point (AP, e.g., base station, roadside unit, etc.), while
paying for the acquired resources and computing services.
However, conventional trading mechanisms (e.g., onsite spot
trading) may face significant challenges caused by the dynamic
nature of resource trading market under mobile edge network
architecture.

1) Motivation of Futures-Based Resource Trading: To facil-
itate resource provisioning with proper incentives, onsite spot
trading has been widely adopted which allows resource buying
and selling among sellers (e.g., servers) and buyers (e.g.,
mobile devices, where sellers and buyers are collectively
known as players) under real-time and on-demand mode.
Specifically, players in spot trading can reach an agreement
on factors such as the amount of trading resources and the
relevant price based on current network/platform/application-
related conditions, e.g., resource supply/demand and wireless
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Fig. 1. The proposed overbooking-enabled resource trading framework, timeline, and several trading examples (S = 5, |B| = 8, κ = 6). Specifically, no onsite
decision-making latency can be costed in Trading 1 and Trading 2, while b4 has to pay penalty for “no show” (Trading 1); b6 receives compensation due to
insufficient resource supply (Trading 2). Trading 3 and Trading 4 have incurred certain decision-making latency, where b1 and b3 pay penalty for “no show”
while b7 and b8 compete for available resources under onsite mode (Trading 3); besides, b3, b5 and b6 have to pay penalty while b7 negotiates with the
seller for possible price and the amount of trading resources without competing with others (Trading 4).

channel quality at present. However, spot trading may lead
to undesirable performance degradation, which are detailed
below:
• Latency on decision-making: Spot players often have

to spend extra latency to reach the final trading consensus
during a trading, which may dramatically reduce the available
time for dynamic resource sharing, especially for networks
with moving devices and limited trading period, as well as
time-varying resources. For example, considering 2 seconds
as the connection duration between a smart device and the
nearby AP, while 1.5 seconds of which has been costed
for onsite decision-making. Under this circumstance, there
are only 0.5 seconds left for the actual computing service.
Besides, resource condition (e.g., supply and demand) can
also be fluctuant during a long decision-making procedure.
Thus, timely resource provisioning represents a major chal-
lenge under dynamic networks when applying spot trading
mechanism.
• Energy consumption on decision-making: During each

trading, spot players may suffer from extra energy consump-
tion to reach the trading consensus, bringing difficulties to
power- and battery-constrained mobile devices. For example,
a long decision-making procedure can cause certain bat-
tery loss, that directly decreases the endurance of a smart
device. Consequently, designing an energy-efficient trading
mechanism is considered to be urgent and critical.

Motivated by the abovementioned challenges, futures trad-
ing [5] is considered as an effective presale mode, which
enables a forward contract between the resource owner and
each resource requestor, with contract terms such as the
amount of trading resources, the relevant resource price, and
default clause, etc., via analyzing historical data. Specifi-
cally, the pre-signed contract will be fulfilled accordingly
during each practical trading in the future, without any
further onsite discussion. Nevertheless, although futures can
achieve commendable decision-making latency and energy
consumption, it may also be risky due to the insufficient
and inaccurate knowledge of historical statistics. Thus, this
work investigates a novel hybrid market via unifying both
futures trading and spot trading under mobile edge network
architecture.

2) Motivation of Overbooking: One conventional resource
presale paradigm refers to equal-booking, where the amount
of booked resources generally does not exceed the resource
owner’s maximal resource supply, which, however, may face

significant challenges incurred by “no show”1 of resource
requestors. Specifically, “no show” is generally caused by
factors such as the mobility of mobile devices, and unreliable
wireless communication links, etc., which could result in
variation of resource demands, and thus prevent the utilization
of confirmed resources. For example, a smart device that has
run out of power will not have task execution requirement
during a trading and thus no longer need to use the reserved
resources stipulated in pre-signed contract as usual. Besides,
unpredictable mobility and willingness of buyers can also
lead to “no show”, e.g., a mobile device outside of any
AP’s coverage is facing difficulties to get access to resources
of the edge server, which is thus absent from the trading.
Therefore, overbooking [7] has been adopted in this paper,
that encourages a certain overbooking rate, where the total
available capacity of resource seller can be less than the
amount of resources booked by multiple buyers, since some
of them may not be able to consume the resources they are
entitled to, or may cancel a trading (“no show”) [8]. Although
overbooking may seem risky, it represents a popular practice
in a wide range of commercial domains such as airlines [9],
hotels [10], bandwidth reservation [11], [12], etc. For instance,
aiming to maximize the occupancy (and thus revenue), airlines
routinely overbook tickets by ensuring the maximum number
of passengers on a flight; otherwise, flights often depart with
up to 15% seats empty (without overbooking), and thus incurs
unsatisfying resource utilization and economic losses [8].
Take Fig. 1 as an example, although the theoretical maximal
resource supply of the seller can only process 5 tasks in
parallel, it overbooks resources to 6 buyers in order to deal
with possible “no show” cases, where the corresponding
overbooking rate can be calculated by (6 − 5)/5 = 20%.
In generall, overbooking can efficiently achieve substantial
utilization and profit advantages in supporting dynamic and
unpredictable resource demands in a trading market.

Driven by the abovementioned motivations, this paper inves-
tigates a hybrid market via unifying both futures and spot
trading under mobile edge networks, and proposes a novel
overbooking-enabled resource trading mechanism. Specifi-
cally, we consider an edge server with limited resource
supply as resource seller, and multiple smart devices with
computation-intensive tasks as resource buyers, each of which

1In real-life networks, “no show” represents a common phenomenon in
many sectors such as airlines and hotels, indicating that a person who has
booked a flight ticket or a hotel room but finally does not show up.
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may purchase computing service from the seller by offloading
certain amount of task data through wireless communication.
The proposed trading mechanism effectively alleviates the
unexpected latency and cost (e.g., energy and battery con-
sumption) on trading decision-making, and greatly improves
the resource utilization and time efficiency.

B. Related Work

1) Resource Trading Mechanism: Existing works devoted
to resource trading roughly fall into three categories: i). spot
trading (also known as onsite trading), where players reach a
trading agreement relying on the current conditions, such as
online game [13], [14], auction [15]–[17], and bilateral negoti-
ation [18], [19]; ii). futures trading, where players sign forward
contracts over buying or selling a certain amount of resources
at predetermined price in advance, that will be fulfilled during
each trading in the future, where existing studies mainly
investigate electricity market [20]–[22], spectrum resource
trading [23], [24], and edge computing-assisted networks [5],
[25]; and iii). resource trading in hybrid market where both
futures and spot trading are allowed [26], [27]. A multi-
user non-cooperative offloading game was investigated by
Wang et al. [14], intended to maximize the utility of each
vehicle via a distributed best response algorithm. The VM
auction among edge clouds and mobile users was studied
as an n-to-one weighted bipartite graph matching problem
by Gao et al. in [15], based on a greedy approximation
algorithm. In [16], Liwang et al. studied a Vickrey–Clarke–
Groves-based reverse auction mechanism of vehicle-to-vehicle
resource trading and suggested a unilateral matching-based
mechanism. In [17], Gao et al. developed a truthful auction
under computing resource trading market via considering
graph tasks, while providing both the optimal and an efficient
sub-optimal algorithms. Shojaiemehr et al. in [18] proposed
a novel negotiation strategy to enhance the satisfaction of
both trading parties while supporting negotiation of composite
cloud service. In [19], Wang et al. presented a smart contract-
based negotiation framework while providing a Bayesian Nash
equilibrium of service providers which offer flexible QoS.
However, the procedure to reach a trade-related decision usu-
ally results in excessive latency and energy consumption [5],
[23], [28], which further pose challenges to spot trading
players. Take online auction as an example, the winners
gain the eventual auction contract while there is no such
compensation for the losers who have also spent extra time and
energy during decision making. Moreover, the latency from
bidding to practical computing service delivery can greatly
impact the quality of experience and the utilization if resources
are reserved while waiting for the auction results [5], [8],
[23]. Therefore, futures has been emerged as a practical
paradigm and extensively adopted in commodity exchange
markets. Benefit from the pre-signed forward contracts, the
unexpected latency/energy consumption on decision-making
can be efficiently decreased. Khatib et al. in [20] proposed a
systematic negotiation scheme, through which, a generator and
load can reach a mutually beneficial forward bilateral contract
in electricity markets. In [21], Conejo et al. addressed the
power producer’s optimal involvement problem in a futures
electricity market, aiming to hedge against the risk of pool
price volatility. In [22], Morales et al. investigated scenario

reduction techniques to accurately convey the uncertainties
in futures market trading in electricity markets. In spectrum
resource trading market, Sheng et al. in [23] proposed a
futures-based spectrum trading mechanism to alleviate trading
failures, and trading unfairness caused by price fluctuation.
In [24], Li et al. introduced a futures market to manage the
financial risk in spectrum trade and discovering future price.
Topics associated with futures-based resource trading have
rarely been studied in mobile edge networks, where factors
such as unpredictable nature of resource supply and demand,
as well as the ever-changing channel quality between resource
provider and requestor caused by mobile users’ mobility, pose
difficulties to trading mechanism design. We were among the
first to address such challenges [5], [25]. In our previous
work [25], we investigated a futures-based resource trading
approach in edge computing-enabled internet of vehicles,
where a risk-tolerable and mutually beneficial forward contract
was designed through estimating the historical statistics of
future resource supply/network condition. An energy-aware
resource trading mechanism under edge computing-assisted
UAV networks was proposed [5], where both forward
contract design and power optimization problems were
analyzed.

Although futures brings benefits, it may also be risky due
to the lacking and inaccurate knowledge of historical data.
Motivated by which, several works also consider the integra-
tion of both the futures and spot market. In [26], Gao et al.
focused on the optimal spectrum allocation among unlicensed
secondary users in a hybrid market, which maximized the
secondary spectrum utilization efficiency. Vanmechelen et al.
in [27] proposed a hybrid market in which a low-latency spot
market coexists with a higher latency futures market, to deal
with the significant delay of the allocation decision procedure
of grid resources.

2) Overbooking: “Booking” refers to a presale manner
(rather than spot trading), where “overbooking” presents the
presale of a volatile commodity or service in excess of actual
supply, which has been shown to provide substantial utilization
and profit advantage in handling “no shows” [8], which,
however, has been neglected in most previous mentioned
works (namely, these works mainly consider equal-booking
where the amount of resources for sale equals to the actual
supply). The widespread adoption of overbooking techniques
focus on many fields such as airlines and hotels [9], [10],
spectrum reservation [11], [12], storage market [29], network
slicing [30]–[32], cloud computing [7], [33]–[36], and fog
computing [37]. Specifically, Liu et al. in [11] proposed an
opportunistic link overbooking scheme for an edge gateway to
improve its link efficiency, and developed an integrated analyt-
ical framework for determining the suitable link overbooking
factor. In [12], Adebayo et al. proposed a spectrum reservation
prediction algorithm for wireless infrastructure providers to
reduce the probability of overbooking since it costs certain
penalties. Gao et al. in [29] proved that overbooking strategy
plays an important role in improving storage renting efficiency.
Zanzi et al. in [30] deployed an overbooking network slices
solution and a 5G network slice broker as an entity in charge
of mediating between vertical network slice requests and
physical network resources availability. Additionally, in [31],
Zanzi et al. proposed an orchestration through a dashboard,
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allowing requesting network slices on-demand, monitored
their performance once deployed and displayed the achieved
multiplexing gain through overbooking. In [32], Sexton et al.
employed the practice of overbooking to increase resource
utilization when offering auxiliary resources in network slic-
ing. Among existing works considered overbooking, the most
similar studies with this work fall into cloud computing
environment such as [7], [33]–[36], and fog computing [37].
Tomas et al. in [7] focused on implementing an autonomic
risk-aware overbooking architecture capable of increasing the
resource utilization of cloud data centers by accepting more
virtual machines than physical available resources. In [33],
Son et al. proposed a service level agreement (SLA)-aware
dynamic overbooking strategy in software defined network-
ing (SDN)-based cloud data centers, which jointly leveraged
virtualization capabilities and SDN for virtual machine (VM)
and traffic consolidation. Alanazi et al. in [34] introduced
an integrated resource allocation framework for data cen-
ters that minimizes the number of active physical machines
through dynamic VM placement while ensuring that SLAs of
admitted VMs are not violated. Rahimzadeh et al. proposed
a cloud resource management system that overbooks backup
VMs by optimizing the overbooking rate tradeoff in [35].
In [36], Yao et al. presented an optimal overbooking policy to
maximize resource providers’ profits in cloud federation and
enhance cloud users’ experiences. Zhang et al. [37] studied
a dynamic resource allocation model through overbooking
mechanism to maximize the total welfare of fog servers.
Although “resource overbooking” has been applied in several
fields and achieves good performance, few of them paid atten-
tion to computing resource trading problem in edge networks.
Besides, characteristic features in wireless communications,
e.g., varying channel qualities, etc., also bring difficulties to
trading mechanism design.

C. Novelty and Contribution

To the best of our knowledge, this paper is among the
first to study overbooking-enabled resource trading among
an edge server (resource seller) and multiple smart devices
(resource buyers), via considering a hybrid market integrating
both futures and spot trading modes. Specifically, in futures
market, two major issues are considered: i). overbooking rate
design: players determine a feasible overbooking rate, which
can be reflected by the number of buyers that can sign the
forward contract with the seller (we name these buyers as
members); and ii). forward contract design: players determine
a reasonable forward contract, which includes the price of
resource, the penalty that a member has to pay to the seller
if it breaks the forward contract, and the compensation that a
member with task can receive if the seller cannot offer comput-
ing service due to overbooking. In spot market, the remaining
buyers who have not signed forward contract (we name these
buyers as non-members) can compete for available resources
(if any) based on the current network/market conditions. Major
contributions are summarized as follows:
• This paper introduces a novel hybrid resource trading

market via integrating both futures and spot modes under
mobile edge network architecture, which effectively alleviates
extra latency and cost (e.g., energy consumption, etc.) on
trading decision-making. Specifically, overbooking is adopted

which allows a larger number of members than the seller’s
maximal capacity, that greatly supports the improvements on
both resource utilization and time efficiency.
• To capture the unpredictable random nature of the

resource trading market, two key uncertainties are considered:
buyer’s task arrival (namely, the participation of each buyer),
which directly affects the resource demand; and the varying
wireless channel quality, which reflects the unstable network
condition caused by factors such as the mobility of each
buyer. Specifically, buyers are divided into members and non-
members, where members can sign a forward contract with
the seller in advance, which will be fulfilled during each
future practical trading; while non-members with tasks have to
compete for available resources under a spot trading manner.
• The proposed mechanism considers solving two key

problems associated with different markets. The resource
trading problem in futures market mainly relies on designing
the feasible forward contract and overbooking rate, which is
formulated as a multi-objective optimization (MOO) prob-
lem aiming to maximize both the seller’s and the members’
expected utilities, via analyzing historical statistics of the
abovementioned key uncertainties (task arrival condition and
wireless channel quality). Moreover, possible risks that players
may undergo during each practical trading are evaluated as
constraints. To tackle this problem, an efficient bilateral nego-
tiation scheme is proposed that facilitates the players reaching
a consensus on futures trading.
• In spot market, resource trading is defined as a MOO prob-

lem that aims to maximize the seller’s and each non-member’s
utilities, based on the current resource supply and demand,
as well as wireless channel qualities, upon considering both
uniform pricing and differential pricing rules. To address the
spot trading problem under various pricing rules, we propose
a bilateral negotiation-based scheme through solving non-
convex optimization problem and knapsack problem, within
polynomial time.
• Comprehensive simulation results demonstrate that the

proposed overbooking-enabled resource trading mechanism in
hybrid market achieves mutually beneficial players’ utilities,
while outperforming baseline methods on significant indicators
such as decision-making latency and cost, task completion
time, as well as time and resource utilization.

II. SYSTEM MODEL

A. Key Definition and System Overview

Considering a futures and spot integrated resource trading
market containing multiple resource buyers represented by
set B =

�
b1, . . . bm, . . . , b|B|

�
, where each buyer may

have a computation-intensive task during a trading; and a
resource seller with limited computing resources denoted by
Sdcomp (e.g., CPU cycles), where S represents a positive
integer, and dcomp indicates the required amount of computing
resources per task. Specifically, the overall resource demand
may exceed the available resource supply in the studied market
(namely, S < |B|). Fig. 1 shows the corresponding framework,
timeline, and several trading examples associated with the
proposed resource trading; while key definitions are introduced
as follows:

Definition 1 (Futures Market and Member): In futures
market, some of the buyers can sign a forward contract with
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the seller in advance, which will be fulfilled during each prac-
tical trading without any further negotiation. Correspondingly,
a buyer with a forward contract is named as a member, and
the number of members is denoted by κ.

Definition 2 (Spot Market and Non-Member): In spot mar-
ket, a buyer without forward contract can purchase computing
resources from the seller under a real-time and on-demand
mode through spot trading, we regard these buyers as non-
members.

Definition 3 (Performer): A performer indicates a member
who has task execution requirement during a trading.

Definition 4 (Practical Performer): A practical performer
indicates a performer who can practically obtain the required
resources and service offered by the seller during a trading.

Definition 5 (Defaulter): A defaulter indicates a member
who is absent from a trading (“no show”), although it has
signed a forward contract with the seller in advance. Thus,
each defaulter has to pay penalty to the seller for breaking
the forward contract.

Definition 6 (Volunteer): A volunteer indicates a performer
who has to process its task locally since the seller fails
to afford performers’ task execution requirements due to
overbooking; correspondingly, each volunteer will receive
compensation from the seller.

Definition 7 (Forward Contract and Contract Term): A
forward contract represents a trading agreement between the
seller and each member, which will be fulfilled accordingly
during each practical trading. In a contract, three key terms
are considered: p, q, and r, where p indicates the agreed unit
price of resources, q denotes the unit penalty that a defaulter
has to pay to the seller, and r refers to the unit compensation
for each volunteer from the seller (r > 0). Specifically, p is
supposed to be larger than q, which also corresponds to real-
life trading market since a buyer definitely prefers to purchase
a commodity at p since a high penalty will lead to worse
utility, which may result in unsatisfying trading experience and
a waste of limited resources.

Definition 8 (Overbooking Rate): The overbooking rate
κo denotes the ratio of overbooked resources to the overall
resource supply, which can be calculated by κo = (κ− S) /S
(e.g., κo = 20% associated with futures market in Fig. 1).

Notably, a feasible overbooking rate can greatly support
time efficiency and substantial resource utilization. For exam-
ple, at most two non-members cost latency on onsite decision-
making as shown by Fig. 1, rather than three if considering
equal-booking. Besides, the proposed overbooking-enabled
trading mechanism achieves 100% resource usage in Trad-
ing 1, Fig. 1, although one of the members is absent (“no
show”) from the trading.

This paper investigates an interesting resource trading mech-
anism via considering the following key problems under
different markets: i). futures market focuses on designing a
risk-aware and mutually beneficial forward contract between
seller and each buyer, as well as the feasible overbooking
rate κo (namely, an appropriate number of members κ) by
analyzing historical statistics (e.g., the task arrival of each
buyer and channel quality between each buyer and the seller),
to maximize the expected utilities of the two parties; and
ii). spot market pays attention to design the spot trading
mechanism among seller and non-members upon considering

different pricing rules, to help players obtain better utilities
under real-time and on-demand manner.

B. Modeling of Buyers

Considering a set of buyers B, where each buyer
bm ∈ B may have a task that needs to be processed
during a trading, denoted by a 7-tuple bm = {dsize,
dcomp, f b, eloc, etran, αm, γm}. Specifically, dsize and dcomp

indicate the data size (e.g., bits), and the required amount
of computing resources (e.g., CPU cycles) of the buyer’s
task, respectively.2 f b denotes the local computing capabil-
ity (CPU cycles/s) of each buyer, eloc describes the local
computing power consumption (Watt), which represents the
average energy cost per unit time of local computing [50]
via considering several factors, e.g., power consumption of
local computing/storage, standby power of mobile device, etc;
while etran represents the transmission power (Watt) of bm.
Two key uncertainties are considered to describe the random
and unpredictable nature of the trading process: αm and γm.3

Specifically, αm ∈ {0, 1} represents each buyer’s task arrival
during each trading (namely, if the buyer requires resources
and will attend a trading, or not), which is a discrete random
variable obeying the Bernoulli distribution denoted by αm ∼
B ({1, 0} , {a, 1− a}). Thus, probability mass function (PMF)
of αm is given by (1).

Pr (αm = i) =

�
a, i = 1
1− a, i = 0

(1)

To better capture the uncertainty of wireless communications,
as well as the unpredictable mobility of mobile devices (e.g.,
a general scenario is considered without caring about the exact
moving path of each buyer), γm is applied to describe the
varying channel quality between buyer bm and the nearby AP.
Specifically, γm is modeled as a continuous random variable
(that can be seen as a function of factors such as fading, path
loss and noise [1]), which obeys an uniform distribution [5],
[23] in interval [ε1, ε2], denoted by γm ∼ U(ε1, ε2). Notably,
we assume that buyers are independent and identically dis-
tributed (i.i.d),4 e.g., buyers may have similar daily activities
such as workers in Apple park. More importantly, resource
demand during each trading relies on the overall participations
of buyers rather than a single buyer, which may follow a dif-
ferent distribution such like an approximate discrete Gaussian
distribution upon considering |B| = 4 and a = 50%. For
notational simplicity, let A = {α1, . . . , αm, . . . , α|B|} and

2For analytical simplicity, this paper assumes the same task data size and
thus the amount of computing resources [1], [5]. Specifically, the proposed
overbooking-enabled resource trading mechanism can also be applied when
considering different data sizes, where a large task can be divided into several
virtual tasks and each of which is of the same data size, although mathematical
derivations of some models should be updated (e.g., the expected utility of
each member, risks associated with members). Several existing works with
similar ideas can support this assumption [5], [17], [51].

3In this paper, trading statistics of uncertainties αm and γm are supposed
to be known based on the historical records [5], [23].

4The proposed problems and solution designs can also be applied when
considering non-i.i.d buyers, although some calculations should be updated.
Besides, new problems such as member selection may be incurred. However,
these changes will not impact our basic intention of unifying both futures
and spot market, as well as the overbooking-enabled trading mechanism.
Individual personalities and possible cooperations among buyers will be
investigated in our next work.
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Y = {γ1, . . . , γm, . . . , γ|B|} denote the vectors of random
variables αm and γm.

1) Task Completion Time and Energy Consumption: For
each buyer, the local task completion time is calculated as
tloc = dcomp

fb , and the relevant local energy consumption is

thus given by cloc = eloctloc = elocdcomp

fb [1], [3], [4], [38],
[50]. Additionally, task completion time of buyer bm when it
offloads a certain amount of task data to the seller is defined
by the following equation (2), where etranγm indicates the
received SNR [39] of the AP from buyer bm.

tedge
m =

�
ζmdsize

W log2 (1+etranγm)
+

ζmdcomp

fs
,
(1−ζm)dcomp

f b

�+

(2)

where ζm (0 � ζm � 1) denotes the offloading rate of bm;
symbol (i, j)+ refers to the larger value between i and j;
ζmdsize and ζmdcomp denote the amount of data offloaded
to the seller, and the relevant required resources, respectively.
W represents the bandwidth of the wireless channel5 between
each buyer and the seller, and W log2 (1 + etranγm) indicates
the relevant data transmission rate. Moreover, fs depicts the
seller’s computing capability (e.g., CPU cycles/s), which is
considered as a stable value (e.g., the value of fs doesn’t
change with seller’s workloads), as supported by existing
works [1], [3]. Correspondingly, the relevant energy consump-
tion cedge

m of bm is defined by the following (3), where the
left item denotes the energy costed by uploading a proportion
of task data to the seller, while the right item represents the
overall local energy consumption on handling the remaining
task data by the buyer itself.

cedge
m =

etranζmdsize

W log2 (1 + etranγm)
+

eloc × (1− ζm)× dcomp

f b

(3)

2) Utility, Expected Utility, and Risks of Member in Futures
Market: We use m to represent the index of members here-
after, to avoid notational redundancy. For analytical simplicity,
the first κ buyers b1, b2, . . . , bκ are considered as members,6

which are encouraged to offload the whole task7 to the
seller (e.g., ζm = 1). Correspondingly, the utility UPP

m of
a member bm who is a practical performer is defined as the
weighted sum of the time and energy saved from enjoying the
computing service, minus the payment of required resources,

5For analytical simplicity, we do not consider interference of wireless
communication, as supported by existing works [1], [40], and innovative
techniques such as OFDMA [41].

6In the proposed resource trading market, sign the forward contract with
any κ of the buyers has no impact on the solution design since all the buyers
are i.i.d. For example, considering |B| = 6 and κ = 3, the seller contracts
with buyers b1, b2, and b3 makes no difference with that with buyers b4,
b5, and b6.

7Notably, members are often given more rights, e.g., there is generally no
quantitative limitation on purchasing commodities, while a non-member may
suffer from the relevant limitation. Thus, we consider binary offloading for
members, namely, members own the right to enjoy more resources (and thus
computing service) under a reasonable price; while non-members have to
compete for available limited resources where partial offloading is allowed
in the proposed spot market. More importantly, applying different offloading
rules will not impact our problem although some mathematical derivations
may have to be updated.

as given by (4):

UPP
m

= ω1

�
tloc − tedge

m

�
+ ω2

�
cloc − cedge

m

�− pdcomp, (4)

where ω1 and ω2 are positive weight coefficients that reflect
the sensitiveness on latency and energy consumption associ-
ated with each buyer. Correspondingly, the utility UDE of
a defaulter can be calculated as UDE = −qdcomp, indicating
that a member has to pay a penalty when it breaks the forward
contract. Owing to overbooking, some of the performers with
the worst channel qualities8 may be selected as volunteers
when the seller fails to support task execution requirements
of members during a trading (e.g.,

	m=κ
m=1 αm > S). Thus,

we define the utility of each volunteer as UV O = rdcomp,
indicating the compensation from the seller. Correspondingly,
the number of volunteers V can be expressed by (5).

V =

m=κ

m=1
αm −

�
m=κ

m=1
αm, S

�−
(5)

Let vm be the volunteer selection indicator, where
vm = 1 denotes bm is chosen as a volunteer; vm = 0,
otherwise. Then, the utility of member UMem(p, q, r, κ, A, Y)
is formulated by the following (6).

UMem(p, q, r, κ, A, Y)

=

m=κ

m=1

�
αmUPP

m + (1− αm)UDE
�

−

m=κ

m=1
vmUPP

m + UV OV (6)

Since the random nature of the resource trading market poses
great challenges to maximize the members’ utility directly,
we consider the expected value of UMem(p, q, r, κ, A, Y)
as (7). Notably, (7) does not consider which specific member
will be chosen as a volunteer.

UMem (p, q, r, κ, A, Y)

= E

m=κ

m=1

�
αmUPP

m + UDE − αmUDE
��

+ E [V ]
�
E
�
UV O

�− E
�
UPP

m

��
= κE [αm]× E

�
UPP

m

�− κqdcomp + κqdcompE [αm]

+ rdcompE [V ]− E
�
UPP

m

�
E [V ] , (7)

where E [·] denotes the mathematical expectation, and we
can simply have E [αm] = a. Specifically, E [V ] is given
by (8), shown at the bottom of the next page, and E

�
UPP

m

�
is calculated by (9),

E
�
UPP

m

�
=
�

ω1 + ω2e
loc

f b
− ω1

fs
− p

�
dcomp

−
ln 2dsize (ω1 + ω2e

tran)× � C2

C1

�
ey

y

�
dy

Wetran (ε2 − ε1)
, (9)

where C1 = ln2 × log2 (1 + etranε1) and C2 = ln 2 ×
log2 (1 + etranε2), for notational simplicity. Detailed deriva-
tions of (8) and (9) are given in Appendix A. Combine (7),
(8), and (9), we rewrite (7) as (10) and (11) considering κ � S

8In this paper, we consider a fair volunteer selection scheme where the
performers with the worst channel qualities will be selected as volunteers
during each trading, since all the buyers are i.i.d.
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and κ > S, respectively.

UMem (p, q, r, κ � S, A, Y)
= κaE

�
UPP

m

�− κqdcomp + κaqdcomp (10)

UMem (p, q, r, κ > S, A, Y)
= (κa− E[V ]) E

�
UPP

m

�− κqdcomp

+ κaqdcomp + rdcompE [V ] (11)

In this paper, we consider two key risks for members. First,
the risk of a member bm (not a volunteer) suffering from a
non-positive utility9 (abbreviate to “MRisk”) is defined as the
probability that its utility is too close to or less than Umin

(Umin denotes a value approaching to zero), expressed by the
following (12).

RMRisk (p, q, A, Y)

= Pr

�
αmUPP

m + (1 − αm)UDE

Umin
� ξ1

�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

C5 < 0

1− a,

0 � C5 < C3 − C4

log2 (1 + etranε1)

1− a + a

�
2

C4
C3−C5 − 1− etranε1

etran (ε2 − ε1)

�
,

C3 − C4

log2 (1 + etranε1)

� C5 � C3 − C4

log2

�
1 + etranε2

�
1,

C5 > C3 − C4

log2 (1 + etranε2)

(12)

Particularly, ξ1 denotes a positive threshold coefficient; C3 =
ω1dcomp+ω2elocdcomp

fb − ω1dcomp

fs + qdcomp − pdcomp, C4 =
ω2etrandsize+ω1dsize

W , and C5 = ξ1Umin + qdcomp, which are
constants under any given p and q, for notational simplicity.
Then, the risk of a performer being selected as a volun-
teer10 (abbreviate to “VRisk”) is given by (13). Apparently,
a larger value of RV Risk(κ, A) leads to a higher risk of being
selected as a volunteer, which greatly impacts the members’
trading experience. Derivations of (12) and (13) are provided

9We consider Umin in estimating MRisk since buyers do not accept negative
utilities in single spot market. Thus, buyers can be attracted to participate in
futures market as long as their risks of obtaining negative utilities can be
controlled to some extent.

10Although each volunteer will receive a compensation from the seller, this
will always lead to bad trading experiences for those members who cannot
enjoy computing service even they have signed the forward contracts.

in Appendix B.

RV Risk(κ, A)

=

⎧⎨
⎩

0, 0 � κ � S

a−

i=S−1

i=0
Ci

κ−1a
i+1(1− a)κ−1−i

, κ > S

(13)

3) Utility of Non-Members in Spot Market: For analytical
simplicity, let n be the index of non-members, where n ∈
{κ + 1, . . . , |B|} (notably, there are no non-members when
κ = |B|). During each trading, if the seller’s resources are
not fully occupied by tasks of members, each non-member
with task execution requirement (αn = 1) can compete
for the remaining resources based on the current channel
quality, where partial offloading is allowed. Correspondingly,
we define the utility UNonM

n of each non-member bn as (14),
where gn denotes the unit price of resources that bn has to
pay during each trading.

UNonM
n (gn, ζn, αn, γn)
= αn

�
ω1

�
tloc − tedge

n

�
+ω2

�
cloc − cedge

n

�− gnζndcomp
�

(14)

C. Modeling of Seller

1) Utility, Expected Utility and Risk of Seller in Futures
Market: Suppose that an edge server owns Sdcomp resources
(e.g., CPU cycles). Utility of the seller contains two key
factors: i) the revenue U IN obtained from practical performers
and defaulters, and ii) the total refunds and compensations
UOUT the seller has to pay for volunteers when the available
resources fail to afford the members’ task execution require-
ments owing to overbooking. Correspondingly, U IN is defined
as the following (15).

U IN = pdcomp

m=κ

m=1
αm + qdcomp


m=κ

m=1
(1− αm)

(15)

Moreover, UOUT is calculated by (16).

UOUT = (p + r)dcompV (16)

Correspondingly, utility of the seller is considered as the
difference 11 between U IN and UOUT , as shown in (17)
below.

USelF (p, q, r, κ, A) = U IN − UOUT (17)

Expected utilities of seller are given by (18) and (19), shown
at the bottom of the next page, considering κ � S and κ > S,
respectively.

11Suppose that price p, penalty q, and compensation r are of the same unit
in this paper, e.g., US dollar, which is also common in real-life trading market.
Thus, we do not consider weight coefficients between UIN and UOUT .

E [V ] =

⎧⎨
⎩

0, κ � S

κa−
�
i=S−1

i=0
iCi

κai(1− a)κ−i + S

i=κ

i=S
Ci

κai(1− a)κ−i

�
, κ > S

(8)
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In the proposed resource trading market, the seller always
prefers to achieve a larger utility than it expects.12

Thus, we define the risk of the seller as the probabil-
ity that USelF (p, q, r, κ, A) is too close to or less than
USelF (p, q, r, κ, A), which is given by (20).

RSRisk(p, q, r, κ, A) = Pr

�
USelF (p, q, r, κ, A)

USelF (p, q, r, κ, A)
� ξ2

�
,

(20)

where ξ2 represents a positive threshold coefficient. According
to (18), risk of the seller under κ < S is calculated by (21),

where C6 = ξ2USelF (p,q,r,κ�S,A)
dcomp(p−q) − qκ

(p−q) for notational
simplicity:

RSRisk (p, q, r, κ � S, A)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

C6 < 0
i=�C6�
i=0

Ci
κai(1− a)κ−i,

0 � C6 � κ

1,

C6 > κ

(21)

Considering κ > S, risk of the seller is given by (22), based
on (19).

RSRisk (p, q, r, κ > S, A)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

C7 < (0, S (p− q)− (κ− S) (q + r))−


i=� C7
p−q �

i=0
Ci

κai(1− a)κ−i

+

i=κ

i=
�

S(p−q)−C7
q+r +S

� Ci
κai(1− a)κ−i,

(0, S (p− q)− (κ− S) (q + r))−

� C7 � S (p− q)
1,

C7 > S (p− q)

(22)

where C7 = ξ2USel(p,q,r,κ>S,A)
dcomp − qκ for notational sim-

plicity. Notably, let
	i=� C7

p−q�
i=0 Ci

κai(1− a)κ−i = 0 when
C7

p−q < 0, and
	i=κ

i=�S(p−q)−C7
q+r +S� Ci

κai(1− a)κ−i = 0 when

�S(p−q)−C7
q+r + S� > κ. Derivations associated with (21)

and (22) are detailed by Appendix C.

12We consider the expected value of seller’s utility in estimating the
corresponding risk, since the seller can definitely receive positive profits as
long as there are resource demands in single spot market. Thus, the risk of
receiving unexpected utility has to be controlled to some extent, to encourage
the seller to join futures market.

2) Utility of Seller in Spot Market: Note that non-members
with task execution requirements get chances to compete
for available resources due to the possible “no shows” of
members. Let binary indicator xn = 1 denote that the seller
decides to trade with non-member bn, and xn = 0 otherwise;
while X = {xn|n ∈ {κ + 1, . . . , |B|}} depicts the relevant
trading decision vector. Moreover, let G = {gn|n ∈ {κ +
1, . . . , |B|}} present the price vector, and Λ = {ζn|n ∈
{κ + 1, . . . , |B|}} indicate the offloading rate vector of non-
members. Correspondingly, the seller’s utility in spot market
is defined by (23).

USelS (X , G,Λ, A) = dcomp

n=|B|

n=κ+1
xngnζnαn (23)

III. PROBLEM FORMULATION AND SOLUTION

DESIGN IN FUTURES MARKET

The proposed futures market mainly considers designing
both the forward contract (e.g., p, q, and r) and overbooking
rate (e.g., κo, which is equivalent to the design of κ), where
the relevant problem is formulated by F1 with two objec-
tives (24a) and (24b), under constraints C1-C7. Specifically,
(24a) describes that the seller aims to maximize its expected
utility while meeting the tolerable risk (constraint C1); (24b)
indicates the maximization of the expected utility of members
under acceptable tolerant risks (constraints C2 and C3).

F1 :

⎧⎪⎨
⎪⎩

arg max
p,q,r,κ

USelF (p, q, r, κ, A) (24a)

arg max
p,q,r,κ

UMem(p, q, r, κ, A, Y) (24b)

s.t. C1 : RSRisk (p, q, r, κ, A) � ξS ;
C2 : RMRisk (p, q, A, Y) � ξM ;
C3 : RV Risk(κ, A) � ξV ;
C4 : 1 � κ � |B|;
C5 : UPP

m > 0, ∀ m ∈ {1, . . . , κ};
C6 : p � pSel

min;
C7 : p > q, r > 0.

Specifically, ξS , ξB , and ξV are positive threshold coefficients
on risk control. Constraints C1-C3 denote the acceptable
tolerant risks of seller and members. Constraint C4 limits the
practicable number of members (particularly, if the players fail
to sign forward contract, let κ = 0). Constraint C5 represents
the individual rationality of members in this market, describing
that each practical performer will receive at least non-negative
utility from a trading even under a poor channel quality (e.g.,
γm = ε1). Additionally, constraint C6 indicates that p should
be larger than the seller’s tolerable minimum price pSel

min (e.g.,
the minimum price reflects the seller’s cost for processing a
task such as energy consumption, etc.); while C7 describes
the relationships among p, q, and r. To facilitate the analysis,
we integrate C5 and C6 as C8, where pMem

max = ω1+ω2eloc

fb −

USelF (p, q, r, κ � S, A) = κapdcomp + κqdcomp − κaqdcomp =κdcomp (q − aq + ap) (18)

USelF (p, q, r, κ > S, A) = κdcomp (q − aq − ar) + (p + r) dcomp

�
i=S−1

i=0
iCi

κai(1− a)κ−i+S

i=κ

i=S
Ci

κai(1− a)κ−i

�
(19)

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:13:03 UTC from IEEE Xplore.  Restrictions apply. 



LIWANG et al.: UNIFYING FUTURES AND SPOT MARKET: OVERBOOKING-ENABLED RESOURCE TRADING 5475

ω1
fs −

�
ω1d

size+ω2etrandsize

Wdcomplog2(1+etranε1)

�
denotes the maximum tolerable

price of each member.

C8: pSel
min � p < pMem

max (25)

Note that F1 represents a MOO problem, which, however,
is difficult to be solved directly by state-of-the-art meth-
ods, e.g., weighted sum method [2], [42], weighted metric
method [43], and 	-constrained method [44]. A common
situation where players do not know the complete information
of each other, e.g., the seller is unaware of each buyer’s local
capability f b, local power cost eloc, weight coefficients ω1

and ω2) poses great challenges to merge objectives (24a) and
(24b) together, if applying weighted sum method. Weighted
metric method can only be adopted under given optimal
players’ expected utilities, which also represents a significant
challenge. Besides, it is difficult to determine the values
of weight coefficients for the above-mentioned weighted-
related methods, where inappropriate weights may lead to
unfairness. The 	-constrained method generally encourages
a single optimization objective while turning the remaining
into constraint(s), which, however, fails to meet our inten-
tion of designing trading mechanism that is mutually bene-
ficial to both seller and buyers. Additionally, each objective
in F1 ((24a) and (24b)) refers to a mixed integer non-
linear programing (MINLP) problem [45], which considers
determining both continuous (e.g., p, q and r) and inte-
ger variables (e.g., κ), that further complicates the solution
design.

Consequently, bilateral negotiation is considered as an effi-
cient approach which can facilitate the negotiation among
players with conflicting objectives [18] to reach the final
trading consensus on p, q, r, and κ. Since all the buyers
are i.i.d, a trusted agent13 is applied as the representative of
members to negotiate with the seller. Besides, Δp, Δq, and Δr
are applied as the granularities of price, penalty, and refund,
respectively, to promote the quotation procedure. Specifi-
cally, we propose an alternative optimization-based bilateral
negotiation mechanism to solve problem F1, as detailed by
Algorithm 1, where p∗, q∗, r∗ constitute the final contract term,
κ∗ denotes the final agreement on number of members, while
Cq and Cq are positive constants to constrain the upper limits
of penalty and compensation. Specifically, the corresponding
overbooking rate can be calculated as (κ∗ − S)/S. In Algo-
rithm 1, the representative agent of buyers first determines the
acceptable range of κ (line 2) under constraint C3, to avoid
overmany volunteers. Then, under given price FuturesP i,
penalty FuturesQj and compensation FuturesRl in each
quotation round, the seller first decides its acceptable range
of κ (e.g., KSel

i,j,l) while meeting its tolerable risk (line 6);
while the agent checkes if the current price and penalty
meets MRisk (line 7). If KSel

i,j,l ∩ KMem 
= ∅, the agent
chooses a κ from set KSel

i,j,l ∩ KMem that maximizes the
expected utility of members (lines 8-9), where the relevant
items will be saved into a candidate set CTerm (line 10).

13The seller does not have to negotiate with every buyer since all the
buyers are i.i.d. Thus, a trusted agent (e.g., AP, or one of these buyers
as representative, etc.) is supposed to be a representative of members,
negotiates with the seller on forward contract terms and overbooking rate.
Once the trading consensus has been reached, the relevant buyers who get the
membership can sign the forward contract with seller.

Specifically, if KSel
i,j,l = ∅, seller can directly raise the

value of penalty (line 12) since the current expected utility
may be unsatisfying; otherwise, the seller will adjust either
the value of compensation, penalty, or price to start another
quotation, as shown by lines 15-17. After all the quotations,
the seller chooses a group of price, penalty and compensation,
as well as the number of available members from candidate
set CTerm, that maximizes its expected utility, as the final
trading agreement on both contract terms and overbooking
rate (lines 18-20); otherwise, players fail to sign forward
contract.

The computational complexity associated with Algorithm 1
mainly relies on the overall quotation rounds (e.g., Count
in Algorithm 1), which can generally be expressed by
O (Count). However, the quotation procedure may be paused
or stopped by several possible conditions. For example, the
seller has to raise penalty directly since the current one cannot
meet its risk on utility (lines 11-12 in Algorithm 1); or raising
any factor (p, q, r) will no longer be accepted by any buyer
(line 7 in Algorithm 1). Thus, the lower and upper bound
of computational complexity associated with Algorithm 1 can
be calculated by O (1), and O

��
pMem

max − pSel
min

�
CqCr/Δp

�
,

respectively. Optimality of the proposed Algorithm 1 is dis-
cussed from the following two perspectives: i). the maximum
of (24b) can be reached under every possible combination
of price, penalty and compensation (line 9) since buyers are
given the right to choose the optimal value of κ; while ii).
the optimum of (24a) can be achieved over the obtained
candidate set, since the seller is given right to make the
final determination on forward contract and overbooking
rate (line 19).

IV. PROBLEM FORMULATION AND SOLUTION

DESIGN IN SPOT MARKET

Spot trading may occur when the following two cases
happen concurrently: i).

	m=κ
m=1 αm < S, namely, the seller

has available resources for onsite sale after meeting the
requirements of members; ii).

	n=|B|
n=κ+1 αn > 0, namely, there

exist resource demands from non-members, e.g., at least one
non-member has task execution requirement. Correspondingly,
resource trading in spot market is generally formulated by
problem F2, where the seller, and each non-member with task
execution requirement is aiming to maximize its own utility,
based on the current network/market conditions, as shown by
the following (26a), and (26b).

F2 :

⎧⎪⎪⎨
⎪⎪⎩

arg max
X ,G

USelS (X , G,Λ, A) (26a)

arg max
ζn

UNonM
n (gn, ζn, αn, γn) ,

∀ αn = 1, n ∈ {κ + 1, . . . , |B|} (26b)

s.t. C9 : ζn � 0, ∀ UNonM
n (gn, ζn, αn, γn) � 0;

C10 : 0 � ζn � 1,

C11 : gn � pSel
min, ∀ αn = 1, n ∈ {κ + 1, . . . , |B|} ;

C12 : ΛTX � S�,
where S� = S−	m=κ

m=1 αm (apparently, S�dcomp indicates the
remaining resources available for non-members). Constraints
C9 ensures the non-negative utility of each non-member, C10
and C11 (similar with C6) constrain the values of offloading
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Algorithm 1: Proposed Bilateral Negotiation in Futures Market (Solving Problem F1)

Input : a, ε1, ε2, dcomp, dsize, f b, fs, eloc, etran, W, |B|, S, ω1, ω2, ξS , ξM , ξV , Δp, Δq, Δr, Cq, Cr

Output: p∗, q∗, r∗, κ∗
1 Initialization: FuturesP 1 ← pSel

min, FuturesQ1 ← Δq, FuturesR1 ← Δr, i = j = l ← 1, CTerm← ∅, Count← 0,
2 The agent first determines the acceptable range of κ denoted by KMem while meeting constraints C3 and C4,
3 while FuturesP i � pMem

max do
4 while FuturesQj � Cq ×Δq do
5 while FuturesRl � Cr ×Δr do
6 The seller determines its acceptable range of κ denoted by KSel

i,j,l, while meeting C1 and C4,
7 The agent checks if the current price and penalty meets constraint C2, if yes, continue the negotiation;

otherwise, go to step 18,
8 if KSel

i,j,l ∩KMem 
=∅ then
9 κi,j,l ← argmax

κ
UMem

�
FuturesP i, FuturesQj , FuturesRl, A, Y , κ

�
, κ ∈KSel

i,j,l ∩KMem % the agent

chooses the value of κ that maximizes the members’ expected utility,
10 CTerm← CTerm

��
FuturesP i, FuturesQj , FuturesRl, κi,j,l

�
,

11 else if KSel
i,j,l = ∅ then

12 l ← 1, j = j + 1, FuturesQj ← FuturesQj−1 + Δq, Count← Count + 1,
13 else
14 Count← Count + 1, break, % jump out of the current while loop

15 l← l + 1, FuturesRl ← FuturesRl−1 + Δr, Count← Count + 1,

16 l← 1, j ← j + 1, FuturesQj ← FuturesQj−1 + Δq, Count← Count + 1,

17 l ← 1, j ← 1, i← i + 1, FuturesP i ← FuturesP i−1 + Δp, Count← Count + 1,

18 if CTerm 
= ∅ then
19 {p∗, q∗, r∗, κ∗} ← argmax

p,q,r,κ
USel (p, q, r, κ, A), {p, q, r, κ} ∈ CTerm, % the seller chooses a set of p, q, r and κ from

CTerm that maximizes its expected utility;
20 else
21 Players fail to sign the forward contract,

22 end algorithm

rate and unit resource price, respectively; C12 restricts avail-
able seller’s resources in spot market, where ΛT denotes the
transpose of vector Λ. Similar with F1, we consider bilateral
negotiation among the seller and non-members to solve F2,
via considering two pricing rules [46]: uniform pricing and
differential pricing.

A. Spot Trading Under Uniform Pricing

Considering spot trading that follows uniform pricing rule
where the seller charges all the non-members with the same
price. Thus, F2 can be further considered as the following F3,
by applying a uniform price g, where ∀n ∈ {κ + 1, . . . , |B|},
gn = g.

F3 :

⎧⎪⎪⎨
⎪⎪⎩

arg max
X ,g

USelS (X , g,Λ, A) (27a)

arg max
ζn

UNonM
n (g, ζn, αn, γn) ,

∀ αn = 1, n ∈ {κ + 1, . . . , |B|} (27b)

s.t. C10; C12;
C13 : ζn � 0, ∀ UNonM

n (g, ζn, αn, γn) � 0;
C14 : g � pSel

min.
Constraints C13 and C14 are similar with C9 and C11.
Notably, (27a) depicts a binary knapsack problem with the
weight ζn, and the value gζn for a non-member bn; while
(27b) in F3 represents a non-convex optimization problem

under any given g. Apparently, (27a) is NP-complete which
poses difficulty to find efficient algorithms, thus, we apply
dynamic programming [46] to solve the binary knapsack
problem in pseudo-polynomial time (e.g., by using the kp01
software package in MATLAB). Moreover, algorithm for
obtaining the optimal offloading rate (solve (27b)) is detailed
by Appendix D. Pseudocode on solving F3 is given by Algo-
rithm 2, where X ∗ and Λ∗ indicate the final trading decision
vector and offloading rate vector, respectively; and g∗ denotes
the relevant final agreed unit price of resource. Specifically,
only non-members with tasks are considered in the proposed
spot market, as depicted by lines 6-5. Lines 6-8 indicate that
under a given price SpotP i, each non-member bn with task
decides the optimal offloading rate Λi

n that maximizes its
utility; while lines 9-10 shows that the seller will stop raising
price if all the non-members decide to process their tasks
locally, mainly owing to an excessive price. In line 12, the
seller determines a trading decision vector that maximizes its
utility under price SpotP i by solving a 0-1 knapsack problem,
and saves the relevant utility ui, price SpotP i, trading vector
Xi, and offloading vector Λi in to a candidate set X. After
all the quotations, seller selects the solution that enables the
largest value of its utility from X (line 16).

Specifically, computational complexity of the quotation pro-
cedure associated with Algorithm 2 is generally denoted by
O(Count). Besides, the seller has to solve several 0-1 knap-
sack problems, where each brings a computational complexity
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Algorithm 2: Proposed Spot Trading Under Uniform Pricing (Solving Problem F3)

Input : A, Y , S�, dcomp, dsize, f b, fs, eloc, etran, W, ω1, ω2, Δp
Output: X ∗, g∗, Λ∗

1 Initialization: SpotP i ← pSel
min, i← 1, Count← 0, Λ01 > 0, X← ∅,

2 while SpotP i � pSel
min do

3 for n = κ + 1 and n � |B| do
4 if αn = 0 then
5 Countn ← 0, n← n + 1,
6 else
7 ζi

n ← argmax
ζn

UNonM
n (SpotP i, ζn, αn, γn), while meeting C10 and C13, % this problem (27b) represents a

non-convex optimization problem which is detailed in Appendix D,
8 Λi ← Λi

�
ζi

n, n← n + 1, Count← Count + 1,

9 if Λi1 = 0 then
10 jump out of the current while loop, % none of the non-members can accept a higher price, the seller stops

quotation,
11 else
12 Xi ← arg max

X
Λi

TX , while meeting C12, % this problem (27a) refers to a binary knapsack problem which

can be solved by dynamic programming;
13 ui ← gid

compΛi
TXi, X← X

� {ui, SpotP i, Xi,Λi}, i← i + 1,
14 n← n + 1, SpotP i ← SpotP i−1 + Δp,

15 For all αn = 1, Countn ← Count/
	n=|B|

n=κ+1 αn,
16 The seller chooses the largest ui from set X, where the relevant SpotP i, Xi,Λi stand for the final trading solution

g∗, X ∗ and Λ∗,
17 end algorithm

Algorithm 3: Proposed Spot Trading Under Differential Pricing (Solving Problem F2)

input : A, Y , S�, dcomp, dsize, f b, fs, eloc, etran, W, ω1, ω2, Δp
output: X ∗, G∗, Λ∗

1 Initialization: SpotP 1 ← pSel
min, i← 1, X← ∅, ζ0

n > 0, Countn ← 0, ∀n ∈ {κ + 1, . . . , |B|},
2 for n = κ + 1 and n � |B| do
3 if αn = 0 then
4 n← n + 1,
5 else
6 while SpotP i � pSel

min and ζi−1
n > 0 do

7 ζi
n ← argmax

ζn

UNonM
n (SpotP i, ζn, αn, γn), while meeting C9 and C10, % similar with F3, this problem

(26b) represents a non-convex optimization problem which is detailed in Appendix D,
8 if ζi

n > 0 then
9 Λn ← Λn

� {SpotP i, ζ
i
n}, Countn ← Countn + 1,

10 i← i + 1, SpotP i ← SpotP i−1 + Δp,
11 else
12 jump out of the current while loop, % non-member bn cannot accept a higher price, the seller stops

the current quotation,

13 n← n + 1, i← 1,

14 The seller chooses X ∗ that maximizes the value of USelS (X , G,Λ, A) based on set
�

αn=1 Λn, where the relevant
price set and offloading rate set will be the final solution G∗,Λ∗ % this problem (26a) denotes a knapsack problem with
grouped items which can be solved by dynamic programming,

15 end algorithm

denoted by O
�	n=|B|

n=κ+1 αn × (S −	n=κ
n=1 αn)

�
, to reach the

final trading decision. Similar with Algorithm 1, the optimality
of Algorithm 2 is considered from two angles: i). under every
given quoted price, each non-member can reach its maximal
utility by deciding the optimal offloading rate (as shown in

(27b)); while ii). the seller can finally achieve its maximum
utility via choosing one uniform price and the relevant non-
members as well as offloading rates (as given in (27a)). Fig. 2
shows an example where the seller charges different non-
members under the same price during a spot trading.
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Fig. 2. Examples associated with spot trading under uniform and differential
pricing rules, where the purple-colored blocks indicate the final trading
decision. Specifically, buyers b1 − b10 are members, b11 − b15 are non-
members, while b14 doesn’t show up in this trading (namely, α14 = 0).

B. Spot Trading Under Differential Pricing

Differential pricing rule considers a more general case
where the seller can charge different non-members with dif-
ferent prices (although the seller may also consider a uniform
price for some non-members as long as the concerned prices
can maximize its utility), where problem F2 in discussed.
Specifically, (26a) in F2 refers to a knapsack problem with
grouped items [47], [49], for which the dynamic program-
ming can be applied similar with (27a); while (26b) in F2

represents a non-convex problem under any given gn, for
which the solution of obtaining the optimal offloading rate
is given by Appendix D. Specifically, each non-member with
task execution requirement decides an optimal offloading rate
based on each quoted price, while the seller determines the
final trading vector by changing non-members with different
prices, associated the relevant offloading rates, to maximize its
utility. Pseudocode for solving F2 is detailed by Algorithm 3,
where X ∗, G∗, and Λ∗ indicates the final trading decision
vector, price vector, and offloading rate vector, respectively.
Negotiation procedure between the seller and non-member bn

are mainly shown by lines 5-12, where the seller keeps raising
its price until bn decides to process its task locally, e.g., bn

can no longer afford a higher price. Specifically, under each
quoted price, bn determines the optimal offloading rate that
can maximize its utility (line 7). After all the quotation rounds,
the seller decides a final trading decision vector by solving a
knapsack problem with grouped items, where different prices
can be charged to different non-members associated with
various offloading rates (line 14).

The computational complexity of the quotation procedure
associated with Algorithm 3 can be generally expressed
as O

�	n=|B|
n=κ+1 Countn

�
, where

	n=|B|
n=κ+1 Countn

indicates the overall quotation rounds during a spot
trading. Besides, computational complexity of the
knapsack problem with grouped items for final
trading decision (given by line 14) is calculated by
O (Number of price-offloading rate pairs× (S −	n=κ

n=1 αn))
(e.g., there are 8 price-offloading rate pairs associated with
differential pricing-based spot trading in Fig. 2). As for
the optimality, two perspectives are concerned: i). each
non-member can reach its optimal utility under every given
quoted price (given in (26b)); while ii). the seller can achieve
its maximum utility by charging non-members with different
prices (given in (26a)). Fig. 2 shows an example of spot
trading under differential pricing, as well as the major
differences between the two pricing rules.

V. EXPERIMENTAL RESULTS

This section presents comprehensive simulation results
and performance evaluations, illustrating the validity of

the proposed overbooking-enabled computing resource trad-
ing mechanism. Specifically, simulations are implemented
via MATLAB R2019b platform on desktop computer
with Intel Core i7-4770 3.40 GHz CPU and 16.0 GB
RAM. For notational simplicity, the proposed mechanisms
under uniform and differential pricing are abbreviated to
“Futures_Spot_OverB_UP”, and “Futures_Spot_OverB_DP”,
respectively.

A. Baseline Method

To achieve better evaluation, key baseline methods in this
simulation are considered:
• Equal-booking-based trading under uniform

pricing in futures and spot integrated market
(Futures_Spot_EqualB_UP): In futures market, Algorithm 1
is performed considering κ = S; in spot market,
seller trades with non-members under uniform pricing
(Algorithm 2).
• Equal-booking-based trading under differential

pricing in futures and spot integrated market
(Futures_Spot_EqualB_DP): In futures market, Algorithm 1
is performed considering κ = S; in spot market, seller
trades with non-members under differential pricing
(Algorithm 3).
• Spot trading under uniform pricing (Spot_UP):

Without considering futures market, all the trading are per-
formed by following spot trading mode under uniform pricing.
Namely, κ = 0, and Algorithm 2 is performed during each
trading.
• Spot trading under differential pricing (Spot_DP):

Without considering futures market, all the trading are per-
formed by following spot trading mode under differential
pricing. Namely, κ = 0, and Algorithm 3 is performed during
each trading.

B. Critical Indicator

Apart from the players’ utilities, additional evaluation indi-
cators are considered as follows:
• Decision-making cost (DMC): in each trading, DMC

denotes the cost (e.g., battery consumption) that players
have spent on trading decision-making. Since DMC is dif-
ficult to be quantized by a numerical value (e.g., it is
challenging to estimate the amount of battery capacity
consumed in each quotation); in this simulation, DMC is
described by the number of quotations (e.g., value of Countn
in Algorithm 2 and Algorithm 3 for each non-member).
Apparently, larger DMC presents heavier cost on onsite
decision-making.
• Decision-making latency (DML): DML denotes the

time that players have spent on trading decision-making,
which is estimated by considering the end-to-end delay tE2E

of wireless communication channels. Note that members no
longer have to spend extra time on trading decision-making,
as benefitted from the pre-signed forward contract, in this
simulation, DML is mainly considered for non-members. Con-
sequently, DML of a non-member bn (n ∈ {κ + 1, . . . , |B|})
is calculated by tDML

n = αn × Countn × tE2E .
• Task completion time (TCT): Since DML can

directly affect the actual TCT of each non-member, for
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Fig. 3. Short-term and long-term performance on players’ utilities.

TABLE I

ADDITIONAL ANALYSIS ON SHORT-TERM PERFORMANCE (ALGO 1: FUTURES_SPOT_OVERB_UP, ALGO 2: FUTURES_SPOT_OVERB_DP, ALGO 3:
FUTURES_SPOT_EQUALB_UP, ALGO 4: FUTURES_SPOT_EQUALB_DP, ALGO 5: SPOT_UP, ALGO 6: SPOT_DP)

Fig. 4. Short-term and long-term performance on decision-making cost and decision-making latency.

bn (n ∈ {κ + 1, . . . , |B|}), TCT of which can be calculated
by (28).

tTCT
n

= xnαn

�
ζndsize

W log2 (1+etranγn)
+

ζndcomp

fs
,
(1−ζn) dcomp

f b

�+

+ (1−xn)
dcomp

f b
+ tDML

n (28)

Besides, TCT of a member bm (m ∈ {1, 2, . . . , κ}) is
computed by the following (29).

tTCT
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αm

�
dsize

W log2 (1 + etranγm)
+

dcomp

fs

�
,

bm is not a volunteer

dcomp

f b
,

bm is a volunteer

(29)

• Time utilization rate (TUR): TUR represents the time effi-
ciency of each resource trading calculated by (30). Apparently,
large TUR refers to better time efficiency of resource trading.

TUR = 1−
	n=|B|

n=κ+1 tDML
n	m=κ

m=1 tTCT
m +

	n=|B|
n=κ+1 tTCT

n

(30)

• Resource utilization rate (RUR): RUR indicates the ratio
of the amount of resources occupied by the buyers to the
seller’s total available resources in each trading. Apparently,
a large value of RUR presents a better utilization of computing
resources.

Major parameters are set as follows: S = 15, |B| = 30,
a = 0.76, dsize = 0.5Mb, dcomp = 600cycles/bit×dsize, fs =
1011cycles/s, f b = 109cycles/s [1]–[4], eloc = 500mWatt [50],
etran = 550mWatt [5], ε1 = 100, ε2 = 500, namely, the
value of γ associated with each buyer is randomly chosen from
interval [100, 500] during every trading (while the received
SNR thus falls within [17dB, 24dB] roughly); W = 6MHz,
ξS = ξB = 0.33, ξV = 0.45, tE2E is randomly chosen from
[2ms, 10ms] [48], ω1 = ω2 = 0.5.

C. Performance Evaluation

In this simulation, we analyze the short-term performance
upon considering 100 trading, and the long-term perfor-
mance via simulating large number of trading (e.g., 10000,
20000, and 30000), to evaluate the validity of the proposed
overbooking-enabled resource trading mechanism. Fig. 3 and
Table I depict the short-term (Figs. 3(a)-3(b)) and long-term
performance (Figs. 3(c)-3(d)) on utilities of the seller and
buyers. Specifically, Fig. 3(a) and Fig. 3(b) show the sum
utility of 30 buyers, and utility of the seller in each trading,
respectively; where the proposed Futures_Spot_OverB_UP
achieves better players’ utilities (both buyers’ and the seller’s)
than Futures_Spot_EqualB_UP in most trading, while out-
performing that of Spot_UP in all the trading. Besides,
the proposed Futures_Spot_OverB_DP is superior to base-
line methods on buyers’ utility, although sometimes suffers
slightly lower seller’s utility than Futures_Spot_EqualB_DP
and Spot_DP; the overall seller’s utility (100 trading) of which
has a small gap in comparison with the two baseline methods
under differential pricing, as given by Table I. Figs. 3(c)-3(d)
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Fig. 5. Short-term and long-term performance on task completion time and energy consumption.

Fig. 6. Short-term and long-term performance on time efficiency and resource utilization.

investigate long-term (cumulative) players’ utilities via con-
sidering large numbers of trading, by borrowing the idea
from Monte Carlo method. As can be seen in Fig. 3(c),
the proposed overbooking-enabled mechanism obtains bet-
ter buyers’ utility than baseline methods under both pricing
rules owing to that members no longer have to spend extra
time on decision-making. In Fig. 3(d), although the proposed
Futures_Spot_OverB_DP gets slightly lower long-term seller’s
utility than Futures_Spot_EqualB_DP, which, however, can
achieve better performance on other significant evaluation
indicators as described in Figs. 4-6. Specifically, uniform
pricing rule only allows the same resource price for different
non-members and offloading rates, which can thus represent
an extreme case of differential pricing rule. Namely, the
seller under differential pricing may achieve larger utility by
charging various prices rather than that of uniform pricing;
which, in turn, may result in unsatisfying buyers’ utility
(Figs. 3(c)-3(d)). Besides, spot trading is facing with difficul-
ties to offer mutually beneficial utilities to both parties, since
overhead can be caused during onsite negotiation, especially
for mobile devices (also see Fig. 4).

Fig. 4 illustrates the short-term (Fig. 4(a) and Fig. 4(b)) and
long-term (Fig. 4(c) and Fig. 4(d)) performance on decision-
making cost and latency. Benefit from the pre-signed con-
tracts and feasible overbooking rate, the proposed mechanism
(where κ∗ = 20 > S) greatly outperforms baseline methods
on both DMC and DML (also shown in Table I), which
significantly accelerates the service provisioning procedure.
Although equal-booking-based trading (where κ∗ = S = 15)
may reduce DMC and DML to some extent, which, however,
faces challenges to handle “no show” cases (as depicted by
Figs. 6(b)-6(d)). Since the players in Spot_UP and Spot_DP
have to negotiate a trading agreement before practical service
delivery, they may suffer unexpected DMC and DML, which
thus pose great challenges to power/battery-constrained mobile
devices.

Performance evaluation on task completion time and energy
consumption is analyzed by Fig. 5, where Fig. 5(a), Fig. 5(c)
and Table I depict that the proposed overbooking-enabled
trading mechanism facilitates faster task completion espe-
cially when comparing to spot trading, from both short- and

long-term perspectives. One major reason refers to the
commendable DML brought by the proposed mechanism
(Figs. 4(b) and 4(d)), which greatly supports time efficiency
since the seller only has to negotiate with non-members during
each practical trading. Specifically, considering 10000 trading
under uniform pricing in Fig. 5(c), the proposed mecha-
nism (3.307s/trading) achieves 42.23% and 63.55% improve-
ment on task completion time than equal-booking-based
method (5.724s/trading) and spot trading (9.072s/trading).
Namely, spot buyers may spend roughly 2.7 times longer
to complete the same number of tasks, rather than the pro-
posed overbooking-enabled mechanism. In addition, the pro-
posed overbooking-enabled mechanism reaches similar energy
consumption comparing with Futures_Spot_EqualB_UP and
Spot_UP, while outperforming Futures_Spot_EqualB_DP and
Spot_DP on both short- and long-term energy consump-
tion, as demonstrated by Fig. 5(b), Fig. 5(d) and Table I.
Investigation on time and resource utilization are detailed
in Fig. 6. Thanks to the pre-determined forward con-
tracts among seller and members as well as the over-
booking policy, the proposed mechanism enables far better
TUR than baseline methods (see Fig. 6(a) and Table I).
In Fig. 6(c), the proposed Futures_Spot_OverB_UP achieves
averagely 85.98% and 197.78% improvement on time uti-
lization, in comparison with Futures_Spot_EqualB_UP and
Spot_UP. Besides, Futures_Spot_OverB_DP obtains averagely
73.37% and 126.56% increase in time utilization, comparing to
Futures_Spot_EqualB_DP and Spot_DP. Fig. 6(b), Fig. 6(d),
and Table I illustrate that the proposed mechanism offers sub-
stantial resource utilization; namely, overbooking provides a
commendable reference in handling dynamic resource demand
in trading market, e.g., “no shows”. Specifically, the pro-
posed mechanism achieves 5.32% and 31.62% improvement
on resource utilization under differential pricing, as com-
pared to equal-booking-based and spot trading mechanisms (as
depicted by Fig. 6(d)). In summary, the proposed overbooking-
enabled trading mechanism under futures-spot integrated mar-
ket offers mutually beneficial utilities to both parties. Besides,
commendable decision-making latency, faster task comple-
tion and lower energy consumption can be achieved, while
facilitating sufficient time/resource utilization, in comparison
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with conventional trading methods, e.g., equal-booking-based
trading and spot trading.

VI. CONCLUSION

Motivated by challenges of excessive latency and cost
incurred by onsite decision-making, as well as the possible “no
show” of smart devices, in this paper, an overbooking-enabled
resource trading mechanism considering an edge server (seller)
and multiple smart devices (buyers) is investigated under
mobile edge network architecture, via integrating both futures
and spot market. Specifically, in futures market, mutually
beneficial and risk tolerable forward contract as well as the
relevant overbooking rate are studied, for which an effec-
tive bilateral negotiation scheme is proposed by alternatively
optimizing the seller’s and members’ expected utilities. For
the spot trading problem upon considering uniform pricing
and differential pricing rules, we propose two bilateral nego-
tiation schemes via addressing non-convex optimization and
knapsack problems, by analyzing the current network/market
conditions. Experimental results demonstrate that the proposed
overbooking-enabled resource trading mechanism achieves
mutually beneficial utilities for both the seller and buyers, and
outperforms baseline methods on critical indicators such as
decision-making latency and cost, as well as time and resource
utilization.

APPENDIX A
DERIVATION OF EXPECTED UTILITY OF MEMBER

Let random variable X1 =
	m=κ

m=1 αm, and X2 =
(X1, S)− for analytical simplicity, we first discuss the PMF
of X1 as given by (31).

Pr (X1 = x) = Cx
κax(1− a)κ−x, x ∈ {0, 1, . . . , κ} (31)

Based on (31), we consider E [X2] via the following two cases:
• Case 1 (κ � S): X2 = X1, we have E [X2] =

E [X1] = κa.

• Case 2 (κ > S): X2 =

�
X1, X1 < S

S, X1 � S
and we have

PMF of X2 as given by (32).

Pr (X2 = x) =

⎧⎨
⎩

Cx
κax(1− a)κ−x, 0 � x � S − 1
i=κ

i=S
Ci

κai(1− a)κ−i
, x = S

(32)

Accordingly, E [X2] in Case 2 can be calculated by (33).

E [X2] =

i=S−1

i=0
iCi

κax(1− a)κ−i

+ S

i=κ

i=S
Ci

κai(1− a)κ−i (33)

As a result, E [V ] is represented by (eq34).

E [V ] = E [X1−X2]

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, κ � S

κa−
�
i=S−1

i=0
iCi

κai(1− a)κ−i

+ S

i=κ

i=S
Ci

κai(1− a)κ−i

�
, κ > S

(34)

Let random variable Y 1 = 1
log2(1+etranγm) for nota-

tional simplicity, the CDF of Y 1 is given by (35),

according to γm ∼ U(ε1, ε2).

FY 1 (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

y <
1

log2 (1 + etranε2)

1− 2
1
y − 1− etranε1

etran (ε2 − ε1)
,

1
log2 (1 + etranε2)

� y � 1
log2 (1 + etranε1)

1,

y >
1

log2 (1 + etranε1)

(35)

The PDF of Y can be obtained as given in (36), based on (35).

Pr (Y 1 = y) =
∂FY 1 (y)

∂y

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ln2× 2
1
y

y2etran (ε2 − ε1)
,

1
log2 (1 + etranε2)

� y

� 1
log2 (1 + etranε1)

0, otherwise

(36)

Accordingly, E [Y 1] is thus calculated by (37), where C1 =
ln 2× log2 (1 + etranε1) and C2 = ln 2× log2 (1 + etranε2),
for notational simplicity.

E [Y 1] =
� 1

log2(1+etranε1)

1
log2(1+etranε2)

yPr (Y = y) dy

=
ln 2× � 1

log2(1+etranε1)
1

log2(1+etranε2)

�
2

1
y

y

�
dy

etran(ε2 − ε1)

=
ln 2× � C2

C1

�
ey

y

�
dy

etran (ε2 − ε1)
(37)

According to (37), E
�
UPP

m

�
is expressed by (38) and

UMem(p, q, r, κ, A, Y) is thus obtained.

E
�
UPP

m

�
=
�

ω1 + ω2e
loc

f b
− ω1

fs
− p

�
dcomp

−
ln 2dsize (ω1 + ω2e

tran)× � C2

C1

�
ey

y

�
dy

Wetran (ε2 − ε1)
(38)

APPENDIX B
DERIVATION OF RISKS OF MEMBER

Based on the pre-determined Y 1 = 1
log2(1+etranγm) ,

RMRisk (p, q, A, Y) is rewritten as (39).

RMRisk (p, q, A, Y)

= Pr

�
αmUPP

m + (1 − αm)UDE

Umin
� ξ1

�
= Pr (αm (C3 − C4Y 1) � C5) , (39)
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where C3 = ω1dcomp+ω2elocdcomp

fb −ω1dcomp

fs +qdcomp−pdcomp,

C4 = ω2etrandsize+ω1dsize

W , and C5 = ξ1Umin+qdcomp, which
are constants under any given p and q for notational simplicity.
Let random variable Y 2 = C3 − C4Y 1, we discuss the CDF
of Y 2 which is given by (40).

FY 2 (y) = 1− FY 1

�
C3 − y

C4

�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

y < C3 − C4

log2 (1 + etranε1)

2
C4

C3−y − 1− etranε1

etran (ε2 − ε1)
,

C3 − C4

log2 (1 + etranε1)

� y � C3 − C4

log2 (1 + etranε2)
1,

y > C3 − C4

log2 (1 + etranε2)

(40)

Let random variable Y 3 = αmY 2, the CDF of Y 3 is thus
considered by (41).

FY 3 (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

y < 0
1− a,

0 � y < C3 − C4

log2

�
1 + etranε1

�
1− a + a

�
2

C4
C3−y − 1− etranε1

etran (ε2 − ε1)

�
,

C3 − C4

log2 (1 + etranε1)

� y � C3 − C4

log2 (1 + etranε2)
1,

y > C3 − C4

log2 (1 + etranε2)

(41)

Accordingly, we recalculate (39) as (42), according to (41).

RMRisk (p, q, A, Y)
= Pr (Y 3 � C5)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

C5 < 0
1− a,

0 � C5 < C3 − C4

log2 (1 + etranε1)

1− a + a

�
2

C4
C3−C5 − 1− etranε1

etran (ε2 − ε1)

�
,

C3 − C4

log2 (1 + etranε1)

� C5 � C3 − C4

log2 (1 + etranε2)
1,

C5 > C3 − C4

log2 (1 + etranε2)

(42)

For VRsik, we first discuss the conditional probabil-
ity Pr(

	m=κ−1
m=1 αm > S − 1|ακ = 1), describing that a

member bκ is under the risk of being selected as a volunteer
when it is a performer (e.g., ακ = 1, here, we consider
member bκ as an example, where the risk is universal for
all the members in the proposed market due to that all the
buyers are i.i.d.). Let random variable X3 =

	m=κ−1
m=1 αm,

the CDF of X3 is expressed by (43).

FX3 (x) = Pr (X3 � x)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < 0


i=�x�
i=0

Ci
κ−1a

i(1− a)κ−1−i
, 0�x�κ− 1

1, x > κ− 1
(43)

Correspondingly, we have Pr
�	m=κ−1

m=1 αm > S − 1
���ακ = 1

�
calculated by (44).

Pr

�
m=κ−1

m=1
αm > S − 1

����ακ = 1
�

=

⎧⎪⎨
⎪⎩

0, 0 � κ � S

1−

i=S−1

i=0
Ci

κ−1a
i(1− a)κ−1−i, κ>S

(44)

Consequently, the probability of a performer who is undergo-
ing the risk of being selected as a volunteer is given by (45).

RV Risk(A, κ)

=

⎧⎨
⎩

0, 0 � κ � S

a−

i=S−1

i=0
Ci

κ−1a
i+1(1− a)κ−1−i, κ > S

(45)

APPENDIX C
DERIVATION OF RISK OF SELLER

We apply the previous defined X1 and X2 to describe
RSRisk(p, q, r, κ, A) as (46).

RSRisk(p, q, r, κ, A)

= Pr

�
(p+r)X2−(q+r)X1� ξ2USelF (p, q, r, κ, A)

dcomp
−qκ

�

(46)

Consider κ � S, we have X2 = X1. Thus, RSelF (p, q, r, κ
� S, A) can be calculated by (47), where C6 =
ξ2USelF (p,q,r,κ�S,A)

dcomp(p−q) − qκ
(p−q) for notational simplicity.

RSRisk (p, q, r, κ � S, A)
= Pr (X1 � C6)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, C6 < 0
i=�C6�
i=0

Ci
κai(1− a)κ−i, 0 � C6 � κ

1, C6 > κ

(47)
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For κ > S, we consider a random variable Z given by (48),

Z = (p + r)X2− (q + r) X1

=

�
(p− q)X1, X1 < S

(p + r) S − (q + r) X1, X1 � S
(48)

Correspondingly, the PMF of Z can be calculated as (49) based
on (31).

Pr (Z = z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− a)κ
, z = 0

· · ·
CS

κ aS (1− a)
κ−S

, z = S (p− q)
· · ·
aκ, z = S (p− q)

− (κ− S) (q + r)
0, otherwise

(49)

Apparently, analysis on properties of random variable Z relies
on the distribution of X1. For example, the CDF associated
with Z from 0 to S(p−q) can be calculated via considering the
cumulated probability of X1 from 0 to S. Correspondingly,
we discuss the CDF FZ (z) of Z via the following three cases:
Case 1 (q + r = p− q), Case 2 (q + r > p− q), and Case 3
(q+r < p−q). Specifically, Case 1 can be further considered
by analyzing three sub-cases (1.1, 1.2, and 1.3), depending on
different value ranges of κ:
• Case 1.1 When S < κ � 2S, we have FZ (z) shown

by (50).

FZ (z)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, z < 0
i=� z
p−q�

i=0
Ci

κai(1− a)κ−i

+

i=κ

i=�2S− z
p−q� C

i
κai(1− a)κ−i

, 0�z�S (p− q)

1, z > S (p− q)
(50)

• Case 1.2 When κ > 2S, we have the following (51).

FZ (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

z < (2S − κ)(p− q)
i=κ

i=�2S− z
p−q� C

i
κai(1− a)κ−i,

(2S − κ)(p− q) � z < 0


i=� z
p−q�

i=0
Ci

κai(1− α)κ−i

+

i=κ

i=�2S− z
p−q � C

i
κai(1− a)κ−i

,

0 � z � S (p− q)
1,

z > S (p− q)

(51)

Consequently, CDF of Z in Case 1 is given as (52) by
summarizing (50) and (51):

FZ (z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

z < (0, (2S − κ)(p− q))−


i=� z
p−q�

i=0
Ci

κai(1− a)κ−i

+

i=κ

i=�2S− z
p−q� C

i
κai(1− a)κ−i

,

(0, (2S−κ)(p−q))−�z�S (p−q)
1,

z > S (p− q)

(52)

Due to space limitation, we omit derivations of Case 2 (q+r >
p − q) and Case 3 (q + r < p − q), which are similar with
Case 1. In conclusion, we have FZ (z) when κ � S as (53).

FZ (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

z < (0, S (p−q)−(κ−S) (q+r))−


i=� z
p−q �

i=0
Ci

κai(1− a)κ−i

+

i=κ

i=�S(p−q)−z
q+r +S�C

i
κai(1− a)κ−i

,

(0, S (p− q)− (κ− S) (q + r))−

� z � S (p− q)
1,

z > S (p− q)

(53)

Notably, let
	i=� z

p−q�
i=0 Ci

κai(1− a)κ−i = 0 when z
p−q <

0, and
	i=κ

i=� S(p−q)−z
q+r +S � Ci

κai(1− a)κ−i = 0 when

�S(p−q)−z
q+r +S� > κ. Correspondingly, risk of the seller upon

considering κ > S can thus be calculated by (22), according
to (53).

APPENDIX D
DERIVATION OF THE OPTIMAL OFFLOADING RATE

Under any given price gn, we discuss the optimization
problem (26b) of maximizing a non-member’s (αn = 1, n ∈
{κ + 1, . . . , |B|}) utility in problem F2 by the following
cases.
• Case 1: when ζndsize

W log2(1+etranγn) + ζndcomp

fs �
(1−ζn)dcomp

fb , we have 0 � ζn � C8 where C8 =
dcompfs

dsizefsfb

W log2(1+etranγn)
+dcompfb+dcompfs

for notational simplicity.

Thus, (26b) is rewritten as F4.
In this case, when ∂UNonM

n

∂ζn
� 0, we have ζn = 0; else,

we have ζn = C8.
• Case 2: when ζndsize

W log2(1+etranγn)+
ζndcomp

fs > (1−ζn)dcomp

fb ,
we have C8 � ζn � 1. We reconsider (26b) as F5 shown

F4 : arg min
ζn∈[0,C8]

�
ω2e

trandsize

W log2 (1 + etranγn)
+ gndcomp − ω1d

comp

f b
− ω2e

locdcomp

f b

�
ζn (54)

F5 : argmin
ζn∈(C8,1]

�
ω1d

size + ω2e
trandsize

W log2 (1 + etranγn)
+ gndcomp +

ω1d
comp

fs
− ω2e

locdcomp

f b

�
ζn (55)
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by (55). In this case, when ∂UNonM
n

∂ζn
� 0, we have ζn = C8;

else, we have ζn = 1. Similarly, problem (27b) can also be
solved according to (54) and (55), shown at the bottom of the
previous page.
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