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Semantic Information Marketing in the Metaverse:
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Abstract— In this paper, we address the problem of designing
incentive mechanisms by a virtual service provider (VSP) to hire
sensing IoT devices to sell their sensing data to help creating
and rendering the digital copy of the physical world in the
Metaverse. Due to the limited bandwidth, we propose to use
semantic extraction algorithms to reduce the delivered data by
the sensing IoT devices. Nevertheless, mechanisms to hire sensing
IoT devices to share their data with the VSP and then deliver the
constructed digital twin to the Metaverse users are vulnerable
to adverse selection problem. The adverse selection problem,
which is caused by information asymmetry between the system
entities, becomes harder to solve when the private information of
the different entities are multi-dimensional. We propose a novel
iterative contract design and use a new variant of multi-agent
reinforcement learning (MARL) to solve the modelled multi-
dimensional contract problem. To demonstrate the effectiveness
of our algorithm, we conduct extensive simulations and mea-
sure several key performance metrics of the contract for the
Metaverse. Our results show that our designed iterative contract
is able to incentivize the participants to interact truthfully,
which maximizes the profit of the VSP with minimal individual
rationality (IR) and incentive compatibility (IC) violation rates.
Furthermore, the proposed learning-based iterative contract
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framework has limited access to the private information of the
participants, which is to the best of our knowledge, the first of its
kind in addressing the problem of adverse selection in incentive
mechanisms.

Index Terms— Digital twin, semantic communication, contract
theory, age of information, deep reinforcement learning.

I. INTRODUCTION

DRIVEN by the Covid-19 pandemic, the Metaverse has
gained huge interest recently from different industry and

public sectors [1], [2]. Considered as the next generation
of the Internet, the Metaverse enables users and objects to
experience near real-life interaction with each other in the
virtual environment through their avatars. The Metaverse is
made up from different emerging technologies such as virtual
reality (VR), augmented reality (AR) and haptic sensors.
Furthermore, other emerging technologies such as beyond 5G
and 6G are driving the Metaverse from imagination and fiction
towards real world implementation as they enable users to
access the Metaverse from anywhere, anytime instantly.

The first step towards realizing and exploiting the Metaverse
is the replication of the physical objects into their respective
digital twins. As the digital twins are required to replicate the
physical real-world system to the finest details [2], generating
an accurate 3D model of the physical system and constant
update of the physical system in digital twin is the first step
towards this goal. However, the creation of an accurate 3D
digital copy is challenging for several reasons. First, in the
upstream layer, i.e., between the VSP and the sensing IoT
devices, the collected data by the sensing IoT devices is huge
in size and the available bandwidth for data transmission will
quickly exceed the system limitation. In addition, the delivered
data by the sensing IoT devices needs to be delivered timely
and should not be outdated. Second, in the downstream layer,
i.e., between the VSP and the Metaverse users, to support
a real-time interaction between the Metaverse users and the
physical world, the rendered digital twin by the VSP needs
to be delivered timely and with an acceptable quality to the
Metaverse users. Therefore, to enable a real-time construction
and delivery of the digital twin in the Metaverse, the com-
munication system needs to be carefully designed so as to
maximize successful data transmission with high data value
while minimizing the latency of packet delivery.

However, it is challenging for the VSP to find a balance
between the revenue, i.e., profit, and the cost in both layers.
In the upstream layer, the VSP needs to find an optimal
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strategy to maximize its revenue while minimizing the cost,
i.e., prices, given to the sensing IoT devices for their data.
In the downstream layer, the VSP also needs to find another
optimal strategy for the prices to sell the digital twin service
to the Metaverse users with the constraint on the delivery
costs, i.e., computation cost for rendering and delivering the
digital twin to the Metaverse users. The VSP needs to design
incentive mechanism in both layers to motivate the sensing IoT
devices and the users to participate in the Metaverse ecosys-
tem. Specifically, the VSP uses private information of the
participants to design a mechanism that satisfies the incentive
compatibility (IC) and individual rationality (IR) properties
for each participant. However, the uncertainty of the VSP
about private information of the participants further hinders
the derivation of the optimal strategy, causing the problem
of information asymmetry [3]. The problem of information
asymmetry encourages malicious participants to misreport
their private information truthfully to gain higher profits. For
instance, some sensing IoT devices with low ability to provide
rich semantic information and fresh data might claim to have
a higher level than their true type, causing the VSP to provide
them with payments higher than what they truly deserve.
This behaviour can similarly happen when the VSP intends to
deliver the digital twin to the Metaverse users. The Metaverse
users can misreport their private valuation about the delivered
digital twin (which are based on their private types) to push
the VSP to decrease the offered prices and hence, getting a
higher utility than deserved.

To address the aforementioned challenges, we first propose
the use of semantic information extraction algorithm on the
raw data collected by the sensors on the IoT devices to
minimize the size of the transmitted data [4]. Instead of trans-
mitting the raw data to the VSP, the IoT devices transfer only
relevant information (semantic) which can be used directly
to create a 3D copy of the physical world. To formulate our
problem, we then adopt contract theory which is regarded as an
efficient tool to design incentive mechanism under asymmetric
information scenarios [3]. Nevertheless, to properly design the
contract and maximize its revenue, the VSP needs to be able to
categorize the users based on their private types which can be
multi-dimensional. In the upstream layer, different sensing IoT
devices can have different semantic information abilities and
different speed for data delivery. Similarly, in the downstream
layer, different Metaverse users can have different private valu-
ation towards different qualities of the digital twin delivered by
the VSP, e.g., resolution and refresh rate. Therefore, the VSP
needs to take these multi-dimensional private information of
the participants of the Metaverse ecosystem while designing
the incentive mechanism.

However, solving multi-dimensional contracts is not
straightforward to address. Existing works proposed to reduce
the multi-dimensional contract into a single dimensional con-
tract [5], [6]. The derived single dimensional contract is then
solved by using standard single-crossing condition technique.
However, this conversion requires tedious mathematical trans-
formations with proofs for IC and IR properties in addition to
the computation efficiency. For instance, the single-crossing
condition does not always hold when there are more than one

type [5], [6]. Moreover, if the definition of the utility function
of either the contract designer or the users changes slightly,
the derived solution needs to be reformulated from scratch.
Furthermore, all of the existing techniques to solve the single-
dimensional contract requires certain assumptions about the
used functions, e.g., monotonicity, which adds more limita-
tions for the generality of the derived solutions. In this work,
we address the problem of solving multi-dimensional contract
from a totally different perspective. This is a key contribution
of this paper. Specifically, we formulate the contract problem
as a Markov Decision Process (MDP) and solve it using a
new variant of multi-agent reinforcement learning (MARL)
algorithm.

To the best of our knowledge, no previous work has
attempted to solve the contract optimization problem using
DRL. This is due to the fact that the nature of the problems
addressed by DRL is different from those of contracts. For
instance, a closely related work was proposed in [7] in which
the authors adopted the DRL framework to solve the double
Dutch auction (DDA). The DDA is conducted in many rounds
and the DRL is suitable to learn the optimal “step size” over
time. However, in contract, the contract bundles are delivered
only once to the participants, and the participants select their
preferred bundles only once. A major challenge for using DRL
in contract is the generation of the training set. Typically,
in problems where DRL is applied, the environment is highly
repetitive, i.e., decisions are taken frequently, which enables
the collection and evaluation of previous actions. However,
in contract, the contract bundles are generated only once and
they need to guarantee the optimality in addition to the IC and
IR properties for all participants. These system settings make
it non-trivial to adopt DRL for our problem. Nevertheless,
motivated by the DRL’s generality, we are able to create
a learning environment for the proposed iterative contract
problem.

In this paper, we extend our previous work in [8] to a
multi-dimensional asymmetric information problem in a two-
layer Metaverse system and develop a learning-based iterative
contract to solve it. In summary, the main contributions of our
work are as follows:
• We design a novel two layer Metaverse ecosystem where

in the first layer, the VSP hires sensing IoT devices to
collect data from the physical world, while in the second
layer the VSP uses the collected data to create the digital
twin of the physical world and delivers it to the Metaverse
users. To minimize the data volume over the wireless
link, we require the sensing IoT devices to extract and
transmit only the semantic information from the raw data.
The proposed design is shown to achieve the objectives
of the Metaverse ecosystem, i.e., fast delivery and update
of reliable information.

• We then use the contract theory framework to design
an incentive mechanism to incentivize the participants
in both layers, i.e., sensing IoT devices and Metaverse
users, to engage in the Metaverse ecosystem and miti-
gate the adverse selection problem. We propose a novel
iterative contract framework to solve the challenging
multi-dimensional optimization problem. To the best of
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our knowledge, this is the first work that applies contract
theory in a two-layer Metaverse system. It is non-trivial
to design an incentive mechanism for such systems due
to information asymmetry at different layers, i.e., the data
collection layer and data delivery layer.

• To solve the resultant iterative contract model, we develop
a new variant of MARL systems where we consider that
the VSP creates instances for each participant in the
contract and interact with each other until reaching a
feasible solution that maximizes the profit of the VSP
while minimizing the IR and IC violation rates. To the
best of our knowledge, this MARL design is the first of
its kind.

The structure of the paper is as follows. In Section III
we define our system model and provide some preliminaries
about semantic information for the Metaverse. In Section IV
we formulated the optimization problem as a contract theory
problem and develop our learning-based iterative contract
model. Finally, we provide numerical results and insightful
discussions about our framework in Section V. Section VI
concludes the paper.

II. RELATED WORKS

A. Metaverse Services

Digital twin modeling of the physical world in the Meta-
verse has a number of benefits for different application
scenarios. In [1], the authors provided a detailed survey about
the Metaverse and its applications and challenges from a
communication perspectives. As the study of the Metaverse is
still in its infancy, only few works have addressed the aspect of
wireless resource allocation for the Metaverse. In [9], an IoT-
assisted Metaverse sync problem was studied in which an
evolutionary game was formulated to enable the IoT devices
to select VSPs to work for. However, the volume of the
data and the limited bandwidth problem was not addressed.
In [10], an iterative algorithm based on transport theory was
used to minimize the delivery time between the sensing IoT
devices and the VSP, and hence minimize the gap between
the real-time state of the physical twin and the state of the
digital twin. However, it was assumed that the computation
time, bandwidth, rate of the sensing IoT devices are precisely
known. However, the sensing IoT devices might belong to
different entities and hence, might misreport their private
information and cause the whole Metaverse system to collapse.
Therefore, there is a need to design incentive mechanism to
“incentivize” participating sensing IoT devices to report their
private information truthfully.

B. Semantic Communication for the Metaverse

Semantic communication for the Metaverse can be enabled
at two different layers. The first layer is the physical layer
where the objective is to use some technique, e.g., machine
learning (ML), to reduce the number of transmitted bits
between the transmitter and the receiver. The second layer
is at the application layer where the raw data is reduced in
size through ML or other techniques by extracting only the

valuable, i.e., semantic, information. The derived semantic
information is then transmitted to the receiver through standard
wireless transmission technique. In [11], the authors developed
a semantic multiverse communication system using generative
adversarial networks (GANs). The encoder learns the semantic
representations of the data, while the generator learns how to
manipulate the extracted semantics for locally rendering the
digital twin in the Metaverse. In [12], authors used contest
theory to design a semantic-aware sensing information trans-
mission for the Metaverse. Causality was used in [13] to infer
cause-effects relationship between the transmitted symbols and
the received ones over the wireless communication channel.
A game theory based language model was then developed
to enable minimalist representation and transmission of the
extracted semantics. In [14], the relationship between objects
in images was represented as a graph, and in [15] a dataset for
this purpose was presented. In our recent work [8], we used
the idea presented in [14] and proposed an application-layer
semantic communication system for the Metaverse. A reverse
auction mechanism was then developed to incentivize the data
owners, i.e., sensing IoT devices, to make their bids to sell
semantic information to the VSP truthfully.

C. Multi-Dimensional Contracts

To derive the optimal pricing bundles, the system designer
needs to have full knowledge about the private information
of the participants. To incentivize the participants to reveal
their private information, existing works used either Stack-
elberg games or contract theory. However, the shortcoming
of Stackelberg games is that they can be used only for
scenarios with a single-dimension private type [16]. Therefore,
several works used the framework of contract theory to design
incentive mechanisms for problems with multi-dimensional
private types. In the area of wireless communications, the idea
of extending single-dimensional contract to two-dimensional
contract was first proposed in [5], where the authors proposed
to use an additional auxiliary variable to transform the two
dimensional contract into a single-dimensional contract. The
derived contract was then solved by using standard approaches
in contract theory to prove the IC and IR properties in
addition to the optimality of the derived solution. Motivated
by [5], the authors in [6] extended the idea to a three-
dimensional contract. However, this approach requires tedious
formulation of the problem and several assumptions about
the system dynamics to prove that the designed contract
is truthful, i.e., does not violate the IC and IR properties.
Finally, some existing works used the framework of contract
theory to improve the performance of some ML problems,
e.g., federated learning as in [17]. However, to the best of
our knowledge, no prior work has attempted to use an ML
technique, e.g., DRL, to address the aforementioned challenges
in contract designs.

Motivated by the limitations mentioned above, we propose
a learning-based iterative contract to derive the optimal pricing
for the participants in the Metaverse ecosystem. Therefore, our
studied Metaverse system can be regarded as an instance of
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Fig. 1. System model.

a general framework for solving multi-dimensional contracts
using DRL.

III. SYSTEM MODEL AND PRELIMINARIES

We consider a digital market consisting of data owners,
a VSP and Metaverse users. The data owners, e.g., IoT
devices equipped with sensors, collect data about the physical
environment and sell it to the VSP. The VSP then creates the
digital twin of the physical environment and commercializes
the digital twin to different Metaverse users. A two-layer
contract theory-based framework is developed for the VSP
to determine prices for purchasing data from the sensing
IoT devices and for selling digital twin to the Metaverse
users.

A. Metaverse Platform

As illustrated in Fig. 1, we consider a VSP that is collecting
sensing data from a set of IoT devices, denoted as N =
{1, . . . , N} in the filed, e.g., vehicles or smartphones. The
edge server, which is monitored by the VSP, is responsible for
the replication of the physical twin by rendering the received
data into a digital twin (DT) of the physical twin. Next, the
VSP sends the digital twin to the set of Metaverse users,
defined as M = {1, . . . ,M}. Each sensing IoT device has a
set of sensors to collect geo-spatial data from the surrounding
environment and send the data back to the VSP. However,
raw data is usually large in size adding further limitations
on the required bandwidth and data delivery latency. There-
fore, the IoT devices are equipped with machine learning
(ML) models to extract only the semantic information from
the collected raw data, which is smaller in size, and send
the semantic information to the VSP. Nonetheless, if the
received data from the IoT devices is outdated, the created
digital twin will not be able to reflect real time dynamics of
the physical twin. Therefore, the VSP leverages an age of
information (AoI) metric to measure and guarantee freshness
of the received data from the IoT devices. Once all of the
semantic information is received by the VSP, the digital twin is
created and distributed to the Metaverse users. In what follows,
we discuss preliminaries about semantic information, AoI and
their roles in deriving the value of the collected information
by the sensing IoT devices and then we describe the delivery
model of the digital twin by the VSP to the Metaverse
users.

B. Fresh Semantic Information Collection Model

1) Sensing IoT Devices Modeling: Different from tradi-
tional crowd-sensing platforms that collect all raw data from
data owners directly, the VSP obtains only semantic infor-
mation from the IoT devices (e.g., semantic mask for each
object in an image with its corresponding class or semantic
text from voice recording). The incorporation of semantic
information into our system is motivated by the following
reasons:
• The number of communication channels available to the

VSP are limited. Hence, if the VSP allows transmission of
raw data by the IoT devices, only few devices will be able
to transmit their data which reduces the heterogeneity of
the collected data.

• Raw data is large in size in general (e.g., video and
images), which can increase the transmission delay, mak-
ing the rendering of the digital twin very slow and
obsolete.

• The quality of the constructed digital twin will be higher
as more semantic information about the physical world
will be available to the VSP.

Let Ψ = {ψe : e ∈ {1, . . . , E}} denote the set of different
semantic levels (or scores) available. The similarity score is
impacted mainly by the algorithm used by the sensing IoT
devices for semantic information extraction as demonstrated
in [4] and [8]. We consider the algorithms as types (integers)
and they are sorted in an ascending order, i.e., 0 < ψ1 ≤
ψ2 ≤ · · · ≤ ψE . Note that the semantic extraction algorithm
used by each sensing IoT device depends on the types of
sensors equipped in each IoT device, e.g., camera and radar.
Typically, sensing IoT devices with a high semantic score
value can provide the VSP with more accurate and rich set of
information. Therefore, they are more preferred by the VSP
and should receive more payment for their data. However,
as the sensing IoT devices are owned by independent parties,
their capabilities of extracting the semantic information is
different, heterogeneous and private. For instance, two IoT
devices might have the same price for selling their semantic
information, and the VSP might be indifferent when choosing
which IoT device to buy data from. Therefore, if the VSP
is aware of the semantic value of each IoT device, i.e., the
ability of the IoT device to extract more accurate semantic
information, the VSP can then choose the IoT devices that
increase the quality of its constructed digital twin.

Nevertheless, the provided semantic information is affected
directly by the reliability of the network link between the
sensing IoT devices and the VSP. Even if the value of the
provided semantic information is high, the link with high
bit error rate (BER) can prevent the VSP from receiving
the extracted semantic information about the physical world
efficiently, and hence making the rendering at the Metaverse
obsolete. To mitigate this issue, we consider the radio link
transmission rate as a valuation metric for the link quality. The
transmission rate can be adjusted by the transmitters through
allocating more channels and/or increasing the transmit power
to increase the signal-to-noise ratio (SNR) at the receiver.
In what follows, we denote Λ = {λb : b ∈ {1, . . . , B}} to be
the set of different available transmission rate values which
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are also sorted in an ascending order,1 i.e., 0 < λ1 ≤ λ2 ≤
· · · ≤ λB .

We also consider the age of information (AoI), which
is defined as the time elapsed since the generation of the
last received data at the source, as an important criterion of
the delivered semantic information. Specifically, due to the
congestion at the transmission queues, the AoI is directly
impacted and becomes larger. It has been shown in [18]
that with first-come-first-served (FCFS) queues, increasing
the refresh rate does not yield a small AoI as this strategy
may lead the destination to receive delayed status update
because the packets become backlogged in the communication
system. These reasons motivates the use of last-come-first-
served (LCFS) queues with preemption as in [18]. Under
LCFS with preemption, the new generated packet is allowed
to replace the current packet in service and hence, maintain
a low AoI. Let Γ = {γc : c ∈ {1, . . . , C}} denote the set of
different refresh rate types. The refresh rate type is related to
the average AoI ϖγ at the VSP as follows [18]

ϖγ =
1
γ

+
1
µ
, (1)

where 1/γ is the mean packet arrival time at the VSP and
1/µ is the mean processing time at the VSP server. From (1)
we observe that when µ is considered constant the average
AoI is inversely proportional to the refresh rate γ. Therefore,
sensing IoT devices which have higher refresh rates bring
more utility to the VSP. Based on the findings in [19] and
[20], we consider that as the refresh rate increases, the AoI
decreases following a non-increasing convex function. Without
loss of generality we consider that refresh rate types are
sorted in an ascending order similar to the other types, i.e.,
0 < γ1 ≤ γ2 ≤ · · · ≤ γC .

In short, each sensing IoT device is differentiated by its
three dimensional private information: the semantic score
value ψe, transmission rate value λb and refresh rate value
γc.2 Therefore, the utility of a sensing IoT device with type-
(λ, γ, ψ) to deliver semantic information to the VSP with
volume size ŝ is defined as

U†(ŝλ,γ,ψ) = π†λ,γ,ψ −Υ†(ŝλ,γ,ψ), (2)

where π†λ,γ,ψ is the price associated to data with quality ŝλ,γ,ψ ,
Υ†(ŝλ,γ,ψ) refers to the cost for delivering a data with size ŝ
by an IoT device with type-(λ, γ, ψ) to the VSP, and is defined
as

Υ†(ŝλ,γ,ψ) = Υ†0 + T †(ŝλ,γ,ψ), (3)

where Υ†0 is a fixed cost and T †(ŝλ,γ,ψ) is the specific cost for
data generated by type-(λ, γ, ψ) IoT device. The cost function
reflects both the computation cost (i.e., data collection and
semantic information extraction) and communication cost (i.e.,
channel allocation by the sensing IoT devices).

1Note here that the transmission rate has a discrete value due to modulation
and coding schemes.

2Note here that the transmission rate captures the volume of data that can
be transmitted over a period of time while the refresh rate captures the number
of times the transmitter sends a new update to the receiver.

2) VSP Modeling: The VSP needs to properly design
rewards for each sensing IoT device type. Different from
most existing works where some private information of the
users are known to the VSP, we are considering a more
realistic asymmetric information scenario in which all the
private information of the sensing IoT devices are not known
to the VSP. In other words, the VSP does not know exactly the
type of each IoT device, i.e., its semantic score value ψe, its
transmission rate value λb or its refresh rate value γc. To solve
the asymmetric information problem, we incorporate contract
theory into our model. Specifically, the VSP designs specific
contract bundles for each type of the sensing IoT devices with
the aim of maximizing its utility, i.e., profit, while ensuring
that each sensing IoT device does not deviate from choosing
the bundle designed for its true type. The VSP designs a
contract bundle, denoted as Ω† = {ωλ,γ,ψ : λ ∈ Λ, γ ∈
Γ, ψ ∈ Ψ} that consists of B×C ×E contract items denoted
as ωλ,γ,ψ = {ŝλ,γ,ψ, π†λ,γ,ψ} and characterized by a joint
probability mass function Q†(λ, γ, ψ) for each IoT device’s
joint type combination. Hence, the VSP’s utility from type-
(λ, γ, ψ) IoT device is given by

R†(ωλ,γ,ψ) = σf(ŝλ,γ,ψ)− π†λ,γ,ψ + (K −ϖγ), (4)

where σ is the revenue coefficient for the VSP and σf(ŝ) is the
revenue of the VSP from the data received from the sensing
IoT device with type-(λ, γ, ψ). Motivated by [21], we adopt
the α-fairness function to define f(ŝ) as follows:

f(ŝ) =
1

1− α
ŝ1−α, (5)

where 0 < α < 1 is a given constant. The last term (K−ϖγ)
in (4) represents the benefit from the AoI. Specifically, K is
a constant and (K −ϖγ) can be interpreted as a satisfactory
function from the average AoI [22], where a low average AoI
brings a high benefit to the VSP. The overall utility of the VSP
from all sensing IoT devices is then formulated as

R†(Ω†) =
∑
λ∈Λ

∑
γ∈Γ

∑
ψ∈Ψ

NQ†(λ, γ, ψ)
(
σf(ŝλ,γ,ψ)

− π†λ,γ,ψ + (K −ϖγ)
)
. (6)

C. Digital Twin Delivery Model

1) Metaverse Users Modeling: In our model, we define
the quality of a digital twin with respect to the Metaverse
users in terms of the resolution of the digital twin and the
refresh rate per time unit [23]. The resolution captures the
size of the transmitted data while the refresh rate captures
the freshness of the data. In other words, if a Metaverse user
subscribes to a digital twin delivery service with resolution
r (e.g., pixel per inch), and refresh rate h (e.g., frame per
second (FPS)), the VSP will assert the delivery of the digital
twin as requested to the Metaverse user. If the Metaverse
user accepts to buy a replica of the digital twin with quality
(r, h), the VSP delivers that replica to the Metaverse user
and charges with price π‡(r, h). Nonetheless, the Metaverse
users have different preferences towards various combinations
of resolutions and refresh rates. To present this preference,
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we use a valuation function with both resolution and refresh
rate parameters. Specifically, each Metaverse user has some
private valuation of both resolution and refresh rate, denoted
as τ and ϕ, respectively. These private valuation parameters
capture both resolution sensitivity, i.e., perception, and refresh
rate sensitivity, i.e., timeliness. Based on the works in [21]
and [24], we define the valuation of the Metaverse user with
type-(τ, ϕ) to the provided digital twin with resolution r and
refresh rate h as

V ‡(τ, ϕ, r, h) = τg1(r) + ϕg2(h), (7)

where g1(·) and g2(·) follow an α-fairness function as earlier
described in (5) with changes only to parameter α. The
Metaverse user is also required to have enough bandwidth
to receive data from the VSP in addition to its internal hard-
ware specifications, e.g., screen refresh rate [25]. Moreover,
as the refresh rate h (in FPS) increases, the inter-frame time
decreases which is more preferred by the Metaverse user. The
Metaverse user needs to trade-off between the quality of the
delivered digital twin and the cost. Therefore, the utility of the
Metaverse user with type-(τ, ϕ) after purchasing a digital twin
with quality (r, h) is defined as

U‡(τ, ϕ, r, h) = V ‡(τ, ϕ, r, h)− π‡(r, h). (8)

2) VSP Modeling: To guarantee the delivery of the digital
twin with the specified quality, the VSP needs to use a
certain number of resources and algorithms which increases
the delivery cost as the quality increases. For example, instead
of using a single processor or a single queue, to deliver all
the digital twin packets to the Metaverse users, the waiting
time in the queue can be minimized for each Metaverse
user, and hence, minimizing the AoI at the Metaverse user
side [20]. This adjustment significantly minimizes the AoI at
the Metaverse user side but increases the cost for the VSP.
We define the cost to the VSP to deliver the digital twin with
quality (r, h) as

Υ‡(r, h) = Υ‡0 + T ‡(r, h), (9)

where Υ‡0 is a fixed cost for the VSP to collect data from the
sensing IoT devices and render the digital twin. T ‡(r, h) is
the specific cost for quality (r, h). Finally, the utility of the
VSP for delivering a digital twin with quality (r, h) is defined
as the difference between the selling price and the cost, i.e.,

R‡(r, h) = π‡(r, h)−Υ‡(r, h). (10)

IV. CONTRACT FORMULATION

In this section, we formulate the contract design problem
to maximize the utility of the VSP when buying the semantic
information from the sensing IoT devices and when selling
the constructed digital twin to the Metaverse users. For the
contract to be feasible, it has to guarantee both the incentive
compatibility (IC) and individual rationality (IR) properties
for all types [26]. In what follows, we describe IR and IC
properties with respect to the upstream layer, i.e., for the
contract between the VSP and the sensing IoT devices, and
with respect to the downstream layer, i.e., between the VSP
and the Metaverse users. Finally, we propose a DRL-based

model to solve the contracts of the upstream and downstream
layers, which we call iterative contract and is -to the best of
our knowledge- an unprecedented method to solve contracts.

A. Upstream Layer (VSP and Sensing IoT Devices)

The VSP obtains historical data about the semantic levels
and transmission rates of different sensing IoT devices. The
average AoI for each IoT device (and hence, the refresh rate) is
derived by the VSP from historical interactions. The VSP then
designs a contract by solving problem (13) and broadcasts the
designed contract to the IoT devices. Next, each IoT device
sends its selected contract item to the VSP, i.e., signs the
contract with the VSP. Finally, the IoT devices send their
semantic information to the VSP and receive payments as
specified in the contract. A feasible contract in an open market
must satisfy the IR and IC properties. The IR and IC properties
of the upstream layer are defined as follows.

Definition 1: Individual Rationality (IR) for IoT device: An
IoT device with type-(λ, γ, ψ) will only accept to sell its
semantic information to the VSP if its utility is non-negative,
i.e.,

U†λ,γ,ψ(ŝλ,γ,ψ) ≥ 0, ∀λ ∈ Λ, ∀γ ∈ Γ, ∀ψ ∈ Ψ. (11)

Definition 2: Incentive Compatibility (IC) for IoT device:
The utility of an IoT device with type-(λ, γ, ψ) is maximized
only when selecting the contract designed for its true type,
i.e.,

U†λ,γ,ψ(ŝλ,γ,ψ) ≥ U†λ,γ,ψ(ŝλ′,γ′,ψ′), ∀λ, λ′ ∈ Λ,

∀γ, γ′ ∈ Γ, ∀ψ,ψ′ ∈ Ψ, λ ̸= λ′,

γ ̸= γ′, ψ ̸= ψ′. (12)

The IR condition ensures the participation of the sensing
IoT devices while the IC condition ensures that each sensing
IoT device selects the contract designed for its true type. The
aim of the VSP is to design a contract (ŝ, π†) to maximize
its utility taking into account the IR and IC conditions, which
is expressed as follows:

P1 : max
(ŝ,π†)

∑
λ∈Λ

∑
γ∈Γ

∑
ψ∈Ψ

NQ†(λ, γ, ψ)
(
σf(ŝλ,γ,ψ)

− π†λ,γ,ψ + (K −ϖγ)
)

(13a)

s.t. (11) and (12). (13b)

However, the parameters in (11) and (12) are private to the
sensing IoT devices and can be misreported to gain higher
utility than deserved. Moreover, to solve P1 we need to address
B×C×E IR constraints and (B×C×E)×(B×C×E−1)
IC constraints, which are all non-convex. Intuitively, such
an optimization problem is not straightforward to solve. The
classical approach is to first define some lemmas to constrain
the pricing function and the types, e.g., monotonicity and pair-
wise incentive compatibility, and then relax the optimization
problem to reduce its complexity. However, these methods are
not directly applicable here due to the multi-dimensionality
of the contract. Interestingly, some recent works proposed
to introduce an auxiliary type to reduce the dimensionality
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of the contract and then solve the relaxed problem using
dynamic programming or branch and bound techniques [5],
[6]. However, these approaches add another layer of difficulty
to the problem formulation, which become more tedious, time
consuming to adjust and to prove the corresponding lem-
mas and theorems. Furthermore, the necessary and sufficient
conditions for these approaches further tighten the overall
assumptions in the system and limit its generality. In this work,
we design a DRL-based iterative multi-dimensional contract
that is executed over several interactions between the VSP and
the sensing IoT devices. The VSP starts with a set of random
bundles and converges to the optimal set of bundles, which is
the objective of the contract designer. In what follows, we first
start by defining the MDP of the upstream layer, then briefly
discuss how this MDP is solved.

1) Markov Decision Process: An MDP is defined by a tuple
< S†,A†,P†, r† > where S† is the state space, A† is the
action space, P† is the state transition probabilities and r† is
the immediate reward received by the agent, i.e., the VSP, after
performing action a† at state s†.

a) State space: The state space of the system at time slot
t (t = 1, 2, . . . , T ) is defined as

S†(t) ≜
{
a†(t−1),π†(t), ŝ(t),x†(t),y†(t)

}
, (14)

where a†(t−1) is the action vector from the previous time slot,
π†(t) is the price vector at time slot t and ŝ(t) is the semantic
information size vector at time slot t. x†(t) and y†(t) are binary
vectors of sensing IoT devices which have their IR an IC
violated, respectively. The system state is then defined as a
composite variable s† ≜ (a†,π†, ŝ,x†,y†) ∈ S†.

b) Action space: For better budget allocation, the VSP
is able to dynamically adjust the prices and the semantic
information size values for each contract bundle. Let pricek
denote the price for bundle k and η1,k a scalar to adjust the
price between two time slots for the contract bundle k. The
price is updated as

π
†,(t+1)
k = pricek × (1 + η

(t)
1,k), (15)

where η
(t)
1,k ∈ [−range, range] and 0 ≤ range ≤ 1. The

semantic information size values are adjusted similarly. Let
sizek denote the semantic information size value for bundle k
and η2,k a scalar to adjust the size between two time slots for
the contract bundle k. The semantic information size value is
updated as

ŝ
(t+1)
k = sizek × (1 + η

(t)
2,k), (16)

where η
(t)
2,k ∈ [−range, range]. Based on these definitions

of the price and semantic information size adjustments, the
action space of the VSP consists of the joint action of
reducing, increasing or keeping the current price and semantic
information size value for all contract bundles at time slot t.
Therefore, the action space is defined by: A† ≜

{
(a′, a′′) :

a′, a′′ ∈ {0, 1, 2}
}

, where a′ = 0, a′ = 1 and a′ =
2 refer to the actions of increasing the semantic information
size, decreasing the semantic information size or keeping the
current size, respectively. Similarly, a′′ = 0, a′′ = 1 and

a′′ = 2 refer to the actions of increasing, decreasing or keeping
the current price, respectively. Intuitively, this definition of
the action space implies a total of 9 different combination of
actions, i.e., (3 × 3) actions, at each time slot. This strategy
significantly reduces the action space size which helps the
DRL to converge quickly.

c) Immediate reward: Since our objective in the contract
is to maximize (13), we craft the immediate reward func-
tion to align with this objective. To incorporate the IC and
IR constraints in (13) into the immediate reward function,
we design a multi-objective reward function based on weighted
sum technique. Specifically, we define the reward function as
follows:

r†(S†(t), a†(t),S†(t+1))

= w1

∑
λ∈Λ

∑
γ∈Γ

∑
ψ∈Ψ

nλ,γ,ψ

(
σf(ŝ(t)λ,γ,ψ)−π†,(t)λ,γ,ψ + (K −ϖγ)

)
+ w2

[ ∑
x†(t) −

∑
x†(t+1)

]
+ w3

[ ∑
y†(t) −

∑
y†(t+1)

]
, (17)

where w1 +w2 +w3 = 1 are the weight factors of each term
in (17) and nλ,γ,ψ is the number of sensing IoT devices with
type-(λ, γ, ψ). The first term in (17) reflects the objective of
maximizing the VSP’s revenue. The second and third terms
reflect the objective of reducing the number of violations of
IR and IC properties, respectively. Note here that rewards are
only received after the increment of the timestep.

d) Optimization formulation: The objective is to find a
policy p†∗ that has the best mapping from states to actions
which maximizes the average long-term reward R(p†). For-
mally, the optimization problem is defined as

max
p†

R(p†) = lim
Υ→∞

1
Υ

Υ∑
t=1

E(r†t (s
†
t ,p

†(s†t))), (18)

where r†t (s
†
t ,p†(s

†
t)) is the immediate reward under policy p†

at time t defined in (17).3

The standard approach to solve the MDP described earlier
is to adopt one of the available single-agent DRL algorithms,
e.g., Deep Q-Network (DQN) or Proximal Policy Optimization
(PPO) [27]. However, standard single agent DRL algorithms
cannot solve the described MDP. Specifically, in single agent
DRL and at each time slot, the agent extracts a single action
to perform. However, in our MDP there is a need to perform
N actions simultaneously. As there are several actions to be
executed simultaneously, an attractive approach is to adopt
multi-agent reinforcement learning (MARL) [27]. In MARL
systems, several agents are trained to work independently to
achieve one goal or compete against each other. However, our
studied system also differs from these settings as we only want
to train the VSP to derive the optimal contract and there are no
other agents to train. Inspired by MARL and the work in [28],
we develop a novel MARL architecture to solve the optimal
iterative contract problem. In what follows, we first continue

3Note that the unique ability of our solution is at optimizing for other
objectives. Specifically, we might have other objectives that can be simply
achieved by modification to the reward function, e.g., maximizing the social
welfare of the system.
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the formulation of the downstream layer and its corresponding
MDP. Next, we describe the details of our proposed learning-
based iterative contract.

B. Downstream Layer (VSP and Metaverse Users)

In this layer, the objective of the VSP is to find a set
of qualities of the delivered digital twin jointly with their
respective prices to maximize its revenue. As earlier described,
the quality of the delivered digital twin is measured using
the resolution (which reflects the perception) and refresh rate
(which reflects the timeliness of the information). Hereafter,
we denote the set of available resolutions as R, the set of
refresh rates as H, and the set of prices as Π‡. Here we
consider that the different combinations of resolutions and
refresh rates are referred to by an auxiliary variable q. For each
Metaverse user with type-(τ, ϕ), the VSP assigns a quality qτ,ϕ
and charges a price π‡τ,ϕ. The set of quality-price combinations
is denoted as Ω‡ = {(qτ,ϕ, π‡τ,ϕ)|∀τ ∈ Ξ,∀ϕ ∈ Φ}. The IR and
IC properties of the downstream layer are defined as follows.

Definition 3: Individual Rationality (IR) for Metaverse
user: A Metaverse user with type-(τ, ϕ) will only accept to
purchase the digital twin from the VSP if its utility4 is non-
negative, i.e.,

V ‡(τ, ϕ, qτ,ϕ)− π‡τ,ϕ ≥ 0, ∀τ ∈ Ξ,∀ϕ ∈ Φ. (19)

Definition 4: Incentive Compatibility (IC) for Metaverse
user: The utility of a Metaverse user with type-(τ, ϕ) is
maximized only when selecting the contract designed for its
true type, i.e.,

V ‡(τ, ϕ, qτ,ϕ)− π‡τ,ϕ

≥ V ‡(τ, ϕ, qτ ′,ϕ′)− π‡τ ′,ϕ′ ,

∀τ, τ ′ ∈ Ξ, ∀ϕ, ϕ′ ∈ Φ, τ ′ ̸= τ, ϕ′ ̸= ϕ. (20)

Since the VSP dominates the trading process, we model the
digital twin trading as a monopoly market, in which the VSP’s
objective is to maximize its overall utility, which is written as

R‡(Ω‡) =
∑
τ∈Ξ

∑
ϕ∈Φ

MQ‡(τ, ϕ)
(
π‡τ,ϕ −Υ‡(qτ,ϕ)

)
, (21)

where Q‡(τ, ϕ) is the joint probability mass function of
the Metaverse users having type-(τ, ϕ) and is obtained from
previous observations [21]. For instance, each Metaverse user
device support a different frame rate and have different val-
uation towards them, which is a private information for each
Metaverse user. Nevertheless, the VSP has some prior knowl-
edge about their probability distribution which is modeled here
using Q‡(τ, ϕ). In order for the contract to be feasible, it has
to guarantee both IC and IR. Therefore, the optimal contract
can be derived by solving the following problem:

P2 : max
(q‡,π‡)

∑
τ∈Ξ

∑
ϕ∈Φ

MQ‡(τ, ϕ)
(
π‡τ,ϕ −Υ‡(qτ,ϕ)

)
, (22a)

s.t. (19) and (20). (22b)

4Note that we use V ‡(τ, ϕ, qτ,ϕ) instead of V ‡(τ, ϕ, r, h) for notational
consistency.

However, the parameters in (19) and (20) are private to
the Metaverse users and can be misreported. Similar to the
upstream layer problem, this problem is addressed using DRL.
Therefore, in what follows, we first start by describing the
MDP of the downstream layer. Next, the solution of this MDP
and that of the upstream layer is described in detail.

1) Markov Decision Process: The MDP of the downstream
layer is defined by the tuple < S‡,A‡,P‡, r‡ > where S‡ is
the state space, A‡ is the action space, P‡ is the state transition
probabilities and r‡ is the immediate reward received by the
agent, i.e., the VSP, after performing action a‡ at state s‡.

a) State space: The state space of the system at time slot
t (t = 1, 2, . . . , T ) is defined as

S‡(t) ≜
{
a‡(t−1),π‡(t), q(t),x‡(t),y‡(t)

}
, (23)

where a‡(t−1) is the action vector from the previous time slot,
π‡(t) is the price vector at time slot t and q(t) is the digital
twin quality vector at time slot t. x‡(t) and y‡(t) are binary
vectors of Metaverse users which have their IR an IC violated,
respectively. The system state is then defined as a composite
variable s‡ ≜ (a‡,π‡, q,x‡,y‡) ∈ S‡.

b) Action space: The action space for the downstream
layer is identical to that of the upstream layer with difference
only in adjusting the quality instead of the semantic informa-
tion size.

c) Immediate reward: The reward function of the down-
stream layer is crafted to maximize (22) while incorporating
the IR and IC constraints defined in (19) and (20), respectively.
Therefore, the reward function of the downstream layer is
formalized as

r‡(S‡(t), a‡(t),S‡(t+1))

= w′1
∑
τ∈Ξ

∑
ϕ∈Φ

nτ,ϕ

(
π
‡,(t)
τ,ϕ −Υ‡(qτ,ϕ)

)
+ w′2

[ ∑
x‡(t) −

∑
x‡(t+1)

]
+ w′3

[ ∑
y‡(t) −

∑
y‡(t+1)

]
, (24)

where w′1 + w′2 + w′3 = 1 are the weight factors and nτ,ϕ is
the number of Metaverse users with type-(τ, ϕ).

d) Optimization formulation: The optimization problem
of the downstream layer is defined as

max
p‡

R(p‡) = lim
Υ→∞

1
Υ

Υ∑
t=1

E(r‡t (s
‡
t ,p

‡(s‡t))), (25)

where r‡t (s
‡
t ,p‡(s

‡
t)) is the immediate reward under policy p‡

at time t defined in (24).

C. Iterative Contract Design

The proposed learning-based iterative contract is shown in
Fig. 2 while Algorithm 1 summarizes the major steps. Here
we describe the framework with respect to the upstream layer
while its application on the downstream layer is straightfor-
ward as clearly seen from the similarity between their MDPs.

Specifically, the algorithm (administered by the VSP) starts
by initializing the semantic information size vector ŝ and the
price vector π† based on a uniform distribution from the
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Fig. 2. Proposed learning-based iterative contract.

intervals [sizek × (1 − range), sizek × (1 + range)] and
[pricek × (1 − range), pricek × (1 + range)], respectively.
In addition, the binary vectors x(t) and y(t) are initially set
to 1 for all the vectors’ elements. Next, the VSP initializes
N single-agent DRL networks to learn the optimal strat-
egy for adjusting the bundles of each sensing IoT device.
As there are a variety of DRL algorithms with some algo-
rithms working better in some domains than others, we adopt
our previously developed prioritized double deep Q-Learning
(PDDQL) algorithm in [29] and refer the reader for the
detailed description therein. At the very first iteration of the
algorithm, the VSP populates the initial set of bundles directly
to the N sensing IoT devices. The number of different types
in the multi-dimensional contract is extracted from previous
interactions with the sensing IoT devices. Once the sensing
IoT devices receive the contract bundles, each sensing IoT
device verifies whether its IR or IC is violated based on (11)
and (12) and then returns a binary tuple (x, y) to the VSP. The
VSP then constructs the full vectors x(t) and y(t) and shares
their content with each agent in its environment. We refer
to this step as augmentation of the MDP as the agents are
augmented with information initially unobservable about the
states of each other (i.e., IR and IC violations, previous actions,
semantic information sizes and prices). At this point, each
agent executes the PDDQL algorithm to extract the optimal
adjustment to be performed based on the set of actions as
earlier defined. As such, we name this algorithm augmented
multi-agent PDDQL (MA-PDDQL). Next, the VSP performs
the appropriate adjustments for each bundle, i.e., semantic
information sizes and prices, and then delivers the new set
of bundles to the sensing IoT devices to start the next round.
Once we reach a state where x

(t)
i = y

(t)
i = 0 for all the

vectors elements, the derived contract is considered feasible
and satisfy IR and IC conditions. However, the solution is not
necessarily optimal. Several round needs to be executed until
no improvement in the VSP’s utility/revenue is obtained. For
this reason, we call our framework as an interactive contract
where the optimal contract is derived based on several rounds
of interaction between the VSP and the sensing IoT devices.

We should note here some key features in the design of our
proposed framework:
• First, a technical challenge to solve is the convergence

of the DRL-based contract as the prices of all bundles
change simultaneously. Specifically, the very frequent

changes in the price or the semantic information size
of one bundle affects the strategy of all the participants
when choosing their optimal contract bundle. This makes
the DRL environment non-stationary and noisy for each
agent to learn a stable policy. We address this issue by
establishing a virtual communication channel between the
learning agents in the MARL environment, which we
refer to as augmentation of the MDP. Specifically, after
receiving the IR and IC tuples from all the sensing IoT
devices, the full vectors x(t) and y(t) are created and
shared as part of the state of each agent. In addition, each
agent in the VSP environment is aware of the current
set of bundles and the previously taken actions by all
other agents. This augmentation of the observation space
for each agent makes the MDP easily learnable and the
agents can then learn from collective experiences.

• The MA-PDDQL algorithm requires from the sensing IoT
devices only a flag about their IR and IC status and not
their private types, which is totally different from existing
contract solutions that requires the disclosure of these
information (referred to as the revelation principal in
contract theory [3]). Some privacy-sensitive participants
may be reluctant about engaging in such contracts as
their private information might be used for other purposes
beyond the contract, e.g., delivering dedicated advertise-
ment as studied in [30]. Our design preserves the privacy
of the participants about their private types which is a
major usefulness of our proposed framework.

• Finally, note here that as shown in Fig. 2, the computation
complexity of our model is calculated based on the
number of iterative interactions between the sensing IoT
device and the VSP until convergence. The addition of
another type (e.g., location of the sensing IoT device)
would not have a major impact on the computation
complexity as this additional type will be part of the
IR and IC equations that are calculated for the total
number of different combinations of types. For instance,
for 3 types with sizes B, C and E, the total number of
IR and IC equations to be calculated is 2×B ×C ×E.
The addition of another type with size F will increase
this number to 2×B×C×E×F , which does not have
a major significance.

Next, we evaluate the proposed learning-based iterative
multi-dimensional contract framework.

V. NUMERICAL EVALUATION

In this section, we validate the performance of our pro-
posed iterative contract for the Metaverse through extensive
simulations. As in [8], we use existing semantic extraction
algorithms to process images and radar signals to extract the
semantics [4]. As stated before, the structure of our iterative
contract in the upstream layer is quite similar to the one in the
downstream layer. Therefore, we present here the numerical
results for the upstream layer only.

A. Simulation Settings

Unless otherwise stated, the DRL algorithm is trained over
700 episode with 200 iterations on each episode. In addition,
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Algorithm 1 Augmented MA-PDDQL Algorithm
Pseudo-Code
Input : Initialize semantic information size and prices

to random values.
Output: Optimal semantic information sizes and

prices (ŝ, π†).
1 for t = 1, 2, . . . to convergence do
2 Initialize empty action list;
3 for i = 1, 2, . . . to N do
4 Select action for device i based on PDDQL

and append to the action list;
5 end
6 Execute the simultaneous actions from the action

list and get the next state;
7 for i = 1, 2, . . . to N do
8 Store the tuple (st, at, st+1, rt) and update the

policy of agent i;
9 end

10 end

the weighting factors in the reward function are all set to
0.33. We also consider a total of 27 (3 × 3x3) different
sensing IoT device types. The type of each sensing IoT
device is chosen uniformly from the set of possible joint types
(B×C×E). Furthermore, the types and other variables such
as the transmit power and energy consumption of the sensing
IoT devices are normalized between 0 and 1. This step is
essential and common in deep learning for the algorithms to
converge [27]. The description of the double DQN algorithm
and the prioritized reply memory technique can be found in
our previous work [29]. An important parameter to define is
the set from which the semantic information sizes and prices
are chosen. We consider that range = 0.9 while n1,k and n2,k

take values from the discrete set [−0.9,−0.7, . . . , 0.7, 0.9].
The choice of having this set contain 10 elements is part of the
fine-tuning of the DRL algorithm. Clearly, the more elements
of the set, the higher granularity and better performance is
expected. However, this comes at the cost of longer time
for the DRL to converge. We should note here that we
do not have only a single DRL for which increasing the
size of the set would not be that visible. Instead, in our
settings we have an MARL system and hence increasing the
set with only one element would be visible in the learning
time. We conduct our experiments on CARRADA dataset [31]
which is a recent, open dataset that contains 30 scenes of
synchronized sequences of camera and radar images. More
details about the dataset can be found in our early work [8].

B. Benchmarking Scheme

Due to the novelty of our developed MA-PDDQL and the
iterative contract design, it is difficult to find existing baselines
to compare with. Therefore, to evaluate and show the benefits
of our novel augmented MA-PDDQL algorithm, we design
a baseline scheme called Naive MA-PDDQL based on [32].
Different from the augmented MA-PDDQL, the naive MA-
PDDQL uses a partially observed MDP (POMDP) for each

agent. Specifically, the POMDP state is defined as

S†(t)naive ≜
{
a†(t−1), π†(t), ŝ(t), x†(t), y†(t)

}
, (26)

The action set and immediate reward function are also
scaled down to the case of single observations. Since the state
observation of each agent does not represent the whole system
state as earlier defined in the augmented MDP, each agent has
only a partial observation.

C. Results

1) Convergence Analysis and Validity of the Feasibility
Conditions: To observe the convergence behavior of our
learning-based iterative contract, we measure the number of
IR and IC violations and the revenue of the VSP at the last
iteration of each episode. We observe from Fig. 3(a) that the
average reward of the augmented MA-PDDQL stabilizes after
350 episodes. However, the average reward of the naive MA-
PDDQL is lower than that of the augmented MA-PDDQL
and stops increasing after 100 episode only, indicating that
the naive MA-PDDQL is not able to converge. As observed
from Fig. 3(b), the number of IR and IC violations for the
augmented MA-PDDQL decreases as the algorithm progress
in learning. Interestingly, we observe from Fig. 3(b) that there
is an improvement in the minimization of the IR violations
for the naive MA-PDDQL while no significant change occurs
for the number of IC violations. This is justified by the fact
that the IR constraint is much simpler than the IC constraint.
The IR constraint needs only to guarantee that the utility of
the participants is non-negative, while the IC constraint needs
to guarantee that the utility of a participant is maximized for
the true type of the participant compared to all other types.
The latter cannot be learned by the naive MA-PDDQL because
of the non-stationarity problem of the POMDP. Specifically,
as each agent in the naive MA-PDDQL environment observes
only its private state, and thus is unaware of other agents
changes of their bundles, it is unable to find an optimal
adjustment for its bundle to meet the IC constraint for its
respective sensing IoT device.

To dive further in the structure of our learning-based
algorithm, we plot in Fig. 3(c) the average revenue of the
VSP as the training progress. Remarkably, we observe that
the average revenue of the VSP decreases as the training
progress, which seems to behave against our main objective,
i.e., maximization of revenue of the VSP as stated in P1.
However, we should understand from Fig. 3(b) that in the first
few episodes, the obtained revenue of the VSP is achieved
while having the IR and IC properties violated for the majority
of the participants, i.e., sensing IoT devices. This implies
that the majority of the sensing IoT devices will behave
untruthfully and select contract items not dedicated for their
true types, making the realized utility of the VSP very low
compared to the expected one. At the end of the training, the
derived VSP utility is achieved with majority of the IR and
IC satisfied. Here, we should note that an important difference
between our learning-based contract and existing works on
contract theory is the satisfaction of the feasibility conditions,
i.e., IR and IC, under information asymmetry. In classical
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Fig. 3. (a) Total reward for each episode. (b) Average number of IR and IC violations. (c) Average revenue of the VSP and sensing IoT devices.

approaches, the IR and IC constraints need to be satisfied
for all the participants, i.e., sensing IoT devices. However,
in our framework we aim towards the minimization of their
occurrence.

We also plot how the utility of the sensing IoT devices
changes as the training progresses in Fig. 3(c). The red color
refer to the utility of the sensing IoT devices in the case that
they have chosen their designated bundle (i.e., IC preserved).
The green color, however, refers to the case when the sensing
IoT devices choose the bundle that maximize their utility.
In both scenarios, we observe that the utility of the sensing
IoT devices increases then stabilize after episode 100 while
the revenue of the VSP decreases and then stabilizes, which
is counter-intuitive. To explain this behavior, we first note
that based on the objective function in P1, we should only
maximize the revenue of the VSP. From (11), it seems that
the optimal strategy for the VSP is to set the price for each
contract item equal to their valuation by their corresponding
sensing IoT devices. In this case, the utility of the sensing
IoT devices will be equal to zero. Based on this observation,
we expect the revenue of the VSP to increase and the utilities
of the participants to decrease. However, as the objective
function of problem P1 is adjusted in the reward function of
the MDP, an action that further minimizes or maintains the
number of IR and IC violations is given a positive reward
(see the last term in (17)). Therefore, the derived bundles are
not pushed towards minimizing the gap between the provided
prices and the private valuations of each sensing IoT device,
which justifies the increase of the utility of the sensing IoT
devices.

2) Impact of the Weighting Factors: Motivated by the
previous results from Fig. 3(c), we further study the impact
of the weighting factors in the reward function on the
performance of our framework. In this experiment, we set
three different scenarios for the values of w1, w2 and
w3 and observe how the VSP revenue and the IR and IC
violations changes. Specifically, we consider the following
scenarios: (w1, w2, w3) = (0.33, 0.33, 0.33), (w1, w2, w3) =
(0.33, 0.01, 0.66) and (w1, w2, w3) = (0.01, 0.01, 0.98). The
results are shown in Fig. 4. Interestingly, we observe from
Fig. 4(b) that putting a weight of 0.01 on the IR term gives
better results for the IR violation compared to the case of
setting a higher weight 0.33. This is explained by the fact
that IR is satisfied for the majority of the sensing IoT devices,

which is dependant on the sets of semantic information size
and prices that the MA-PDDQL is learning on. We should also
note that putting more weight on the IC term helps reducing
the IR violation further and hence, minimizes the influence
of the weight term of the IR term. Specifically, during the
IC property verification, each sensing IoT device compares its
utility when choosing its true type with the case of choosing
any other type. Therefore, if its IC property is not violated, its
utility is unlikely to be negative.

We also plot in Fig. 5(a) and Fig. 5(b) the average number
of IR and IC violations when changing the weighting factors.
Specifically, we measure the probability of IR and IC vio-
lations to be under 10 % from episode 350 to episode 700.
The results are shown in a box plot where on each box, the
central mark indicates the median value and the bottom and
top values of the box indicate the 25th and 75th percentiles,
respectively. Fig. 5(a) validates the previous results that the
IR violation rate diminishes as more weight is given to the
IC term. Furthermore, we observe from Fig. 5(b) that when
more weight is given to the IC term in the reward function,
the majority of the IC violation rates are bellow 1 violation
only on average. This results indicates that the derived solution
to the contract problem is unlikely to violate the feasibility
conditions. We also plot in Fig. 5(c) the time complexity of
our DRL-based solution. We observe that the MA-PDDQL
has a linear complexity of O(N) with respect to the number
of devices. This is because at each iteration, the algorithm
executes the PDDQL of each agent sequentially.

3) Impact of the Number of Participants and the Number
of Contract Items: In this experiment, we vary the number
of combinations of the three-dimensional contract types and
observe how the VSP revenue and the sensing IoT devices util-
ities change. The experiment is conducted on different number
of participants, i.e., different N sensing IoT devices, as shown
in Fig. 6(a) and Fig. 6(b). We set three different scenarios for
the number of contract items: 8(2 × 2x2), 27(3 × 3x3) and
64(4 × 4x4). We observe that as the number of participating
sensing IoT devices increases, the revenue of the VSP and
the utility of the sensing IoT devices increase. This result is
expected because more participating sensing IoT devices bring
more semantic information to the VSP and hence the VSP
gets higher utility. Interestingly, we observe from Fig. 6(b)
that as the number of contract items increases, the utilities
of the participating sensing IoT devices decreases. This is
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Fig. 4. Impact of the weighting factors: (a) average VSP revenue. (b) and (c) average number of IR and IC violations.

Fig. 5. (a) and (b) average number of IR and IC violations, respectively,
when changing the weight factors. (c) Learning time.

due to the fact that as the contract designer is able to derive
more specific contract items for each participant based on their
private information at a low level of precision, e.g., semantic
value or AoI, it can extract more profit, which is reflected
by the decrease in the utility of the participants. However,
the profit that the VSP receives is marginal as observed from
Fig. 6(a), which is due the IR and IC constraints that have
to be minimized. The algorithm adjust the contract bundles to
satisfy IR and IC with less importance to the maximization of
the VSP’s revenue.

4) Sensitivity to the Distribution of Types: To further push
our proposed framework to the limits, we train the model on

a specific distribution of the types and then plug in other
distribution and observe how the system reacts. Change of
the distribution between training time and testing time is
a common problem in DRL, see for example [33], and its
important to evaluate our framework for this change. During
training time, the joint type of each sensing IoT device is
chosen uniformly from the different types’ sets. However,
at test time, we change the distribution of the joint type by
changing the probabilities of each element in each set of types,
i.e., Ψ,Λ and Γ. The number of sensing IoT devices is set
to 10. The following results are that of the augmented MA-
PDDQL algorithm after convergence. The algorithm is given
a set of tuples (semantic information sizes and prices) drawn
from random values and the objective is to adjust the tuples
to find an optimal solution that maximizes the revenue of
the VSP and minimizes the number of IR and IC violations.
We consider three different scenarios. The first one is to
consider the type of contract items drawn from the same
distribution of the training time, i.e., uniform distribution. The
second scenario is to consider the testing distribution drawn
from a set with more weight on the lower types of the sets
Ψ,Λ and Γ. In the third scenario, we consider larger weights
are given to higher types values. Fig. 6(c) shows the results
of this experiment.

We observe that the revenue of the VSP is marginally
affected by the change of the distribution. However, the
utilities of the sensing IoT devices when the lower types
are giving larger weights are greater than that of the case
of equal weights. Moreover, the utilities of the sensing IoT
devices when the higher types are giving larger weight is
less than that of the case of equal weights. We explain this
behavior by observing that the DRL-based model is trained
on types drawn from a uniform distribution. When faced
with devices with lower types only (on all of the three
dimensions), the model is not able to optimally minimize
the gap between the cost and the price which makes the
utilities of lower types devices higher. Similarly, this makes
the utility of higher type devices less than that if the model
was trained on the same distribution. However, note that the
main objective of the VSP is not to minimize the utility of the
sensing IoT devices. Instead its main objective, as shown in
the objective function of P1 is to maximize its revenue while
guaranteeing IR and IC, which is successfully achieved in all
scenarios.
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Fig. 6. (a) and (b) VSP revenue and Utilities of the sensing IoT devices for different contract items. (c) Impact of changes in the distribution of the joint
types.

VI. CONCLUSION

In this paper, we design a semantic aware truthful mecha-
nism for the Metaverse based on contract theory and MARL.
Specifically, we design a two-layer Metaverse ecosystem
where in the first layer, the VSP hires sensing IoT devices to
obtain semantic information about the physical environment
and render the digital twin. In the second layer, the VSP
delivers the constructed digital twin to the Metaverse users.
We then use contract theory to design the pricing bundles on
both layers. We design a novel architecture for the contract in
which the VSP interacts with the participants, i.e., sensing
IoT devices or Metaverse users, to derive the optimal set
of bundles. This interaction is conducted by using a new
variant of MARL that we develop where the VSP creates
DRL instances for each participant and sets the objective to
maximize its revenue while minimizing the IR and IC violation
rates. The simulation results show that our designed framework
achieves good performance in terms of maximizing the profit
of the VSP while not requiring several assumptions about the
system model. As a future work, it is interesting to explore
the strategy of joint optimization of the upstream layer and the
downstream layer in a single MDP as it is expected to better
help the VSP increase its profit and the profit of the Metaverse
users.
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