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Abstract— Map matching is a fundamental component for
location-based services (LBSs), such as vehicle mobility anal-
ysis, navigation services, traffic scheduling, etc. In this paper,
we investigate federated learning augmented map matching based
on heterogeneous cellular moving trajectories from different
operator systems, the goal of which is to improve matching
accuracy without violating the user privacy. First, we develop a
data collection platform with one Android-based application, and
conduct rigorous data collection campaigns. Second, we perform
systematic data analytics to reveal the data-driven technical
challenges, including the impact of sampling rate, high location
error of cellular moving data, and poor heterogeneous matching
performance. Third, we propose an augmented map matching
model, named FL-AMM, i.e., Federated Learning Augmented
Map Matching, in which we i) adopt the vertical federated
learning framework to achieve data collaboration and privacy
protection for heterogeneous operators; ii) devise a data augmen-
tation component to enhance the capability of representing the
raw cellular data; and iii) design a map matching model to fur-
ther learn the mapping function from cellular trajectory points
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to road segments. Finally, we conduct extensive data-driven
experiments to corroborate the efficiency and robustness of the
proposed FL-AMM.

Index Terms— Vertical federated learning, map matching aug-
mentation, heterogeneous trajectory fusion, stacked bidirectional
gated recurrent unit, attention mechanism.

I. INTRODUCTION

AS ONE of the most important impetuses for the construc-
tion of smart city, location-based services (LBSs) have

been widely exploited in intelligent transportation systems [1],
[2], social networking services [3], [4], [5], location-based
advertising [6], tracking systems [7], [8], navigation ser-
vices [9], [10], etc. However, LBSs rely on mobile users’
location information, which can be affected severely by impre-
cise and uncertain raw user positioning information. Hence,
serving as a fundamental component for LBS, map matching
is proposed to snap raw imprecise global positioning system
(GPS) or cellular moving trajectories into the road networks
to identify the true moving paths and true positions of mov-
ing objects [11]. Map matching is playing an increasingly
important role in trajectory-based applications, such as vehicle
mobility analysis [12], [13], traffic scheduling [14], [15], [16],
[17], [18], route optimization [19], [20], etc.

Most conventional map matching approaches are based on
GPS trajectories due to their relatively high data quality, which
can achieve satisfactory matching accuracy. However, GPS
data suffers from some inherent defects including intermittent
availability, small coverage, extra data collection cost, and high
risk of privacy disclosure. Therefore, GPS data has limitations
to support large-scale map matching tasks, such as city-wide
epidemiological survey in the pandemic era. On the contrary,
cellular moving trajectories have significant advantages of
continuous availability, complete coverage, and no additional
cost due to the passive collection mode. Therefore, cellular
trajectory data holds great potential to enable extensive map
matching and related researches. However, cellular data-based
map matching has not been widely studied in the literature
due to its low data quality. Although there have been some
studies carried out based on cellular trajectories, they usually
achieve imprecise matching accuracy with data provided by
one single operator. Therefore, an augmented map matching
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algorithm is required to provide fast and precise processing of
large-scale cellular moving trajectories. Considering that the
cellular moving trajectories provided by one single operator
are sparse and noisy containing scant information about the
underlying driving path, we propose to aggregate data from
multiple operators to collaboratively improve the accuracy of
the map matching algorithm.

However, it is quite challenging to conduct the aforemen-
tioned map matching model, which has the following three
rigid hurdles to conquer. First, heterogeneous cellular moving
trajectories provided by different operators are physically data
isolated. Therefore, how to protect the data privacy of each
participating operator is the first challenge to be tackled
when utilizing heterogeneous cellular moving trajectories col-
laboratively to enhance the performance of map matching.
Second, compared to GPS data, cellular moving trajectories
can be of poor quality with low frequency sampling and
high location noises, which may lead to some unexpected
map matching errors. Third, the design of map matching
model is difficult because traditional model-driven approaches
or data-driven approaches, such as hidden Markov model
(HMM) or recurrent neural network (RNN) models, are not
suitable for large-scale and cellular data-based map matching
tasks.

Prior efforts in the literature to explore map matching
mainly fall into two categories. (1) GPS data-based solutions.
In this field, most studies have focused on model-driven
solutions with high-quality GPS moving trajectories, e.g.,
HMM-based solutions [21], [22], [23], maximum weights
model [24], local path inference model [25], conditional
random field model [26], etc. In addition, some data-driven
map matching models [11], [27], [28] have been proposed
for some scenes with a low sampling rate of GPS moving
trajectories. For example, Feng et al. [27] proposed DeepMM
to solve the map matching task by a deep learning approach.
Nevertheless, these well-designed approaches fail to resolve
the large-scale map matching tasks due to small coverage of
GPS devices. Meanwhile, they cannot be directly applied to
cellular moving trajectories due to the inherent coarse-grained
attributes of cellular data. (2) Cellular data-based solutions.
In this regard, there have been a few studies [29], [30], [31]
investigating it. Most of existing researches have only focused
on employing cellular moving trajectories data provided by
one single operator to address map matching problems. For
instance, Shen et al. [29] designed a RNN-based model called
DMM to map cellular moving trajectories into road segments.
However, the matching accuracies of these schemes are not
satisfactory enough, and no study exists that adequately con-
siders improving the map matching accuracy by heterogeneous
cellular moving trajectories.

In this paper, we investigate federated learning augmented
map matching based on heterogeneous cellular moving tra-
jectories from different operator systems, with the goal to
improve matching accuracy without violating the user privacy.
We propose to train the map matching model by utiliz-
ing heterogeneous cellular moving trajectories provided by
different operators, while the model can be used for map
matching inference in general for both single-SIM-card and

dual-SIM-card users.1 Particularly, we first define the map
matching problem based on cellular moving trajectories under
the vertical federated learning framework, and illustrate the
motivation of investigating the new map matching scheme
for cellular moving trajectories. To substantiate the research,
we then develop a data collection platform, consisting of one
Android-based App (application) and 20 mobile phones, and
conduct rigorous data collection campaigns in our city cov-
ering different road types and different transportation modes.
With the collected dataset, we perform a systematic data ana-
lytics to disclose the data-driven technical challenges in terms
of the negative correlation between matching accuracy and
sampling rate, high location error of cellular moving trajectory,
and matching difference among different operators. Inspired by
the data-driven insights, we then propose a federated learning
augmented map matching model for heterogeneous cellular
moving trajectories, named FL-AMM, i.e., Federated Learning
Augmented Map Matching. FL-AMM contains three major
technical components, i.e., vertical federated learning (VFL),
data augmentation (DA), and map matching model (MM).
In FL-AMM, we i) construct a vertical federated learning
framework to protect the data privacy of each participating
operators when using heterogeneous cellular moving trajecto-
ries to learn the map matching model synergistically; ii) devise
a data augmentation component that integrates sub-modules of
data denoising, trajectory division and trajectory representation
enhancement to enrich the amount of training data and enhance
the expression capability of representing raw poor-quality
cellular moving trajectories; iii) design a map matching model
with two sub-modules, i.e., a stacked bidirectional gated
recurrent unit (SBi-GRU) encoder and an attentional GRU
decoder to learn the mapping function projecting cellular
moving trajectories to road segment-based trajectories. Finally,
we conduct extensive data-driven experiments to demonstrate
the efficacy of FL-AMM, which can achieve an average preci-
sion and recall of 89% and 89%, respectively, outperforming
the benchmarks significantly. In addition, it can also work
robustly under other transportation modes of bus and subway,
with an average F1-score of 77% and 81%, respectively.

The major contributions are summarized as follows.
• This is the first attempt to address map matching problem

via aggregating heterogeneous cellular moving trajecto-
ries and protecting data privacy of each participating
operator with federated learning. The proposed method
can be adaptive with different types of inputs for infer-
ence, e.g., single-SIM-card trajectory and dual-SIM-card
trajectories, and the map matching performance can
increase with the amount of heterogeneous trajectories.

• To investigate the map matching problem, we first
develop a data collection platform and collect sufficient
heterogeneous cellular moving traces. We then conduct
systematic analytics on these collected trajectories, and
disclose the data-driven challenges, which can direct our
solution design and implementation empirically.

1Dual-SIM-card users are those who have two SIM cards of different
operators in their mobile phones simultaneously. Therefore, they have two
heterogeneous cellular moving trajectories which can be used collaboratively,
to improve the map matching accuracy.
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• We propose a federated learning augmented map match-
ing model, named FL-AMM, for efficient map matching.
In FL-AMM, we improve the map matching accuracy
from three aspects, i.e., collaboration and privacy pro-
tection of heterogeneous data, data augmentation of raw
poor-quality data, and innovation of map matching model.
Extensive experiments are carried out to demonstrate both
the efficiency and robustness of FL-AMM.

The remainder of this paper is organized as follows. We first
describe the problem definition in Section II. The data collec-
tion is given in Section III. Then, we conduct an empirical
data analytics in Section IV, followed by the design of
FL-AMM in Section V. Extensive experiments are conducted
in Section VI, and the related work is reviewed in Section VII.
Finally, we conclude the paper in Section VIII.

II. PROBLEM DEFINITION

In this section, we start with definitions related to map
matching problem based on user cellular moving trajectories
under vertical federated learning framework. Then, we inves-
tigate the limitations of existing map matching solutions and
the necessity of a novel map matching scheme.

A. Problem Definition

Definition 1 (Cellular Moving Trajectory): A cellular
moving trajectory is a sequence of BSs that are
accessed by one SIM card i on the move, denoted by
Pi = {pi,1, pi,2, . . . , pi,k, . . .}, where pi,k is the k-th
associated BS, containing the information of (CIDi,k, ti,k)
with the BS ID CIDi,k at the timestamp of ti,k. Each CID
corresponds to one unique physical location (lon, lat) with
lon and lat standing for longitude and latitude, respectively.

Definition 2 (Road Topology): Road topology can be
described as a directed graph G = (V,E), where
V = {v1, v2, . . . , vk, . . .} is a set of nodes on the road
topology, representing intersections or terminal points, and
E = {e1, e2, . . . , ek, . . .} is a set of road segments connecting
nodes v in V . In this study, the road topology is obtained
from a public open-source website (OpenStreetMap [32]).

Definition 3 (Vertical Federated Learning Framework):
We consider a two-party2 VFL setting. Specifically, party
A has dataset DA :=

{(
XA,i, LA,i

)}nA

i=1
, where XA,i

is the feature vector of the i-th sample and LA,i is the
corresponding ground-truth label, while party B has dataset
DB :=

{(
XB,i, LB,i

)}nB

i=1
. DA and DB are held privately

by the two parties and cannot be exposed to each other. nA

and nB are numbers of samples of DA and DB , respectively.
D = DA ∩ DB denotes the overlapping samples of DA and
DB . VFL aims to train a global model based on D from both
parties collaboratively without data privacy leakage.

Definition 4 (Map Matching under VFL): Map matching is
the process of projecting a raw trajectory P r onto the
road topology to get a matched trajectory Y m. In our

2For the convenience of illustration, the number of participants of VFL is
set to be two in this paper, and the two participants are operator A (OP A)
and operator B (OP B).

Fig. 1. Illustration of existing map matching solutions.

study, P r
CA

= {pr
CA,1, p

r
CA,2, . . . , p

r
CA,k, . . .} and P r

CB
=

{pr
CB ,1, p

r
CB ,2, . . . , p

r
CB ,k, . . .} denote a pair of heterogeneous

raw trajectories collected by OP A and OP B, respectively.
A matched trajectory Y m is a segment-based trajectory, rep-
resenting by Y m = {e1, e2, . . . , ek, . . .}. Map Matching under
VFL aims to learn a function F (.) transforming P r

CA
and

P r
CB

collaboratively to Y m in a privacy-preserving manner,
i.e., Y m = F (P r

CA
, P r

CB
).

B. Motivation

In this study, we focus on map matching based on cellular
moving trajectories instead of GPS trajectories. To our best
knowledge, existing cellular data-based map matching studies
only work with datasets provided by a single operator due
to the considerations of physical data isolation and privacy
security. However, unlike the GPS trajectories that can be
collected with a fine collection granularity, the cellular moving
trajectories are quite sparse with high location errors con-
strained by the deployment density of base stations (BSs).
Therefore, most of works based on single-source cellular
moving trajectories cannot achieve a satisfactory performance,
as shown in Fig. 1. Particularly, OP A and OP B train their
own map matching models by cellular data of themselves.
However, the accuracies of these map matching models are
not ideal enough, because the data of OP A and OP B
only contain partial and scant information on the real path.
In addition, due to the different BS deployment policies in
overlapping areas, the cellular moving trajectories collected
by different operators are usually complementary. Inspired by
these investigations, in this work, we aim to enhance map
matching accuracy by training the model with heterogeneous
cellular moving trajectories provided by different operators.
Specifically, as shown in Fig. 1, in our solution, in order to
capture more abundant information about real moving paths,
we use heterogeneous cellular moving trajectories from OP A
and OP B to train the map matching model collaboratively.
That is, OP A and OP B work cooperatively as participants
to train a more powerful global model than local models of
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Fig. 2. Cellular data collection platform.

Fig. 3. Cellular data collection APP.

themselves, which can extract the unique features contained in
both OP A and OP B to achieve higher map matching accu-
racy. When the global map matching model is trained, it can
be deployed in different parties. First, it can be deployed in
every participating operator locally to conduct map matching
inference for its individual trajectories, i.e., single-SIM-card
users. Second, it can be deployed in a trustworthy server for
map matching inference of those users who own more than
one cellular moving trajectories simultaneously, i.e., dual-SIM-
card users. Note that, the matching accuracy in the second case
is significantly better than that in the first case.

III. DATA COLLECTION

In this section, we first introduce the data collection plat-
form, and then describe our data collection campaigns.

A. Data Collection Platform

Though cellular data is available at operators, due to pri-
vacy/security issues, it is not open to the public. To substantiate
our research, we first design and implement a cellular data
collection platform, which contains one real-time Android-
based data collection App and a number of mobile phones,
to capture sufficient research data between moving objects and
BSs.

Fig. 2 shows the specific data collection platform we
employed, consisting of 20 mobile phones, among which
8 devices are equipped with OP A SIM cards, and the other
12 devices are equipped with OP B SIM cards. Every device
is installed with a real-time data collection App to collect the

TABLE I
DATA COLLECTION FIELDS

Fig. 4. Coverage map of our collected dataset.

cellular moving trajectories. Specifically, the App is designed
and implemented under Android 12, where Android.Telephony
API is leveraged to collect the user network association
information, Android.Location API is used to obtain the user
position information, and IO API is used to store the data
locally. The real-time running process of data collection App
is shown in Fig. 3. The main fields of which are listed in
Table I. Particularly, Table I shows all the data that can
be collected by our self-designed App, which can be used
to support other applications related to cellular data. In this
work, to make our proposed method compatible to all cellular
networks with generalization, we use only three fields that
are passively collected by all OPs without violating user
privacy. The first field, Operator, indicates the data source,
i.e., the mobile network operator. The second field, CID,
is the connected BS ID, standing for cell identification. The
connected BS sequences form moving trajectories. A sample
is collected if the moving object drops the original connection
and re-associates to a new BS. The third field, Lon and Lat,
includes the real-time GPS locations for position references
and route labels, which are sampled per second. Therefore,
our manually-collected data on the user equipment side can
accurately reflect the data that the mobile network operator
would have. However, considering the need for ground-truths
in map matching, we use our own collected data rather than
the operator data.

B. Data Collection Campaigns

We recruited a group of volunteers for data collection using
our designed real-time data collection App. All the volunteers
gave their consents to participate in the experiments and use
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their data for study. In order to mitigate the adverse effects
caused by the limited data scale, we carefully design our data
collection campaigns to increase the diversity of collected
data. Specifically, we consider three major road types with
differentiated BS densities and driving conditions, i.e., urban,
suburban, and highway, and three transportation modes, i.e.,
car, bus, and subway, respectively. To obtain heterogeneous
cellular moving trajectories, in each trip, volunteers were
equipped with multiple mobile phones which were equipped
with different OP SIM cards. The blue lines in Fig. 4 show
a coverage map of the collected dataset. Particularly, for the
car transportation, we have totally 234 user traces, consisting
of 106 user traces from OP A and 128 user traces from OP
B. The dataset has an overall time length of 210.9 hours and
a total travel distance of 6,203.9 kilometers with 2882 BSs.

IV. INSIGHTS OF DATA ANALYTICS

In this section, we conduct data analytics on the cellu-
lar moving trajectory and highlight the technical challenges,
which direct our implementation solutions.

A. Impact of Sampling Rate

The sampling rate of data has an important impact on the
accuracy of map matching for most of the existing map match-
ing algorithms. In other words, the map matching accuracy
degrades significantly as the sampling time interval increases.
We reveal this phenomenon through the performance of two
typical models, i.e., HMM (model-driven) and seq2seq model
(data-driven), on GPS trajectories with different sampling
intervals, as shown in Fig. 5a. We select 6 different sampling
intervals, i.e., 5s, 10s, 20s, 30s, 60s, 120s, to test the map
matching accuracy of HMM and seq2seq, respectively. From
Fig. 5a, we can have the following three major observations.
First, with the increase of sampling interval, the matching
accuracy of both HMM and seq2seq decreases rapidly, espe-
cially for HMM. Second, HMM outperforms seq2seq for
fine-grained GPS trajectories with a lower error bar. Third,
seq2seq is more stable than HMM. When the sampling interval
increases to a certain value, the performance of seq2seq will
surpass that of HMM. Then, we investigate the sampling
rates of cellular moving trajectories, and plot the cumulative
distribution function (CDF) results in Fig. 5b. Since cellular
moving trajectories are passively collected, we regard the
number of connected BSs per minute as its sampling rate.
We can observe that the medium sampling rate is just 4 and
2 samples per minute for OP A and B, respectively, resulting
in significant sparsity for cellular moving trajectories. Based
on observations on the GPS performance in Fig. 5a, it can
be expected that the performance of traditional HMM and
seq2seq algorithms on cellular moving trajectories will be
unsatisfactory.

B. High Location Error of Cellular Moving Trajectory

Unlike the GPS trajectories with high precision positioning,
the cellular moving trajectories usually suffer from coarse
location accuracy. We first visualize GPS and cellular mov-
ing trajectories of the same ground truth on the road map.

Fig. 5. Impact of sampling rate.

Fig. 6. High location error of cellular moving trajectory.

As shown in Fig. 6a, the location errors of the cellular moving
trajectory are far larger than that of GPS trajectory. The
points of the cellular moving trajectory are scattered, while
the points of the GPS trajectory are densely distributed along
the truth route. Fig. 6b shows CDFs of the location offsets
between the user GPS and associated BS positions. We can
observe that about 40% of the location offsets are larger than
300 meters, and more than 10% of the location offsets can
reach above 1,000 meters, distributed between 1,000 and 9,000
meters. Therefore, the cellular data trajectory is quite coarse
to localize users efficiently. Then, we test the map matching
performance of HMM and seq2seq for GPS trajectory and
cellular moving trajectory with the same granularity sampling
interval respectively. As depicted in Fig. 6c, we can observe
that the matching accuracy for GPS trajectory is much better
than that for cellular moving trajectory with smaller deviation.

C. Matching Difference With Operators

With different BS deployment policies and data collection
mechanisms, the collected cellular trajectories of dual SIM
cards have heterogeneous properties. In addition to the BS
location differences, other heterogeneous features are shown
in Fig. 7. Particularly, Fig. 7a shows the CDFs of traveled
distance between two adjacent samples under two operator
networks, which are calculated based on the two GPS locations
of a user when the two adjacent samples are collected. First,
the distributions of traveled distance are heterogeneous in
different OPs with a clear distribution gap. For instance, about
80% of traveled distances in OP A are smaller than 300 meters,
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Fig. 7. Matching difference vs. operator.

while this figure is about 60% in OP B. Fig. 7b shows the
CDFs of time intervals between two adjacent samples, and
the same phenomenon can be observed. Specifically, the time
intervals are generally shorter than 120 seconds in both OPs,
and about 80% of time intervals in OP B and OP A are
shorter than 25 seconds, and 55 seconds, respectively. This
is because the BS density of OP B is quite larger than that of
OP A, resulting in more frequent BS handovers. Therefore,
even with the same route, the number of trajectory points
collected by different operators also varies greatly, as shown
in Fig. 7c. Due to the heterogeneity of data from different
operators, the performance of map matching will also have
great distinction. Fig. 7d shows the performance of HMM
and seq2seq for different operators. We can observe that
different operators perform differently on the same model and
should select different models to achieve a good map matching
performance. Therefore, how to design a general model that
can effectively handle heterogeneous moving trajectories from
different operators while achieving excellent performance is a
crucial challenge to address.

D. Implementation Directions

Inspired by the above observations, we propose the follow-
ing three approaches to solve the current challenges of map
matching for cellular data.

1) Data Augmentation: The raw cellular moving trajectory
has a very obvious sparsity, which leads to the low accuracy
of map matching. This observation inspires us to enhance the
expression capability of representing low-granularity trajecto-
ries. Our key idea is to transform the sparse trajectory into
the dense trajectory to enrich its information about true paths,
thus improving the accuracy of map matching. Based on this
idea, we build the data enhancement module to augment the
raw data.

2) Map Matching Model: Through the previous data anal-
ysis, we can find that relying only on the model-driven or
the typical data-driven models can hardly obtain a satisfactory

Fig. 8. Design overview of FL-AMM.

matching performance on cellular data, due to its high spar-
sity and location error. Therefore, a novel and efficient map
matching algorithm is necessary for providing high-accuracy
map matching for cellular moving trajectories. Inspired by
this, we devise a novel map matching model module which is
an end-to-end deep learning model that can simultaneously
capture historical and future features about the trajectory,
and utilize the attentional encoder-decoder model to realize
accurate mapping of cellular trajectories to road segments.

3) Vertical Federated Learning Framework: In addition to
the heterogeneity of cellular trajectory data from different
operators, the data isolation among operators is another issue
due to the existence of sensitive user privacy data. Therefore,
the map matching algorithm trained by each operator alone
is not ideal, and the matching accuracy varies greatly among
different operators. Therefore, how to design a general and
enhanced map matching model for different operators is a
challenge. In our map matching problem with multi-operator
collaborative computing, the data is related to road segments
and the features extracted from different cellular trajectories
are complementary for characterizing road segments. Inspired
by this, we propose to employ a vertical federated learning
framework [33], [34] to train a powerful map matching model
that can aggregate the data features from multiple operators
to cooperatively improve the matching accuracy without data
exchange among operators.

V. DESIGN OF FL-AMM

A. Overview

Figure 8 shows the overall architecture of FL-AMM, which
is a vertical federated learning framework, consisting of two
major modules, i.e., participants (operators) and a server.
For every operator, it aims to extract local-specific features.
In our FL-AMM, there are two major components for every
operator, i.e., data augmentation and feature encoder. Partic-
ularly, considering the serious sparsity and location errors of
cellular moving trajectories, we devise a data augmentation
component integrating three sub-modules, i.e., data denoising,
trajectory division and trajectory representation enhancement
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Fig. 9. An overall workflow for VFL.

for eliminating the side impacts of remote BSs and Ping-Pong
effects, rising labeled training data, and enhancing the latent
representation of sparse cellular trajectory. Then, the processed
local trajectories are fed into the feature encoder to extract
the hidden features. For the server, it integrates the features
from each operator to build a powerful map matching model.
In FL-AMM, the server is composed of two major components,
i.e., feature aggregation and feature decoder. Specifically,
feature aggregation aims to aggregate features provided by
different operators. Then, we devise a feature encoder, to trans-
form aggregated heterogeneous features into moving routes on
the road network. Note that, feature encoder (i.e., SBi-GRU
encoder) and feature decoder (i.e., attentional GRU decoder)
form a complete map matching model. In what follows,
we will elaborate on each individual component.

B. Vertial Federated Learning Framework

The key idea of vertical federated learning is to enhance a
learning model by utilizing the distributed data with various
features [35], [36], [37]. Fig. 9 shows the detailed workflow
of our VFL framework. Specifically, considering a two-party
VFL setting, firstly, we need to find the common identifiers
served by all operators to align the training data samples,
that is, we need to find D = DA ∩ DB , the overlapped
heterogeneous cellular moving trajectories for dataset DA and
DB of OP A and OP B, respectively. It is worth noting that
we employ a secure multi-party protocol, which only allows
multiple operators to find out the common IDs available across
their data [38]. Secondly, every operator trains its bottom
model Mbottom (i.e., SBi-GRU encoder) locally to extract
feature map Fmap of its specific and non-shared cellular
trajectory data D, given by,

FA
map = MA

bottom

(
P r

CA

)
FB

map = MB
bottom

(
P r

CB

)
(1)

where P r
CA

∈ DA, P r
CB

∈ DB . DA and DB denote the
overlapped training data samples from OP A and OP B,
respectively. Thirdly, each operator transmits its local feature
map extracted from original trajectory data to the server. Then,
the server aggregates feature maps from all operators and trains
the top model Mtop (i.e., attentional GRU decoder) to obtain

map matching result Y m, given by,

F agg
map = FA

map ⊕ FB
map (2)

Y m = MA
top

(
F agg

map

)
(3)

where ⊕ represents aggregation operation which can be
achieved by concatenation, dot, and multi-layer perceptron
(MLP). In our implementation, one-layer MLP is adopted.
Afterward, the server performs backward transmission, send-
ing back the gradients to every operator. Finally, each operator
updates its local model based on the local data and gradients
from the server. After several iterations, the server can obtain
an enhanced powerful model that aggregates the data informa-
tion of all operators without data exchange among operators.
Besides, the trained powerful model can be deployed locally
in each operator for map matching inferences of single-SIM-
card trajectories, or deployed in a secure third party for map
matching inferences of dual-SIM-card trajectories.

C. Data Augmentation

To address the data sparsity and low matching accuracy
of cellular moving trajectories, we design a data augmenta-
tion component with three sub-modules, i.e., data denoising,
trajectory division and trajectory representation enhancement,
detailed as follows.

1) Data Denoising: The raw cellular moving trajectories
are far from accurate, one of the reasons being that the noises
of remote BSs and Ping-Pong effects prevail in sequential
BS trajectories. To overcome this problem, we conduct data
denoising to eliminate the side impact of those noises. Par-
ticularly, we employ the density-based spatial clustering of
applications with noise (DBSCAN) algorithm [39], which is
skilled in outlier detection, to eliminate noises from remote
BSs. According to the empirical study in Fig. 6b, more than
90% of associated distances for both operators are smaller
than 1,000 meters. Therefore, we empirically consider it as the
distance threshold. Thus, the associated BSs can be clustered
into two sets, i.e., close BS sets in proximity to user’s actual
geographical locations and remote BSs that are far away from
the routes as noise. As for the Ping-Pong effect, we keep
only one back-and-forth transition of BSs. For example, only
A -> B -> C is kept when Ping-Pong effect happened in
A -> B -> A -> B -> C.

2) Trajectory Division: To address the limitations of
seq2seq models, such as their sensitivity to training data scale
and inefficiency in processing long sequences, we have devel-
oped a trajectory division module. This module aims to enrich
the training data by dividing trajectories into smaller sub-
trajectories, thereby overcoming the challenges associated with
limited labeled samples and the inability of seq2seq models
to retain long-distance information. Specifically, we implement
trajectory division based on sliding window model, where all
trajectory points in the same window form a sub-trajectory.
The size of the sliding window is set to T in terms of time
interval and sliding step is set to H , such as T = 10min,3

3There are 10 to 20 points in every sub-trajectory when T = 10min,
which is the sequence length that classical RNN-type models can obtain the
best performance [40].
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Algorithm 1 Working Flow of the Trajectory Division
Input: Cellular moving trajectory Pi = {pi,1, pi,2, . . . , pi,n}

of the overlapped training samples D.
Output: A collection of all sub-trajectories S.

1: Initialize S = ∅, Stemp = ∅, sliding window size
T = 10min, and sliding step H = 1hop, index of sub-
trajectory index = 0.

2: Set tbegin = ti,1, tend = tbegin + T , index = 1.
3: while tbegin ≤ ti,n do
4: for pi,k in Pi do
5: if tbegin ≤ ti,k ≤ tend then
6: Append pi,k to Stemp.
7: end if
8: end for
9: if time length of Stemp ≥ T

2 then
10: Append Stemp to S.
11: Set tbegin = ti,1+H∗index, tend = tbegin + T .
12: Set index + +.
13: end if
14: end while

and H = 1hop, which can be adjusted adapting to different
environments. For a trajectory Pi, we first record the time ti,1
of the first trajectory point pi,1 as the begin time tbegin of
the sliding window. Secondly, calculating the end time tend

after T -time sliding, i.e., tend = tbegin + T . Thirdly, dividing
all trajectory points whose time falls into the sliding window
into a sub-trajectory. Then, sliding window slides H steps
forward, and the begin time becomes ti,1+H , which is the
time of (1 + H)-th trajectory point of Pi. The above three
steps are repeated to divide sub-trajectories until all trajectory
points are processed. It is worth noting that if the length of the
last sub-trajectory is too short, that is, the time interval is less
than T

2 , we ignore the last sub-trajectory. The working flow
of trajectory division module is summarized in Algorithm 1.

3) Trajectory Representation Enhancement: Trajectory rep-
resentation learning is the fundamental role for map matching,
which converts the raw trajectories in the physical space
into representation vectors in the latent space. However, the
generated representation from raw cellular moving trajectories
that governs the features of the trajectory is not satisfactory
for map matching due to scant information on the true moving
route. For every same path, there are two different types
of trajectories, i.e., sparse cellular trajectory and dense GPS
trajectory. To this end, we propose the trajectory representa-
tion enhancement component to enrich the cellular trajectory
representation, which learns a function to transform sparse cel-
lular trajectories into dense trajectories. Specifically, trajectory
representation enhancement consists of two working stages,
i.e., training and inference. In the training stage, we train
the deep learning model using a tiny trickle of collected
dense GPS trajectory data. In the inference stage, with the
readily available deep learning models, the dense trajectories
are returned with the sparse cellular trajectory inputs. In what
follows, we will elaborate on the design details in these two
stages as shown in Fig. 10.

Fig. 10. Illustration of trajectory representation enhancement.

In the training stage, we first describe heterogeneous cellular
trajectories and GPS trajectories in a unified way. Compared to
the raw point-based trajectory description method, we employ
a grid-based trajectory description method, which is more tol-
erant to location noises. Particularly, we firstly divide the study
area into equally-sized grid cells with a given side-length σ in
latitude and longitude. Then, we project point-based cellular
and GPS trajectories into the grid cells according to their GPS
coordinates. In this manner, the heterogeneity of cellular and
GPS trajectories is eliminated effectively. We denote each grid
cell by gi, and the complete grid cell set by G = {gi}.
Thus, τL = {g1, g2, . . . , gn1} and τH = {g1, g2, . . . , gn2}
can be derived from a raw point-based cellular trajectory
and GPS trajectory, respectively. We propose to leverage the
seq2seq model which learns the mapping function from the
input sequence to the target sequence to automatically learn
high-quality trajectory representation. As shown in Fig. 10,
in our model, we take the sparse cellular trajectory as the
input sequence and the corresponding dense GPS trajectory
as the target sequence. The main seq2seq model consists
of two modules, i.e., an encoder and a decoder, where the
encoder extracts the features of variable-length input sequence
to a fixed-dimensional feature vector, and the decoder decodes
the feature vector into the target sequence. The encoder is
implemented with an embedding layer and a GRU layer,
while the decoder is comprised of a GRU layer, a fully
connected (FC) layer, and an argmax layer. Specifically, tra-
jectory representation enhancement consists of two stages, i.e.,
labeled training and unlabeled inference. For training stage,
the grid-based cellular trajectory τL = {g1, g2, . . . , gn1} is fed
into the encoder to generate the latent representation z ∈ RD,
where D represents the dimensionality of the latent space. The
embedding layer transforms the one-hot vector into a dense
vector of each input grid gi. The GRU layer reads trajectory
points of τL successively and generates a sequence of hidden
state {h1, h2, . . . ,hn1}. In i-th step, GRU layer reads gi and
hi−1 to produce the i-th hidden state hi, given by

hi = GRU (hi−1, gi) (4)

where GRU [41] is a non-linear function to be learned. After
n1 steps, we get the feature vector z, where z = hn1 . Then,
we feed z into the decoder to generate the predicted trajectory
τ ′H , where GRU layer, FC layer, and argmax layer are designed
for output generating, size reshaping, and optimal grids ID
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Fig. 11. The architecture of map matching model.

identifying, respectively. We optimize the loss between the
predicted trajectory τ ′H and the expected dense GPS trajectory
τH , where SparseCategoricalCrossentropy loss is used here.
By back propagation, the rich details of the dense GPS
trajectory can be learned and incorporated into the feature
vector, thus enhancing its expressive capability.

After well trained, in the inference stage, the trajectory
representation enhancement component with an input sparse
cellular trajectory τL can produce a dense trajectory τ ′H with
rich true route information.

D. Map Matching Model

We design a map matching model with an innovative
seq2seq model, consisting of an SBi-GRU encoder and an
attentional GRU decoder, as shown in Fig. 11. In our FL-AMM,
map matching model is jointly implemented by each partic-
ipant and the server, where the local participant implements
the SBi-GRU encoder and the server conducts the attentional
GRU decoder. In what follows, we will elaborate on the design
details.

1) SBi-GRU Encoder: The input to the map matching
model is a cellular trajectory, such as τ = {g1, g2, . . . , gM},
which is a grid-based representation after being enhanced by
the data augmentation component. The SBi-GRU encoder can
be regarded as a function in the following form,

h1, h2, . . . ,hM = f (g1, g2, . . . , gM ) (5)

where f represents the function the SBi-GRU encoder
aims to learn, and {h1, h2, . . . ,hM} denotes a list of
fixed-dimensionality feature vectors, which are the outputs of
the SBi-GRU encoder.

In our model, the SBi-GRU encoder is comprised of input
layer, embedding layer, SBi-GRU layer, and output layer.
Specifically, the input τ = {g1, g2, . . . , gM} is first fed into
the embedding layer to learn a dense vector representation
{g1, g2, . . . , gM} instead of employing one-hot representa-
tion. Then, the SBi-GRU layer extracts the features of the
whole trajectory and transforms the input vector sequence into
a sequence of hidden state {h1, h2, . . . ,hM}. Here, we use
the bidirectional GRU (Bi-GRU) as the basic component of the
SBi-GRU layer to extract latent features from input trajecto-
ries. Compared to normal GRU, bidirectional GRU can process
the sequence from both forward and backward directions to
extract both past and future information simultaneously. This

is helpful in trajectory feature capture since every current
trajectory point is determined by both the origin and the
destination. Therefore, during the encoding process, the hidden
state ht is updated as

hf
t = GRU

(
hf

t−1, gt

)
hb

t = GRU
(
hb

t+1, gt

)
ht = hf

t ⊕ hb
t (6)

where hf
t and hb

t denote the hidden states obtained by forward
layer and backward layer, respectively, and ⊕ represents
concatenation operator. Furthermore, we stack several Bi-GRU
layers in the SBi-GRU layer to further enhance the feature
extracting ability. Let hl

t be the hidden state of l-th Bi-GRU
layer at time t, which is determined by the hidden state of the
l-th Bi-GRU layer at time (t− 1) and the hidden state of the
(l − 1)-th layer at time t.

hl
t = Bi-GRU

(
hl

t−1, h
l−1
t

)
(7)

where hl
t is concatenated by hidden states of forward layer

and backward layer of Bi-GRU, and h0
t = gt. Finally, we get

a sequence of hidden states {hn
1 , hn

2 , . . . ,hn
M} as outputs after

n rounds of feature extracting in the SBi-GRU layer. The last
hidden state hn

M is regarded as the latent representation as
well as the initial hidden state s0 for the attentional decoder,
which conserves the location information of the whole input
trajectory.

2) Attentional GRU Decoder: The traditional decoder of
seq2seq model is a simple unidirectional GRU, which gener-
ates the map-matched route Y m successively given the latent
representation s0. Formally, the decoder can be represented
as pθ (Y m | s0), where Y m = {e1, e2, . . . , em}, and θ repre-
sents the set of decoder parameters. However, in the decoder
structure we described above, the decoder can take only one
vector as an input, which is difficult to memorize the whole
information on a long trajectory. As a result, the basic seq2seq
model suffers accuracy degradation when processing long
sequences. To this end, we plug an attention component into
the decoder to capture more information from the encoder.
Specifically, the attention component considers all hidden
states {hn

1 , hn
2 , . . . ,hn

M} of the encoding stage instead of the
last latent representation hn

M .
At the beginning, we feed the decoder a Start Of Sequence

(SOS) token to start a map matching process. At the i-th
step of decoding, let si−1 be the output from the (i − 1)-
th step, we first apply an attention layer to search for the most
relevant representation vectors by computing the similarity
between the current hidden state si−1 and all hidden states
{hn

1 , hn
2 , . . . ,hn

M} of the encoding stage to generate a context
vector ci according to the following formulas,

at = F (si−1, h
n
t ) ∀t, 1 ≤ t ≤ M

pt = exp (at) /

M∑
t=1

exp (at) ∀t, 1 ≤ t ≤ M

ci =
M∑

t=1

pt · hn
t (8)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:34:49 UTC from IEEE Xplore.  Restrictions apply. 



LU et al.: FL-AMM WITH HETEROGENEOUS CELLULAR MOVING TRAJECTORIES 3887

where F denotes the attention function, which is a feed
forward network in our implementation. at represents a score
measuring the correlation between the current hidden state
si−1 and an encoding hidden state hn

t . pt measures the
importance of at, and M denotes the length of grid-based
trajectory. Then, ci and the embedding vector ei−1 of the
output ei−1 from the (i − 1)-th step are concatenated, and
further fed to the GRU with the current hidden state si−1 to
generate the new hidden state si and output ei. That is,

si = GRU (si−1, ei−1 ⊕ ci) (9)
ei = Argmax (FC (si)) (10)

where FC () represents the FC layer which converts the output
of GRU si to a |G|-dimensional vector, and |G| represents
the total number of grids. Argmax () denotes the argmax
layer which aims to identify the matched road segment ei.
Therefore, the attentional GRU decoder accomplishes the
conversion of the learned hidden feature from cellular moving
trajectories by SBi-GRU encoder to road segments when an
End Of Sequence (EOS) token is generated, and finally obtain
a map-matched route Y m = {e1, e2, . . . , ek, . . .}.

VI. PERFORMANCE EVALUATION

A. Evaluation Methodology

1) Experiment Setup: In this work, we collected a
large-scale vehicle trajectory dataset in Changsha under the
transportation mode of car, along with related map data from
OpenStreetMap, for exemplary evaluation and performance
comparison. Specifically, the collected vehicle dataset contains
routes in 5 different areas with 377 dual-SIM-card hetero-
geneous user trajectory pairs, totally lasting 211 hours and
covering 6,204 km. Meanwhile, both sparse cellular moving
data and dense GPS data are included in our collected dataset.
Moreover, we also collect map data from OpenStreetMap to
support the map-matching. The road network data contains
4,058 road segments of different types, such as motorways,
primary roads, footways, and so on. Then, we first map
dense GPS trajectories to road network to generate ground
truth labels by an HMM-based method [21]. In order to
guarantee a realistic estimation of generalization error, we split
data in a trip-wise manner. Particularly, traces collected by
4 data collection campaigns are used for training, and the
traces collected by the remaining 1 campaign are used for
testing. We implement FL-AMM on a server with 4 CPUs
each containing 192 Intel(R) Xeon(R) Platinum 8260 CPU @
2.40GHz with 24 cores, and one graphics processing unit card
(NVIDIA Tian X) is used to accelerate the training process.
We develop FL-AMM in Python and the code is implemented
in PyTorch, in which several library files are employed, such
as pandas, numpy, sklearn, folium, etc.

2) Metrics: We assess the performance of all map matching
algorithms by comparing the map-matched route to ground
truth route. Denoted by Y m =

{
em
1 , em

2 , . . . , em
N1

}
and Y g ={

eg
1, e

g
2, . . . , e

g
N2

}
the map-matched route and ground truth

route, respectively, where N1 and N2 denote the total number
of data entries of Y m and Y g , respectively. The following five
metrics are adopted for performance comparison.

• Precision: refers to the ratio of the total length of the
correctly matched route to the total length of the route,
i.e., Precision= |Y m∩Y g|

|Y m| .
• Recall: refers to the ratio of the total length of the

correctly matched route to the total length of the route in
ground truth, i.e., Recall= |Y m∩Y g|

|Y g| .
• F1-score: is the weighted average of Precision and

Recall, calculated by F1−score= 2∗Recall∗Precision
Recall+Precision .

• Time: refers to the average inference time, which is
defined as the running time of transforming cellular
trajectories to road segments.

• P-value: refers to significant difference, which is a sta-
tistical measure used to determine the likelihood that an
observed outcome is the result of chance.

3) Baselines: For performance evaluation, we adopt and
implement the following baselines, including traditional
model-driven algorithm and data-driven deep learning models.
• HMM [21]: is a conventional model-driven method to

solve the map matching problem. It regards the location
of raw trajectory as observation and the road segment
as the hidden state for the map matching process. It is
proficient in map matching for high-sampling-rate and
low-location-error trajectories.

• Seq2seq [42]: is a widely-used data-driven model to
process sequence-to-sequence problem, also known as
Encoder-Decoder model, wherein the model used by
encoder and decoder can be RNN, LSTM, or GRU.
It involves two processes, the encoder is to extract the
features from the input sequence, and the decoder is to
generate a new sequence based on extracted features.
Here, we adopt GRU as the basic processing unit.

• DeepMM [27]: is an advanced method along data-driven
deep learning models in recent years. It is an improved
seq2seq model, and the data augmentation technologies
are used to improve the accuracy of the model. However,
it is designed based on GPS trajectories, and its data
augmentation methods proposed are not applicable to
cellular data. Therefore, DeepMM is implemented here
without the part of data augmentation when implemented
in here. So, we rename it DeepMM*.

B. Performance Comparison

1) Overall Performance: We first conduct the overall per-
formance comparisons between FL-AMM and other baselines.
To guarantee fair comparison, heterogeneous trajectories of
dual-SIM-card users are used for all the baselines by tem-
porarily ignoring data isolation problem. Fig. 12 shows the
average metric scores obtained by different models with error
bars, where the testing samples are equally divided into
5 subgroups for cross validation. From Fig. 12, we have
the following four major observations. First, for all accuracy
metrics, i.e., precision, recall, and F1-score, FL-AMM can
achieve superior performances and the gaps are significant.
For instance, the average F1-scores in Fig. 12c are about
0.38, 0.46, 0.67, and 0.88 for HMM, seq2seq, DeepMM*, and
FL-AMM, respectively. That is, the FL-AMM can improve
the F1-score performance by 132%, 91.3%, and 31.3%,
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Fig. 12. Overall performance comparison.

respectively. Note that, for the HMM solution, the perfor-
mance for the precision and recall are 0.46 and 0.33 with
a gap between them of 0.13, while for the other three
schemes, that gap is less than 0.03. That is, the model-driven
algorithm (HMM) is more susceptible to the quality of data
than the data-driven algorithms (seq2seq, DeepMM*, and
FL-AMM). Therefore, traditional model-driven models are not
suitable for cellular data-based map matching. Second, for the
running efficiency metric, i.e., time, as shown in Fig. 12d,
emFL-AMM can outperform other baselines, especially for
HMM, which is 14 times less efficient than FL-AMM. Mean-
while, data-driven models have higher running efficiency than
the model-driven model. Third, when observing the error bars
for all metrics, we can find that the deviation achieved by
FL-AMM is much smaller than that of other baselines, demon-
strating FL-AMM’s reliability to guarantee the performance.
Finally, for every metric, we calculate the p-value of FL-AMM
and the other three baselines respectively. We can observe
that all p-values are smaller than 0.05, which is generally
considered statistically significant in statistics. The lower the
p-value, the greater the statistical significance of the observed
difference.

2) Qualitative Analysis: Fig. 13 shows visualizing exam-
ples of how four models perform for map matching problem
based on cellular moving trajectories. We can see that our
FL-AMM finds the right route and the matched result is more
precise than the other two baselines. Particularly, Fig. 13a
shows the map matching result of HMM, which obtains the
candidate segment of each trajectory point through shortest
path search. Therefore, the road segments matched by HMM
are very close to the trajectory points but far away from ground
truth routes due to high location errors of cellular moving
trajectories, thus resulting in inferior matching accuracy. 13b
and Fig. 13c show the matching results of two data-driven
models, i.e., seq2seq and DeepMM*, respectively. The perfor-
mances are relatively satisfactory, despite some mismatched
road segments of auxiliary lanes. Finally, we can observe from
Fig. 13d that our FL-AMM achieves a satisfactory matching

Fig. 13. Visualization of map matching. Purple points represent the cellular
moving trajectory of operator B. Solid blue lines are ground truth routes, and
the orange dotted lines represent the map-matched routes.

Fig. 14. Effectiveness of VFL.

Fig. 15. Effectiveness of DA.

result in this example, which is because we make good use
of the heterogeneous trajectories of dual-SIM-card users and
enrich the information content of the real path.

C. Ablation Experiments

In this subsection, we verify the effectiveness of each
individual component of FL-AMM, i.e., VFL, DA, and MM.

1) Effectiveness of VFL: We first verify the effectiveness of
VFL for collaboratively using heterogeneous cellular moving
trajectories from dual-SIM-card users to enhance the accuracy
of the map matching model. We implement several variants
of FL-AMM, including Centralized, OPA, OPB, VFL/A, and
VFL/B. More specifically, Centralized, OPA, and OPB are
the models without employing vertical federated learning
framework, and the input of them are mixture of heteroge-
neous trajectories (A and B) of dual-SIM-card users, cellular
trajectories only coming from operator A, and cellular tra-
jectories only coming from operator B, respectively. On the
contrary, VFL/A, VFL/B, and FL-AMM denote the models
with VFL framework which are trained by dual-SIM-card
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Fig. 16. Effectiveness of the MM.

users’ heterogeneous cellular moving trajectories. They differ
in the deployment locations of the trained model. VFL/A and
VFL/B indicate that the models are deployed locally in OP A
and OP B, respectively, while FL-AMM indicates deploying
in a secure third party. Therefore, they are used for map
matching inferences for single-SIM-card cellular trajectories
of OP A, single-SIM-card cellular trajectories of OP B, and
dual-SIM-card cellular trajectories, respectively. Fig. 14 shows
the average performance of precision and recall for all six
compared variants. We can make the following three state-
ments. First, FL-AMM can achieve better performance than
the other variants. For instance, our FL-AMM can improve the
precision performances of Centralized, OPA, OPB, VFL/A, and
VFL/B by 3.5%, 14.1%, 12.7%, 8.5%, and 7.2%, respectively.
In addition, when observing the variation of the precision and
recall boxes, FL-AMM has the smallest deviation than other
variants, demonstrating the stability of FL-AMM. Third, when
comparing OPA and VFL/A, OPB and VFL/B, we can find that
VFL framework can improve the performance of a single-data-
source model because the model of VFL has been enhanced
by aggregating data features of other participants.

2) Effectiveness of DA: In our model, DA consists of
two sub-modules, i.e., trajectory division (TD), and trajectory
representation enhancement (TRE). Therefore, we remove
DA, TD, and TRE respectively, to show the performance of
FL-AMM without these modules. Fig. 15 presents the average
scores of precision and recall for map matching based on these
variants. It can be seen that the matching performance can
deteriorate rapidly after removing these design components.
Specifically, the precision score can be reduced from 0.89 to
0.75, 0.82, and 0.82 after removing the DA, TD, and TRE
component, respectively. In addition, when observing the error
bars for all metrics, we can find the deviation achieved by
FL-AMM is much smaller than other three variants. Finally,
all p-values are smaller than 0.05, which means the observed
difference is considered statistically significant.

3) Effectiveness of MM: In our map matching model, there
are two outstanding design points, one is the design of SBi-
GRU-based data feature extraction module in the encoder,
the other is the application of attention mechanism. There-
fore, we compare FL-AMM with four variants. Specifically,
GRU, SGRU, and BGRU represent the variants employing
GRU, stacked GRU, and bidirectional GRU as feature extrac-
tion module in the encoder, respectively, and MM* denotes
FL-AMM without attention module. As shown in Fig. 16,
modified GRU models, i.e., SGRU, BGRU, and MM*
(SBi-GRU), achieve better accuracy than simple GRU, among

Fig. 17. Robustness experiments.

which SBi-GRU has the best performance. In addition, BGRU
works better than SGRU because it can extract features from
both past and future directions of input sequence. Second,
the performance of MM* deteriorates dramatically with the
largest deviation. Overall, it indicates that the design of MM
has significant impacts on map matching performance.

D. Robustness Experiments

1) Impacts of Road Types: To improve the generalization
ability of FL-AMM, we consider different road types, i.e.,
urban, suburban, and highway, in the data collection cam-
paigns. The impacts of different road types are shown in Fig
17a. From Fig 17a, we have two main observations. First,
the proposed FL-AMM consistently outperforms all baselines
with an noticeable performance advantage under different
road types. Second, for all models, the best performance is
achieved in highway areas while the worst result is observed in
urban areas. These disparities can be attributed to two factors:
BS density and road complexity. Particularly, for highway
areas, although BS density is low, the simplicity of road
conditions allows for achieving good map matching accuracy
even with a limited number of collected cellular trajectories.
In contrast, in urban areas, the high BS density is accompanied
by increased road complexity. This complexity, characterized
by numerous misleading lanes and side roads, poses challenges
to achieving satisfactory matching accuracy.

2) Impacts of Transportation Modes: To evaluate the ability
of FL-AMM to work efficiently under different transportation
modes, we adopt two additional cellular trajectory datasets
under the transportation modes of bus and subway. Fig. 17b
shows the average results of F1-score achieved by different
models under two types of transportation modes. Particularly,
FL-AMM exhibits a significant performance advantage over
the other baselines in both bus and subway scenarios. Second,
compared to the transportation mode of car, the performance
variations in bus and subway modes are different for each
model. For instance, the performance of HMM increases due
to regular schedule routes, while the performance of FL-AMM
decreases because of the smaller scale of data and more sparse
cellular moving trajectories.

VII. RELATED WORK

We review the related work of map matching solutions in
two categories, i.e., GPS trajectory-based map matching and
cellular trajectory-based map matching.
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A. GPS Data-Based Map Matching

In the literature, various techniques have been proposed
to address the map matching problem based on GPS data,
which can be roughly divided into two categories, i.e.,
traditional model-driven approaches [21], [22], [24], [25],
[26], [43], [44], [45], [46], [47], [48], [49], and learning-
based data-driven approaches [11], [27], [28], [50]. Traditional
model-driven map matching approaches can be further divided
into several categories, but from the technical perspective,
HMM-based model [21], [22], [23], [43] and its variants are
the most commonly used in existing solutions. For instance,
Jagadeesh et al. [43] proposed a solution combing a HMM
model with a route choice model, to develop an accurate,
timely and robust map matching algorithm. To achieve satis-
factory performance in many ambiguous cases, Hu et al. [46]
designed IF-Matching for map matching by utilizing the
related meta-information to describe a moving object. How-
ever, the performance of these model-based algorithms is
usually unsatisfactory, especially for low-sampling-rate GPS
trajectories. Adopting learning-based data-driven approaches,
Taguchi et al. [50] presented an online map matching
algorithm, which employed a probabilistic route prediction
model trained by historical data. To overcome the drawbacks
of traditional HMM-based models, Feng et al. [27] proposed
to solve the map matching task by deep learning approaches.
Jiang et al. [11] devised a general and robust deep learning-
based model, named L2MM, to achieve a satisfactory mapping
accuracy. Liu et al. [28] proposed a deep learning enhanced
GPS positioning system to correct GPS estimations. While
most of these works can achieve high accuracy for fine-grained
GPS trajectories, they cannot be directly used for our work
because of the large location error and the inherent sparsity of
cellular trajectories.

B. Cellular Data-Based Map Matching

In recent years, some works [29], [30], [31], [51], [52],
[53], [54], [55], [56], [57] have explored map matching
using the cellular data. For instance, Mohamed et al. [52]
proposed a real-time map matching system for cellular trajec-
tories, named SnapNet, which is an incremental HMM-based
algorithm with digital map hints and a number of heuristics.
To address the challenge of highly inaccurate cellular BS
fingerprints, Thiagarajan et al. [51] designed a CTrack system
employing a two-pass HMM to identify the most likely roads.
Algizawy et al. [30] proposed an extended HMM to tackle map
matching problems with large mobile data volume. To solve
the problem of unsatisfactory performance at complex road
conditions, Han et al. [53] presented a HMM-based model
by taking the attributes of road segment, the driver’s driving
speed and driving directions into consideration. However, these
HMM-based works cannot well address high-order histori-
cal trajectory information and consume long inference time.
Therefore, several other works [29], [31] were proposed to
improve the map matching accuracy. Shen et al. [29] proposed
a fast map matching model, named DMM, which employs
RNN to project cellular trajectories into road segments.
To cope with the imprecise performance caused by lacking the

labeled data, Rizk et al. [31] presented a data augmentation
framework to generate synthetic data. In addition, several
works have been proposed to address map matching problems
utilizing cellular measurement record data, such as CTS [55],
DeepLoc [56], RecuLSTM [57], etc. However, most of these
works focused on utilizing single cellular data of individual
users. Since individual users possess dual SIM cards which
can generate heterogeneous cellular data, and this can be of
great use to improve the accuracy of map matching.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed FL-AMM for map matching
problems based on heterogeneous cellular moving trajectories.
Our approach can enhance the representation capability of raw
cellular moving trajectories, and transform cellular moving
trajectories into segment-based trajectories with high accuracy.
In addition, heterogeneous data from different network oper-
ators can be effectively utilized when preserving users’ data
privacy. In the future, we will further improve the performance
of map matching by exploring more potential valuable factors
(e.g., users’ driving patterns, points of interest, etc.). We will
also cooperate with mobile operators to fit and implement
FL-AMM to the big data platform in production environments
in order to accomplish specific map matching tasks.
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