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Abstract—Edge sensing can achieve high-performance state
estimation in industrial IoT systems by supporting task offload-
ing and data processing at powerful edge estimators. Accurate
edge sensing depends on low offloading delay. However, it is
challenging to decrease offloading delay due to the harsh indus-
trial environment and limited communication-and-computation
resources. In this article, a closed-form expressing of estima-
tion error with respect to offloading delay is derived to indicate
that adjusting offload delay on demand is necessary for esti-
mation error reduction. Then, we propose an adaptive edge
sensing scheme, aiming to minimize estimation error by jointly
optimizing task offloading and sensor scheduling. The required
optimization is formulated as a mixed-integer nonlinear pro-
gramming problem and solved by the designed decomposition
and approximation methods. Specifically, the maximum match-
ing is used for sensor scheduling to assign the optimal edge
estimator for each sensor. The task offloading algorithm is
designed based on the inner approximation method to reduce
the offloading delay. Finally, simulation results demonstrate that
the proposed scheme has superiorities in reducing estimation
error compared with centralized sensing and distributed sensing
schemes. Moreover, we find an interesting result that estimation
error is delay sensitive when the offloading delay is large.

Index Terms—Edge sensing, industrial IoT systems, offloading
delay, sensor scheduling, task offloading.

Manuscript received 24 March 2022; revised 10 July 2022; accepted
15 August 2022. Date of publication 22 August 2022; date of current ver-
sion 22 December 2022. This work was supported in part by the National
Natural Science Foundation of China under Grant 62002042, Grant 62071356,
Grant 62101089, Grant 92167205, and Grant 61933009; in part by the
China Postdoctoral Science Foundation under Grant 2021M690022 and
Grant 2021M700655; in part by the Fundamental Research Funds for the
Central Universities under Grant JB210113; and in part by the Cooperative
Scientific Research Project, Chunhui Program of Ministry of Education,
China. (Corresponding author: Yanpeng Dai.)

Ling Lyu is with the School of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China, and also with the State Key
Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071,
China (e-mail: linglyu@dlmu.edu.cn).

Lihong Zhao and Yanpeng Dai are with the School of Information
Science and Technology, Dalian Maritime University, Dalian 116026, China
(e-mail: lihongzhao@dlmu.edu.cn; yanpengdai@dlmu.edu.cn).

Nan Cheng is with the School of Telecommunications Engineering, Xidian
University, Xi’an 710071, China (e-mail: nancheng@xidian.edu.cn).

Cailian Chen and Xinping Guan are with the Department of Automation and
the Key Laboratory of System Control and Information Processing, Ministry
of Education of China, Shanghai Jiao Tong University, Shanghai 200240,
China (e-mail: cailianchen@sjtu.edu.cn; xpguan@sjtu.edu.cn).

Xuemin Shen is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
(e-mail: sshen@uwaterloo.ca).

Digital Object Identifier 10.1109/JIOT.2022.3200392

I. INTRODUCTION

W ITH the rapid deployment of information and commu-
nications technologies, ubiquitous sensing over Internet

of Things (IoT) plays an increasingly important role in
industrial automation [1], [2], [3]. In industrial IoT systems,
ubiquitous sensing is archived by performing state estima-
tion with spatially distributed sensors and multiple estimators.
In particular, sensors cooperatively sense the control system
states, and then deliver the sensory data to estimators. Based
on the received sensory data, estimators performs state estima-
tion to estimate the system state parameters [4]. In general, the
more sensory data delivered to estimators, the more accurate
the state estimation can be. However, due to limited com-
munication resources in IoT networks, sensory data may be
discarded in the case of congestion [5], [6], [7], [8], which,
in turn, deteriorates estimation accuracy and wastes commu-
nication resources. Moreover, the serious fading and complex
interference in the harsh industrial environment, may lead to
enlarging transmission delay and even transmission failure of
sensory data.

For the issue of how to design state estimation algorithms
to alleviate the impact of wireless transmissions, there has
been significant theoretical advancement in the area of net-
worked control systems. On one hand, some works focus
on designing the robust state estimation algorithms [9], [10].
Li et al. [11] designed a finite-horizon estimator to work
against the issue of channel fading. Xu et al. [12] proposed a
local coupling structure based state estimators to address the
issue of robust state estimation for coupled neural networks
with randomly occurring distributed delays. These works pay
attentions on the worse case analysis to against the adverse
effects introduced by wireless networks, such as random pack-
ets loss, random delay, and limited resources. However, the
wireless communication quality in practice is generally bet-
ter than the worse case, which makes the algorithm design
and performance analysis of state estimation too conservative.
On the other hand, some works pay efforts on investigat-
ing resource-effective state estimation algorithm to reduce the
demand of network resources, such as the distributed state
estimation [13]. Rana et al. [14] proposed a distributed consen-
sus estimation algorithm, where local estimates are exchanged
via wired networks. Zhang et al. [15] presented a distributed
fusion estimation method to reduce communication costs for
the control system observed by wireless sensor networks
with given packet losses. However, the limited communication
resources and harsh industrial environment (such as the serious
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fading, complex interference, and path loss) may render the
transmission delay and pack loss of local estimates unpre-
dictably and uncontrollably, and then degrade the consensus
performance and estimation accuracy.

For the issue of limited network resources, one solution is
to employ the edge computing technology in the area of wire-
less communications [16]. Recently, the resource allocation
problem in edge computing enabled wireless communica-
tions has attracted significant attentions [17], [18], [19], [20].
Dai et al. [21] jointly optimized the computation offload-
ing and the user association to minimize the overall energy
consumption. Ye et al. [22] jointly maximized the com-
munication and computing resource utilization with diverse
quality-of-service guarantee for autonomous driving tasks.
Zhang et al. [23] jointly optimized computation offloading and
resource allocation to balance the energy consumption and
execution latency. Moreover, the content caching, computa-
tion offloading, spectrum, and computation resource allocation
were jointly considered to improve the performance of wireless
cellular networks [24]. Considering the energy consump-
tion of both the task computing and task data transmission,
Kuang et al. [25] investigated the joint problem of partial
offloading scheduling and resource allocation. Inspired by this,
we focus on the edge computing enabled state estimation,
where the contradiction between massive sensory data and the
limited communication resources could be relieved.

Recent advances on hardware accelerators enables substan-
tial processing to be performed at sensors locally, thus the
task of state estimation could be executed at end sensors or
edge estimators. This raises a new question that which device
performs the estimation tasks will be better for estimation
accuracy improvement under the limitation of available com-
munication and computation capacity. Specifically, if the state
estimation is performed at end sensors, the processed local
estimates are delivered to edge estimators. In this way, the
local processing typically reduces delivered data volume, but it
usually entails a larger computational delay due to the weaker
computational capability of sensors. More important, if the
local estimates is delayed or lost, the estimation error will be
significantly deteriorated since no raw sensory data could be
used to infer the current state. On the contrary, if the estima-
tion task is executed by edge estimators, the raw sensory data
are needed to be delivered. As the data volume of raw sensory
data is much larger than that of local estimate, it will incur
a larger communication delay even though it has advantages
on reducing the computational delay. Note that if only a few
of raw sensory data are delayed or lost, the estimation error
could not increase dramatically.

In this article, we design an adaptive end sensing scheme for
industrial IoT systems, where each sensor makes the offloading
decision according to the accuracy demand of the estimation
task and the offloading delay of sensory data. The estimation
error is then minimized by jointly optimizing task offload-
ing and sensor scheduling with limited communication and
computation resources. The contributions of this article are
summarized as follows.

1) The impact of the experienced delay on the state estima-
tion accuracy is explicitly characterized, which indicates

that the mean square error of state estimation exponen-
tially increases with the growth of experienced delay of
sensory data. The relationship between estimation error
and experienced delay is the cornerstone of designing
adaptive edge sensing (AES) for industrial IoT systems.

2) The designed AES approach has superiorities in reduc-
ing estimation error, since it makes the offloading deci-
sion by considering not only the communication and
computational resources but also the accuracy demand
required by state estimation and the observation ability
of sensors.

3) The near-optimal solution of formulated mixed-integer
nonlinear programming problem is obtained by estima-
tion error analysis, objective function approximation,
and optimization problem decomposition. Specifically,
the maximum matching is used for sensor scheduling to
assign the optimal edge estimator for each sensor. The
task offloading algorithm is designed based on the inner
approximation method to reduce the offloading delay.

The remainder of this article is organized as follows.
The system and communication models are presented in
Section II. In Section III, an adaptive end sensing is designed
for resource-limited industrial IoT systems. In Section IV,
the estimation task offloading and sensor scheduling are
jointly optimized to further enhance the state estimation accu-
racy. Simulation results and main conclusions are shown in
Sections V and VI, respectively.

II. SYSTEM MODELS

As shown in Fig. 1, the considered industrial IoT system
is composed of N sensors, N edge estimators and one remote
coordinator, where the edge estimators can only coverage a
part of sensors. Moreover, one sensor could be in the cov-
erage regions of different edge estimators. In the considered
industrial IoT systems, all sensors deliver the collected mea-
surements or the calculated local estimates to edge devices.
The data volume of sensing information transmitted by sensors
are significantly larger than that of fusion estimates exchanged
among edge devices. Moreover, edge devices perform fusion
estimation based on the received sensing information, and then
exchange the fusion estimates with each other. Compared with
the raw measurements and the calculated local estimates, the
fusion estimates carry more information and are more sensi-
tive to transmission delay and packet loss. Therefore, all edge
estimators are connected with the wired network. We consider
that all edge estimators have the processing and computing
ability and, thus, they take charge of estimating the system
state with the received raw sensory data from sensors. In this
work, we consider that sensors not only has the capacity of
sensing and transmitting but also can process the sensory data
and perform the local state estimation.

A. System Model

The work considers the distributed fusion estimation for
the networked multisensor fusion systems, where all sensors
are assumed to be synchronized and have the same mea-
surement rate [26], [27]. The considered discrete-time linear
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Fig. 1. Application of the industrial IoT system in hot rolling process.

time-invariant control system with N sensors is described by

x(t + 1) = Ax(t) + Fw(t) (1)

yi(t) = Cixi(t) + vi(t), i = 1, 2, . . . , N (2)

where x(t) ∈ Rn is the state of the process, yi(t) ∈ Rmi is the
measure of the ith sensor, and w(t) ∈ Rq and vi(t) ∈ Rmi are
the zero-mean white noises with covariances Qw(t) and Qvi(t),
respectively. The initial state x(0), the input noise w(t) ∈ Rq,
and the measurement noise vi(t) ∈ Rmi are mutually uncor-
related. The matrices A ∈ Rn×n, F ∈ Rn×q, and Ci ∈ Rmi×n

are time invariant. In addition, the duration of one time step
is unitized.

B. Communication Model

In this work, we consider that all edge estimators share the
same resource block. In order to avoid the conflict among
edge estimators, the edge estimator can schedule only one
sensor to transmit sensory data on one resource block. Let
the binary variable δ ∈ {1, 0} denote the sensor scheduling
indicator. Particularly, if the ith sensor is scheduled by the
sth edge estimator at the tth time step, δi,s(t) = 1. Otherwise,
δi,s(t) = 0 (i = 1, 2, . . . , M). The power channel gain between
the ith sensor and the sth edge estimator at the tth estimation
step is denoted as gi,s(t) (s = 1, 2, . . . , N). In this article,
the channel gains are assumed to be known, which could
be obtained with channel estimation or an empirical channel
model. In the considered industrial IoT system, the edge esti-
mators in general are much closed to sensors than the remote
coordinator, resulting the better power channel gain. However,
due to the shelter of equipments in the filed, the power chan-
nel gain between the sensor and the nearby edge estimators
are worse, as shown in Fig 2. Without loss of generality,
some sensors may be not scheduled by any edge estima-
tors. In this manuscript, the frequency-division duplex mode
is used. But, the proposed scheme is also suitable in the time-
division duplex mode. In particular, in the frequency-division
duplex mode, multiple sensors transmit data on different
channels simultaneously. In the time-division duplex mode,
the duration of one estimation step could be divided into
multiple slots, and different sensors transmit data on different
slots.

Fig. 2. Network architecture for the considered industrial IoT system.

III. ADAPTIVE EDGE SENSING

Due to the lossy wireless channels, the sensory data and
local estimates may be lost or delayed, which will deteriorate
the accuracy of state estimation. In this section, we first dis-
cuss the experienced delay, and then analyze the impact of
experienced delay on the estimation accuracy. Finally, sen-
sor scheduling and task offloading are jointly designed to
minimize the mean square error of state estimation.

A. Experienced Delay

In the considered IoT system, the tasks generated by differ-
ent sensors are independent. Let Ki(li, lei , mi) denote the task
generated by the ith sensor, where li is the data size of sensory
data, li is the data size of local estimate, and mi is the num-
ber of the required CPU-cycles to process the received sensory
data. In addition, the computing speed of the ith sensor and the
sth edge estimator is denoted as f l

i and f e
s (cycles/s), respec-

tively. Then, the computing delay for the ith sensor to process
its own sensory data locally is

τ l
i = mi

f l
i

. (3)

Similarly, the computing delay for the sth edge estimator to
process the task of the ith sensor is

τ e
i,s = mi

f e
s

. (4)

For each scheduled sensor, the experienced delay of sensory
data is composed of the transmission delay and the computing
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Fig. 3. Two cases of state estimation.

delay. The achievable data rate of the scheduled link from the
sensor to the edge estimator is given by

ri,s(t) = log

⎛
⎜⎝1 + pi(t)gi,s(t)∑

i′ �=i,i′∈N
pi′(t)gi′,s(t) + N0

⎞
⎟⎠ (5)

where pi(t) is the transmit power of the ith sensor at the tth
time step. Due to the battery-powered sensor, the transmit
power should satisfy that pi(t) ≤ pmax, where pmax is the max-
imum transmit power of each sensor. At each time step t, the
ith sensor can only be scheduled by at most of one edge esti-
mator, thus

∑
s∈S δi,s(t) ≤ 1. If the sensor is not scheduled by

any estimators, the experienced delay is set to be T , where T
the tolerated maximum delay. In this regard, the transmission
delay of sensory data and local estimate is given by

τ lt
i,s(t) = li

ri,s(t)
(6)

τ et
i,s(t) = lei

ri,s(t)
. (7)

In summary, the experienced delay is the integration of
computing delay and transmission delay, shown as follows:

τi,s(t) = θi(t)
(
τ e

i,s + τ et
i,s(t)

)+ (1 − θi(t))
(
τ l

i + τ lt
i,s(t)

)
(8)

where the binary variable θi(t) is the task offloading deci-
sion indicator. If θi(t) = 1, the ith sensor directly delivers
the sensory data to the assigned edge estimator at the tth
time step. Otherwise, the ith sensor processes the sensory
data locally and then delivers the calculated local estimate
to the assigned edge estimator. For notation simplicity, let
τi(t) = ∑

s∈S δi,s(t) τi,s(t). If τi(t) > T , the data packet
generated by the ith sensor is considered to be lost, and the
experienced delay is set to be T .

B. Edge Sensing

In the considered industrial IoT system, each sensor has
to determine whether performs the local estimation or not.
Therefore, there are two cases of state estimation, shown in
Fig. 3. The offloading decision will affect the experienced
delay of sensing information, which plays an important role in
the estimation accuracy. The sensing information with a large

experienced delay will enlarge the estimation error, since the
sensing information used to perform the state estimation is out
of fashion. In case A, each sensor executes the local estima-
tion based on its own sensory data, and then delivers the local
estimate to the edge estimator over shared wireless channels.
The edge estimator fuses the local estimates received from the
scheduled sensors and other edge estimators. In case B, the
sensory data are directly delivered to edge estimators, and the
edge estimator combines all received sensory data to obtain
the edge estimate. The calculated edge estimate is fused with
other edge estimates. The detailed state estimation process is
elaborated as follows.

1) Case A (Sensor Locally Performs the State Estimation):
Based on all sensory data {yi(1), yi(2), . . . , yi(t)}, the ith
sensor could obtain the local optimal estimate in terms of
linear minimum variance sense by recursively calculating the
standard Kalman filter [28]

x̂i(t) = [In − Ki(t)Ci(t)]Ai(t − 1)x̂i(t − 1) + Ki(t)yi(t)

Ki(t) = P−
ii (t)Ci(t)

T[Ci(t)P
−
ii Ci(t)

T + QVi(t)
]−1

where P−
ii (t) is the one-step prediction error covariance

matrix. Then, the estimation error covariance matrix Pii(t) =
E{[xi(t) − x̂i(t)][xi(t) − x̂i(t)]T} is expressed as

Pii(t) = [In − Ki(t)Ci(t)]P
−
ii (t)

P−
ii (t) = Ai(t − 1)Pii(t − 1)Ai(t − 1)T

+ F(t − 1)Qw(t − 1)F(t − 1)T .

The estimation error cross-covariance matrix Pij(t) =
E{[xi(t) − x̂i(t)][xi(t) − x̂j(t)]T} is expressed as

Pij(t) = [In − Ki(t)Ci(t)]
[
Ai(t − 1)Wij(t − 1)Ai(t − 1)T

+ F(t − 1)Qw(t − 1)F(t − 1)T][In − Kj(t)Cj(t)
]T

(i �= j).

Considering the experienced delay, the edge estimate
obtained by the sth edge estimator is denoted as x̂e

i (t|t)
(δi,s = 1). The edge estimator will store the most recent
edge estimate and discards older edge estimates. At the tth
time step, if the stored edge estimate is x̂e

i (t|t − τi)

x̂e
i (t|t − τi) =

[
τi∏

h=1

Ai(t − h)

]
x̂i(t − τi|t − τi) (9)

which indicates that the estimation error exponentially
increases with the growth of offloading delay. The fusion esti-
mate is x̂(t|t − τi) = ∑N

i=1 �i(t)x̂e
i (t|t − τi), where the optimal

weighted matrices {�1(t), . . . , �N(t)} are given by

[�1(t), . . . , �N(t)] =
[
IT
0 �−1(t)I0

]−1
IT
0 �−1(t) (10)

where �(t) = E{[eT
1 (t − τ1), . . . , eT

N(t −
τN)]T [eT

1 (t − τ1), . . . , eT
N(t − τN)]} with ei(t − τi) =

x(t)−x̂e
i (t|t−τi), and I0 = [In, . . . , In]. As

∑N
i=1 �i(t) = In, the

fusion estimation is unbiased when E{x̂e
i (t|t − τi)} = E{x(t)}.

Furthermore, the error covariance matrix of fusion estimation
is given by

E

{(
x(t) − x̂(t)

)(
x(t) − x̂(t)

)T} =
[
IT
0 �−1(t)I0

]−1
. (11)

In case A, the impact of experienced delay reflects on the
edge estimate.
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2) Case B (Edge Estimator Performs the State Estimation):
The sensory data received by at the sth edge estimator (when
the ith sensor is scheduled to access to the sth edge estimator)
is {βi(1)yi(t − (t − 1)), . . . , βi(t − τi)yi(t − τi), . . . , βi(t)yi(t)},
where the binary variable βi(t) ∈ {0, 1} is introduced to indi-
cate that whether the sth edge estimator receives the sensory
data of the ith sensor at the tth time step. For example, if
the experienced delay is τi, then βi(t − h)|h=τi = 1 and
βi(t − h)|h �=τi = 0. Because of the experienced delay, the
Kalman filter executed by the edge estimator is modified. In
particular

x̂i(t) = Ai(t − 1)x̂i(t − 1) + βi(t)Ki(t)

× [
yi(t) − Ci(t)Ai(t − 1)x̂i(t − 1)

]

Wii(t) = [In − βi(t)Ki(t)Ci(t)]W
−
ii (t).

For notation simplicity, let (x̂i(t), Wii(t)) = KF(x̂i(t −
1), W−

ii (t − 1), βi(t), yi(t)) represent the aforementioned state
estimation. Due to the experienced delay, the sensory data
obtained by edge estimators is delayed. In order to improve
the estimation accuracy, the delayed sensory data is utilized
to infer the corresponding edge estimate, i.e., calculating the
edge estimate x̂i(t − τi) based on the previous sensory data
yi(t − τi). After that, the edge estimate x̂i(t) is obtained by
updating x̂i(t − τi). In detail
(
x̂i(t − τi), Wii(t − τi)

)

= KF
(
x̂i(t − τi − 1), W−

ii (t − τi − 1), βi(t − τi), yi(t − τi)
)

· · · · · · (12)(
x̂i(t − 1), Wii(t − 1)

)

= KF
(
x̂i(t − 2), W−

ii (t − 2), βi(t − 1), yi(t − 1)
)

(13)(
x̂i(t), Wii(t)

)

= KF
(
x̂i(t − 1), W−

ii (t − 1), βi(t), yi(t)
)
. (14)

For notation simplify, let (x̂i(t), Wii(t)) = KF τi(x̂i(t − τi −
1), W−

ii (t − τi − 1), βi(t − τi), yi(t − τi)) represent the edge
estimate x̂i(t − τi) that is calculated based on the sensory data
yi(t − τi). It can be seen that in case B, the edge estimation
error exponentially increases with the growth of offloading
delay, i.e., the impact of offloading delay directly reflects on
the edge estimate.

The fusion estimate is x̂(t) = ∑N
i=1 �′

i(t)x̂i(t|t − τi), where
the optimal weighted matrices {�′

1(t), . . . , �
′
N(t)} are given

by

[
�′

1(t), . . . , �
′
N(t)

] =
[
IT
0 W−1(t)I0

]−1
IT
0 W−1(t). (15)

The cross error covariance matrix is Wij(t) = [In −
βi(t)Ki(t)Ci(t)][Ai(t − 1)Wij(t − 1)Ai(t − 1)T + F(t − 1)Qw(t −
1)F(t − 1)T ][In − βj(t)Kj(t)Cj(t)]T , then the error covariance
matrix of fusion estimation is given by

E

{(
x(t) − x̂(t)

)(
x(t) − x̂(t)

)T} =
[
IT
0 W−1(t)I0

]−1
. (16)

C. Joint Design of Task Offloading and Sensor Scheduling

In this work, the task offloading and sensor scheduling
are jointly designed to minimize the mean square error for
fusion estimation with delayed sensory data/local estimates.

At each time step, the interested optimization problem is
mathematically formulated as

P0 : min{δ(t),θ(t),p(t)} Tr
(
E

{(
x(t) − x̂(t)

)(
x(t) − x̂(t)

)T}) (17)

s.t.
∑S

s=1
δi,s(t) ≤ 1 ∀i (17a)

∑N

i=1
δi,s(t) ≤ 1 ∀s (17b)

pi(t) ≤ pmax ∀i (17c)

δi,s(t) ∈ {0, 1}, θi(t) ∈ {0, 1} ∀i ∀s (17d)

where x̂(t) = x̂(t|t − τi(t)). Moreover, (17a) denotes one
sensor can be scheduled by at most of one edge estimator;
(17b) denotes the edge estimator can schedule at most of
one sensor; and (17c) is the transmission power constraint of
each sensor. In addition, Tr(E{(x(t) − x̂(t))(x(t) − x̂(t))T}) =
Tr(�A(t)[IT

0 �−1(t)I0]−1) + Tr(�B(t)[IT
0 W−1(t)I0]−1)] with

�A(t) = diag{∑s∈S δi,s(t) (1 − θi(t))} and �B(t) =
diag{∑s∈S δi,s(t) θi(t)}. The optimization objective function
includes the time-varying variable x with respect to the esti-
mation step t. The system state changes step by step. At
each estimation step, state x is time invariant. But, the state x
changes based on the control command and the system dynam-
ics from one estimation step to another estimation step. Taking
the computational complexity and time-varying variables into
account, the formulated problem aims to minimize the estima-
tion error at each estimation step. For notation simplicity, in
the remainder of this article, notation t is removed from the
variables δ(t), θ(t), and p(t), if there is no confusion.

IV. ESTIMATION TASK OFFLOADING AND SENSOR

SCHEDULING

For the formulated problem (17), the complicated objective
function makes it intractable to solve P0. Thus, we will deal
with the objective function F0 first in this section. According
to the properties of matrix trace, we can obtain that

F0 = Tr

(
�A(t)

[
IT
0 �−1(t)I0

]−1 + �B(t)
[
IT
0 W−1(t)I0

]−1
)

= Tr
([

I−1
0 �A(t)�(t)

(
IT
0

)−1
]

+
[
I−1
0 �B(t)W(t)

(
IT
0

)−1
])

= Tr
(

I−1
0 [�A(t)�(t) + �B(t)W(t)]

(
IT
0

)−1
)

≤ Tr([�A(t)�(t) + �B(t)W(t)]) + Tr
([(

IT
0

)−1
I−1
0

])

where Tr([(IT
0 )−1I−1

0 ]) is a known constant that is irrelevant
to the scheduling variable δ, the offloading decision variable
θ , and the power control variable p. Therefore, the objective
function of the formulated problem (17) can be transformed
into

F0 = Tr(�A(t)�(t) + �B(t)W(t)). (18)

In addition, �A(t) and �B(t) have the same item, i.e.,∑S
s=1 δi,s(t), which denotes that whether the ith sensor is

scheduled or not. If
∑S

s=1 δi,s(t) = 0, no matter what the value
of θi(t) is, �A(t)ii = 0 and �B(t)ii = 0. Thus, we first focus on
how to determine the sensor scheduling without consideration
of the task offloading.
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Fig. 4. Weighted bipartite graph for the matching problem of sensors and
edge devices.

A. Sensor Scheduling

Let 	(t) = diag{∑s∈S δi,s(t) }, �̃(t) = diag{(1 −
θi(t))}�(t), W̃(t) = diag{θi(t)}W(t), and M̃(t) = �̃(t) + W̃(t).
Then, (18) is rewritten as Tr(	(t)�̃(t)+	(t)W̃(t)) by assum-
ing that θ(t) and p(t) is given. As aforementioned, if the
ith sensor is not scheduled (

∑S
s=1 δi,s(t) = 0), the experi-

enced delay is set to be T . Therefore, if 	ii(t) = 0, M̃ii(t) =
�̃ii(t − T ) + W̃ii(t − T ). Otherwise, M̃ii(t) = �̃ii(t) + W̃ii(t).
Since �̃ii(t − τi(t)) > �̃ii(t) and W̃ii(t − τi(t)) > W̃ii(t), the
objective function of P1 reaches the minimum value when the
S minimum M̃ii(t)’s are selected. In this regard, the subproblem
of sensor scheduling is given by

SP1 : min{δ(t)}
∑N

i=1

∑S

s=1
δi,s(t)τi,s(t) (19)

s.t.
∑S

s=1
δi,s(t) ≤ 1 ∀i (19a)

∑N

i=1
δi,s(t) = 1 ∀s (19b)

δi,s(t) ∈ {0, 1} ∀i ∀s. (19c)

The binary integer programming problem could be optimally
solved with the algorithms based on exhaustive search at the
cost of exponential complexity. In this work, we find out that
the binary linear programming problem P1 could be regarded
as an optimal matching problem of weighted bipartite graph,
which is conducive to solving it efficiently. As shown in Fig. 4,
the set of sensors and the set of edge estimators are two
mutually disjointed vertex sets in the bipartite graph. If the
sth edge estimator schedules the ith sensor, there is a line
between the sth vertex and the ith vertex. The Kuhn–Munkres
(KM) [29] algorithm is regarded as an effective binary match-
ing algorithm. The KM algorithm is a minimization algorithm
proposed by Kuhn [30] and then enhanced by Munkres [31].

As the KM algorithm is an effective method to solve the
weighted matching [32], in this work, the KM algorithm is
employed to deal with the sensor scheduling problem. Based
on the KM theorem, the optimization problem of finding
a min-weight matching is transformed into a combinatorial
optimization problem of finding a perfect matching [33]. In
general, a weighted bipartite graph is defined as G(V, E,W).
The set of vertices is denoted as V = N ∪M, where N is the
set of sensors and M is the set of edge devices. Moreover, E
is the set of edges connecting a vertex in set N and a vertex in
set M. The weight of edges is denoted as the vector W . In this
work, the weight of the line connecting the sth vertex and the
ith vertex is set as −∑S

s=1 δi,s(t)τi,s(t). In this way, the optimal
solution of the original minimum weight matching problem is

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5. Example of the KM algorithm. (a) Original matrix. (b) 1st step.
(c) 2nd step. (d) 3rd step. (e) 4th step. (f) 5th step. (g) 6th step. (h) 7th step.
(i) 8th step. (j) 9th step. (k) 10th step. (l) 11th step.

obtained by finding the optimal matching in the bipartite with
the KM algorithm. The KM algorithm could obtain the optimal
sensor scheduling with polynomial computational complexity
O(N)3.

The example is shown as Fig. 5. In particular, the matrix
is set to be Y = [8, 9.4, 13.5; 9, 5, 1; 10.6, 5.2, 2.8], shown in
Fig. 5(a). The main idea of the KM algorithm is to find out
the smallest element in each row at first. Then, the smallest
element is subtracted from all elements in this row, and the
same process is done for all columns. After that, all zeros are
separated into two sets. One set is consisted of “starred zeros,”
and the other is constructed with possible “candidate zeros.”
In particular, the smallest element in each row is “8,” “1,”
and “2.8,” then all elements in this row subtract the smallest
one, shown in Fig. 5(b). Based on this result, the smallest
element in each column is “0,” “1.4,” and “0,” respectively.
Similarly, all elements in this column subtract the smallest
one, shown in Fig. 5(c). Then, mark the zero element with
star for all rows or column that has no starred zeros, shown
in Fig. 5(d). It can be seen that, the starred zeros only cover
column 1 and column 2, shown in Fig. 5(e). Therefore, let the
element, that is zero but is not set to be starred zero, be the
candidate zero, shown in Fig. 5(f). After that, the row with
starred zero and candidate zero is considered to be covered,
and the column with starred zero is also covered, shown in
Fig. 5(g). In this case, the smallest one among rest elements
is “1.4,” the 1.4 is subtracted from all rest elements, shown
in Fig. 5(h). As in Fig. 5(i), the zero elements is highlighted.
Then we need to check that whether all columns are covered
with highlighted candidate zero and starred zeros. The result
is shown in Fig. 5(k). Thus, the highlighted candidate zero
is changed to be starred zero, shown in Fig. 5(l). Finally, in
Fig. 5(m), the obtained allocation result is [0, 0], [1, 2], [2, 1],
and the minimum sum 8 + 1 + 5.2 = 14.2.

B. Task Offloading With Power Control

In this section, the aim of task offloading is to minimize
M̃ii(t) = (1 − θi(t))�ii(t) + θi(t)Wii(t) for scheduled sensors,
where �ii(t) is the local estimation error at the ith sensor
and Wii(t) is the edge estimation error for the ith sensor. If
||ei(t−(τ l

i +τ lt
i,s(t))||22 ≥ Wii(t−(τ e

i,s+τ et
i,s(t))), the value of θi(t)

prefers to be one, which means that the sensor i expects to be
offload the estimation task to an edge estimator. Otherwise, the

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:51:10 UTC from IEEE Xplore.  Restrictions apply. 



LYU et al.: ADAPTIVE EDGE SENSING FOR INDUSTRIAL IoT SYSTEMS 397

sensor i will execute the state estimation locally. Therefore, the
decision of task offloading relies on the impact of experienced
delay on the estimation error. In addition, the experienced
delay depends on packet length of delivered information, com-
putation ability, and achievable data rate. When the sensor
scheduling is given, the values of τ l

i and τ e
i,s are known.

Therefore, the achievable data rate is the only adjustable value
that effects the offloading decision. In addition, (5) shows
that the transmission power effects the achievable data rate,
thus the power control is performed to reduce the experienced
delay. Then, the power control problem of the ith sensor is
formulated as

SP2 : min{p}

[(
1 −

S∑
s=1

δi,s(t)

)
T +

S∑
s=1

δi,s(t)
li

ri,s(t)

]

s.t. pi(t) ≤ pmax ∀i

ri,s(t) = log

⎛
⎜⎝1 + pi(t)gi,s(t)∑

i′ �=i,i′∈N
pi′(t)gi′,s(t) + N0

⎞
⎟⎠.

(20)

For ease of handling, this constrained nonlinear problem is
rewritten as

min{p} D

s.t. pi(t) ≤ pmax ∀i(
1 −

S∑
s=1

δi,s(t)

)
T +

S∑
s=1

δi,s(t)
li

ri,s(t)
≤ D ∀i (21)

where ri,s(t) = log(1 + ([pi(t)gi,s(t)]/
[
∑

i′ �=i,i′∈N pi′(t)gi′,s(t) + N0])).
We then derive an equivalent reformulation of (21) to

expose the hidden convexity. With the given δi,s(t), the
power control is executed only for the scheduled sensors, i.e.,∑S

s=1 δi,s(t) = 1. Moreover, the edge estimator is denoted
as ŝ = {s|δi,s(t) = 1 ∀ s}, since a sensor could be scheduled
by at most of one edge estimator. Then, (21) is rewritten as

min
{p,D,R,H,I}

D (22)

s.t. pi(t) ≤ pmax ∀i (22a)

li/Ri ≤ D ∀i (22b)

log(1 + Hi) ≥ Ri ∀i (22c)

pi(t)gi,s(t)/Ii ≥ Hi ∀i (22d)∑
i′ �=i,i′∈N

pi′(t)gi′,s(t) + N0 ≤ Ii ∀i (22e)

which obtain the optimal solution when all constraints hold
with equality [34]. In this case, problem (21) is equivalent
to (22). In order to solve (22), we first deal with the non-
convex constraints (22d). It can be seen that the left-hand
side of (22d) is convex and the right-hand sides is an affine
function, thus (22d) is jointly convex with respect to the
involved variables. Moreover, it is appropriate to apply the
inner approximation algorithm [35] to deal with the noncon-
vex part of (22d). In particular, we approximate (22d) with a

linear constraint J (n)
i (pi(t), Ii) ≥ Hi, which is the first order

of pi(t)gi,s(t)/Ii around p(n)
i (t) and I(n)

i , i.e.,

J (n)
i (pi(t), Ii) = 2p(n)

i (t)gi,s(t)gi,s(t)

I(n)
i

pi(t) −
[
p(n)

i (t)gi,s(t)
]2

[
I(n)

i

]2 Ii

(23)

where the superscript n is the nth iteration of the iterative
algorithm. For the iteration n + 1, the approximate problem is
convex, which is given by

min
{p,D,R,H,I}

D

s.t. J (n)
i (pi(t), Ii) ≥ Hi ∀i

(22a) − (22c), (22e). (24)

In detail, we first solve problem (24) with (p(n−1), I(n−1)),
then the optimal solution (p∗, I∗) could be obtained.
Finally,update (p(n), I(n)) with (p∗, I∗). The iteration process
is convergent. The main reason is that the optimal solution
obtained at the nth iteration is a feasible solution of the
problem at the n + 1 iteration. Therefore, the sequence of
obtained solutions in the iteration process is nonincreasing
(D(n−1) ≤ D(n)), and the iteration process is convergent.

Based on the value of ro
i,s(t) that is obtained by solving (21),

the ith sensor can determine the relative relationship between
||ei(t − (τ l

i + (li/ro
i,s(t)))||22 and Wii(t − (τ e

i,s + (lei /ro
i,s(t)))).

If ||ei(t − (τ l
i + (li/ro

i,s(t)))||22 > Wii(t − (τ e
i,s + (lei /ro

i,s(t)))),
θi(t) = 1. Otherwise, θi(t) = 0.

In summary, the proposed original problem is a mixed-
integer nonlinear programming, whose optimal solution is
challenging to obtain. The decomposition method is used to
obtain a suboptimal solution of the original problem effec-
tively. The original problem is separated into two subproblems.
One is the sensor scheduling subproblem, and the other is the
task offloading with power control problem. The former one
is a binary integer programming problem, which is optimally
solved with the designed polynomial-time algorithm. As the
latter one includes a nonconvex constraint, the inner approx-
imation algorithm is used to deal with the nonconvex part.
Moreover, the latter one is suboptimally solved in an iterative
manner. The detailed solution process is shown in Fig. 6.

V. PERFORMANCE EVALUATION

In this article, the proposed AES approach jointly designs
the estimation task offloading and the sensor scheduling for
edge-computing enabled state estimation to achieve effective
state estimation with limited network resources. In this section,
we conduct extensive simulations to evaluate the performance
of AES approach in terms of mean square error, experienced
delay, response rate, where the response rate is defined as the
ratio of the number of sensors within the tolerant delay T to
the total number of requests [36]. For comparison purpose,
two other schemes are implemented in the following simula-
tions. One is the distributed sensing (DS) approach, wherein
each sensor performs the local estimation and deliver the local
estimate to edge estimators. The other is the centralized sens-
ing (CS) approach, wherein each sensor directly deliver the
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Fig. 6. Diagram of the solution process.

TABLE I
MAIN PARAMETERS

raw measurements to edge estimators without any processing.
The performance is evaluated according to the network topol-
ogy covering a rectangular area [0, 100]m ×[0, 100]m, wherein
sensors and edge estimators are randomly placed. The main
parameters used in simulations, are shown in Table I. Set the
initial state covariance matrix and the initial error covariance
matrix as P0 = 10I, W0 = 10I, and Q = 10I, respectively,
where I is a unit diagonal matrix [37].

A. Performance Evaluation Among Compared Approaches

The performance comparison in terms of MSE among three
compared approaches is shown in Fig. 7. It can be seen that
the mean value of state estimation error with the proposed
AES approach is less than that of comparing ones. This is
because that in the proposed AES approach, each sensor makes
the task offloading decision based on both the wireless chan-
nel conditions and the computational capacity to minimize the
state estimation error. Therefore, the proposed AES approach
achieved a communication–computation tradeoff, making it
possible to perform a more accurate state estimation.

Considering the random properties of wireless channels, the
statistic characteristic analysis of three compared approaches is
shown in Fig. 8. Fig. 8(a) shows that for AES approach, most
of the samples fall in the interval [5, 10]. However, for DS and
CS approaches, most of the samples fall in the interval [6, 11]
and [5, 14], respectively. Moreover, it can be seen that the blue
line in Fig. 8(b) is on the left, thus the state estimation error

Fig. 7. State estimation error comparison among different approaches.

(a)

(b)

Fig. 8. Statistic characteristic analysis. (a) Statistical counting. (b) Cumulative
distribution function.

of AES approach is less than that of DS and CS approaches
for any cumulative distribution probability.

B. Performance Comparison With Different Parameters

We introduce two variables to denote the impact of compu-
tational capacity and packet length on the perform evaluation,
respectively. The computational capacity ratio is defined as
the ration between the average computational capacity of edge
estimators and that of sensors. Moreover, with the assistance
of edge computing, the data volume of exchanged sensing
information could be significantly reduced. The packet length
ratio is used to quantitatively evaluate the reduction of data
volume. The packet length ratio is defined as the average
packet length of sensory data and that of local estimates. The
larger the packet length ratio is, the more the data volume is
reduced. In simulations, the length ratio is adjusted by chang-
ing the length of local estimate by fixing the length of sensory
data.
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Fig. 9. Impact of computational capacity ratio on estimation error.

Fig. 10. Impact of computational capacity ratio on experienced delay.

The impact of computational capacity on the state esti-
mation error are shown in Figs. 9 and 10, where the com-
putational ratio is adjusted by changing the computational
capacity of edge estimators. It can be seen that the blue
curve is always below than two compared ones, which means
that the proposed AES approach has advantages on reduc-
ing the estimation error and the experienced delay. Moreover,
the state estimation errors achieved by the AES approach and
CS approach decrease with the growth of the computational
capacity ratio. However, the state estimation error achieved by
DS approach does not change with the computational capacity
ratio. In the DS approach, the state estimation is performed
at sensors locally, thus the computational capacity of edge
estimators almost have no effect on the estimation error or the
experienced delay. Furthermore, we find out that there is a crit-
ical point of computational capacity ratio. If the computational
capacity ratio is less than this critical point, the DS approach
is better than the CS approach in terms of both the estima-
tion error and the experienced delay. The reason is that with
the growth of the computational capacity of edge estimators,
the CS approach could archive the state estimation task at the
lower computational delay. Therefore, when the edge estima-
tors have high computational capacity, the computational delay
of CS approach is small enough to counteract the impact of the
large transmission delay of sensory on estimation accuracy.

In order to evaluate the impact of packet length ratio on
the estimation error and experienced delay, the length ratio is
adjusted by changing the length of local estimate but fixing
the length of sensory data. The simulation results are shown
in Figs. 11 and 12. It can be seen that both the estimation
error and the experienced delay reduce with the increasing

Fig. 11. Impact of packet length ratio on estimation error.

Fig. 12. Impact of packet length ratio on experienced delay.

of the packet length ratio for all compared approaches. This
is because that the shorter packets will cost less transmis-
sion delay and computational delay. It is worth noting that the
proposed AES approach could archived the smallest estimation
error and experienced delay, since it makes the task offload-
ing decision based on the channel condition and computational
capacity to make the communication–computing tradeoff for
improving the state estimation accuracy with limited resources.
Moreover, the decreasing rate of DS approach is larger than
that of the CSE approach, since the shorter packet length of
local estimate will significantly reduce the transmission delay
in the DS approach. We also find out that there exists a turning
point. When the packet length ratio is less than the turn-
ing point, the CS approach is better than the DS approach.
Otherwise, the DS approach is better than the CS approach.
This phenomenon is caused by that when the packet length of
local estimate is smaller, the advantage of edge estimation on
reducing the transmission delay is more significant.

Earlier in this section, we have discussed the estima-
tion error and offloading delay with different computational
capacity ratios and packet length ratios. Then, we will dis-
cuss the relationship between offloading delay and estimation
error, which is shown in Fig. 13. It can be seen that the
estimation error exponentially increase with the growth of
offloading delay, meaning that the offloading delay reduc-
tion could decrease the estimation error. Moreover, we find
that the estimation error is delay sensitive when offloading
delay is large. In other words, for the large offloading delay,
a little growth of offloading delay may lead to a signifi-
cantly large increase of estimation error, thus it is necessary
to design the task offloading and sensor scheduling schemes
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Fig. 13. Relationship between experienced delay and estimation error.

(a)

(b)

Fig. 14. Impact of maximum transmission power. (a) Estimation error.
(b) Experienced delay.

to minimize the estimation error rather than the offloading
delay.

At the end of this section, we discuss the impact of max-
imum transmission power on the estimation error and the
offloading delay, shown in Fig. 14. It can be seen that both
the estimation error and the offloading delay decrease with
the growth of maximum transmission power at first, and then
hold steady. It reveals that only increasing the maximum trans-
mission power could not continuously improve the estimation
accuracy, since the estimation performance not only depends
on the transmission power but also depends on the sensitivity
to offloading delay.

VI. CONCLUSION

We have investigated the joint design and optimization of
estimation task offloading and sensor scheduling to achieve an
AES for industrial IoT systems. In particular, the relationship
between estimation error and offloading delay has been derived
to indicate the necessary of adjusting offload delay on demand
for reducing estimation error. Then, an AES scheme has been

proposed to minimize the estimation error by jointly optimizing
task offloading and sensor scheduling. Finally, simulation results
have been provided to demonstrate that the proposed scheme
has realized a smaller estimation error than compared ones. The
proposed scheme could adaptively adjust the estimation task
offloading decision based on the communication and computa-
tion capacity of sensors, which is appropriate for performance
improvement in edge-enabled industrial IoT systems. For future
work, we will study the distributed consensus estimation for
industrial IoT systems over lossy wireless channels.
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