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Abstract— With the advance of unmanned aerial vehicles
(UAVs) and low earth orbit (LEO) satellites, the integration of
space, air and ground networks has become a potential solution
to the beyond fifth generation (B5G) Internet of remote things
(IoRT) networks. However, due to the network heterogeneity and
the high mobility of UAVs and LEOs, how to design an efficient
UAV-LEO integrated data collection scheme without infrastruc-
ture support is very challenging. In this paper, we investigate
the resource allocation problem for a two-hop uplink UAV-LEO
integrated data collection for the B5G IoRT networks, where
numerous UAVs gather data from IoT devices and transmit the
IoT data to LEO satellites. In order to maximize the data gather-
ing efficiency in the IoT-UAV data gathering process, we study the
bandwidth allocation of IoT devices and the 3-dimensional (3D)
trajectory design of UAVs. In the UAV-LEO data transmission
process, we jointly optimize the transmit powers of UAVs and the
selections of LEO satellites for the total uploaded data amount
and the energy consumption of UAVs. Considering the relay
role and the cache capacity limitations of UAVs, we merge the
optimizations of IoT-UAV data gathering and UAV-LEO data
transmission into an integrated optimization problem, which is
solved with the aid of the successive convex approximation (SCA)
and the block coordinate descent (BCD) techniques. Simulation
results demonstrate that the proposed scheme achieves better
performance than the benchmark algorithms in terms of both
energy consumption and total upload data amount.

Index Terms— B5G IoRT, UAV-LEO integrated data collection,
resource allocation, 3D trajectory design.
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I. INTRODUCTION

W ITH the increasing demands of seamless and ubiq-
uitous network access in the beyond fifth genera-

tion (B5G), the integration of space, air, and ground (SAG)
networks has attracted rising attention, which significantly
benefits the B5G Internet of remote things (IoRT) [1]–[4]. The
IoRT network has been widely adopted in various applications,
for instance, the remote surveillance systems for monitoring
wild animals, natural disasters and climate change [5]–[7].
However, in remote areas, the ground base station (GBS) is
usually difficult to deploy due to geographical limitation or
high cost, which leads to that the data cached in distributed
IoT devices have to be forwarded to a far data center for further
analysis. Hence, reliable and efficient data collection and data
transmission in IoRT networks are of great significance.

The satellite communication system can offer seamless
wireless access to wide geographical areas, and provide an
efficient solution to the IoRT where GBSs are usually not
available [5], [8]. Comparing to traditional satellite systems
of medium earth orbit (MEO) and geostationary earth orbit
(GEO), the low earth orbit (LEO) satellite has the advantages
of small propagation loss, low propagation delay and global
coverage [9]. However, there are also many challenges in
the LEO satellites assisted IoRT networks. Considering the
huge number of IoT devices in the ground and the long
transmission delay for the data transmission, it is usually not
feasible to directly access numerous IoT devices to the satellite
constellation [10]. Meanwhile, the IoT device is difficult to
achieve long-distance transmission due to its transmit power
and energy consumption limitations.

Recently, the significant development of unmanned aer-
ial vehicles (UAVs) has been witnessed. According to the
report [11], the global market for UAV estimated at $24.3 bil-
lion in 2020 is expected to reach $77.5 billion by 2027,
growing at a compound annual growth rate of 18% over
the analysis period 2020-2027. Moreover, the UAV-based
networks have attracted much interest and investigations in
various applications [12]–[15]. Considering the benefits of
high mobility, economic and flexible deployment, and line-
of-sight (LoS) transmission [16], [17], the UAV swarm can be
efficiently applied to the B5G IoRT networks as a relay for
data transmission. The UAV swarm can assist LEO satellites
to improve the SAG channel capacity, achieve seamless cov-
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erage, and dynamically move to IoT devices and transmit the
collected data to LEO satellites. However, when introducing
the UAV as a relay in the B5G IoRT networks, the uplink data
collection becomes more challenging because of the different
channel characteristics of UAV-ground and UAV-satellite links,
high mobility of UAVs and LEO satellites, cache capacity
limitations of UAVs, etc.

In this paper, for the hierarchical UAV-LEO integrated data
collection in the B5G IoRT networks assisted with UAV swarm
relays, we divide the two-hop uplink communication task
into two layers, i.e., IoT-UAV data gathering as layer 1, and
UAV-LEO data transmission as layer 2. For layer 1, we first
divide the IoT devices into different areas based on their
geographic locations due to the wide range of surveillance,
and one UAV gathers data from IoT devices in each area.
To achieve the high transmission rate of each IoT device
during the mission time period in each area, we maximize
the average achievable rate of each IoT device by optimizing
the uplink bandwidth allocation of IoT devices and the 3D
trajectory of the UAV. For layer 2, in order to maximize
the uploaded data amount from UAVs to LEO satellite con-
stellation and minimize the energy consumption of UAVs,
we optimize the transmit powers of UAVs and the selections
of LEO satellites. Meanwhile, considering the limited cache
capacity of UAV relays, we merge optimizations of layer 1 and
layer 2 into an integrated optimization problem and propose a
block coordinate descent (BCD) based framework to solve it.

The main contributions of the paper are summarized as
follows:

• Hierarchical SAG-IoRT network design: We propose a
UAV swarm and LEO satellite constellation assisted
data collection for the B5G IoRT networks. The task
consists of the IoT-UAV data gathering and UAV-LEO
data transmission, which can achieve reliable and efficient
IoRT data collection without infrastructure support.

• IoT bandwidth allocation and UAV 3D trajectory design:
To optimize the data gathering efficiency of UAVs,
we propose the bandwidth allocation of IoT devices
and the 3D trajectory of UAVs by leveraging successive
convex approximation (SCA) and BCD techniques.

• UAV power allocation and LEO satellite selection: To
optimize the data transmission process from UAVs to
LEO satellites, we optimize the transmit powers of UAVs
and the selections of LEO satellite constellation by using
the Lagrangian dual decomposition method.

• Joint optimization and computational complexity analy-
sis: We propose a BCD-based approach to solve the above
two layer optimizations alternately. Meanwhile, we ana-
lyze the computational complexity and its convergence
towards at least a locally optimal solution for the BCD
based approach.

The remainder of the paper is organized as follows.
Section II reviews the related works. The system model and
problem formulation are described in Section III. Section IV
provides the problem solution. Section V presents the simula-
tion results, and Section VI concludes the paper.

II. RELATED WORKS

In the literature, several works have been appeared for
the UAV-assisted ground devices data collection. In [18],
Wang et al. proposed a UAV-assisted IoT network, where the
UAV is deployed as an anchor node and aerial data collector,
and assists the base station (BS) for device positioning and
data collecting. In [19], Sun et al. studied the optimal 3D
trajectory design and resource allocation for maximization
of the system sum throughput over a given time period in
the UAV communication systems. In [20], Mozaffari et al.
analyzed the deployment of UAVs as BSs for the ground
user (GU) communication, while the trade-off between delay
and coverage is also argued. In [21], Zhang et al. considered
a UAV-enabled radio access network where the UAV serves
as the aerial platform to communicate with GUs, and pro-
posed iterative algorithms to perform joint UAV trajectory and
communication resource allocation optimization such that the
UAV periodic flight duration is minimized. In [22], Wu et al.
investigated a multi-UAV enabled wireless communication
system with multiple UAVs employed as aerial BSs to serve
GUs. To achieve fair performance over all GUs, the minimum
throughput in the downlink communication is maximized via
joint trajectory and communication design. In [23], taking the
energy consumption of UAVs into account, Cai et al. studied
the trajectory and resource allocation design for downlink
energy-efficient secure UAV communication systems. How-
ever, due to the communication distance and power energy
limitations of UAVs, the UAV-assisted communication is dif-
ficult to ensure that data in IoRT networks are transmitted to
the far data center in a timely manner.

To address these issues, satellites are considered in the B5G
IoRT networks. In [24], Li et al. introduced the coordination
of UAVs with hybrid GEO satellite-terrestrial networks to
enhance the maritime coverage. Under some limitations such
as backhaul and energy capacity and UAV kinematics, they
jointly optimized the UAV trajectory and transmit power.
In [25], Wang et al. applied the Lagrangian dual decomposi-
tion method to solve a two-stage joint hovering altitude design
and power control for the SAG IoT networks. Jia et al. [9]
minimized the total energy consumption of UAVs for the
LEO satellite assisted UAV data collection in the IoRT while
satisfying the IoRT demands. In [26], Wang et al. considered
a SAG-IoRT framework, and proposed an iterative algorithm
to optimize the system capacity via jointly designing power
control, smart devices connection scheduling and UAV’s tra-
jectory. Most of the existing works are concentrated on a single
LEO satellite scenario, where the focus is on the optimization
of IoT devices to UAVs. However, in practice, a surveillance
area is often covered by multiple LEO satellites due to the
wide coverage of satellites. Therefore, in this paper, we will
consider the optimization on not only the bandwidth allocation
of IoT devices and the 3D trajectory design of UAVs, but
also the power control of UAVs and access selections to LEO
satellites. To the best of our knowledge, this is the first work
to consider these performance indicators simultaneously for
the SAG-IoRT networks.

Notations: The scalars and matrices are written as italic
letters and bold-face lower-case letters, respectively. Let R

n
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Fig. 1. The UAV-LEO integrated data collection scenario in the B5G IoRT
networks.

be the space of n-dimensional real vectors, and I represent
the identity matrix with proper dimension. For a matrix
X ∈ R

n×m, define its Frobenius norm as �X� (the Euclidean
norm of a vector is its special case). Denote log2(·) as the
logarithm with base 2. Denote q̇(n) as the first-order derivative
of a time-varying function q(n) with respect to time slot n.
For a continuously differentiable function f(x), let ∇f(x) and
∇2 f(x) be the first and second order derivatives of f(x),
respectively.

III. SYSTEM MODELING

As shown in Fig. 1, we investigate the UAV-LEO integrated
data collection scheme in the B5G IoRT networks, where
massive IoT devices get data and then transmit these data
to a far ground data center through uplinks by leveraging
on UAV swarms and LEO satellites. Assume that there are
overall M IoT devices distributed in K disjoint areas with

Area k having Nk IoT devices, i.e.,
K�

k=1

Nk = M . Denote

Ik = {I1,k, . . . , INk,k} as the set of IoT devices in Area k,
k = 1, . . . , K . In our setup, one UAV is designated to gather
data of IoT devices within each area. Hence, K UAVs are
deployed in the air. Let U = {U1, . . . , UK} be the set of UAVs
with UAV Uk soaring in Area k, k = 1, . . . , K . In our setup,
we consider the ultra-dense LEO satellite constellation (tens
of thousands of LEO satellites), and there are always multiple
LEO satellites serving these K UAVs during a short time. Each
UAV chooses the proper LEO satellite to handover its data, and
these LEO satellites can temporally store their received data
and transmit them to the data center on the ground eventually.
In this paper, we only consider data collection through uplinks.

During an appointed mission period of T , we aim to
design an optimal UAV and LEO satellite assisted scheduling
mechanism for data collection from the B5G IoRT networks,
which maximizes the total received data amount of LEO
satellites from IoT devices and minimizes the total energy
consumption of UAVs without data backlogs at UAVs. For
the convenience of follow-up analyses, we divide the mission
time period T equally into N time slots with a slot length
δ, i.e., T = Nδ. Denote N = {1, 2, . . . , N} to represent the
time slot set. At time slot n, we assume that there are Ln LEO

TABLE I

MAIN NOTATIONS

satellites serving these K UAVs in the region, and the serving
relationship between LEO satellites and UAVs are unchanged.

Important notations are listed in Table I.

A. IoT-UAV Data Gathering

These K areas are supposed to be far away from each other.
That is to say, there is no interference among different areas,
and data gathering of each area is independent. Hence, we take
Area k as an example to analyze the data gathering of UAV
Uk from IoT devices Ik.

Since IoT devices may be deployed in mountain regions,
we assume the coordinate of IoT device Ii,k is si,k ∈ R

3 and
the time-varying coordinate of UAV Uk is qk,n ∈ R

3 at time
slot n. The uplinks from IoT devices to UAV Uk are dominated
by LoS. Hence, the channel gain h̃i,k,n between IoT device
Ii,k and UAV Uk at time slot n is

h̃i,k,n = ρ0d
−2
i,k,n =

ρ0

�qk,n − si,k�2
,

where ρ0 is the channel power gain at the reference distance of
d0 = 1 m and di,k,n is the distance between Ii,k and Uk at time
slot n. Remarkably, UAVs cannot fly too close to IoT devices
due to collision avoidance. Hence, we modify the channel gain
of IoT device Ii,k as follows:

hi,k,n =
ρ0

max(�qk,n − si,k�2, d2
min)

, (1)
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where dmin is the minimum safe distance between UAV and
IoT devices for collision avoidance.

Suppose that the UAV adopts frequency division multiple
access (FDMA) with dynamic bandwidth allocation among all
IoT devices, that is, the UAV can receive data from multiple
IoT devices at one time slot. Denote ai,k,n as the bandwidth
fraction that is allocated for Ii,k at time slot n. Then, variable
ai,k,n should satisfy:

Nk�
i=1

ai,k,n � 1, ∀ k, n,

ai,k,n � 0, ∀ i, k, n.

This scheme includes time division multiple access (TDMA)
with dynamic time scheduling (ai,k,n is a binary variable) and
FDMA with fixed bandwidth allocation (ai,k,n = ai,k, ∀n) as
special cases.

Denote the total available bandwidth of each UAV by B,
and assume that IoT device Ii,k uploads its sensing data with a
prescribed transmit power pi,k, i = 1, . . . , Nk. Subsequently,
when IoT device Ii,k transmits data to the UAV (i.e., ai,k,n >
0), the instantaneous achievable rate in bits/second (bits/s) for
IoT device Ii,k is presented as

ri,k,n = ai,k,nB log2

�
1 +

pi,khi,k,n

ai,k,nBN0

�
= ai,k,nB

× log2

�
1 +

pi,kρ0

max(�qk(n) − ski�2, d2
min)ai,k,nBN0

�
, (2)

where pi,k stands for the transmit power of Ii,k, B is the total
available bandwidth of Area k, and N0 represents the additive
white Gaussian noise (AWGN) power spectral density.

Then, the average achievable rate of IoT device Ii,k during
all time slots is formulated as

1
N

�
n∈N

ri,k,n.

In each area, via optimizing the UAV’s trajectory and band-
width allocation, we can maximize the minimum average
achievable rate over all IoT devices in this area.

B. UAV-LEO Data Transmission

For data uplink transmission between UAVs and LEO
satellites, let bk,l,n be the 0-1 binary indicator variable of
time-varying uplink between UAV k and LEO satellite l at
time slot n, k ∈ K = {1, . . . , K}, l ∈ Ln = {1, . . . , Ln},
n ∈ N . When there exists an uplink transmission from UAV
k to LEO satellite l at n, we let bk,l,n = 1, and otherwise
bk,l,n = 0. We assume that one UAV transmits data to at most
one LEO satellite at one time slot. Hence, it holds�

l∈Ln

bk,l,n � 1, ∀k, n,

bk,l,n = {0, 1}, ∀k, l, n.

Similar to [27], to avoid data upload overlapping, we divide
the frequency bandwidth for UAV satellite uplinks into a
group of orthogonal subchannels by exploiting the Orthogonal

Frequency Division Multiplexing (OFDM) technology. Then
we assume that different UAVs utilize different orthogonal
subchannels to connect to the same LEO at the same time
slot. That is to say, there is no interference at the LEO
satellites. As in [27], we present the relationship between
transmission rate and power allocation of an uplink referring
to the concave rate-power curve. According to [27], for given
channel condition c, transmit power p and bandwidth W ,
the classic Shannon’s Theorem based rate-power function
g(p, c) in bits/s is obtained as

g(p, c) = W log2(1 + ν(c) · p), (3)

where ν(c) represents the fading coefficient under c. We also
use the three-state condition model [28], where ν(c) equals
1.0, 3.46 and 5.03, which corresponds to the bad, medium
and good conditions based on weather conditions. Obviously,
g(p, c) is a concave function of p.

Define ck,l,n as the time-varying channel state of uplink
between UAV k and LEO satellite l at n. We can get
ck,l,n from either direct measurement by some communication
systems [29] or prediction based on existing channel states
by a linear prediction equation [28]. Then, ck,l,n can be
assumed to be known by the system controller all the time
in our framework. Additionally, we denote variable Pk,l,n as
the power allocated to the uplink between UAV k and LEO
satellite l at n. Then the total uploaded data amount of UAV
k to LEO satellites during N time slots is

Dtu
k =

�
n∈N

�
l∈Ln

bk,l,n · g(Pk,l,n, ck,l,n) · δ. (4)

To avoid data backlogs in UAVs at arbitrary time slot,
the uplink transmission data amount of UAV k should be
smaller than its received data amount from IoT devices in
a prescribed threshold. Specifically, till arbitrary time slot
N � ∈ N , the overall uploaded data amount of UAV k can
be calculated as

Du
k (N �) =

�
n�N �

�
l∈Ln

bk,l,n · g(Pk,l,n, ck,l,n) · δ. (5)

According to arguments in Subsection III-A, the overall
received data amount of UAV k from IoT devices till N � is
formulated as

Dr
k(N �) =

�
n�N �

Nk�
i=1

ri,k,n · δ. (6)

As a consequence, denoting the cache capacity of UAV k
as Ck, the following relationship should hold true:

Dr
k(N �) − Du

k (N �) � Ck, ∀k, ∀N �. (7)

Meanwhile, the power supply of UAVs is the bottleneck
resource. Hence, when a UAV uploads data to LEO satellites,
we should minimize its energy consumption. The total energy
consumption of UAV k spent on data-uploading during time
period T can be calculated as

Ek =
�
n∈N

�
l∈Ln

bk,l,n · Pk,l,n · δ. (8)
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To optimize the total uploaded data amount to LEO satellites
and the energy consumption simultaneously, we introduce a
penalty function which positively associates with the total
uploaded data amount Dtu

k in Eq. (4) and reversely associates
with the energy consumption Ek in Eq. (8). Then, the penalty
function can be denoted by

Fk := Dtu
k − βEk, (9)

where β is the weight of energy consumption.
By maximizing the penalty function Fk with respect to bk,l,n

and Pk,l,n, we can get the optimal data transmitting mecha-
nism from UAVs to LEO satellites. Remarkably, the involved
term Dr

k in (7) is relevant to the instantaneous achievable
rate ri,k,n in Eq. (2), which depends on the trajectory and
bandwidth allocation of UAV k. Hence, the optimization of
transmission from UAVs to LEO satellites is related to the
transmission from IoT devices to UAVs.

C. Integrated Optimization on Uplink Data Collection

Based on the arguments in Subsections III-A and III-B,
we can present the integrated optimization problem (IOP) as
that LEO satellites collect data from IoT devices with UAV
relaying. Denote Qk = {qk,n} as the trajectory of UAV k,
Ak = {ai,k,n} represents the bandwidth allocation among IoT
devices in Area k, and let B = {bk,l,n} and P = {Pk,l,n} be
the indicator variable set and the power allocation of UAVs,
respectively. Then, IOP can be expressed as

IOP : max
ηk,Ak,Qk,

B,P

�
k∈K

ηk + Fk

s.t.
1
N

�
n∈N

ri,k,n � ηk, ∀i, k, (c1)

qk,0 = qk,N , ∀k, (c2)

�q̇k,n� � Vmax, ∀k, n, (c3)
Nk�
i=1

ai,k,n � 1, ∀k, n, (c4)

ai,k,n � 0, ∀i, k, n, (c5)

Pk,l,n � 0, ∀k, l, n, (c6)

Pk,l,n � Pmax, ∀k, l, n, (c7)

Dr
k(N �) � Du

k (N �), ∀k, N � ∈ N , (c8)

Dr
k(N �) − Du

k (N �) � Ck, ∀k, n, (c9)�
k∈K

bk,l,ng(Pk,l,n, ck,l,n) � Rmax, ∀l, n,

(c10)�
l∈Ln

bk,l,n � 1, ∀k, n, (c11)

bk,l,n ∈ {0, 1}, ∀k, l, n. (c12)

Constraint (c1) together with the term “max ηk” in the
objective function means maximizing the minimum average
achievable rate among all IoT devices in each area. Constraint
(c2) gives the constraint on UAVs’ initial and final locations,
which is meaningful in practical scenarios such as periodical
data collections [21], and constraint (c3) is the velocity limit of

UAVs. Constraints (c4) and (c5) are limitations of bandwidth
allocation. Constraints (c6) and (c7) are the minimum and the
maximum transmit power constraints on UAVs, respectively.
Constraint (c8) is a natural constraint that the overall upload
data amount of each UAV should not exceed its received
data amount from IoT devices, while constraint (c9) avoids
data backlogs in UAVs. Constraint (c10) implies the total
data uploading rate of each LEO satellite cannot exceed the
maximum data receiving rate Rmax, and constraints (c11)
and (c12) are limitations on the choice of LEO satellites.
By solving IOP, during the allocated mission time period
T , we can maximize the minimum average achievable rate
among all IoT devices as well as the data amount that IoT
devices transmit to LEO satellites, and minimize the energy
consumption of UAVs without data backlogs in UAVs.

For the proposed IOP, variables {Ak,Qk,B,P} are all or
partly coupled in the objective function as well as constraints
(c1), (c8)-(c10), which leads to their non-convexities. More-
over, the 0-1 constraint (c12) is also non-convex. Therefore,
IOP is difficult to handle. To obtain the solution to this
problem, a widely used method is the well-known BCD
technique [21], [30]–[33]. That is, dividing IOP into two sub-
problems, and then repeatedly and alternatively solve these
two subproblems until the objective function value changes
within a prescribed threshold. Specifically, we divide IOP into
bandwidth allocation and trajectory (Ak,Qk) optimization
with fixed (B,P) in IoT-UAV data gathering, and power
allocation and uplink selection (B,P) optimization with fixed
(Ak,Qk) in UAV-LEO data transmission.

IV. PROBLEM SOLUTION

In this section, IOP is divided into two sub-problems:
bandwidth allocation and trajectory optimization, and power
allocation and uplink selection optimization. We argue how to
solve the two sub-problems separately, and then use the BCD
technique to get the solution to IOP.

A. Sub-Problem 1: Bandwidth Allocation and Trajectory
Optimization With Fixed Power Allocation and Uplink
Selection

For fixed power allocation and uplink selection (B,P),
we design the optimal trajectory for each UAV by solving
IOP. Considering that each UAV’s trajectory is independent of
others’, we design the optimal trajectory of the UAV in Area
k as an example, and we omit the index k for notation brevity.
For this area, removing irrelevant terms with A = {ai,n} and
Q = {qn}, IOP is transformed to

(SP1) max
η,A,Q

η

s.t.
1
N

�
n∈N

ri,n � η, ∀i, (10a)

q0 = qN , (10b)

�qn+1 − qn�2 � δ2V 2
max, ∀n, (10c)

Nk�
i=1

ai,n � 1, ∀ n, (10d)
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ai,n � 0, ∀ i, n, (10e)

Dr(N �) � Du(N �), ∀N � ∈ N , (10f)

Dr(N �) � Du(N �) + C, ∀N � ∈ N , (10g)

where constraint (10c) is an equivalence of constraint (c3) in
IOP, while expressions of ri,n and Dr(N �) are

ri,n = ai,nB log2

�
1 +

piρ0

max(�qn − si�2, d2
min)ai,nBN0

�

and

Dr(N �) =
�

n�N �

Nk�
i=1

ri,n · δ,

respectively. For fixed (B,P), Du(N �) is a known constant
for arbitrary N �. Since variables A and Q are coupled in ri,n,
similar to [21], [30], we again use the BCD approach to solve
problem (SP1).

1) Bandwidth Allocation Optimization With Fixed Trajec-
tory: Supposing that the trajectory Q = {qn} is fixed, then
problem (SP1) is evolved to

(SP1-1) max
η,A

η

s.t.
1
N

�
n∈N

ri,n � η, ∀i, (11a)

Nk�
i=1

ai,n � 1, ∀ n, (11b)

ai,n � 0, ∀ i, n, (11c)

�
n�N �

Nk�
i=1

ri,nδ � Du(N �), ∀N �, (11d)

�
n�N �

Nk�
i=1

ri,nδ � Du(N �) + C, ∀N �. (11e)

Denoting Δ1 = piρ0
max(�qn−si�2,d2

min)BN0
for notation brevity,

let ri,n = r1(ai,n) = ai,nB log2

�
1 + Δ1

ai,n

�
. Due to

∇2r1(a) =
BΔ1

(a + Δ1) ln 2

�
1

a + Δ1
− 1

a

�
< 0,

we conclude that r1(ai,n) is a concave function of ai,n. Hence,
except for constraint (11e), all other constraints are convex.
To cope with the non-convexity of (11e), we use the SCA
technique to relax it.

For the clarity and integrity, before relaxing constraint (11e),
we first present the following well-known result.

Lemma 1: (Proposition B.3 in [34]) For a convex function
f(x), it can be lower bounded by

f(x) ≥ f(x0) + ∇f(x0)(x − x0),

where x0 is a given point in the domain of f . Moreover,
f(x) = f(x0) if and only if x = x0.

Since r1(ai,n) is concave with respect to ai,n, according to
Lemma 1, we can relax ri,n = r1(ai,n) by its upper bound

r̂(ai,n) = r1(at
i,n) + ∇r1(at

i,n)(ai,n − at
i,n)

=
BΔ1(at

i,n − ai,n)
(at

i,n + Δ1) ln 2
+ ai,nB log2

�
1 +

Δ1

at
i,n

	
,

where at
i,n is given. Obviously, we have r(ai,n) � r̂(ai,n) and

r̂(ai,n) is convex with respect to ai,n. Consequently, we relax
problem (SP1-1) to

(SP1-2) max
η,A

η

s.t. (11a), (11b), (11c), (11d)�
n�N �

Nk�
i=1

r̂(ai,n)δ � Du(N �)+C, ∀N �, (12)

where we replace constraint (11e) in problem (SP1-1) by the
convex constraint (12). Therefore, problem (SP1-2) is a convex
programming that can be solved efficiently by CVX [35].

Constraint (12) is more conservative than the original con-
straint (11e). Hence, the optimal solution of problem (SP1-2)
is a lower bound of that of problem (SP1-1). To improve the
quality of the solution, we iteratively solve problem (SP1-2)
multiple times. According to [36], with a feasible initial point,
the iterative procedure is convergent to a saddle point or a local
minimum. As a consequence, with fixed trajectory, we can get
the optimal bandwidth allocation.

2) Trajectory Optimization With Fixed Bandwidth Alloca-
tion: For fixed bandwidth allocation, by removing irrelevant
terms with A, we reduce problem (SP1) to

(SP1-3) max
η,Q

η

s.t.
1
N

�
n∈N

ri,n � η, ∀i, (13a)

q0 = qN , (13b)

�qn+1 − qn�2 � δ2V 2
max, ∀n, (13c)

Dr(N �) � Du(N �), ∀N � ∈ N , (13d)

Dr(N �) � Du(N �) + C, ∀N � ∈ N , (13e)

Note that, ri,n is a neither convex nor concave function
of qn, which causes the non-convexity of constraints (13a),
(13d) and (13e). Hence, problem (SP1-3) is non-convex, which
is generally difficult to cope with. Nevertheless, we can use
the SCA technique to transform non-convex constraints (13a),
(13b), (13d) and (13e) to convex ones as follows.

For constraints (13a) and (13d), thanks to the special
expression of ri,n, we first relax ri,n by a concave lower-bound
function. Based on Lemma 1, the following result holds true.

Lemma 2: For a given Qt � {qt
n}, ri,n can be lower

bounded by r̃i,n with

r̃i,n � ai,nB log2

�
1 +

Δ2

ai,nzt
i,n

	
− φt

i,n(zi,n − zt
i,n), (14)

where Δ2 = piρ0
BN0

, zi,n = max(�qn − si�2, d2
min), zt

i,n =
max(�qt

n − si�2, d2
min), and φt

i,n = ai,nBΔ2

zt
i,n(ai,nzt

i,n+Δ2) ln 2
.

According to Lemma 3 in [37], we conclude r̃i,n is concave
due to the convexity of zi,n with respect to qn and φt

i,n > 0.
Via replacing ri,n by r̃i,n in constraints (13a) and (13d), these
two constraints become convex.
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As for the non-convex constraint (13e), we are going to
replace ri,n by its convex upper approximation. Because of
max(�qn − si�2, d2

min) � �qn − si�2, we first obtain the
upper bound r̆i,n of ri,n with

r̆i,n = ai,nB log2

�
1 +

Δ2

ai,n�qn − si�2

�
. (15)

Since r̆i,n is non-convex with respect to qn, we will find the
convex upper bound of r̆i,n. We first show the related Hessian
matrix.

Lemma 3: Denote r2(q) = log2

�
1 + c

�q−s�2

�
: R

3 → R,

where c is a known positive constant and s ∈ R
3 is a known

vector. Then for the Hessian matrix ∇2 r2(q), it holds

∇2r2(q) � 6c�q− s�2 + 2c2

�q− s�2(�q− s�2 + c)2 ln 2
I.

Proof: Define f1(z) = log2



1 + c

z

�
and f2(q) = �q −

s�2. Then it follows r2(q) = f1(f2(q)). According to the
chain rule [38], we can obtain

∇2r2(q) = ∇2f1(f2(q)) · ∇f2(q) · ∇f2(q)T

+∇f1(f2(q)) · ∇2 f2(q).

By taking the first and second order derivations of f1(z)
and f2(q) respectively, one has

∇f1(z) = − c

z(z + c) ln 2
, ∇2f1(z) =

c(2z + c)
z2(z + c)2 ln 2

,

and

∇f2(q) = 2(q − s), ∇2f2(q) = 2I.

Substituting above equations to ∇2r2(q), it yields

∇2r2(q) =
4c(2z + c)(q − s)(q − s)T

z2(z + c)2 ln 2
− 2c

z(z + c) ln 2
I,

with z = �q− s�2.
Matrix Λ = (q − s)(q − s)T ∈ R

3 has only one
nonzero eigenvalue, while other two eigenvalues are both zero.
Moreover, for arbitrary two dimension compatible matrices A
and B, AB and BA admit the same nonzero eigenvalues.
Thus, the eigenvalue vector of matrix Λ is (�q − s�2, 0, 0)T .
Furthermore, the identity matrix I can be simultaneously diag-
onalized with arbitrary matrices, which implies the eigenvalues
of ∇2r2(q) are�

6cz + 2c2

z(z + c)2 ln 2
,− 2c

z(z + c) ln 2
,− 2c

z(z + c) ln 2

�
.

The proof is completed.
Now we present the following theorem to show the convex

upper bound of ri,n.
Theorem 1: For a given trajectory qt

n, ri,n can be upper
bounded by r̄i,n with

r̄i,n = ai,nB log2

�
+

Δ2

ai,nzt
i,n

	

− 2ai,nBΔ2(qt
n − si)T (qn − qt

n)
zt

i,n(ai,nzt
i,n + Δ2) ln 2

+
ai,nBΔ2(3ai,nzt

i,n + Δ2)�qn − qt
n�2

zt
i,n(ai,nzt

i,n + Δ2)2 ln 2
, (16)

where Δ2 = piρ0
BN0

and zt
i,n = �qt

n − si�2. Moreover, r̄i,n is
convex with respect to qn.

Proof: As aforementioned, max(�qn − si�2, d2
min) �

�qn − si�2 leads to ri,n � r̆i,n with r̆i,n defined in (15).
In the sequel, we will show r̆i,n � r̄i,n.

For a function f(x), its second-order Taylor expansion at
the given point x0 is expressed as

f(x) = f(x0) + ∇f(x0)T (x − x0)

+
(x − x0)T∇2 f(x0)(x − x0)

2
+ o(�x− x0�2).

If the Hessian matrix ∇2f(x0) is smaller than matrix A,
then we obtain

f(x)�f(x0)+∇f(x0)T (x − x0)+
(x − x0)T A(x − x0)

2
.

(17)

Regarding r̆i,n as a function of qn with f(qn) =
ai,nB log2

�
1 + Δ2

ai,n�qn−si�2

�
and combining with Lemma 3,

then it immediately follows from Eq. (17) that r̆i,n � r̄i,n with
r̄i,n defined in (16). In addition, r̄i,n is obviously convex with
respect to qn.

Based on the convexity of r̄i,n in (16), replacing ri,n by r̄i,n

can transform the non-convex constraint (13e) to a convex one.
According to the above arguments, we turn to solve the

approximate convex problem of problem (SP1-3) as follows:

(SP1-4) max
η,Q

η

s.t.
1
N

�
n∈N

r̃i,n � η, ∀i, (18a)

q0 = qN , (18b)

�qn+1 − qn�2 � δ2V 2
max, ∀n, (18c)

�
n�N �

Nk�
i=1

r̃i,nδ � Du(N �), ∀N �, (18d)

�
n�N �

Nk�
i=1

r̄i,nδ � Du(N �) + C, ∀N �, (18e)

where r̃i,n and r̄i,n are defined in (14) and (16), respectively.
We can utilize the CVX toolbox to solve problem (SP1-4)

efficiently. Furthermore, due to ri,n � r̃i,n and ri,n � r̄i,n, the
optimal solution of problem (SP1-4) is a lower bound of that
of problem (SP1-3). We iteratively solve problem (SP1-4) mul-
tiple times to improve the quality of the solution. Following
a similar analysis to Subsection IV-A, the iterations converge
to a local minimum or a saddle point with a feasible starting
point. Consequently, we can obtain the optimal trajectory with
fixed bandwidth allocation.

In summary, for Area k, the bandwidth allocation and
trajectory optimization is shown in Algorithm 1. Notably,
when implementing Algorithm 1, giving the initial trajectory
Q(0) and bandwidth allocation A(0) is necessary. We generate
Q(0) by the traveling salesman problem (TSP) based initial
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Algorithm 1: IoT Bandwidth Allocation and UAV 3D
Trajectory Design Algorithm

Input: Initial trajectory Q(0) and bandwidth allocation
A(0), prescribed threshold �1, initial difference
ϕ(0) = �1 + 1, iteration index s = 0.

Output: Optimal bandwidth allocation and trajectory
(A∗,Q∗).

1: while ϕ(s) � �1 do
2: Solve problem (SP1-2) to obtain (η(s+1,1),A(s+1));
3: Solve problem (SP1-4) to obtain (η(s+1),Q(s+1));
4: Compute the difference ϕ(s+1) = η(s+1)−η(s)

η(s) ;
5: s = s + 1.
6: end while

trajectory design, which is detailedly presented in [21], [37]
and thereby is omitted. For the initial bandwidth allocation
A(0), we can select A(0) as a matrix with each element in [0, 1]
and the sum of each column being one. If the constraint (11e)
is not satisfied, we can simultaneously shrink each element
of A(0) until it is met. Moreover, since the objective function
value is not decreasing and upper bounded, Algorithm 1 can be
convergent to the local optimal solution of problem (SP1) [21].

B. Sub-Problem 2: Power Allocation and Uplink Selection
Optimization With Fixed Bandwidth Allocation and
Trajectory

When the bandwidth allocation Ak and trajectory Qk are
fixed, by removing irrelevant terms with (B,P), IOP becomes

(SP2) max
B,P

�
k∈K

Fk

s.t. Pk,l,n � 0, ∀k, l, n, (19a)

bk,l,nPk,l,n � Pmax, ∀k, l, n, (19b)

Du
k (N �) � Dr

k(N �), ∀k, N � ∈ N , (19c)

Du
k (N �) � Dr

k(N �)−Ck, ∀k, N � ∈ N , (19d)�
k∈K

bk,l,ng(Pk,l,n, ck,l,n) � Rmax, ∀l, n,

(19e)�
l∈Ln

bk,l,n �1, ∀k, n, (19f)

bk,l,n ∈ {0, 1}, ∀k, l, n. (19g)

Constraint (19b) is equivalent to (c7), and Dr
k(N �) is a

known constant for any N � when (Ak,Qk) is fixed. Due to the
coupled expression of (B,P) in the objective function as well
as (19c)-(19e), together with the binary constraint in (19g),
problem (SP2) is obviously not convex with respect to (B,P).

In order to cope with the non-convexity, we first introduce
an auxiliary variable ωk,l,n = g(Pk,l,n, ck,l,n). Then based on
the definition of g(p, c) in (3), we can express Pk,l,n as a
function of ωk,l,n as follows:

Pk,l,n = f(ωk,l,n) =
2

ωk,l,n
W − 1

ν(ck,l,n)
, (20)

which is clearly a convex function of ωk,l,n. Clearly, Pk,l,n �
0 is equivalent to ωk,l,n � 0. Furthermore, let ρk,l,n =
bk,l,nωk,l,n and relax the inter programming constraint (19g)
to a convex constraint bk,l,n ∈ [0, 1]. Then according to the
definition of Du

k (N �) in Eq. (5) and definition of Fk in Eq. (9),
with ρ = {ρk,l,n}, we can approximate problem (SP2) by

(SP2-1) max
B,ρ

�
k∈K

�
n∈N

�
l∈Ln

δ

�
ρk,l,n − βbk,l,nf

�
ρk,l,n

bk,l,n

�


s.t. ρk,l,n � 0, ∀k, l, n, (21a)

bk,l,nf

�
ρk,l,n

bk,l,n

�
� Pmax, ∀k, l, n, (21b)�

n�N �

�
l∈Ln

ρk,l,nδ � Dr
k(N �), ∀k, N �, (21c)

�
n�N �

�
l∈Ln

ρk,l,nδ � Dr
k(N �) − Ck, ∀k, N �,

(21d)�
k∈K

ρk,l,n � Rmax, ∀l, n, (21e)

�
l∈Ln

bk,l,n � 1, ∀k, n, (21f)

bk,l,n ∈ [0, 1], ∀k, l, n. (21g)

To begin with, we claim the convexity of problem (SP2-1).
Proposition 1: Problem (SP2-1) is convex.

Proof: For b > 0, we denote function Υ(b, ρ) = bf(ρ
b )

with f(·) given by (20) and ρ � 0. By taking the second order
derivative of Υ(b, ρ) with respect to (b, ρ), we obtain

∇2Υ(b, ρ) =
∇2 f(ρ

b )
b3

�
b2 −bρ

−bρ ρ2

�
.

Since f(·) is a convex function, it holds ∇2 f(ρ
b ) � 0. Then,

it yields ∇2Υ(b, ρ) � 0, which means that bk,l,nf
�

ρk,l,n

bk,l,n

�
is

convex with respect to (B, ρ). Therefore, the objective function
in problem (SP2-1) is concave while all constraints are convex,
which leads to the convexity of problem (SP2-1).

Inspired by [25], we adopt the Lagrangian dual decompo-
sition method to get the optimal solution of problem (SP2-1).

1) Lagrangian Dual Decomposition Method: By introduc-
ing nonnegative Lagrangian multipliers λ = {λk,l,n}, γ =
{γk,N �}, μ = {μk,N �}, ξ = {ξl,n}, θ = {θk,n} associated
with corresponding constraints (21b)-(21f), respectively, we
formulate the Lagrangian function by

L (B, ρ, λ, μ, γ, ξ, θ)

=
�
k∈K

�
n∈N

�
l∈Ln

δ

�
ρk,l,n − βbk,l,nf

�
ρk,l,n

bk,l,n

�


+
�
k∈K

�
n∈N

�
l∈Ln

λk,l,n

�
Pmax − bk,l,nf

�
ρk,l,n

bk,l,n

�


+
�

N �∈N

�
k∈K

γk,N �
�
Dr

k(N �) −
�

n�N �

�
l∈Ln

ρk,l,nδ
�

+
�

N �∈N

�
k∈K

μk,N �
� �

n�N �

�
l∈Ln

ρk,l,nδ − Dr
k(N �) + Ck

�

+
�
n∈N

�
l∈Ln

ξl,n(Rmax −
�
k∈K

ρk,l,n)
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+
�
k∈K

�
n∈N

θk,n(1 −
�
l∈Ln

bk,l,n).

Notice that, constraints (21a) and (21g) are not involved in
the Lagrangian function.

The dual function is

G(λ, γ, μ, ξ, θ) = max
(21a),(21g)

L(B, ρ, λ, γ, μ, ξ, θ). (22)

Then the Lagrangian dual problem is given by

min
λ,γ,μ,ξ,θ

G(λ, γ, μ, ξ, θ)

s.t. λ, γ, μ, ξ, θ � 0.

We first deduce how to determine the optimal (ρ∗k,l,n, b∗k,l,n)
with given Lagrangian multipliers (λ, γ, μ, ξ, θ), ∀k, l, n.

Since problem (SP2-1) is convex with respect to (B, ρ),
taking the constraint ρk,l,n � 0 in (21a) into account, the
optimal solution ρ∗k,l,n should satisfy the condition⎧⎪⎪⎨
⎪⎪⎩

ρ∗k,l,n = 0, if
∂L

∂ρk,l,n
|ρk,l,n=0 < 0,

∂L

∂ρk,l,n
|ρk,l,n=ρ∗

k,l,n
= 0, otherwise,

(23)

where ∂L
∂ρk,l,n

is the partial derivative of L with respect to
ρk,l,n. It is not difficult to compute

∂L

∂ρk,l,n
= δ − (δβ + λk,l,n)(ln 2)2

ρk,l,n
W bk,l,n

Wν(ck,l,n)

+ δ
�

N ��n

(μk,N � − γk,N �) − ξl,n.

Then by the optimal condition Eq. (23), we can obtain

ρ∗k,l,n = max
�

0, bk,l,nW log2

Wν(ck,l,n)Δ
(δβ + λk,l,n) ln 2

�
(24)

with Δ = δ − ξl,n + δ
�

N ��n

(μk,N � − γk,N �). Recalling the

transformation ρk,l,n = bk,l,nωk,l,n, it immediately holds

ω∗
k,l,n = max

�
0, W log2

Wν(ck,l,n)Δ
(δβ + λk,l,n) ln 2

�
. (25)

According to expression Pk,l,n = f(ωk,l,n) in Eq. (20), we
further get the optimal solution P ∗

k,l,n for problem (SP2) as

P ∗
k,l,n =

2
ω∗

k,l,n
W − 1

ν(ck,l,n)
. (26)

Using a similar argument and considering the constraint
bk,l,n ∈ [0, 1] in (21g), the optimal solution b∗k,l,n is given
by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b∗k,l,n = 0, if
∂L

∂bk,l,n
|bk,l,n=0 < 0,

b∗k,l,n ∈ (0, 1), if
∂L

∂bk,l,n
|b∗

k,l,n
= 0,

b∗k,l,n = 1, if
∂L

∂bk,l,n
|bk,l,n=1 > 0,

(27)

where ∂L
∂bk,l,n

is the partial derivative of L with respect to
bk,l,n. We can easily derive

∂L

∂bk,l,n
=

(δβ+λk,l,n)((ωk,l,n ln 2−W )2
ωk,l,n

W + W )
Wν(ck,l,n)

−θk,n.

As can be seen from the above expression, when ω∗
k,l,n in

Eq. (25) is determined, ∂L
∂bk,l,n

is a constant with uncertain

sign. When ∂L
∂bk,l,n

< 0 does not hold for all l, there exist at
least one index l such that bk,l,n > 0. In this case, due to
bk,l,n ∈ {0, 1} in problem (SP2) and

�
l∈Ln

bk,l,n � 1, i.e., one

UAV is supposed to transmit data to at most one LEO satellite
at one time slot, we obtain the optimal solution b∗k,l,n for
problem (SP2) as

bk,l∗,n = 1 with l∗ = argmax
l

∂L

∂bk,l,n
. (28)

2) Update of Lagrangian Multipliers: Because the
Lagrangian dual function in (22) may be non-differentiable,
the subgradient method is used to update the Lagrangian
multipliers (λ, μ, γ, ξ, θ) [39]. It is not difficult to deduce the
subgradient of L with respect to (λ, μ, ξ, θ) are respectively

∂L

∂λk,l,n
= Pmax − bk,l,nf

�
ρk,l,n

bk,l,n

�
,

∂L

∂γk,N �
= Dr

k(N �) −
�

n�N �

�
l∈Ln

ρk,l,nδ,

∂L

∂μk,N �
=
�

n�N �

�
l∈Ln

ρk,l,nδ − Dr
k(N �) + Ck,

∂L

∂ξl,n
= Rmax −

�
k∈K

ρk,l,n,

∂L

∂θk,n
= 1 −

�
l∈Ln

bk,l,n.

Then, we update the Lagrangian multipliers as follows

λ
(s+1)
k,l,n

=
�
λ

(s)
k,l,n − τ

(s)
1

�
Pmax − bk,l,nf

�
ρk,l,n

bk,l,n

��
+
, (29)

γ
(s+1)
k,N �

=
�
γ

(s)
k,N � − τ

(s)
2

�
Dr

k(N �) −
�

n�N �

�
l∈Ln

ρk,l,nδ
�
+

, (30)

μ
(s+1)
k,N �

=
�
μ

(s)
k,N �−τ

(s)
3

� �
n�N �

�
l∈Ln

ρk,l,nδ−Dr
k(N

�)+Ck

�
+
, (31)

ξ
(s+1)
l,n =

�
ξ
(s)
l,n − τ

(s)
4 (Rmax −

�
k∈K

ρk,l,n)

+

, (32)

θ
(s+1)
k,n =

�
θ
(s)
k,n − τ

(s)
5 (1 −

�
l∈Ln

bk,l,n)

+

, (33)

where s is the iteration index, τ = {τ1, . . . , τ5} represents the
step size, and the notation [·]+ means max{0, ·}. Therefore,
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Algorithm 2: UAV Power Allocation and LEO Satellite
Selection Algorithm

Input: Initial Lagrangian multipliers λ(0), γ(0), μ(0), ξ(0),
θ(0), prescribed threshold �2, initial difference
φ(0) = �2 + 1, step size {τ}, iteration index s = 0.

Output: Optimal power allocation and uplink selection
policy (B∗,P∗).

1: while φ(s) � �2 do
2: Use (25) and (26) to obtain the optimal power

allocation Ps+1;
3: Use (27) and (28) to obtain the optimal uplink

selection Bs+1;
4: Use (29), (30), (31), (32), (33) to update multipliers

λ(s+1), γ(s+1), μ(s+1), ξ(s+1), θ(s+1);
5: Compute the difference

φ(s+1) = �λ(s+1)−λ(s)�
�λ(s)� + �γ(s+1)−γ(s)�

�γ(s)� +
�μ(s+1)−μ(s)�

�μ(s)� + �ξ(s+1)−ξ(s)�
�ξ(s)� + �θ(s+1)−θ(s)�

�θ(s)� ;

6: s = s + 1.
7: end while

the power allocation and uplink selection optimization is
shown in Algorithm 2.

Since the subgradients are bounded, if {τ (s)} is generated
by a diminishing step-size rule, i.e.,

∞�
s=1

τ (s) = ∞, lim
s→∞ τ (s) = 0,

the multiplier sequence {(λ(s), γ(s), μ(s), ξ(s), θ(s))} gener-
ated by Algorithm 2 is convergent to the optimal value [40].
In addition, the primal variables (Bs,Ps) are updated in
an analytical form, and thereby the convergence rate mainly
relies on the optimization of the dual variables. Since the
optimization of dual variables is based on the subgradient
method, we can speed up the convergence by adopting the
adaptive step size

τi
(s) =

1√
s
, i = 1, . . . , 5.

Consequently, based on the above analyses, we can obtain
the optimal power allocation and uplink selection.

C. BCD Based Approach for IOP and Computational
Complexity

In Subsections IV-A and IV-B, we propose Algorithms 1
and 2 to solve sub-problems (SP1) and (SP2), respectively.
To jointly optimize the bandwidth allocation, trajectory, power
allocation and uplink selection, on basis of obtained solutions
of sub-problems (SP1) and (SP2), we implement the BCD
process as follows. With fixed power allocation and uplink
selection (B,P), we apply Algorithm 1 to optimize (Ak,Qk),
k = 1, . . . , K . Then with obtained (Ak,Qk), we adopt
Algorithm 2 to solve (Ak,Qk). Algorithms 1 and 2 are
alternatively executed until the objective function value of IOP
changes in a prescribed threshold. The BCD based approach

can converge to at least a locally optimal solution of IOP
following the analysis similar to [21].

The computational complexity of the BCD based approach
for IOP mainly depends on those of Algorithms 1 and 2.
For Algorithm 1, it involves solving convex problems
(SP1-2) and (SP1-4), where their variable numbers are
MN + K and 3M + K , respectively. By employing a
primal-dual interior point method to solve problems (SP1-2)
and (SP1-4), the computation complexities are respectively
O((MN + K)3 log(�−1)) and O((3M + K)3 log(�−1))
with � being the accepted duality gap. Supposing that
the number of iterations in Algorithm 1 is S1, then the
total computation complexity for Algorithm 1 can be
calculated as O



S1((MN + K)3 + (3M + K)3) log(�−1)

�
.

For Algorithm 2, since an analytical iteration is performed
in each step, assuming that the total iterative number
is S2, then computation complexity for Algorithm 2
is O (S2KLN). Therefore, given the total iteration
number S of the BCD based approach for IOP,
its total computational complexity is formulated as
O


SS1((MN + K)3 + (3M + K)3) log(�−1) + SS2KLN

�
.

V. NUMERICAL SIMULATIONS

In this section, numerous simulations are carried out to
validate the effectiveness of the proposed BCD based approach
for IOP.

Assume that a mountain region under surveillance with
50 km × 50 km is divided into K = 10 areas which are far
apart from each other. In each area, a single UAV gathers data
from Nk = 10 IoT devices, k = 1, . . . , 10. In addition, these
IoT devices within each area are randomly and dependently
distributed in a polyhedron area with height 100 m, while
the lengths in Areas 1-2, 3-5, 6-8, 9-10 are respectively
2000 m, 3000 m, 4000 m and 5000 m. Meanwhile, there are
Ln = L = 5 LEO satellites in the air that can simultaneously
receive data from UAVs of these K areas, n = 1, . . . , N .
The maximum receiving rate of LEO satellite Rmax is set
to 10 Mbits/s. The weight coefficient β is selected as 0.5.
When optimizing the objective function Fk = Dtu

k − βEk in
problem (SP2), we modify Fk = Dtu

k − 106βEk by taking
the magnitudes of Dtu

k and Ek into account. We assume that
the appointed mission period T is T = 100 s. As mentioned
behind Eq. (3), during the mission period T , the fading
coefficient ν(ck,l,n) is randomly generated from 5.03, 3.46,
and 1.0, k = 1, . . . , 10, l = 1, . . . , 5. Other main parameters
of our numerical simulations are set in Table II.

With the above setup, we first display the trajectory and
LEO satellite selection of UAVs in Areas 1-10 in Fig. 2(a),
where the selection situation corresponds to the first time slot.
As shown in Fig. 2(a), at the first time slot, UAVs U2, U7,
and U8 transmit data to LEO 1, UAV U5 has the uplink with
LEO 2, UAVs U1 and U9 transmit data to LEO 3, UAVs
U3, U4 and U10 transmit data to LEO 4, while UAV U6 has
the uplink with LEO 5. In order to show the trajectory more
clearly, we plot Area 1 as an example in Fig. 2(b). With the
TSP based initial trajectory, we can obtain the optimal 3D
trajectory. Since the appointed time is shorter than its TSP
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Fig. 2. Optimal trajectory of UAVs: (a) Trajectory of all areas and LEO satellite selection; (b) Trajectory of area 1.

Fig. 3. Performance comparison of three methods: (a) Efficiency of energy consumption (W/bit); (b) IoT transmission data amount (Mbits); (c) Total uploaded
data amount of UAVs (Mbits).

TABLE II

MAIN SIMULATION PARAMETERS

time, the UAV cannot arrive at each IoT device in this area.
Work [37] has shown that the obtained 3D trajectory admits
better performance than the 2D trajectory.

To the best of our knowledge, there was no algorithm
for solving IOP. In order to evaluate the performance of
the proposed algorithm, we compare it with two benchmark
methods: determined method and random method. For the
determined method, the total bandwidth of the UAV is equally
allocated to all IoT devices in each area, the trajectory of
the UAV is set to be the TSP based initial trajectory, each
UAV select the LEO satellite which admits the best channel

condition, and the transmission rate of each UAV is the same
while the total received rate of each LEO satellite is just equal
to Rmax. For the determined method, when the constraints (c8)
and (c9) in IOP are not satisfied, the bandwidth allocated to
each IoT device and the transmission rate of each UAV will
shrink until the two constraints hold. For the random method,
we randomly generate the bandwidth allocation, randomly
select the LEO satellites and randomly give the transmit power
of each UAV until the constraints (c8) and (c9) are met, and
the trajectory of the UAV still adopts the TSP based initial
trajectory. When characterizing the algorithm performance,
we use the efficiency of energy consumption of UAVs, the IoT
transmission data amount, and total uploaded data amount by
UAVs as metrics. Here the efficiency of energy consumption
of UAV k is defined by the ratio of its energy consumption on
uploading data to LEO satellites and its uploaded data amount
as Ek/Dtu

k , where Ek and Dtu
k are the energy consumption

given by (8) and the uploaded data amount given by (4),
respectively. Without UAV backlogs, the lower the efficiency
of energy consumption and the larger the IoT transmission data
amount and total uploaded data amount, the better performance
the method admits.

Then we depict the efficiency of energy consumption, IoT
transmission data amount, and total uploaded data amount
with respect to time slots for the proposed method, determined
method and random method in Fig. 3. It is easy to see, the
efficiencies of energy consumption of the proposed method
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Fig. 4. Performance comparison of 10 areas: (a) Efficiency of energy consumption (W/bit); (b) IoT transmission data amount (Mbits); (c) Total uploaded
data amount of UAVs (Mbits).

differ small during all the time slots, which implies they
are balanced in each time slot. With the increase of time
slots, both the IoT transmission data amount and the total
uploaded data amount of UAVs are increasing nearly in a
linear trend. Obviously, the proposed method is superior to
the other two methods in all the three aspects. As can be
seen from Fig. 3, our method has a much lower efficiency of
energy consumption and much larger uploaded data amount.
Therefore, our method admits better performance.

Moreover, since the IoT device densities in Area 1-Area 10
are not all the same, we compare efficiency of energy con-
sumption, IoT transmission data amount, and total uploaded
data amount of UAVs in Areas 1-10. Recalling that the
lengths in Areas 1-2, 3-5, 6-8, 9-10 are respectively 2000 m,
3000 m, 4000 m and 5000 m, the IoT device densities in
Areas 1-2, 3-5, 6-8, 9-10 are decreasing. From Figs. 4(a)
and 4(c), the efficiency of energy consumption and the total
uploaded data amount have no obvious trend for these three
methods, whereas the IoT transmission data amount of the
three methods have a decreasing trend for Areas 1-2, 3-5, 6-8,
9-10 in Fig. 4(b). Because the smaller IoT device density leads
to larger distances among 10 IoT devices, the data amount
gathered by UAV will decrease in a same time period. On the
other hand, since the 10 UAVs in each area transmit data to
LEO satellites collaboratively, the total uploaded data amount
as well as the efficiency of energy consumption does not differ
greatly in areas.

In the following, we will show how the maximum receiv-
ing rate Rmax and the number of LEO satellites L affect
the proposed method. We consider the scenario that the
length of each area is equal to 5000 m, and the time
slot length is set to 5 s. Other simulation parameters keep
unchanged.

1) Comparison of Different Maximum Receiving Rate Rmax:
In order to illustrate the effect of the maximum receiv-
ing rate Rmax of LEO satellites, we compare eight cases
with Rmax = {1, 3, 5, 7, 9, 11, 13, 15} Mbits/s, respectively.
As shown in Figs. 5 and 6, for all these eight cases, the pro-
posed method performs better than the determined method and
the random method in terms of both the efficiency of energy
consumption and the total uploaded data amount, while the
determined method and the random method have no clear
superiority to each other. Moreover, when Rmax becomes

Fig. 5. Efficiency of energy consumption with different Rmax.

Fig. 6. Total uploaded data amount with different Rmax.

larger, the LEO satellites can receive more data at each
time slot, which leads to larger total uploaded data amount.
However, the efficiency of energy consumption becomes worse
with larger Rmax. In addition, when Rmax exceeds a certain
threshold (about 11 Mbits/s for this example), the gain in
uploaded data amount almost disappears. Actually, by only
adding Rmax to a certain value, the IoT transmission data
will not change any longer, which further causes that the
uploaded data amount nearly keeps unchanged. Therefore,
we can use different LEO satellites with proper maximum
receiving rate Rmax rather than a large one in practical
applications.

2) Comparison of Different Numbers of LEO Satellites
L: When the number of LEO satellites L varies in L =
{1, 2, 3, 4, 5}, we show the efficiency of energy consumption
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Fig. 7. Efficiency of energy consumption with different L.

Fig. 8. Total uploaded data amount with different L.

and total uploaded data amount in Figs. 7 and 8, respectively.
It is easy to see, the proposed method outperforms the other
two methods. Meanwhile, the total uploaded data amount
is increasing with respect to L, as shown in Fig. 8. When
L becomes larger, UAVs have more chances to select the
LEO satellite with better channel state. Meanwhile, with
the increase of L, the LEO satellite constellation possesses
more data receiving capacity. However, the efficiency of
energy consumption becomes slightly worse with respect to
L. In practical applications, we can adjust the number of LEO
satellites to satisfy different preference on energy consumption
or uploaded data amount.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated a UAV-LEO inte-
grated data collection in the B5G IoRT networks. Specifically,
to maximize the total uploaded data amount to LEO satellites
and minimize the energy consumption of UAVs simultane-
ously, we have proposed a BCD-based method to jointly
optimize the IoT bandwidth allocation, UAV 3D trajectory
design, UAV power allocation and LEO satellite selection.
Numerical results have shown the superiority and effective-
ness of the proposed method. The work could provide use-
ful guidelines for deployment and data collection algorithm
design in B5G IoRT networks. For the future work, we will
consider the dynamic interconnection and transmission opti-
mization among satellites for massive LEO satellite network-
ing to provide better data collection sevices in B5G IoRT
networks.
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