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Abstract— In this paper, we investigate the joint device activity
and data detection in massive machine-type communications
(mMTC) with a one-phase non-coherent scheme, where data bits
are embedded in the pilot sequences and the base station simul-
taneously detects active devices and their embedded data bits
without explicit channel estimation. Due to the correlated sparsity
pattern introduced by the non-coherent transmission scheme,
the traditional approximate message passing (AMP) algorithm
cannot achieve satisfactory performance. Therefore, we propose
a deep learning (DL) modified AMP network (DL-mAMPnet)
that enhances the detection performance by effectively exploiting
the pilot activity correlation. The DL-mAMPnet is constructed
by unfolding the AMP algorithm into a feedforward neural
network, which combines the principled mathematical model
of the AMP algorithm with the powerful learning capability,
thereby benefiting from the advantages of both techniques.
Trainable parameters are introduced in the DL-mAMPnet to
approximate the correlated sparsity pattern and the large-scale
fading coefficient. Moreover, a refinement module is designed to
further advance the performance by utilizing the spatial feature
caused by the correlated sparsity pattern. Simulation results
demonstrate that the proposed DL-mAMPnet can significantly
outperform traditional algorithms in terms of the symbol error
rate performance.

Index Terms— Massive machine-type communication (mMTC),
non-coherent transmission, grant-free random access, deep learn-
ing, model-driven.

I. INTRODUCTION

TO EMBRACE the forthcoming era of Internet of Things
(IoT), the 3rd Generation Partnership Project (3GPP)

has specified massive machine-type communications (mMTC)
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as one of the three main service classes for fifth-generation
(5G) network and beyond [1]. In a typical mMTC scenario,
a massive number of IoT devices are required to establish
uplink-dominated communication with a single base station
(BS) [2]. The uplink transmission is usually sporadic and has a
short packet size, so only a small and random subset of devices
are active for a short while [3], [4]. As a result, conventional
grant-based random access protocols are inappropriate for
the mMTC scenarios. To better support mMTC services, one
potential solution is to develop novel multiple-access schemes
that can accomplish user activity and data detection in a timely
and accurate manner.

Grant-free (GF) random access is a promising solution
for mMTC and IoT, as it eliminates the signaling overhead
required for the coordination between the BS and massive
devices [5]. In the GF-random access, the user activity and
data detection are usually conducted through a two-phase
coherent scheme. Specifically, each activated device directly
transmits a unique pilot sequence followed by data pack-
ets without a prior scheduling assignment. After receiving
the superimposed signal from these devices, the BS first
detects the active devices and estimates the channel, based
on which the corresponding transmitted data bits are then
decoded. However, due to the massive number of devices,
it is impossible to assign orthogonal pilot sequences to each
device, which inevitably leads to collisions among devices
and results in performance degradation [6]. Thanks to the
sporadic mMTC traffic pattern, the device activity detection
and channel estimation can be formulated as a compressed
sensing (CS) problem [7]. Consequently, various CS tech-
niques have been considered for device detection in mMTC,
and they have been shown to outperform traditional methods
by mitigating pilot contamination [8], [9], [10]. Nevertheless,
the two-phase coherent scheme incurs non-negligible over-
head for channel training. Thus it may not be suitable for
mMTC where devices usually transmit small packets inter-
mittently, prompting researchers to consider the non-coherent
schemes [11], [12], [13], [14], [15], [16], [17], [18].

The non-coherent scheme is originated from the index
modulation technique [13], [14]. In this technique, only a frac-
tion of certain indexed resource entities, such as subcarriers,
antennas, time slots or channel states, are activated for a data
transmission, whereas the rest remain inactive. By doing so,
information bits can be implicitly conveyed through the index
usage or activation patterns. As an extension of the index
modulation technique, the one-phase non-coherent scheme
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allocates multiple distinct pilot sequences to each device.
When transmitting, each device selects only one pilot
sequence based on its data. Consequently, the BS is able
to detect user activity and data jointly by simply recogniz-
ing which pilot sequence is received, thus eliminating the
need for explicit channel estimation. Several existing works
have attempted to investigate the one-phase non-coherent
scheme [15], [16], [17], [18]. The paper [15] proposed
a novel method for embedding 1 bit in pilot sequences,
which outperformed the two-phase coherent scheme. The
work [16] considered the case when multiple bits were
embedded and conducted joint user activity and data detection
using the approximate message passing (AMP) algorithm.
In [17], a modified-AMP algorithm was proposed, where the
soft-thresholding function was utilized to decide on one of
the possible pilot sequences while suppressing the other ones.
In [18], a covariance-based detection scheme was developed
to acquire the indices of the transmitted pilot sequences. How-
ever, all the aforementioned works assume that the activity of
each pilot sequence is independently and identically distributed
(IID). Although the IID assumption produces an analytically
tractable solution, it neglects the correlation among the pilot
sequence activity in each user and thus may not be optimal.
In this work, we investigate the possibility of applying the
deep learning method to explore the correlation structure of
the sparsity pattern and improve the joint user activity and
data detection.

Thanks to the strong capability of solving intricate
and intractable problems, machine learning has become a
favorable research topic for future wireless communica-
tions [19], [20], [21], [22], [23], [24], [25], [26], [27]. In par-
ticular, as a major branch in machine learning, deep learning
has been extensively investigated for signal detection [23],
channel estimation [24], and constellation design [25] to
improve performance while reducing computational complex-
ity. Among vast techniques that employ deep learning in
wireless communication, the “deep unfolding” method that
unfolds iterative algorithms into deep neural networks (DNN)
is especially attractive [26]. By incorporating communication
expert knowledge into DNN, “deep unfolding” inherits the
mathematical models of classic algorithms and enables the
interpretation of network topology design [27]. Meanwhile,
by exploiting the powerful learning capability of DL, “deep
unfolding” compensates the imperfections resulting from the
inaccuracy of the model and predetermined parameters.

Motivated by existing works, we propose a model-driven
DL algorithm, namely DL-modified AMP network
(DL-mAMPnet), for the joint device activity and data
detection in mMTC with single-phase non-coherent scheme.
DL-mAMPnet is constructed by unfolding the AMP algorithm
while adding trainable parameters and a refinement module
to explore the correlated sparsity pattern of the pilot sequence
activity. Simulation results validate the superior symbol error
rate (SER) performance of the proposed DL-mAMPnet. The
main contributions can be summarized as follows.
• We formulate the joint device activity and data detection

in mMTC with single-phase non-coherent scheme as a
hierarchical CS problem with two-level sparsity, where

the device activity sparsity and transmitted pilot sequence
sparsity are modeled as the system-level sparsity and the
device-level sparsity, respectively.

• We propose an AMP-based algorithm to solve the for-
mulated CS problem. On this basis, we discuss the
limitations of the AMP-based algorithm, which serves
as the underlying motivation for designing the DL-based
algorithm.

• We propose a DL-based algorithm, termed DL-
mAMPnet, to conduct the device activity and data detec-
tion jointly. DL-mAMPnet is composed of multiple AMP
layers and one refinement module. The AMP layers are
obtained by unfolding the AMP algorithm into a feedfor-
ward DNN, where trainable parameters are introduced to
compensate for the inaccurate IID model of the traditional
AMP algorithm. The refinement module exploits the
unique spatial feature of the two-level sparsity structure
to refine the output of the AMP layers.

The remainder of the paper is organized as follows.
In Section II, we present the system model and briefly intro-
duce the non-coherent scheme. In Section III, we formulate
a hierarchical CS problem with two-level sparsity and corre-
spondingly derive an AMP-based algorithm. In Section IV,
we elaborate the structure of the proposed DL-mAMPnet.
In Section V, we present the parameter initialization and
training method of the proposed DL-mAMPnet. Simulation
results are presented in Section VI, and conclusions are made
in Section VII.

Notations: We use normal lower-case, bold lower-case, and
bold upper-case letters to denote scalars, vectors, and matrices,
respectively. For matrix X , XT denotes its transpose, XH

denotes its Hermitian transpose, |X| denotes its determinant,
and ||X||F denotes its Frobenius norm. For vector x, ||x||p
denotes its lp-norm. E{·} denotes the expectation operation.
RM×N and CM×N denote the M × N dimensional real
space and complex space, respectively. CN (µ,Σ) denotes the
multivariate complex Gaussian distribution with mean µ and
covariance Σ.

II. SYSTEM MODEL

A. Uplink Massive Access Scenario in mMTC Systems

We consider a typical uplink massive access scenario in
mMTC systems, as illustrated in Fig. 1. There are a set of
randomly distributed single-antenna devices, denoted by N =
{1, · · · , N}. These devices communicate with a BS equipped
with M antennas. The uplink channel from device n to the
BS is denoted by hn ∈ CM×1 and modeled as

hn =
√
βngn,∀n ∈ N , (1)

where βn is the large-scale fading component and gn denotes
the small-scale fading component. We assume gn is dis-
tributed as CN (0, IM ), and accordingly we have hn ∼
CN (0, βnIM ). This paper adopts a block-fading channel
model, where hn remains unchanged within channel coher-
ence time but is independent from block to block.

Due to the sporadic activity pattern of mMTC, only a small
fraction of devices are active in each block. We assume that
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Fig. 1. The considered uplink massive access scenario where devices exhibit
sporadic traffic pattern.

the devices are synchronized,1 and each device independently
decides whether to access the channel with probability ϵ in
each block. Consequently, the device activity indicator for
device n ∈ N is defined as

αn =

{
1, if device n is active,
0, otherwise,

(2)

where Pr(αn = 1) = ϵn and Pr(αn = 0) = 1−ϵn.2 We further
define the set of active devices within a block as

K = {n ∈ N : αn = 1}, (3)

and the number of active devices is K = |K|. The received
signal y ∈ CM×1 at the BS is given by

y =
∑
n∈N

αnhnxn + n =
∑
k∈K

hkxk + n, (4)

where xn ∈ C is the transmitted signal of device n, and
n ∈ CM×1 is the additive white Gaussian noise (AWGN)
distributed as CN (0, σ2IM ).

B. One-Phase Non-Coherent Scheme

To successfully transmit the messages of the active devices,
two schemes have been proposed in the literature, namely the
two-phase coherent scheme and the one-phase non-coherent
scheme. The two-phase coherent scheme divides each coher-
ence block into two contiguous phases. In the first phase,
the active devices send their pilot sequences to the BS syn-
chronously, and the BS jointly detects the device activity, i.e.,
αn, as well as their corresponding channels, i.e., hn, ∀n ∈ K.
In the second phase, the active devices send their messages
to the BS using the remaining coherence block, and the BS
decodes these messages based on the knowledge of device
activity and channels obtained in the first phase.

Unlike the two-phase coherent scheme, the one-phase non-
coherent scheme considered in this paper can jointly detect
the active devices and the corresponding messages without
explicit channel estimation. Specifically, in the non-coherent
scheme, the transmitted messages are embedded in the index
of the transmitted pilot sequence of each active device. To this

1Note that the proposed method can adapt to the asynchronous scenario by
employing the sliding-window method [28], [29].

2The proposed methods can adapt to the case where devices have different
active probabilities.

Fig. 2. Pictorial representation of the signal model.

end, each device maintains a unique set of pre-assigned
Q = 2J pilot sequences. When a device is active, it sends
a J-bit message by transmitting one sequence from the set.
By detecting which sequence is received, the BS acquires both
the identity of the active devices as well as the J-bit message
from each of the active devices. We define the pilot sequences
allocated for device n as:

Sn = {s1
n, s

2
n, · · · , sQ

n }, (5)

where sq
n = [sq

n1
, sq

n2
, · · · , sq

nL
]T ∈ CL×1, 1 ≤ q ≤ Q,

and L is the sequence length. Note that the total number
of pilot sequences is usually much larger than the length
of pilot sequence (or the length of a coherence block), i.e.,
NQ ≫ L. As such, it is impossible to assign mutually
orthogonal sequences to all devices. Following the pioneering
work [30], we adopt the random Gaussian sequences in
this paper. Specifically, each entry of the pilot sequences is
generated from IID complex Gaussian distribution with zero
mean and variance 1/L, i.e., sq

nl
∼ CN (0, 1/L), so that each

pilot sequence has a unit norm, i.e., ||sq
n||2 = 1, ∀n ∈ N and

q = 1, · · · , Q.
For transmission, each active device selects exactly only one

sequence from Sn based on its message. Then, the composite
received signal Y ∈ CL×M of the non-coherent scheme can
be expressed as

Y =
N∑

n=1

Q∑
q=1

αq
nsq

nhT
n + N =

N∑
n=1

SnXn + N , (6)

where Xn = [α1
nhn, α

2
nhn, · · · , αQ

n hn]T ∈ CQ×M and
αq

n ∈ {0, 1} indicates whether or not sequence q of device
n is transmitted, with a slight abuse of notation. Recall that
each device is active with probability ϵ, we have

Q∑
q=1

αq
n =

{
1, with probability ϵn;
0, with probability 1− ϵn.

(7)

By further concatenating all sequences of N devices as S =
[S1,S2, · · · ,SN ] ∈ CL×NQ, the received signal in (6) can be
simplified as

Y = SX + N , (8)

where X = [XT
1 ,X

T
2 , · · · ,X

T
N ]T ∈ CNQ×M . The pictorial

form of (8) is sketched in Fig. 2, which intuitively shows
that X has a hierarchical sparse structure. The hierarchical
sparse structure comprises two levels of sparsity, including
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the system-level sparsity and the device-level sparsity. The
system-level sparsity means that most rows in X are zero,
which is due to the sporadic traffic pattern. The device-level
sparsity enforces that there is at most one non-zero row exists
in Xn,∀n, because each active device only transmits one pilot
sequence from its pilot set.

III. PROBLEM FORMULATION AND AMP-BASED
JOINT DETECTION ALGORITHM

A. Problem Formulation

Our goal is to detect the binary variable αq
n that indicates

both the activity of device n and its transmitted message,
which can be achieved by recovering X from the received
signal Y . Once X is recovered, αq

n can be determined by the
rows of X . Due to the hierarchical sparse structure of X , such
problem is a classic CS problem with known measurement
matrix S. Therefore, we can formulate the problem as follows:

P1 :min
X

||Y − SX||2F (9)

s.t.

N∑
n=1

Q∑
q=1

I(Xnq,:) ≤ K, (10)

Q∑
q=1

I(Xnq,:) ≤ 1,∀n, (11)

where Xnq,: is the qth row of Xn and I(·) is the indicator
function defined as

I(x) =

{
1, if x has non-zero elements;
0, otherwise.

(12)

The constraint (10) comes from the system-level sparsity and
the constraint (11) ensures the device-level sparsity. However,
it is challenging to solve P1 directly due to the non-smooth
constraints. Hence, we relax (11) into a l2,1-norm regularized
least-square problem by replacing the indicator function with
l2 norm as [31]

min
X

1
2
||Y − SX||2F + λ

N∑
n=1

Q∑
q=1

||Xnq,:||2, (13)

where λ is the tunable parameter that balances the the sparsity
of the solution and the mean square error (MSE) ||Y −SX||2F .
Although conventional CS algorithms such as orthogonal
matching pursuit (OMP) and sparse Bayesian learning (SBL)
can be directly used to solve (13), they suffer high com-
putational complexity due to the matrix inverse operation,
especially in mMTC system with massive devices. In view
of this, this paper utilizes the computationally efficient AMP
algorithm as the main technique [32].

B. Review of the AMP Algorithm

AMP refers to a class of efficient algorithms for statistical
estimation in high-dimensional problems such as linear regres-
sion and low-rank matrix estimation. The goal of the AMP
algorithm is to obtain an estimate of X with the minimum

MSE based on Y . Starting with X0 = 0 and R0 = Y , the
AMP algorithm can be described as follows:

Xt+1,n = ηt,n(SH
n Rt + Xt,n),∀n, (14)

Rt+1 = Y − SXt+1 + btRt, (15)

where t = 0, 1, · · · is the index of the iteration, ηt,n(·) is
the shrinkage function for device n that shrinks some items
of its input to zero, and Rt is the corresponding residual.
The residual in (15) is updated with the “Onsager correction”
term btRt, which substantially improves the performance of
the AMP algorithm [33]. Note that ηt,n(·) is assumed to be
Lipschitz-continuous and bt can be written as

bt =
1
L

N∑
n=1

η′t,n(SH
n Rt + Xt,n), (16)

where η′t,n(·) is the first-order derivative of ηt,n(·). In addition
to improving the performance, the Onsager correction also
enables the AMP algorithm to be analyzed by a set of state
evolution equations in the asymptotic regime [34]. The asymp-
totic regime is when L,N → ∞, while their ratio converges
to a positive constant, i.e., N/L → ρ where ρ ∈ (0,∞),
and while keeping the data length J fixed. To facilitate the
theoretical analysis, this paper considers a certain asymptotic
regime where N → ∞, and the empirical distribution of
the large-scale fading components βn’s converges to a fixed
distribution pβ .

Define β ∼ pβ and Xβ ∈ CQ×M as a random matrix
distributed as (1− ϵ

Q )
∏Q

i=1 δxβ,i
+ ϵ

Q

∑Q
i=1 Phβ

∏
j ̸=i δxβ,j

,
where δxβ,i

is the Dirac delta at zero corresponding to
the element xβ,i and Phβ

denotes the distribution hβ ∼
CN (0, βIM ). The state evolution equations can be written
as the following recursions for t ≥ 0 [34]

Σ0 = σ2IM + ρEβ{XH
β Xβ}, (17)

Σt+1 = σ2IM

+ ρEβ

{
(ηt(Xβ + V Σ

1
2
t )−Xβ)H

× (ηt(Xβ + V Σ
1
2
t )−Xβ)

}
, (18)

where V ∈ CQ×M is a random matrix independent with Xβ ,
of which the rows are IID and each follows the distribution
CN (0, IM ). It can be observed from (14) and (18) that
applying ηt,n(·) to SH

n Rt + Xt,n is statistically equivalent
to applying ηt,n(·) to Xt,n + V Σ

1
2
t . Therefore, the input to

the shrinkage function ηt,n(·) can be modeled as an AWGN-
corrupted signal, i.e.,

Zt,n = Xt,n + SH
n Rt = Xt,n + V Σ

1
2
t , (19)

In this case, the update given by (14) is statistically equiv-
alent to a denosing problem, and thus ηt(·) can also be
called “denoiser”. Hereafter, we use “shrinkage function” and
“denoiser” interchangeably for convenience.

C. AMP-Based Joint Device Activity and Date Detection
Algorithm

The core idea behind the joint detection algorithm is to
first estimate X from Y , based on which αq

n is determined
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according to the norm of each rows in X . To this end, we first
derive the denoiser ηt,n(·) under the MMSE-optimal criterion.
After that, we observe that ηt,n(·) exhibits an asymptotic
property, which motivates us to design a threshold-based
strategy to extract αq

n from X .
1) Derivation of ηt,n( · ): For notational simplicity, we omit

the iteration index t in the following. According to (19), the
likelihood of Zn given Xn takes the form of

PZn|Xn
=

Q∏
q=1

exp(−(zq
n − xq

n)HΣ−1(zq
n − xq

n))
πM |Σ|

. (20)

Accordingly, the MMSE-optimal denoiser is given by the
conditional expectation E{Xn|Zn} and can be expressed as

ηn(Zn) = E{Xn|Zn} = [ϕ1
nΩnz1

n, · · · , ϕQ
n ΩnzQ

n ], (21)

where

Ωn = βn(βnIM + Σ)−1, (22)

ϕq
n =

1
1 + Q−ϵn

ϵn
exp(M(ψn − πq

n))
, (23)

ψn =
log(|IM + βnΣ−1|)

M
, (24)

and

πq
n =

zq
n

H(Σ−1 − (Σ + βnIM )−1)zq
n

M
. (25)

Proof: Please refer to Appendix A.
Eq. (21)-Eq. (25) unveil the the essence of the denoising

process. Specifically, Eq. (24) shows that ψn is a threshold
related to the noise and residuals, while Eq. (25) shows
that πq

n is a scaled signal power as it is proportional to
zq

n
Hzq

n. Examining Eq. (21)-Eq. (23), it is noteworthy that
when πq

n < ψn, i.e., the scaled signal power is smaller than
the threshold, the denoised signal ϕq

nΩnzq
n approaches zero.

Therefore, the denoising process in ηn(·) is to shrink the input
signal with low power to zero. It is important to realize that
the MMSE-optimal denoiser ηn(·) is rather complicated as
it involves the computation of the state evolution matrix Σ,
where the matrix multiplication and expectation are needed.
Hence, we simplify ηn(·) by using the following theorem.

Theorem 1: Considering the asymptotic regime where both
the number of devices N and the length of the pilot sequences
L go to the infinity with their ratio converging to some fixed
positive values, i.e., N/L → ρ where ρ ∈ (0,∞), the state
evolution matrix Σt always remains as a diagonal matrix with
identical diagonal entries after each iteration, i.e.,

Σt = τ2
t IM , ∀t ≥ 0. (26)

Correspondingly, the signal model given in (19) reduces to

Zt,n = Xt,n + SH
n Rt = Xt,n + τtV , (27)

and the MMSE-optimal dnoiser given in (21)-(25) is simplified
as

ηn(Zn) = E{Xn|Zn} = [ϕ1
nωnz1

n, · · · , ϕQ
nωnzQ

n ], (28)

where

ωn =
βn

βn + τ2
, (29)

ϕq
n =

1
1 + Q−ϵn

ϵn
exp(M(ψn − πq

n))
, (30)

ψn = log(1 +
βn

τ2
), (31)

and

πq
n =

βnzq
n

Hzq
n

τ2(βn + τ2)M
. (32)

Finally, τ2
t can be obtained using the following recursions

for t ≥ 0:

τ2
0 = σ2 + ρϵEβ{β}, (33)

τ2
t+1 = σ2 + ρ

Q∑
q=1

Eβ{
ϕq

ββτ
2
t

β + τ2
t

}

+ ρ

Q∑
q=1

Eβ{ϕq
β(1− ϕq

β)
β2zq

n
Hzq

n

(β + τ2
t )2M

}. (34)

We omit the detailed proof here for brevity. Interested readers
can refer to theorem 1 in [8], where a similar deriva-
tion is provided. It should be mentioned that the proposed
Theorem 1 in this paper is essentially a generalization of
Theorem 1 in [8]. When each device is assigned with only one
pilot sequence, i.e., Q = 1, the proposed Theorem 1 reduces to
Theorem 1 in [8].

2) Threshold-Based Strategy: It can be seen from (28)-(30)
that for large M , we have ϕq

n → 1 if πq
n > ψn and ϕq

n → 0 if
πq

n < ψn. The asymptotic behavior of ϕq
n indicates that it

is reasonable to adopt a threshold-based strategy for solution
refinement. Meanwhile, considering the device sparsity in (7),
an element selection operation is necessitated to enforce all
the elements except the one with the largest magnitude in each
Xn to be zeros. Consequently, the proposed threshold-based
strategy should be able to perform the following two
operations.

Element Selection Operation: To surely guarantee the spar-
sity constraint in (11), we choose the largest row in each
Xn = [x1

n,x
2
n, · · · ,xQ

n ] and define the index of the largest
element as

i∗n = arg max
i

xi
n

H
xi

n,∀n ∈ N . (35)

Threshold-based Decisive Operation: After obtaining i∗n, the
binary variable vector αn = {α1

n, · · · , αQ
n } can be given as

αn =

{
ei∗n

, if κi∗n
n > 0;

0, otherwise,
(36)

where ei∗n
is a one-hot vector of length Q with only the i∗nth

element equal 1 and the others equal 0, and the corresponding
threshold is computed using (31) and (32) as

κ
i∗n
n =

z
i∗n
n

H
z

i∗n
n βn

τ2
t (βn + τ2

t )M
− log

(
1 +

βn

τ2
t

)
. (37)
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Fig. 3. Network architecture of the proposed DL-mAMPnet.

3) Limitation: Although the traditional AMP-based
algorithm can successfully recover aq

n from Y , it has some
inherent limitations: (i) The traditional AMP algorithm
implicitly assumes Xn has a prior distribution with IID
entries, which neglects the dependencies among the rows of
Xn imposed by the device-level sparsity; (ii) The calculation
of the denoiser ηt,n(·) and the threshold κn requires the exact
value of βn, which is costly to obtain in a large-scale mMTC
system with massive devices.

IV. DEEP LEARNING MODIFIED AMP NETWORK

To address the aforementioned limitations, we propose a
deep learning modified AMP network (DL-mAMPnet). The
DL-mAMPnet is constructed by unfolding the AMP algorithm
into a feedforward DNN, which inherits the mathematical
model and structure of the AMP algorithm, thereby avoid-
ing the requirements for accurate modeling. On this basis,
we introduce a few trainable parameters into the DL-mAMPnet
to learn the active probability and the large-scale fading.
By making the active probability trainable, we compensate
for the inaccuracy caused by the IID assumption in the
traditional AMP algorithm. By making the large-scale fading
coefficient trainable, we bypass the statistical measurements
for the large-scale fadings of massive devices. According to
the threshold-based strategy in Section III-C, we further design
a refinement module to guarantee the device-level sparsity and
obtain the desired aq

n.
As depicted in Fig. 3, the proposed DL-mAMPnet consists

of T uniform AMP layers and one refinement module. For the
sake of clarity, each part of the DL-mAMPnet is elaborated
respectively in the following subsection.

A. Input and Output

To facilitate the learning process of DL-mAMPnet, the
complex matrices need to be converted into the real domain
and then vectorized. To do this, we first express (8) as[

ℜ(Y )
ℑ(Y )

]
=

[
ℜ(S) −ℑ(S)
ℑ(S) ℜ(S)

] [
ℜ(X)
ℑ(X)

]
+

[
ℜ(N)
ℑ(N)

]
, (38)

where ℜ(·) and ℑ(·) denote the real and imaginary parts,
respectively. The real and imaginary parts are then concate-
nated together and vectorized as

Ỹ = vec([ℜ(Y )T ,ℑ(Y )T ]T ) ∈ R2LM×1, (39)

S̃ =
[
[ℜ(S),−ℑ(S)]T , [ℑ(S),ℜ(S)]T

]T ⊗ IM

∈ R2LM×2NQM , (40)

Fig. 4. Detailed structure of the tth AMP layer.

X̃ = vec([ℜ(X)T ,ℑ(X)T ]T ) ∈ R2NQM×1, (41)

Ñ = vec([ℜ(N)T ,ℑ(N)T ]T ) ∈ R2LM×1, (42)

where vec(·) is the vectorize operation that flattens a matrix
into a vector in the order of columns, and ⊗ is the Kronecker
product operator. Consequently, (8) can be rewritten as

Ỹ = S̃X̃ + Ñ . (43)

According to the recursive formula in (14)-(15), the input
to the DL-mAMPnet is chosen to be the the received signal,
the estimated signal, and the residual, which are initialized
as X̃0 = 0 and R̃0 = Ỹ . Meanwhile, unlike the existing
AMP-inspired network that uses X̃ [35], we adopt α =
[α1

1, · · · , α
Q
1 , α

1
2, · · · , α

Q
N ]T ∈ {0, 1}NQ×1 as the output of

DL-mAMPnet, such that αq
n can be directly obtained once

DL-mAMPnet is well-trained.

B. AMP Layer

Since each layer has the same structure, we focus on the
tth AMP layer of the DL-mAMPnet, of which the detailed
structure is illustrated in Fig. 4. Define the input as X̃t−1,
R̃t−1 and the output as X̃t, R̃t, the tth AMP layer proceeds
as follows

X̃t = ηt(X̃t−1 + BtR̃t−1;Θt), (44)

R̃t = Ỹ −AtX̃t+
R̃t−1

LM

2NQM∑
j=1

[ηt(X̃t−1 + BtR̃t−1;Θt)]′j ,

(45)

where At and Bt are trainable matrices that acts as the
matched filter and Θt = {θt,1,θt,2} is the trainable parameter
set of ηt(·).

It should be mentioned that the denoiser in (28)-(32)
cannot be applied in the AMP layer, as the complex-to-real
transformation and vectorization in (39)-(43) have changed
the dimension and distribution of the corresponding matrices.
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Following the same derivation in Appendix A but considering
X̃ as a real-valued Bernoulli Gaussian variable and changing
the dimension, ηt(·) in (28) can be expressed as

[ηt(Z̃)]j

=
βZ̃j

(β + τ2
t )

(
1 + Q−ϵ

ϵ exp(log(1 + β
τ2

t
)1/2 − Z̃

2
jβ

2(β+τ2
t )τ2

t
)
) ,

=
Z̃j

(1 + τ2
t

β )
(

1 +
√

1 + β
τ2

t
exp(log(Q−ϵ

ϵ )− Z̃
2
j

2(τ2
t +τ4

t /β)
)
) ,

(46)

where ϵ =
∑

nQnϵn/
∑

nQn is the average active probability
and Z̃j is the jth element of Z̃.

As discussed in Section II-D, ηt(·) exploits an IID assump-
tion that fails to effectively explore the correlated sparsity
pattern. To tackle this issue, we replace log(Q−ϵ

ϵ ) with a train-
able parameter θt,1 = [θt,1,1, · · · , θt,1,2NQM ]T ∈ R2NQM×1,
such that the correlation among entries of X̃ can be learned
and approximated. Meanwhile, to circumvent the need for
the prior information of the large-scale fading, we introduce
a trainable parameter θt,2 = [θt,2,1, · · · , θt,2,2NQM ]T ∈
R2NQM×1 and substitute it for β in (46). The trainable ηt(·)
can then be defined as

[ηt(Z̃)]j

=
Z̃j

(1+ τ2
t

θt,2,j
)
(

1+
√

1+ θt,2,j

τ2
t

exp(θt,1,j −
Z̃

2
j

2(τ2
t +τ4

t /θt,2,j)
)
) .

(47)

The derivative of ηt(·) is thus given by

[ηt(Z̃)]′j

=
[ηt(Z̃)]j
∂Z̃j

=
1+

√
τ2

t+θt,2,j

τ2
t

exp(θt,1,j−
Z̃

2
j

2(τ2
t+τ4

t /θt,2,j)
)(1+ Z̃

2
j

(τ2
t+τ4

t /θt,2,j)
)

(1+ τ2
t

θt,2,j
)
(
1+

√
1+ θt,2,j

τ2
t

exp(θt,1,j−
Z̃

2
j

2(τ2
t+τ4

t /θt,2,j)
)
)2 .

(48)

Note that to evade the computation of the expectation
involved in τ2, this paper adopts an empirical result where
τ2 is estimated by the standard deviation of the corrupted noise
in Z̃, i.e., τ2

t = ||R̃t||2/
√

2LM [35].
Remark 1: It is worth noting that the denoiser derived in (28)

operates in a section-wise manner, i.e., acts on Q rows of
each Xn, while the ηt(·) in the AMP layer operates row-
by-row on X . Although the section-wise manner may exploit
the correlations better than the row-wise manner, it is quite
challenging to be implemented in DNNs. This is because to
realize such section-wise manner, we have to either construct
N sublayers or impose N iterations in each AMP layer. The
former will heavily expand the network size and trainable
parameters, reducing the scalability and stunting the training
process of the DL-mAMPnet. The latter will greatly increase

the computational complexity of the DL-mAMPnet and negate
the “deep unfolding” advantage. It should also be noted that
although the AMP layer can explore the correlated sparsity
pattern with the help of trainable parameters, the device-level
sparsity constraint in (7) is not surely guaranteed. Motivated
by this consideration, we propose a felicitous method in
the refinement module that utilizes the Maxpool-MaxUnpool
operation to ensure device-level sparsity, as detailed in the
subsection below.

C. Refinement Module

The refinement module should be capable of ensuring the
device-level sparsity while extracting aq

n from X̃T with-
out explicit channel state information (CSI). To fulfil these
functionalities, two components are integrated in the refine-
ment module, namely the soft-thresholding denoising com-
ponent and the hard-thresholding decision component. The
soft-thresholding denoising component is intended to further
denoise X̃T by exploiting the hierarchical sparse structure.
The hard-thresholding decision component is aimed at imple-
menting the threshold-based strategy in (35)-(37). The detailed
structure of the refinement module is presented in Fig. 5 and
elaborated as follows.

Soft-Thresholding Denoising: As shown in Fig. 2, the two-
level sparsity exhibits a unique spatial structure that has not
been utilized in the AMP layers. Here, the soft-thresholding
denoising aims to distill X̃T using such spatial feature,
enhancing useful information while removing noise informa-
tion. To do this, we first de-vectorize X̃T and take the absolute
value as

X = |Vec−1(X̃T )| = [|ℜ(X)T |, |ℑ(X)T |]T ∈ R+2NQ×M
.

(49)

Then, a convolutional layer with 1×M kernel size is applied to
X to combine the information from all M antennas and extract
a coarse estimation of aq

n. This arrangement is motivated by
the fact that all M elements in each row of X share the same
aq

n, as observed from (6) and Fig. 2. The coarse estimation
can be expressed as fθc

(X), where fθc
(·) is the function

expression of the convolutional layer with parameter θc. After
that, an average pooling with 1 × M kernel size is applied
to X to get a 1-D average vector over M antennas. The
1-D vector ι = 1

M

∑M
m=1 X :,m is forwarded into a two-layer

fully-connected (FC) network to obtain a scaling parameter,
such that the inner features of the average value among the
2NQ rows of X can be learned. The scaling parameter is then
scaled to the range of (0, 1) using a sigmoid function, which
can be written as follows

ϑ =
1

1 + e
−fθF C1

(ι)
, (50)

where ϑ is the scaling vector and fθF C1
(·) is the function

expression of the two-layer FC network with parameter θFC1 .
Next, ϑ is multiplied by ι to get the threshold as

κST = ϑ⊙ ι, (51)

where ⊙ is the Hadamard product operator. This operation is
inspired by the fact that the threshold for soft thresholding
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Fig. 5. Detailed architecture of the proposed refinement module.

must be positive and not too large [36]. If the threshold
is larger than the largest value of fθc

(X), then the output
of soft thresholding will all be zeros, and thus the useful
information will be removed. Finally, the obtained threshold
κST is subtracted by fθc(X) and fed into a ReLU activation
function as

o = max(0, fθc(X)− κST ), (52)

where o denotes the output of the soft-thresholding denois-
ing component. We can observe from (52) that by keeping
κST in a reasonable range, the useful information can be
preserved while the noise information is eliminated. It is
worth noting that, rather than being manually set by experts,
such a threshold can be learned automatically in the proposed
soft-thresholding denoising component, removing the need for
the expertise of signal processing and the statistical character-
istic of X .

Hard-thresholding Decision: It is challenging to directly
implement the threshold-based strategy in DNNs, as (35) is
non-differentiable and will stunt the backpropagation process.
To tackle this issue, the hard-thresholding decision component
elegantly uses the Maxpool and MaxUnpool procedures to
ensure the device-level sparsity. Maxpool is a down-sampling
technique that uses a max filter to non-overlapping subregions
of the initial input [37]. For each region represented by the
filter, we will take the max of that region and create a new
output matrix where each element is the max of a region in the
original input. Maxunpool, in contrast, expands the output of
the maxpool operation to its original size by upsampling and
padding with zeros. Except for the maximum position, all the
rest elements in the unpooled matrix are supplemented with 0.

For an intuitive explanation, we illustrate the process of
Maxpool and MaxUnpool in Fig. 6. It can be observed from
Fig. 6 that in each filter, except for the largest value that
remains unchanged, all the rest elements become 0. Such
manipulation perfectly executes the element selection oper-
ation in (18). By setting the filter size as Q × 1, we enforce
that at most one non-zero row exists in the Q rows of Xn,
and therefore the device-level sparsity constraint in (11) can
be guaranteed. It should also be mentioned that the pooling
procedure is only a module that alters the dimension size

Fig. 6. Illustration of the MaxPool-MaxUnpool process.

during the deep learning process, which has no parameters
and thus has no impact on network training.

After guaranteeing the device-level sparsity, the onus
shifts to performing the threshold-based decisive operation
in (36), i.e., determining the binary sequence α by com-
paring the threshold κ

i∗n
n with the matrix obtained from the

maxpool-maxunpool procedure Mp(Mup(o)). However, some
issues exist when determining α. The first issue is that the
threshold in (37) may not be precise sufficiently because it
is derived under an mismatched IID assumption. To tackle
this issue, we look afresh at (37) and find that the threshold
is a function of β and τ . Since β has been represented by
θ2 in (47), we concatenate θT,2 and τ2

T outputted from the last
AMP layer and feed it into an FC layer with ReLU activation
function to learn the accurate threshold, which is denoted by

κHT = max(0, fθF C2(θT,2, τ
2
T )), (53)

where fθF C2 is the function expression of the FC network with
parameter θFC2.

Then, the learned threshold κHT is subtracted by
Mp(Mup(o)) and forwarded into an FC layer with param-
eter θFC3 to fulfil the threshold-based decisive operation.
The FC layer here has two functionalities: compressing the
dimension from 2NQ × 1 to NQ × 1 and converting the
κHT -Mp(Mup(o)) difference into a binary sequence. Math-
ematically, the optimal function for threshold-based binary
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Fig. 7. The curves of the optimal signum, sigmoid, and hard-thresholding
decision functions.

decision is the signum function denoted as

sng(x) =

{
1, x > 0;
0, x ≤ 0.

(54)

However, since sng(x) is non-differentiable, it cannot be
used in DNN, necessitating the development of a substitute
function.

When it comes to DL-based binary decisions, the sigmoid
function is a popular choice and has been widely used in
the literature [38], as it can map the input to the interval
within [0, 1]. The sigmoid function, nevertheless, is still inap-
plicable to the hard-thresholding decision module. The reasons
are as follows: (i) The sigmoid function returns a continuous
value between 0 and 1, implying that a threshold is further
required to distinguish the outputted value as 0 or 1. However,
it is usually non-trivial to design an appropriate threshold;
(ii) According to (36), the output of the threshold-based
decision should be strictly 0 with negative input. However,
as shown in Fig. 7, there is a region where the output is still
positive with negative input in the sigmoid function, which
may introduce additional errors. To solve the above issues,
we devise a novel hard-thresholding decision function, whose
core idea is to cascade the ReLU function with tahn function
and introduce a multiplier ϱ to approximate the cascaded
function as a signum function. The proposed hard-thresholding
decision function is given by

fϱ(x) = max(0,
eϱx − e−ϱx

eϱx + e−ϱx
). (55)

By cascading the ReLU function with tahn function, we not
only ensure that the output of the threshold-based decision is
strictly 0 with negative input, but also guarantee the output
with positive input approximates to 1 with the increment of ϱ.
The optimal signum, sigmoid, and hard-thresholding decision
functions are plotted in Fig. 7. The figure shows that with
the increase of ϱ, fϱ(·) gradually approximates to sng(x),
validating the rationality of the proposed hard-thresholding
decision function.

Remark 2: Although we restrict the application of the
hard-thresholding decision component to the non-coherent
transmission in mMTC, the proposed component can be used
in any other scenarios where the signal has a special sparsity

structure, such as the spatial modulation system. Meanwhile,
the devised hard-thresholding decision function can also be
used in any bit-level detector. That is, the hard-thresholding
decision component is a plug-and-play module with a wide
range of applications.

V. THE IMPLEMENTATION OF DL-MAMPNET

A. Parameter Initialization

In deep learning, parameter initialization plays a critical role
in speeding up convergence and achieving lower error rates.
Choosing proper initialization values is especially important
for the proposed DL-mAMPnet, as the DL-mAMPnet is built
on the AMP algorithm and thus should preserve some essential
features to ensure performance and interpretability. There are
mainly three items needed to be considered for parametriza-
tion: the trainable matrices At and Bt, the denoiser parameter
set Θt, and the refinement module parameters θRM =
{θFC1 , θFC2 , θFC3 , θC}.

1) Initializing At and Bt: It can be observed
from (44)-(45) that the DL-mAMPnet implements a
generalization of the AMP algorithm in (14)-(15), wherein
the matched filters (S,SH

n ) manifest as (At,Bt) at iteration t.
However, such generalization does not enforce Bt = AH

t

and thus may not preserve the independent-Gaussian nature
of the denoiser input (19). According to the analysis in [35],
the desired nature maintains when At = υtS with υt > 0.
Therefore, At is parameterized as υtS and (44)-(45) can be
rewritten as

X̃t = υtηt(X̃t−1 + BtR̃t−1;Θt), (56)

R̃t = Ỹ −SX̃t+
υtR̃t−1

LM

2NQM∑
j=1

[ηt(X̃t−1 + BtR̃t−1;Θt)]′j ,

(57)

the derivation of which can be found in [35] and is omitted
here for brevity. In this paper, we initialize Bt = S̃

T
and

υt = 1, since such initialization can greatly expedite the
convergence of the training process [35].

2) Initializing Θt: For θ1, we initialize each element as
log(Q−ϵ

ϵ ), i.e., initialize that each pilot sequence has the
same active probability. This is because we have no prior
information about the device activity and the transmitted pilot
sequence index. By adopting such a uniform initialization,
the initial θ1 will have the minimum Euclidean distance
from the actual value. For example, consider a device with
a 2-bit message and active indicator {1, 0, 0, 0}. If we start
with a mismatched one-hot vector, then the Euclidean distance
will be

√
2. If we initialize αn as { 1

4 ,
1
4 ,

1
4 ,

1
4}, then the

Euclidean distance will be
√

3
4 . Therefore, the uniform initial-

ization can accelerate the convergence as a shorter Euclidean
distance may lead to faster convergence.

The initial value of θ2 can be computed from the received
signal strength. Recall that each pilot sequence has a unit norm
and hn ∼ CN (0, βnIM ), each element of the initial θ2 is
roughly given by ||Ỹ ||22/

√
2K.
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3) Initializing θRM : For all parameters in the refinement
module, we adopt the He initialization [39] as it has been
mathematically proved to be the best weight initialization
strategy for the ReLU activation function [40].

Algorithm 1 Parameter Training of the DL-mAMPnet via
Layer-Wise Training Strategy
Input: Training dataset DAMP , DRM ;
Output: Trained parameter {υt,Bt,Θt}T

t=1 and θRM ;
Initialize parameters according to Section IV-B;
for t = 1 to T do

Learn {υt,Bt,Θt}t with fixed {υt,Bt,Θt}t−1
t=1 based on

the loss function (58);
end for
Learn θRM with fixed {υt,Bt,Θt}T

t=1 based on the loss
function (59);
Re-learn {υt,Bt,Θt}T

t=1 and θRM based on the loss func-
tion (59);
return {υt,Bt,Θt}T

t=1 and θRM .

B. Parameter Training

1) Training Algorithm: Aside from the network structure
and parameter initialization, the training algorithm also deter-
mines the performance of the DL-mAMPnet. The standard
training strategy is the end-to-end training where all the
parameters are optimized simultaneously by following the
back-propagation rule. However, the end-to-end training is not
appropriate for the DL-mAMPnet due to the following reasons:
(i) The AMP algorithm aims to provide an estimate X̂(Y )
based on Y that minimizes the MSE EXY ||X̂(Y ) − X||22.
If the DL-mAMPnet is trained to learn the direct mapping
from Y to α, the MSE optimality of the AMP layers may not
be achieved; (ii) Even if the AMP layers and the refinement
module are trained separately, the AMP layers can still easily
converge to a bad local optimal solution due to overfitting [41].

For these reasons, we propose a layer-wise training strategy,
the idea behind which is to decouple the training of each layer.
The details are given in Algorithm 1. There are totally T +
2 phases in the layer-wise training. In the first phase, we train
the learnable parameters of the first AMP layer. Then in the t
phase, we train the first t AMP layers with the parameters of
the first t− 1 AMP layers fixed as the parameters learned by
the first t− 1 phases. In the T + 1 phase, we train the whole
network with only the parameters of the refinement module is
learnable, while the parameters of the AMP layers are fixed
as the parameters learned by the first T phases. Finally, in the
last phase, all the parameters are initialized as the parameters
learned during the first T + 1 phases and then trained jointly.

The training dataset DAMP for the first T phases comprises
100, 000 pairs of X̃ and Ỹ , and the corresponding loss
function is the MSE loss

Lt(Ỹ ) = ||X̃t(Ỹ )− X̃||22, t = [1, · · · , T ]. (58)

The training dataset DRM for the last 2 phases has
100, 000 pairs of α and Ỹ , and the loss function is the binary

cross entropy loss

Lt(Ỹ )

=
1
NQ

NQ∑
i=1

(
α(Ỹ )i log αi + (1−α(Ỹ )i) log(1−αi)

)
,

t = [T + 1, T + 2]. (59)

The DL-mAMPnet is trained epoch by epoch with the training
dataset using the Adam optimizer, while within an epoch, the
whole training dataset is shuffled and split into batches with
the size of 500.3

2) Training Dataset: The training dataset is generated via
the following steps. (i) Generating αn: K active devices are
randomly selected among N devices. Then, each active device
is randomly assigned with a Q-dimensional one-hot vector,
and each inactive device is assigned with a Q-dimensional
zero vector. The assigned Q-dimensional vector of each device
is taken as the corresponding αn; (ii) Generating Xn: The
uplink channel of device n, i.e., hn, is first generated accord-
ing to (1). Then Xn is obtained by multiplying hn and αn;
(iii) Generating Y : The pilot sequence Sn is generated by
sampling from complex Gaussian distribution with zero mean
and variance. Given Xn and Sn, Y can be directly obtained
according to (6).

VI. SIMULATION RESULTS

In this section, extensive simulations are provided to verify
the effectiveness of the proposed algorithm. The setup is as
follows unless otherwise stated. We consider a mMTC system
with N = 100 devices for illustration purpose, although
the proposed algorithm can be used for a much larger-scale
system. Each device accesses the BS independently with
probability ϵ = 0.1 at each coherence block. The large-scale
fading coefficient for device n is βn = 128.1−36.7 log10(dn)
in dB, where dn is the distance between device n and the BS
that follows a uniform distribution within [1, 0.05] km. The
small-scale fading coefficient for each device follows the IID
multivariate complex Gaussian distribution with zero mean and
unit variance. The power spectral density of the AWGN at the
BS is assumed to be −169 dBm/Hz [8] and the bandwidth of
the wireless channel is 1 MHz.

The number of AMP layers in the DL-mAMPnet is set to
be T = 4. The training epochs and learning rate for each
training phase are set to be {2, 000, 1, 500, 1, 000, 1, 000,
1, 500, 5, 000} and {2 × 10−5, 2 × 10−5, 2 × 10−5, 2 ×
10−5, 1 × 10−5, 1 × 10−5}.4 We train the DL-mAMPnet
with 80, 000 training samples and test with 20, 000 data
samples, which are randomly drawn from DAMP for the first
4 phases and DRM for the last 2 phases. The DL-mAMPnet is
trained and tested by on an x86 PC with one Nvidia GeForce
GTX 1080 Ti graphics card, and Pytorch 1.1.0 is employed
as the backend. The traditional AMP-based algorithm with
TAMP = 50 iterations and the covariance-based method with

3It should be mentioned that the number of epochs and the learning rate
are different for each phase, which are empirically determined in Section V.

4All the parameters are empirically determined using the general workflow,
where the training starts with relatively small values and increases the values
until the learning performance cannot be further improved.
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TABLE I
SIMULATION PARAMETERS

Fig. 8. SER performance versus pilot sequence length L for J = 1 bit.

TCov = 50 iterations [18] are employed as the benchmark and
evaluated on the same dataset. In addition, the SER is adopted
as the performance metric: SER = 1

N

∑N
n=1 I(α̂n ̸= αn),

where α̂n and αn denote the estimated pilot sequence activity
for device n and its ground truth, respectively. Simulation
settings are illustrated in Table I.

A. Performance of the DL-mAMPnet

Fig. 8 depicts the SER versus L with different values
of M . It is observed that both the SER of the DL-mAMPnet
and AMP-based algorithm decrease as L and M increase.
Although the SER of the covariance-based algorithm is lowest
when L is small, it becomes saturated when L exceeds some
point, e.g., L = 40 when M = 16. This is mainly due
to the suboptimality of the fixed threshold.5 Meanwhile, the
proposed DL-mAMPnet notably outperforms the AMP-based
algorithm by a large margin. For example, the proposed
DL-mAMPnet achieves more than 10 pilot length gain over
the AMP-based algorithm when L is larger than 70, which
indicates that the proposed DL-mAMPnet can reduce the
required pilot sequence length, lowering the difficulty of pilot

5As observed from (37), the threshold is variable and related to system
parameters such as signal power and receiving antenna numbers, whereas the
covariance-based algorithm adopts a fixed threshold. Since there is no concrete
method to design such a fixed threshold, we empirically set the threshold of
the covariance-based algorithm to be βn/2 in this paper.

Fig. 9. SER performance versus number of receiving antennas M for
J = 1 bit.

design and adapting to fast-changing channels. Moreover,
although for any M , the SERs of both the DL-mAMPnet
and AMP-based algorithm decrease over L, the reduction
is faster when M is 32 as compared to that when M
is 8, which shows that increasing the number of receiv-
ing antennas can further reduce the required pilot sequence
length.

Fig. 9 shows the SER versus M for various values of L.
We observe that for the DL-mAMPnet and AMP-based
algorithm, the SER drops effectively as M increases, whereas
for the covariance-based algorithm, there are error floors in
the SER. Moreover, the DL-mAMPnet needs fewer receiving
antennas to achieve the same performance as the AMP-
based algorithm, implying that the proposed DL-mAMPnet
can reduce demand for receiving antennas, resulting in lower
deployment cost and energy consumption.

Fig. 10 plots the SER versus L, with 2 different lengths
of transmitted messages, i.e., J = 1 bit and J = 2 bits.
The number of receiving antennas is M = 16. It can
be seen that the SERs of all three algorithms increase as
the length of transmitted messages increases, which implies
that the performance of both algorithms deteriorates when
more messages are transmitted. An important point is that as
the message length increases, the performance gap between
the proposed DL-mAMPnet and the other two algorithms
increases, indicating the potential of the DL-mAMPnet to
handle long packet size.
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Fig. 10. SER performance versus pilot sequence length L with different
lengths of transmitted messages J .

Fig. 11. SER performance versus device number N with different number
of receiving antennas M .

Fig. 11 plots the SER versus device number N with different
values of M . The pilot sequence length and transmitted
message are fixed to be L = 70 and J = 1 bit, respec-
tively. As can be seen, the performance of both the proposed
DL-mAMPnet and the AMP-based algorithm deteriorates
with increased N . In terms of CS theory, a larger value
of N corresponds to a higher underdetermined ratio N/M ,
and the performance of CS-based algorithms degrades as
N/M increases. On the contrary, the performance of the
covariance-based algorithm remains nearly the same with
different device numbers. This is because the covariance-based
algorithm is essentially a maximum likelihood estimation
problem, and thus is irrelevant to the ratio N/M .

B. Visualization of the DL-mAMPnet

To offer more insights of the proposed DL-mAMPnet,
we present the visualization of the outputs of each component
of a well-trained DL-mAMPnet. For clarity, we only present
the case where N = 10 devices transmit 1-bit message with
ϵ = 0.1 active probability, L = 10 pilot sequence length, and
M = 2 receiving antennas. For visualization, we transform
the outputs of each component to the reverse grayscale images.
Specifically, the elements of each output matrix are normalized

to an interval within [0, 1], where 0 and 1 are represented
by white color and black color, respectively. It should be
mentioned that we take the absolute value of X̃ and X̃T to
show the signal strength difference more intuitively.

The output of the AMP layers and its ground truth are
shown in Fig. 12(a) and Fig. 12(b), respectively. It can be
seen that the non-zero rows of X̃ are correctly recovered,
paving the way for the subsequent refinement progress. Then,
the output of the maxpool-maxunpool procedure is visualized
in Fig. 12(c), where the largest of the two adjacent rows is
retained and the other becomes 0, demonstrating the validity
of the maxpool-maxunpool procedure in ensuring the device-
level sparsity. Fig. 12(d) and Fig. 12(e) are the visualizations
of α̂ and α, where we find that the pilot sequence activity is
perfectly estimated by the well-trained DL-mAMPnet. More-
over, it is observed from Fig. 12(c) and Fig. 12(e) that the pilot
sequence activity is correctly reserved in Fig. 12(c) (the 1st,
4th, 21st, and 24th rows), which indicates the effectiveness of
the proposed soft-thresholding denoising component.

C. Computational Complexity Analysis

For the traditional AMP-based algorithm, the computa-
tional complexity mainly comes from the matrix multi-
plication in (14)-(15) [8]. Since SH

n ∈ CQ×L, Rt ∈
CL×M , S ∈ CL×NQ, and Xt+1 ∈ CNQ×M , the com-
putational complexity for N devices and TAMP iterations
is O(4TAMP (NQLM + NQLM)) = O(8TAMPNQLM),
where the proportional constant “4” appears because a com-
plex multiplication requires 4 real multiplications, the former
“NQLM” comes from the multiplication between SH

n and Rt

for N devices and the latter “NQLM” comes from the multi-
plication between S and Xt+1. After the iterative process, the
AMP-based algorithm requires the element selection operation
(i.e., (35)) whose computational complexity is O(4NQM),
and the threshold calculation (i.e., (37)) whose computational
complexity is O(4NQM). Taking all the operations into
account, the computational complexity of the AMP-based
algorithm is given by O(8TAMPNQLM).

For the proposed DL-mAMPnet, we focus on the com-
putational complexity of online implementation. The com-
putational complexity of the AMP layers comes from
the matrix multiplication BtR̃t−1 and AtX̃t, which is
O(8TDLNQLM

2) with TDL denoting the number of AMP
layers. For the refinement module, the computational com-
plexity is mainly resulted from the FC and convolutional
layers. For a FC layer with Nl−1 input and N1 output,
its computational complexity is given by O(Nl−1N1). For
a convolutional layer with a H × W input and a Hf ×
Wf filter, its computational complexity can be expressed
as O(HWHfWf ). Therefore, the total computational com-
plexity of the refinement module is O(4N2Q2M). Conse-
quently, the computational complexity of DL-mAMPnet is
O(8TDLNQLM

2 + 4N2Q2M).
From the above discussions, it seems that the proposed

DL-mAMPnet can achieve better performance at the expense
of a higher computational complexity compared to the AMP-
based algorithm. However, as observed in Fig. 8-Fig. 10, the
DL-mAMPnet with TDL = 4 AMP layers outperforms the
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Fig. 12. A visualization of a well-trained DL-mAMPnet. (a) X̃T , the output of AMP layers; (b) The ground truth X̃; (c) Mp(Mup(o)), the output of the
maxpool- maxunpool procedure; (d) α̂, the output of the refinement module; (e) The ground truth α.

AMP-based algorithm with TAMP = 50 iterations, indicating
that the proposed DL-mAMPnet may need less computational
complexity to achieve the same SER performance with the
AMP-based algorithm.

VII. CONCLUSION

This paper has proposed a novel DL-based algorithm,
termed DL-mAMPnet, for the joint device activity and data
detection in mMTC with a single-phase non-coherent scheme.
Trainable parameters have been added in the DL-mAMPnet to
compensate for the inaccuracy caused by the IID assumption
in the traditional AMP algorithm. A refinement module has
been further designed to enhance the SER performance and
guarantee the device-level sparsity by exploiting the correlated
sparsity pattern. The proposed algorithm can be applied to
scenarios where massive users intermittently transmit small
packets, e.g., smart home and industrial control. For the
future work, we will investigate the pilot sequence design
scheme to maintain orthogonality and mitigate the inter-device
interference.

APPENDIX A
DERIVATION OF MMSE DENOISER (21)

The core idea of the proof is to derive the precise mathemat-
ical expression of the conditional probability PXn|Zn

using
the Bayes’ formula. On this basis, the conditional expectation
E{Xn|Zn} is calculated by integrating XnPXn|Zn

over Xn.
To enable the derivation of the conditional probability

PXn|Zn
, we assume xq

n is independent with each other, and
thus we have

Pxq
n

=
(

1− ϵn
Q

)
δ +

ϵn
Q

exp(−xq
n

H(βnIM )−1xq
n)

πM |βnIM |
. (60)

According to (20), the likelihood of observing zq
n given xq

n

is

Pzq
n|xq

n
=

exp(−(zq
n − xq

n)HΣ−1(zq
n − xq

n))
πM |Σ|

. (61)

Denoting k as the proportional constant, Pxq
n|zq

n
can be

computed using the Bayes’ formula as follows

Pxq
n|zq

n

= kPzq
n|xq

n
Pxq

n

= k

(
(1− ϵn

Q
)δ +

ϵn
Q

exp(−xq
n

H(βnIM )−1xq
n)

πM |βnIM |

)
×

(
exp(−(zq

n − xq
n)HΣ−1(zq

n − xq
n))

πM |Σ|

)
= k

(
(1− ϵn

Q
)
exp(−zq

n
HΣ−1zq

n)
πM |Σ|

δ +
ϵn
Q

×exp(−xq
n

H(βnIM )−1xq
n−(zq

n−xq
n)HΣ−1(zq

n−xq
n))

π2M |βnIM ||Σ|

)
.

(62)

Note that

xq
n

H(βnIM )−1xq
n + (zq

n − xq
n)HΣ−1(zq

n − xq
n)

= (xq
n − ζ)HΞ−1(xq

n − ζ) + zq
n

H∆−1zq
n, (63)

where Ξ = ( 1
βn

IM +Σ−1), ζ = ΞΣ−1zq
n, and ∆ = βnIM +

Σ, (62) can be rewritten as

Pxq
n|zq

n

= k

(
(1− ϵn

Q
)
exp(−zq

n
HΣ−1zq

n)
πM |Σ|

δ

+
ϵn
Q

exp
(
−(xq

n − ζ)HΞ−1(xq
n − ζ)− zq

n
H∆−1zq

n

)
π2M |βnIM ||Σ|

)
.

(64)

Since
∫
Pxq

n|zq
n
dxq

n = 1, k can be obtained by integrating
(64) out. Accordingly, we have

k =
(

(1− ϵn
Q

)
exp(−zq

n
HΣ−1zq

n)
πM |Σ|

+
ϵn
Q

exp
(
−zq

n
H∆−1zq

n

)
|Ξ|

πM |βnIM ||Σ|

)−1

(a)
=

(
(1− ϵn

Q
)
exp(−zq

n
HΣ−1zq

n)
πM |Σ|

+
ϵn
Q

exp
(
−zq

n
H∆−1zq

n

)
πM |∆|

)−1

, (65)

where (a) holds because | 1
βn

IM + Σ−1| = |βnIM ||Σ|/
|βnIM + Σ|.
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Substituting (65) into (62), Pxq
n|zq

n
can be determined as

Pxq
n|zq

n

=
e−(xq

n−ζ)HΞ−1(xq
n−ζ)ϵ|Σ|

ϵnπM |Ξ||Σ|+ (Q− ϵn)e−zq
n

H(Σ−1−∆−1)zq
nπM |Ξ||∆|

+
(Q− ϵn)e−zq

n
H(Σ−1−∆−1)zq

nπM |Ξ||∆|δ
ϵnπM |Ξ||Σ|+ (Q− ϵn)e−zq

n
H(Σ−1−∆−1)zq

nπM |Ξ||∆|
.

(66)

The conditional expectation E{xq
n|zq

n} is given by

E{xq
n|zq

n}

=
∫

xq
nPxq

n|zq
n
dxq

n

=
βn(βnIM + Σ)−1zq

n

1 + Q−ϵn

ϵn
|IM + βnΣ−1|e−zq

n
H(Σ−1−(Σ+βnIM )−1)zq

n

.

(67)

The MMSE-optimal denoiser in (21)-(25) can be straight-
forwardly obtained from (67) through simple mathematical
transformation.
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