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Abstract—The fundamental communication paradigms in the
next-generation mobile networks are shifting from connected
things to connected intelligence. The potential result is that cur-
rent communication-centric wireless systems are greatly stressed
when supporting computation-centric intelligent services with
distributed big data. This is one reason that makes federated
learning come into being, it allows collaborative training over
many edge devices while avoiding the transmission of raw data.
To tackle the problem of model aggregation in federated learning
systems, this article resorts to multiple reconfigurable intelligent
surfaces (RISs) to achieve efficient and reliable learning-oriented
wireless connectivity. The seamless integration of communica-
tion and computation is actualized by over-the-air computation
(AirComp), which can be deemed as one of the uplink nonorthog-
onal multiple access (NOMA) techniques without individual
information decoding. Since all local parameters are uploaded
via noisy concurrent transmissions, the unfavorable propaga-
tion error inevitably deteriorates the accuracy of the aggregated
global model. The goals of this work are to 1) alleviate the signal
distortion of AirComp over shared wireless channels and 2) speed
up the convergence rate of federated learning. More specifically,
both the mean-square error (MSE) and the device set in the model
uploading process are optimized by jointly designing transceivers,
tuning reflection coefficients, and selecting clients. Compared to
baselines, extensive simulation results show that 1) the proposed
algorithms can aggregate model more accurately and accelerate
convergence and 2) the training loss and inference accuracy of
federated learning can be improved significantly with the aid of
multiple RISs.

Index Terms—Connected intelligence, nonorthogonal multiple
access (NOMA), over-the-air federated learning (AirFL), recon-
figurable intelligent surface (RIS), resource allocation.
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I. INTRODUCTION

EMBRACING intelligence-based solutions is a pivotal step
for the next-generation communication and networking

systems to make the vision of a smarter world into reality [1],
[2]. Usually, the traditional centralized learning methods are
likely to bring a communication, computation, and storage
burden at the base station (BS) [3], due to the massive con-
nectivity of Internet of Things (IoT) devices in providing
pervasive intelligent services [4]. To address this challenge,
federated learning is emerged to achieve cost-efficient and
learning-oriented networking in a distributive manner [5].
As one of the state-of-the-art candidates of distributed arti-
ficial intelligence, federated learning enables IoT-connected
devices to build a global model collaboratively while keep-
ing the privacy-sensitive personal data unmovable [6]–[8]. In
this respect, federated learning features its unique strengths as
compared to centralized machine learning paradigms [9], [10].
For example, first, federated learning allows data collected on
different IoT devices to be used only locally, which effec-
tively avoids the wireless transmission of raw data through a
vulnerable air interface. This is greatly beneficial to preserve
data security and user privacy in many information-critical
applications [10]–[12].

In addition, only the up-to-date local model parameters need
to be communicated with the BS [10], thus the communication
overhead can be significantly reduced in federated learning.
This also helps to alleviate the unbearable propagation delay
caused by the potential traffic congestion and insufficient chan-
nel capacity [5]. Furthermore, harnessing the superposition
property of wireless multiple-access channel (MAC), over-the-
air computation (AirComp) can be adopted to complete the
local parameter communication and global model computation
processes in one concurrent transmission [13], [14]. Although
AirComp and nonorthogonal multiple access (NOMA) have
different objectives and performance metrics [15], both of
them use the same time–frequency resources to serve multiple
users from the perspective of the physical layer. Broadly
speaking, AirComp without individual information decoding
can be regarded as one of the uplink NOMA techniques [12],
[16], and thus both the completion time and spectrum effi-
ciency of the over-the-air federated learning (AirFL) system
can be improved in comparison with the conventional orthog-
onal multiple access-based schemes [10], [17]. Finally, com-
pared with the conventional cloud learning, federated learning
is inherently conducive to offloading compute-intensive tasks
from the central server to the edge devices [11], [18], which
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can speed up the processing of real-time data by mak-
ing full use of the dispersed computation resources at the
network edge [3], [8]. However, because of the problems
such as wireless signal distortion and global aggregation error
brought by the resource-constrained IoT devices, it is very
likely to worsen the training behavior of federated learning
over the noisy fading channels. Therefore, it is important
to design innovative, spectrum-efficient, and communication-
efficient solutions for federated learning over IoT-connected
intelligence networks.

By equipping a lot of low-cost passive reflecting elements
on the digitally controllable metasurface, reconfigurable intel-
ligent surfaces (RISs) make it possible to control the real-time
waveform of the incident signal. Owing to the new dimen-
sions introduced by RISs, this technological breakthrough has
brought a revolutionary trend of thought to future network
design. So far, RIS-aided communications have been recog-
nized as one of the typical futuristic wireless technologies,
due to the fact that programmable RISs are capable of flex-
ibly reconfiguring the complicated wireless environment of
radio signals in a broad range of frequency [19]. Not only
can the propagation channels between the BS and users
be proactively modified by tuning the reflection coefficient
(including the amplitude and the phase shift) of each pas-
sive reflecting element but also no extra effort is needed to
manage the sophisticated interference even though multiple
RISs are considered [20]. Moreover, although traditional active
relays that support multiple-input–multiple-output (MIMO) or
millimeter-wave communication can achieve similar effects,
RISs have better performance in terms of hardware cost
and energy consumption [21]. Consequently, the software-
controlled RISs are expected to provide a novel paradigm
to create a smart and flexible wireless environment that
can better satisfy the networking requirements of connected
intelligence. Nevertheless, the ever-increasing complexity of
wireless networks composed of a set of heterogeneous facil-
ities makes effective modeling and networking difficult if
not impossible. As a result, the efficient implementation of
RIS-aided intelligent IoT networks also faces critical chal-
lenges from architecture design to system characterization and
performance optimization [20]–[22].

Sparked by the aforementioned benefits and issues, it is
imperative to merge AirFL with RIS for the reduced aggrega-
tion error and the faster convergence rate. The specific profits
and reasons are given as follows.

1) First, the performance of AirFL can be improved by
carefully designing the reflection coefficients at the RISs
to make full use of the interference feature of MAC
channels. Through aligning multiple signals via RISs,
MAC channels can be deemed as a virtual computer
capable of matching the desired aggregation function of
AirFL. The efficient combination of communication and
computation also helps to boost the spectrum utilization
of resource-constrained IoT networks.

2) Then, the signal distortion of AirComp can be further
reduced by deploying multiple RISs to merge reflected
signals dexterously, so that the model parameters from
local users can be aggregated more accurately. Another

benefit of RISs is to provide available links for cell-
edge users blocked by obstacles, thereby enhancing the
coverage and connectivity of federated learning. After
all, more learning participants with reliable channels can
speed up the convergence rate of global aggregation.

3) Finally, compared to conventional active relays, RISs
usually do not need dedicated battery supplies for
operation. Therefore, RISs can be simply integrated
into upcoming intelligence-connected networks without
replacing any existing standard or hardware, so that the
energy efficiency of learning-oriented IoT networks can
be enhanced significantly without increasing huge extra
operating expenses.

A. Challenges and Contributions

Since native intelligence is expected to play a defining
role in the design of future networks, RIS-aided federated
learning is an attractive candidate for actualizing the efficient
integration of distributed learning and wireless communica-
tion. This caters to the fundamental needs of next-generation
wireless networks supporting massive connectivities of edge
intelligence. However, only a paucity of research attention has
been given to the investigation of AirFL systems aided by
intelligent surfaces, thereby motivating this work. So far, one
challenge is that it is still intractable to minimize the mean-
square error (MSE) of AirFL systems by jointly designing
the transmit power, receive scalar, and reflection coefficients
in a communication-efficient manner while guaranteeing the
global aggregation error requirements within the available
power budget. Moreover, another challenge is that the com-
binational optimization problem of device selection is usually
nondeterministic polynomial-time (NP) hard.

In order to reduce the propagation error of wireless com-
munication while speeding up the convergence rate of global
aggregation, we investigate both the model synchronization
and device selection problems in multi-RIS-aided AirFL
systems. Notably, RISs play a significant role in turning the
wireless channels into a functional computer to better match
the desired weighted sum aggregation of federated learning.
More precisely, multiple geodistributed RISs are deployed to
enhance the parameter aggregation from IoT devices to the
BS in an efficient manner. For the purpose of expanding
our contributions, we consider both the single-antenna and
multiantenna cases, in which the closed-form solutions and
iterative algorithms are developed to obtain suboptimal solu-
tions with a tradeoff between performance and complexity.
To the best of our knowledge, RIS-aided AirFL is still at its
nascent stage and many open issues remain to be addressed
such as the joint design of transmit–reflect–receive in multi-
RIS-aided IoT networks. The main contributions of this work
are summarized as follows.

1) Proposed Framework of Multi-RIS-Assisted AirFL: We
propose a framework of leveraging multiple RISs
to reshape wireless channels into a virtual computer
better matching the model aggregation function of
AirFL. Accordingly, we formulate resource allocation
and device selection problems for aggregation accuracy
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enhancement and convergence rate improvement by
jointly optimizing the transmit power, receive scalar,
phase shifts, and learning participants, subject to power
constraints at IoT devices and unit-modulus constraints
at RISs, while satisfying the error tolerance of AirFL.
The original problem is analyzed to be a mixed-integer
nonlinear programming (MINLP) problem. Due to the
NP-hard nature, a decomposition approach is adopted to
solve the nonconvex problem in an iterative manner.

2) Joint Optimization of Transceiver, Reflection, and Device
Selection: In order to tackle the MSE minimization
subproblem with continuous variables, we first derive
closed-form solutions for transceiver design in both sin-
gle and multiantenna cases. Next, we use semidefinite
relaxation (SDR) and successive convex approxima-
tion (SCA) to transform subproblems into convex ones
and then solve them in polynomial time complex-
ity. Afterward, we invoke difference-of-convex (DC)
programming to handle the cardinality maximization
subproblem with the combinatorial feature. Based on
this, an alternating algorithm is developed to solve the
MINLP problem.

3) Experimental Validation and Discussion: We conduct
comprehensive simulations on the synthetic and real
data sets to validate the effectiveness of the designed
algorithms. Numerical results show that the proposed
communication-efficient solutions for multi-RIS-assisted
AirFL systems outperform benchmarks, such as single-
RIS and random-phase schemes. Specifically, our algo-
rithms can achieve a better convergence rate and lower
learning error in the experiments of implementing
AirFL for linear regression and image classification.
Meanwhile, we verify that the deployment of RISs is
beneficial to alleviate propagation error and reduce sig-
nal distortion of AirFL over shared wireless channels.
Our schemes are also capable of reducing energy con-
sumption and prolonging the overall lifetime of IoT
networks.

B. Organization and Notations

The remainder of this article is organized as follows.
First, the system model of multi-RIS-aided AirFL is given in
Section III. Then, a bicriterion problem for learning behavior
improvement is formulated in Section IV where the problem
decomposition is conducted as well. Next, an alternating
optimization algorithm for resource allocation and device
selection is proposed in Section V. Finally, extensive numeri-
cal simulations are presented in Section VI, which is followed
by the conclusion in Section VII.

The key notations of this article are summarized as follows.
Scalars are denoted by italic letters, and vectors and matri-
ces are denoted by boldface lowercase and uppercase letters,
respectively. The space of m × n complex-valued matrices is
denoted by C

m×n. The distribution of a complex Gaussian
random vector with mean vector μ and covariance matrix σ 2

is denoted by CN (μ, σ 2), and ∼ stands for “distributed as.”
For a complex number x, the amplitude is denoted by |x|.

Meanwhile, Re(x) and Im(x) denote the real and imaginary
parts of x, respectively. For a complex vector x, diag(x)
denotes a diagonal matrix with each diagonal element being
the corresponding element in x.

II. RELATED WORKS

Presently, with the development of wireless communication
along with machine learning technologies, both federated learn-
ing and RISs are getting remarkable attention from academia
and industry [2], [9]. Whereas, the majority of previous works
only considered the separate implementation in simplex appli-
cation scenarios where RIS-aided communication [21] and
machine learning [10] were two decoupled areas. Due to the
decentralized feature of the data samples and computation
resources in mobile networks, a lot of prior literature, such
as [20] and [23]–[29], aimed at investigating wireless commu-
nications for distributed intelligence from the perspectives of
theoretical analysis and resource allocation. For instance, in
an effort to strike a tradeoff between energy consumption and
completion time at the network edge, Yang et al. [20] studied
an energy-efficient resource allocation problem for frequency-
domain multiple access-based federated learning systems. In
order to shorten the communication latency, Zhu et al. [16]
proposed a broadband transmission scheme for analog feder-
ated learning, which outperformed the conventional orthogonal
access. Through implementing distributed stochastic gradient
descent (SGD) for parameter updating, Amiri and Gündüz [25]
proposed digital and analog communication schemes for fed-
erated learning over a shared bandwidth-limited noisy MAC.
Furthermore, combating with the nonstationary gradient updates
in different training rounds, Guo et al. [14] redesigned the
AirFL transceiver and SGD learning rate over the time-varying
fading channels. Similarly, an importance and channel-aware
scheduling scheme was proposed in [30] to take advantage of
the diversities brought by multiuser wireless communication
and personalized local learning.

As for the wireless data aggregation techniques, a major
design goal is to minimize the global MSE value under power
constraints at edge devices, which is also applicable to the
model aggregation in AirFL scenarios [14], [29]. Specifically,
taking both the intranode interference and the nonuniform
fading into account, Chen et al. [27] analyzed the aggrega-
tion performance of AirComp and derived the closed-form
expression of the MSE outage, then receive antenna selec-
tion was adopted to avoid massive channel state information
(CSI) gathering in the MIMO networks. Then, exploiting
the functional decomposition, Liu et al. [28] focused on
the MSE minimization problem of AirComp by designing
the transceiver policy under the power constraint, where
the closed-form expressions for computation-optimal strategy
were derived. Moreover, by integrating the wireless-powered
transfer and AirComp techniques, Li et al. [31] jointly opti-
mized downlink energy transfer, uplink power control, and
receiver beamforming to minimize the aggregation error of
distributed sensing data.

Additionally, a large number of previous studies have
focused on the basic challenging problems in RIS-aided
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Fig. 1. Illustration of AirFL in multi-RIS-aided IoT networks.

wireless communication systems, including the joint design
of active and passive beamforming [21], [32]–[34], the theo-
retical analysis of fundamental performance limits [35]–[37],
as well as the interplay between RIS and other existing
technologies, such as mobile-edge computing [38], physical-
layer security [39], NOMA [40]–[42], etc. With the objective
to maximize the energy efficiency in the RIS-incorporated
cellular systems, Huang et al. [32] jointly designed the
active and passive beamforming in a downlink multiuser
communication network. By deploying RISs to eliminate
the intercluster interference in MIMO-NOMA networks for
performance enhancement, Hou et al. [36] obtained the min-
imal required number of RISs for the signal cancellation
demand. Considering the user fairness in RIS-aided systems,
the max–min problem was optimized in [33] by designing the
transmit power and phase shifts in an iterative manner. Unlike
the alternating optimization, to solve the high-dimension
problem of the sum-rate maximization in RIS-assisted MIMO
systems, Huang et al. [34] leveraged the deep reinforcement
learning (DRL) to obtain the joint design of the transmit
beamforming and the reflection matrix. Similarly, using DRL
approaches, an agent for determining the position and phase
shifts of RIS was trained in [41] to maximize the long-term
energy efficiency of NOMA networks by learning the optimal
control strategy in a trial-and-error manner. By leveraging the
RIS to mitigate interference in multicell NOMA networks,
our prior work in [42] jointly optimized the transmit power,
subchannel allocation, reflection matrix, user scheduling, and
decoding order to maximize the achievable sum rate. The work
in [20] uses multiple RISs to maximize system energy effi-
ciency by dynamically controlling the on–off states of RISs
and iteratively optimizing their corresponding phase shifts.

III. SYSTEM MODEL

As shown in Fig. 1, we consider a multi-RIS-aided AirFL
system consisting of one BS, N IoT devices, and L RISs.
Assume that both the BS and devices are equipped with a

single antenna, and each RIS comprises M reflecting elements.
Instead of aggregating all local model parameters, the number
of IoT devices selected to participate in the model uploading
process is K out of N (1 ≤ K ≤ N). The sets of selected
devices and RISs are denoted by K = {1, 2, . . . ,K} and
L = {1, 2, . . . ,L}, respectively. Let D = {D1,D2, . . . ,DK}
denote the data set collected by all selected devices, where Dk

is the raw data owned by the kth device. The diagonal matrix
of the �th RIS is denoted by �� = diag(ejθ1

� , ejθ2
� , . . . , ejθM

� ),
where θm

� ∈ [0, 2π ] represents the phase shift of the mth
reflecting element at the �th RIS.1

The block diagram of AirFL2 is illustrated in Fig. 2, which
can be deemed as a function-centric uplink NOMA technique
that does not need to decode users’ information one by one.
All devices transmit their up-to-date local models {wk|∀k ∈ K}
simultaneously over the same time–frequency resource.3 Then,
the nomographic function computed at the BS is given by [28]

ψ(w1,w2, . . . ,wK) = φ

(
K∑

k=1

ϕk(wk)

)
(1)

where wk = fk(Dk) is a parameter vector describing the
updated local model weights, and ϕk(·) and φ(·) denote the
preprocessing and the post-processing functions at the kth
device and the BS, respectively. Before computing the tar-
get function ψ(·), the BS needs to collect the target-function

1In practice, each RIS can communicate with the BS via a separate link
connected by a programmable controller that is capable of smartly adjusting
the phase shifts of all reflecting elements in real time [4], [20], [21].

2The learning process of AirFL can be easily found in other literature, such
as the works in [14], [16], [17], and [29], thus we omit it here for brevity.

3Unlike the conventional communicate-then-compute schemes, AirComp
is capable of harnessing the channel interference to integrate communication
and computation into one concurrent transmission [27]–[29]. Moreover, all
selected devices are assumed to be well synchronized so that the signals
are perfectly aligned [43]–[45], the analysis of asynchronous transmission is
beyond the scope of this article.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 02:08:19 UTC from IEEE Xplore.  Restrictions apply. 



9612 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Fig. 2. Block diagram of AirFL in RIS-aided wireless networks.

variable s, denoted by

s =
K∑

k=1

sk and sk = ϕk(wk) (2)

where sk ∈ C is the transmit symbol after preprocessing at the
kth device.

Invoking AirComp technique to aggregate distributed model
parameters over multi-RIS-aided MAC, the received signal at
the BS can be rewritten as

y =
K∑

k=1

(
hk +

L∑
�=1

ḡ���g�k

)
pksk + n0 (3)

where hk ∈ C denotes the channel response from the kth device
to the BS, g�k ∈ C

M×1 indicates the channel vector from the
kth device to the �th RIS, and ḡ� ∈ C

1×M represents the chan-
nel vector from the �th RIS to the BS. The scalar pk ∈ C is the
transmit power coefficient at the kth device, and n0 is the addi-
tive white Gaussian noise (AWGN) distributed as CN (0, σ 2),
while σ 2 is the receive noise power at the BS.

To facilitate analysis and without loss of generality, we
assume that the transmit symbols are independent and are nor-
malized with unit variance, i.e., E(sH

k sk′) = 0 ∀k �= k′ and
E(|sk|2) = 1. Then, the maximum transmit power constraint
at the kth device is presented by

E

(
|pksk|2

)
= |pk|2 ≤ P0 ∀k ∈ K (4)

where P0 > 0 is the transmit power budget at each device.
Upon receiving the analog signal y for computation, the

estimation of target variable s is expressed as

ŝ = 1√
η

ay = a√
η

K∑
k=1

h̄kpksk + a√
η

n0 (5)

where a ∈ C is a receive scalar employed at the BS. h̄k =
hk + ∑L

�=1 ḡ���g�k refers to the combined channel response,
and η > 0 is a normalizing factor.

Comparing the target-function variable s in (2) with the
observed one ŝ in (5), the corresponding error can be cal-
culated by e = ŝ − s. In this article, the MSE is adopted as
the performance metric of AirFL, which is different from the
rate-centric NOMA transmission in [33], [34], [36], [41], and

[42] that aims to maximize the system throughput or the indi-
vidual rate for the improved spectrum efficiency. Specifically,
to quantify the performance of AirFL in global aggregation,
the signal distortion of ŝ with respect to (w.r.t.) s is measured
by the MSE, expressed as

MSE
(
ŝ, s

)
� E

(∣∣ŝ − s
∣∣2

)
=

K∑
k=1

∣∣∣∣ 1√
η

ah̄kpk − 1

∣∣∣∣
2

+ σ 2|a|2
η

.

(6)

Note that the first-order Taylor approximation of the com-
puted target function ψ̂ = φ(ŝ) at s can be rewritten by

ψ̂ ≈ φ(s)+ φ′(s)
(
ŝ − s

)
. (7)

Then, with given φ′(s), the equivalent transformation between
the MSE of ψ and the MSE of s can be expressed as

MSE
(
ψ̂, ψ

)
≈ ∣∣φ′(s)

∣∣2 MSE
(
ŝ, s

)
(8)

which implies that a minimum MSE of ψ also leads to a
minimum MSE of s. At this point, it can be concluded that the
minimization of (6) is a reasonable surrogate of the minimum
MSE(ψ̂, ψ) [46]. Thus, MSE(ŝ, s) is regarded as one of the
performance metrics in the rest of this article.

IV. PROBLEM FORMULATION

Given the considered system model of multi-RIS-aided fed-
erated learning, both the aggregation error and convergence rate
depend on resource allocation and device selection schemes.
Therefore, we shall investigate the optimization of transmit
power, receive scalar, reflection coefficients, and learning par-
ticipants to minimize MSE for prediction accuracy improvement
while selecting as more devices as possible for convergence
accelerating. To this end, the objective of this work is to min-
imize the weighted sum of the MSE and cardinality, thus the
bicriterion optimization problem can be formulated as

(P0): min
p,a,θ ,K

MSE
(
ŝ, s

) − γ |K| (9a)

s.t. |pk|2 ≤ P0 ∀k ∈ K (9b)

0 ≤ θm
� ≤ 2π ∀�,m (9c)

MSE
(
ŝ, s

) ≤ ε0 (9d)

1 ≤ |K| ≤ N (9e)
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where p = [p1, p2, . . . , pK]T is the transmit power vector,
θ = [θ1

1 , θ
2
1 , . . . , θ

M
1 , θ

1
2 , θ

2
2 , . . . , θ

M
L ]T is the phase shift vec-

tor, ε0 > 0 is the aggregation error requirement, |K| = K is
the cardinality of set K, and γ > 0 is a problem parameter
to achieve a tradeoff between the aggregation error and the
convergence rate. By adjusting the parameter γ , the optimal
tradeoff curve between MSE(ŝ, s) and |K| can be swept
out. Additionally, the transmit power constraints are provided
in (9b). The phase shift constraints are given in (9c). The MSE
tolerance of global analog aggregation is presented in (9d). The
number of learning participants is limited in (9e).

The bicriterion problem (9) is an MINLP problem due to
the coupling of continuous variables and discrete variables in
both the objective function and constraints. More specifically,
the original problem (9) is still intractable even for the case
without RISs, i.e., L = 0, due to the nonconvex objective
function and the combinatorial features of device selection.
One can know that it is highly intractable to directly find
the global optimal solution of the NP-hard problem (9). Upon
this, in order to address this MINLP problem (P0) effectively,
we propose to decouple it into two subproblems (P1) and
(P2). Specifically, if the set of selected device K is fixed,
problem (9) becomes subproblem (10) of MSE minimization.
If the transmit power vector p, the receive scalar a and the
phase shifts θ are fixed, problem (9) becomes subproblem (11)
of combinatorial optimization.

1) MSE Minimization: Given the set of device selection,
the first objective is to minimize MSE by dynamically
controlling the phase shifts of each RIS and optimizing
the transmit power of each selected device as well as
the receive scalar at the BS, subject to power constraints
for devices and unit-modulus constraints for RISs. As a
result, the corresponding MSE minimization subproblem
is given by

(P1): min
p,a,θ

MSE
(
ŝ, s

)
(10a)

s.t. (9b) and (9c). (10b)

2) Combinatorial Optimization: Given the transceiver
design and the reflection vector, the second objective
is to minimize the aggregation error and maximize the
number of selected devices at the same time by solving
the following combinatorial optimization subproblem,
subject to the MSE requirement for global aggregation
and the cardinality constraint for participant number,
which can be formulated as

(P2): min
K

MSE
(
ŝ, s

) − γ |K| (11a)

s.t. (9d) and (9e). (11b)

The MSE minimization problem (10) is nonlinear and non-
convex even for the single-device case with K = 1, due to the
close coupling of p, a, and θ in MSE(ŝ, s). Not to mention
that problem (10) is still nonconvex even when we only check
the feasibility of phase shifts design. Moreover, the combina-
torial optimization problem (11) with multiple constraints is
NP-hard and is nontrivial to obtain a high-performance solu-
tion as well. Furthermore, problem (10) is still a challenging

issue even when some simplified cases are considered, while
it is also almost impossible to obtain a closed-form solu-
tion to problem (11). Fortunately, some common relaxation
approaches can be adopted to transform the nonconvex sub-
problems into convex ones, which can be solved separately
and alternatively over iterations. This motivates us to decom-
pose the original problem into multiple subproblems. Thus, an
intuitive approach is to adopt the alternating optimization tech-
nique for solving the nonlinear and nonconvex problem (9) in
an efficient manner, i.e., only optimize one variable in a sin-
gle step, then repeat this over all variables in turn until the
termination condition is satisfied.

However, due to the rapidly varying CSI, it is impractical
and not cost effective for the resource-scarce devices to acquire
global CSI when they allocate transmit power for model
uploading. To reduce the high signaling overhead of CSI
feedback, it is of significance to develop a communication-
efficient scheme for distributed power allocation. Furthermore,
one straightforward approach to find the optimal set of partici-
pating devices is the exhaustive search, but it inevitably results
in an unacceptable computational complexity, i.e., O(2N). As
a result, to avoid the exponential complexity, it is imperative
and desirable to design computation-efficient algorithms with
polynomial time complexity.

To illustrate the problem decomposition, we provide a tree
diagram in Fig. 3 to clearly delineate the connections between
the key reformulated subproblems and the corresponding solu-
tions. Specifically, when the set of selected devices is fixed, the
nonconvex MSE minimization subproblem (10) is solved by the
derived closed-form solutions and the developed SCA-based
algorithm. When the transceiver and reflection coefficients are
fixed, finding the optimal solution is still nontrivial due to the
combinatorial property of subproblem (11) in terms of the device
selection. Inspired by the DC representation method described
in [47], a natural way to address it is invoking the DC program-
ming. Additionally, we provide a flowchart in Fig. 4 to draw
the steps of the proposed alternating optimization algorithm for
solving resource allocation and device selection problems in
single-antenna cases. The flowchart for multiantenna cases can
be obtained similarly. Our specific solutions to subproblems
in terms of transmit power, receive scalar, phase shifts, and
device selection are presented in Section V.

V. ALTERNATING OPTIMIZATION

A. Transmit Power Allocation

Using the channel estimation approaches designed in [48]
and [49], the global CSI is assumed to be available at the BS,
while each local device only knows the receive scalar a as
well as its own CSI. Furthermore, given the vector of phase
shifts θ in subproblem (10), the optimal transmit power at the
kth device can be derived in closed form. Specifically, through
minimizing MSE(ŝ, s) in the objective function (10a), we have∑K

k=1 |ah̄kpk/
√
η−1|2 = 0. Then, the optimal transmit power

at the kth device is given by

p∗
k = √

η

(
ah̄k

)H

∣∣ah̄k
∣∣2

∀k ∈ K (12)
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Fig. 3. Overview of the problem decomposition and proposed methods to subproblems.

Fig. 4. Flowchart of the proposed alternating optimization algorithm.

where the channel condition h̄k in (12) can be further tuned
by the multiple geodistributed RISs, thereby reducing the
energy consumption of transmitters and prolonging network
lifetime.

Combining the transmit power constraints for all devices
in (9b), the normalizing factor η employed at the BS can be
obtained by

η = P0 min
k

∣∣ah̄k
∣∣2

(13)

which is determined by the transmit power budget P0 and
the minimum combined channel gain |h̄k|2 among all devices
as well as the receive scalar a at the BS. Hence, one can
see from (12) that the optimal transmit power p∗

k at the kth
device only depends on its own CSI h̄k, while other parame-
ters, such as η and a, are directly obtained from the BS in a
broadcasting manner. This is conducive to the implementation
of semidistributed power control, thus further saving system
bandwidth and mitigating traffic congestion in resource-scarce
IoT networks. More specifically, the individual cascaded CSI
h̄k at the kth device can be effectively estimated from the
downlink multicasting pilot signals.

Combining (12) and (13), the MSE measurement in (6) is
further rewritten as

MSE
(
ŝ, s

) = σ 2|a|2
P0 min

k

∣∣ah̄k
∣∣2
. (14)

Then, the MSE minimization problem (10) can be reformu-
lated as

min
a,θ

max
k

σ 2|a|2
P0

∣∣ah̄k
∣∣2

s.t. (9c). (15)

Proposition 1: When the BS is equipped with Nr antennas,
the receive vector can be denoted by a ∈ C

Nr×1 and the com-
bined channel vector becomes h̄k ∈ C

Nr×1. Then, similar to
the solutions obtained in (12), the optimal transmit power at
the kth device and the normalizing factor at the BS can be
derived as

p∗
k = √

η

(
aH h̄k

)H

∥∥∥aH h̄k

∥∥∥2
∀k ∈ K (16)

η = P0 min
k

∥∥∥aH h̄k

∥∥∥2
(17)

where h̄k = hk + ∑L
�=1 Ḡ���g�k, hk ∈ C

Nr×1 is the channel
vector between the BS and the kth device, and Ḡ� ∈ C

Nr×M

is the channel matrix from the �th RIS to the BS.

B. Receive Scalar Control

To effectively solve the min–max problem (15) of joint
reflection and receive, we reformulate it into a minimization
problem with nonconvex quadratic constraints, i.e.,

min
a,θ

|a|2 (18a)

s.t.
∣∣ah̄k

∣∣2 ≥ 1 ∀k ∈ K (18b)

(9c). (18c)

Next, the closed-form solutions are provided for the optimal
design of receive scalar and reflection matrix.
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Theorem 1: The optimal receive scalar a∗ to problem (18)
can be given by ∣∣a∗∣∣ = 1

mink
∣∣h̄k

∣∣ . (19)

Meanwhile, the optimal reflection matrix �∗
� satisfies

arg

(
L∑
�=1

ḡ��∗
�g
�
k

)
= arg(hk) ∀k ∈ K (20)

where arg(·) is a function that returns the phase shift of the
input complex number.

Proof: See Appendix A.
It can be noticed that the objective value of problem (18) just

depends on the amplitude of the receive scalar a, we thus only
need to optimize |a| and the phase shift of a can be arbitrary,
which is confirmed by the closed-form solution (19) obtained
in Theorem 1. Furthermore, due to the implicit expression
in (20), one can know that the optimal reflection matrix �∗

� is
not unique, the approach to find a feasible one will be proposed
in Section V-C. As an extension, the receiving control problem
in the multiantenna case at the BS is given as follows.

Corollary 1: Considering the multiantenna case with the
solutions derived in Proposition 1, the problem (18) in the
multiantenna case can be rewritten as

min
a,θ

‖a‖2 (21a)

s.t.
∥∥∥aH h̄k

∥∥∥2 ≥ 1 ∀k ∈ K (21b)

(9c). (21c)

According to problem (21) in Corollary 1, when the phase
shifts θ are fixed, the subproblem of receive vector control in
the multiantenna case is given by

min
a

‖a‖2 s.t. (21b). (22)

To address the nonconvexity of problem (22), the matrix lifting
technique is invoked as an intuitive method to rewrite it as
a semidefinite programming (SDP) problem. Specifically, we
first introduce auxiliary variables Hk = h̄kh̄

H
k and A = aaH

while satisfying A � 0 and rank(A) = 1. Then, problem (22)
can be shown to be equivalent to the following problem (23)
with a nonconvex rank-one constraint:

min
A

tr(A) (23a)

s.t. tr(AHk) ≥ 1 ∀k ∈ K (23b)

A � 0 (23c)

rank(A) = 1. (23d)

Thereby, the SDR technique can be applied to find an upper
bound for the optimal solution of problem (23). The rank-one
constraint (23d) is simply omitted to relax problem (23) into
a convex one, given by

min
A

tr(A) (24a)

s.t. (23b) and (23c). (24b)

Since the only nonconvex constraint of rank(A) = 1 is
dropped, the resulting problem (23) can be efficiently solved

by off-the-shelf optimization toolkits such as CVX [50]. We
can recover the optimal receive scaling vector a∗ by using
the rank-one decomposition A∗ = a∗a*H, if the obtained
optimal solution A∗ satisfies rank(A∗) = 1. Otherwise, when
rank(A∗) �= 1, through calculating the maximum eigenvalue λ
and the eigenvector u via Ã∗ = λuuH , a suboptimal rank-one
solution can be obtained to approximate the optimal solution
A∗. In this way, a suboptimal receive scaling vector ã∗ can
be approximately calculated by ã∗ = √

λu. As a surrogate
approach, if the obtained solution A∗ fails to be rank-one, the
Gaussian randomization method [42], [51] can be invoked to
find a feasible solution to problem (23).

Note that dropping the rank-one constraint directly also
brings limitations such as performance loss, especially when
the SDR is not tight for problem (23). To this end, the SCA
method is adopted in the following to solve problem (22) in
an efficient manner. First, some auxiliary variables are intro-
duced to represent the real part and the imaginary part of aH h̄k,
which is given by

bk = [
x̄k, ȳk

]T ∀k ∈ K (25)

where x̄k = Re(aH h̄k), ȳk = Im(aH h̄k). Then, the nonconvex
constraint (21b) becomes ‖aH h̄k‖2 = ‖bk‖2 ≥ 1 ∀k ∈ K,
which is still nonconvex [46]. To solve problem (21) with the
SCA method, the first-order Taylor expansion is adopted to
obtain the lower bound of the nonconvex part based on the
previous iteration, i.e.,

‖bk‖2 ≥
∥∥∥b(z)k

∥∥∥2 + 2
(

b(z)k

)T(
bk − b(z)k

)
≥ 1 ∀k ∈ K (26)

where b(z)k is the solution obtained at the zth iteration.
Thus, with the help of the auxiliary variables defined

in (25), the nonconvex constraint (21b) can be replaced with
its approximation (26) at each iteration. Then, problem (22)
can be transformed into the following tractable form:

min
a,{bk}

‖a‖2 s.t. (25) and (26) (27)

which is convex and can be efficiently solved by CVX as well.
Specifically, we first solve problem (24) to obtain an initial
solution of a(0) and {b(0)k }. Then, the achievable performance
can be continuously improved by solving problem (27) in an
iterative fashion. Thus, based on the above analysis for the
multiantenna case at the BS, the SDR-based algorithm for
receive vector control can be summarized in Algorithm 1.

C. Phase Shifts Design

Although the implicit expression of the optimal reflection
matrix has been given in (20), it is still difficult to search
an optimal solution due to its nonuniqueness and the curse
of dimensionality. Therefore, it is necessary to develop an
efficient method to solve the problem of phase shifts design
suboptimally. Specifically, given the receive scalar a, the
problem (18) is reduced to a feasibility-check problem and
can be reformulated as

find
θ

θ (28a)

s.t. (9c) and (18b). (28b)
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Algorithm 1 SDR-Based Algorithm for Receiving Control
1: Initialize the accuracy ε, the maximum iteration number

N1, and the current iteration index n1 = 0.
2: Given p and θ , compute A∗ by solving (24).
3: if rank(A∗) = 1 then
4: Recover a∗ by calculating A∗ = a∗a∗H.
5: else
6: Compute the eigen-decomposition Ã∗ = λuuH.
7: Obtain a(0) = ã∗ = √

λu.
8: Derive {b(0)k } =

{[
Re(ã∗Hh̄k), Im(ã∗Hh̄k)

]
|∀k

}
.

9: repeat
10: Compute a(n1+1) and {b(n1+1)

k } by solving (27).
11: Update n1 := n1 + 1.
12: until |a(n1) − a(n1−1)|2 < ε or n1 > N1.
13: end if
14: Output the optimal a∗ or the converged solution a(n1).

Since only a feasible solution of the phase shifts θ can be
obtained by solving problem (28), it remains unknown whether
the objective value of (18) will monotonically decrease or
not over iterations. From the closed-form solution obtained
in (19), one can know that the value of mink |h̄k| should be
maximized to enforce the reduction of the receive scalar |a|
over iterations. To this end, we transform the above feasibility-
check problem (28) into a max–min problem with an explicit
objective to enforce the reduction of |a| for achieving bet-
ter performance and faster convergence. As a result, the
problem (28) is rewritten as

max
θ

min
k∈K

∣∣h̄k
∣∣ s.t. (9c). (29)

Then, we introduce an auxiliary variable β = mink∈K |h̄k|
to further transform the max–min problem (29) into a joint
maximization problem w.r.t. θ and β, which is given by

max
θ ,β

β (30a)

s.t.
∣∣h̄k

∣∣2 ≥ β ∀k ∈ K, (30b)

(9c). (30c)

It is obvious that both the objective and constraints are lin-
ear functions for β, but the quadratically constraint (30b) is
nonconvex for θ . Additionally, due to the uncertainty of phase
rotation [21], the problem (30) cannot be straightforwardly
transformed into a tractable second-order cone programming
(SOCP) optimization problem. Therefore, we combine the
penalty method and SCA technique to approximately solve
it in the following content.

Let vm
� = ejθm

� , then the equivalent channel fading after
receiver scaling w.r.t. the �th RIS for the kth device can be
denoted as

ḡ���g�k = ��
kv� (31)

where v� = [ejθ1
� , ejθ2

� , . . . , ejθM
� ]T and ��

k = ḡ�diag(g�k).
As such, constraint (30b) is transformed as∣∣∣∣∣hk +

L∑
�=1

ḡ���g�k

∣∣∣∣∣
2

=
∣∣∣∣∣hk +

L∑
�=1

��
kv�

∣∣∣∣∣
2

≥ β ∀k. (32)

With the above substitutions (32), the joint maximization
problem (30) can be rewritten as

max
v,β

β (33a)

s.t.
∣∣vm
�

∣∣ = 1 ∀�,m (33b)

|hk + �kv|2 ≥ β ∀k (33c)

where v = [v1, v2, . . . , vL]H and �k = [�1
k,�

2
k, . . . ,�

L
k ].

Although the variables and constraints in (33) have changed
and are different from those in (30), it is still intractable to
solve problem (33) directly and optimally on account of the
nonconvex constraints (33b) and (33c).

To transform constraint (33b) into a more tractable form,
through introducing a positive penalty parameter ζ > 0,
the penalty function method is adopted to reformulate
problem (33), which is given by

max
v,β

β + ζ

L∑
�=1

M∑
m=1

(∣∣vm
�

∣∣2 − 1
)

(34a)

s.t.
∣∣vm
�

∣∣ ≤ 1 ∀�,m, (34b)

(33c). (34c)

It can be observed that if the punished component (|vm
� |2 − 1)

in the objective function (34a) is enforced to be zero as
the search proceeds, then we can obtain an optimal solution
to problem (34). Otherwise, we can claim that the current
solution is likely to be further improved over iterations.

Next, in order to tackle the nonconvex objective func-
tion (34a), we apply the common SCA method to approximate
it as β+2ζ

∑L
�=1

∑M
m=1 Re((vm(z)

� )H(vm
� −vm(z)

� )), where vm(z)
�

is obtained at the zth iteration. Likewise, we use the first-order
Taylor expansion to deal with the nonconvex constraint (33c),
which can be expressed as

|hk + �kv|2 ≥ 2Re

((
hk + �kv(z)

)H
�k

(
v − v(z)

))

+
∣∣∣hk + �kv(z)

∣∣∣2 ≥ β ∀k ∈ K (35)

where v(z) is the converged value at the zth iteration.
Consequently, replacing the intractable parts (34a) and (33c)

with their approximations given above, the nonconvex
problem (34) is approximated by

max
v,β

β + 2ζ
L∑
�=1

M∑
m=1

Re

((
vm(z)
�

)H(
vm
� − vm(z)

�

))
(36a)

s.t. (34b) and (35). (36b)

Since the objective function (36a) is linear and the feasible
set with constraint (36b) is convex, problem (36) is a jointly
convex optimization problem w.r.t. variables v and β. The
details of using the SCA method to solve problem (36) at
each iteration are summarized in Algorithm 2. Analogous to
the previous analysis, the developed SCA-based algorithm can
be extended to the multiantenna case without much effort, thus
the details are omitted here for brevity.
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Algorithm 2 SCA-Based Algorithm for Phase Shifts Design

1: Initialize v(0), β(0), the tolerances ε1 and ε2, the maximum
iteration number N2, and set the current iteration number
as n2 = 1.

2: repeat
3: Compute (v(n2), β(n2)) by solving problem (36).
4: Calculate δ1 = 2ζ

∑
�

∑
m Re((vm(n2−1)

� )H(vm(n2)
� −

vm(n2−1)
� )).

5: Calculate δ2 = β(n2) − β(n2−1).
6: Update n2: = n2 + 1.
7: until (δ2

1 ≤ ε1 and δ2
2 ≤ ε2) or n2 > N2.

8: Output the converged solutions v(n2) and β(n2).

D. Device Selection

Substituting (14) into (11), the combinatorial optimization
problem w.r.t. device selection is rewritten as

min
K

σ 2|a|2
P0 min

k

∣∣ah̄k
∣∣2

− γ |K| (37a)

s.t. |a|2 − ρ
∣∣ah̄k

∣∣2 ≤ 0 ∀k ∈ K (37b)
1 ≤ |K| ≤ N (37c)

where ρ = ε0P0/σ
2 is a constant.

The objective function (37a) is not only related to the set
cardinality |K| but also depends on the minimum equivalent
channel gain. Thus, solving this minimization problem (37)
is highly intractable as it requires a complex combinato-
rial optimization where the elements in K directly affect
both the value of mink |ah̄k|2 and the number of feasible
constraints (37b). To support efficient algorithm design, we
propose to reformulate the problem (37) as a joint optimization
problem presented in the following lemma.

Lemma 1: Let τ = (ρ̄/[mink |ah̄k|2]), where ρ̄ =
([σ 2|a|2]/γP0). Then, the problem (37) can be equivalently
transformed into the following joint maximization problem:

max
K,τ

|K| − τ (38a)

s.t. ρ̄ − τ
∣∣ah̄k

∣∣2 ≤ 0 ∀k ∈ K (38b)

1 − ρ
∣∣h̄k

∣∣2 ≤ 0 ∀k ∈ K (38c)
1 ≤ |K| ≤ N. (38d)

Proof: See Appendix B.
Note that a tradeoff relationship between |K| and τ is

formed in problem (38). Specifically, if the number of fea-
sible constraints is increased (i.e., a larger |K|), then the
value of τ in (38b) shall be larger as well, which may
make the objective value decrease and vice versa. To solve
this nontrivial problem, we first introduce an auxiliary vec-
tor e = [e1, e2, . . . , eN] ∈ R

N+, then the problem (37) can be
equivalently reformulated as

min
e∈RN+,τ

‖e‖0 + τ (39a)

s.t. ρ̄ − τ
∣∣ah̄k

∣∣2 ≤ ek ∀k ∈ K (39b)

1 − ρ
∣∣h̄k

∣∣2 ≤ ek ∀k ∈ K (39c)
1 ≤ |K| ≤ N (39d)

where ‖e‖0 is the �0 norm and is equal to the number of
nonzero elements in e, and R

N+ denotes the nonnegative space
of 1 × N real-valued vector

Thus, it can be known from (39) that the nth device should
be selected to participate in the model uploading process if
en = 0, n = 1, . . . ,N. To handle the nonconvexity of (39a),
the �0 norm can be rewritten as the difference of two convex
functions, which is given by [47]

‖e‖0 = min{k : ‖e‖1 − |||e|||k = 0, 0 ≤ k ≤ N} (40)

where ‖e‖1 is the �1 norm and is calculated by the sum of
all absolute values, and |||e|||k is the Ky Fan k norm and is
obtained by the sum of largest-k absolute values.

Replacing (39a) with (40), problem (39) is expressed as the
DC programming problem

min
e,τ

‖e‖1 + τ − |||e|||k (41a)

s.t. (39b) and (39c) (41b)

e � 0 (41c)

where e � 0 denotes that all elements in vector e are greater
than or equal to zero.

Although problem (41) is nonconvex, it can be solved by
the majorization–minimization algorithm [52] in an iterative
fashion. To ensure a convergent solution, we add quadratic
terms to make both g̃ and h̃ be α-strongly convex functions.
Meanwhile, the indicator function I(e) can be denoted by

I(e) =
{

0, if e � 0
+∞, otherwise.

(42)

Then, the DC objective (41a) is rewritten as the difference
of two strongly convex functions, i.e., g̃ − h̃, which can be
given by

f̃ = g̃ − h̃ = ‖e‖1 + τ − |||e|||k + I(e) (43)

where g̃ = ‖e‖1 + τ + (α/2)‖e‖2
F + I(e) and h̃ = |||e|||k +

(α/2)‖e‖2
F .

By replacing the nonconvex part h̃ with its linear approx-
imation, problem (41) can be reconstructed as the following
jointly convex optimization problem:

min
e,τ

g̃ − 〈∂e(z) h̃, e〉 (44a)

s.t. (39b), (39c), and (41c) (44b)

where e(z) is the obtained solution at the zth iteration, ∂e(z) h̃ is
the subgradient of h̃ w.r.t. e at e(z), and 〈∂e(z) h̃, e〉 denotes the
inner product of two vectors. Specifically, the subgradient of
h̃ w.r.t. e can be given by

∂eh̃ = ∂|||e|||k + αe (45)

where the nth entry of ∂|||e|||k can be computed by

∂|||e|||k =
{

sign(en), |en| ≥ |e(k)|
0, |en| <

∣∣e(k)∣∣. (46)

The proposed DC-based algorithm for solving problem (44)
is summarized in Algorithm 3. Additionally, the process of
using DC programming to solve the device selection problem
in the multiantenna case at the BS can be developed similarly,
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Algorithm 3 DC-Based Algorithm for Device Selection

1: Initialize e(0), τ (0), the tolerance ε, the maximum iteration
number N3, and set n3 = 0.

2: repeat
3: Calculate the subgradient ∂e(n3) h̃.
4: Compute the inner product 〈∂e(n3) h̃, e〉.
5: Obtain (e(n3+1), τ (n3+1) ) by solving problem (44).
6: Update n3: = n3 + 1;
7: until the decrease value of (44a) is below ε or n3 > N3.
8: Output the converged solution (e(n3), τ (n3)).

Algorithm 4 Alternating Optimization Algorithm for Solving
Problem (9)

1: Initialize a feasible solution (p(0), a(0), v(0), e(0)), the
maximum iteration number is denoted by N4, and set the
current iteration number as n4 = 0.

2: repeat
3: Step 1: transmit power allocation
4: Given (a(n4), v(n4), e(n4)), obtain the transmit power

p(n4+1) and normalizing factor η(n4+1) by using the
closed-form expressions in (12) and (13).

5: Step 2: receive scalar control
6: Given (p(n4+1), v(n4), e(n4)), calculate scalar a(n4+1) by

using the closed-form solution derived in (19).
7: Step 3: phase shifts design
8: Given (p(n4+1), a(n4+1), e(n4)), solve the reflection

design subproblem (36) to obtain v(n4+1) by using
Algorithm 2.

9: Step 4: device selection
10: Given (p(n4+1), a(n4+1), v(n4+1)), solve the device selec-

tion subproblem (44) to obtain e(n4+1) by using
Algorithm 3.

11: Update n4 := n4 + 1.
12: until the objective value of (9) converges or n4 > N4.
13: Output the converged solution (p(n4), a(n4), v(n4), e(n4)).

which is omitted here for brevity. Till now, one can see that
the decoupled subproblems have been transformed into the
solvable range of existing optimization toolkits one by one.

E. Convergence and Complexity

According to the derived closed-form solutions and the
developed iterative algorithms in the previous sections, an
alternating optimization algorithm is proposed to solve the
original challenging problem (9). The overall algorithm frame-
work for dealing with the single-antenna case is given in
Algorithm 4. According to the closed-form solutions of the
transceiver design derived in (12) and (13), the first step
of Algorithm 4 is to allocate the transmit power at devices
and tune the normalizing factor at the BS. Then, with the
optimal design of receive scalar obtained in (19), the second
step of Algorithm 4 is to control the scaling factor employed
at the BS. Next, using the converged solutions output by
Algorithm 2, the third step of Algorithm 4 is to adjust the
reflection matrix at each RIS. In the fourth step, the devices
participating in the model updating process are selected

by the BS based on the DC algorithm, i.e., Algorithm 3.
Previously, a holistic flowchart of our designed alternating
optimization algorithm has been given in Fig. 4. In addition,
the alternating optimization algorithm for solving the prob-
lems in the multiantenna case is analogous to the processes of
Algorithm 4, the main differences are: 1) replacing the closed-
form expressions (12) and (13) with the solutions obtained
in Proposition 1; 2) solving the subproblem (22) to obtain
a using Algorithm 1; and 3) extending Algorithms 2 and 3
to the multiantenna cases. In the following, the convergence
and complexity of our proposed four-step Algorithm 4 are
analyzed.

At the zth iteration of Algorithm 4, the obtained solution
is denoted by (p(z), a(z), v(z), e(z)). Then, the corresponding
objective value can be given by U(z) = U(p(z), a(z), v(z), e(z)).
Owing to the continuous refinement of the solutions obtained
by executing steps 1–4 in Algorithm 4, the objective value of
the original problem (9) is nonincreasing. Meanwhile, consid-
ering the fact that the MSE value is lower bounded by zero
and the number of devices is upper bounded by N, thus the
sequence {U(z)} is lower bounded and is capable of at least
converging to a locally optimal solution of the original MINLP
problem (9), if not an optimal one.

When the reformulated subproblems are solved by CVX, the
interior point method is considered, unless otherwise stated.
For Algorithm 4, the main complexity of solving problem (9)
lies in solving the phase-shifting design subproblem (36) with
Algorithm 2 (i.e., step 3) as well as dealing with the device
selection subproblem (44) with Algorithm 3 (i.e., step 4).
More specifically, the dimension of variables to be solved
in Algorithm 2 is LM + 1. Hence, the complexity is given
by O(N2(LM + 1)3), where N2 is the maximum iteration
number to check feasibility. To solve the DC programming
problem (41), the second-order interior point method [53]
is adopted by Algorithm 3, and then the computational cost
can be given as O(N3(N + 1)3), where N3 is the maximum
iteration number. As a result, the total complexity of solv-
ing the MINLP problem (10) with Algorithm 4 is O1 =
O(N2N4(LM+1)3+N3N4(N+1)3), where N4 is the maximum
iteration number to obtain a converged solution. Regarding the
complexity of solving problems in the multiantenna cases, it
mainly depends on steps 2-3-4. In the second step, the com-
plexity of Algorithm 1 consists of two parts: 1) the initial
process and 2) the iterative process. Specifically, the complex-
ity of solving problem (24) during the initialization is given by
O((N2

r +K)3.5) [51], and the complexity of solving the convex
problem (27) at each iteration is given by O((Nr+2K)3). Thus,
the total complexity of solving problem (22) with Algorithm 1
is bounded by O((N2

r + K)3.5 + N1(Nr + 2K)3). Accordingly,
the complexity of using an alternating optimization technique
to solve problems in the multiantenna case can be given by
O2 = O(N4(N2

r +K)3.5 +N1N4(Nr +2K)3 +N2N4(LM+1)3 +
N3N4(N + 1)3).

VI. EXPERIMENTAL SETTINGS AND RESULTS

A. Simulation Settings

As shown in Fig. 5, we consider that there are N = 6
IoT devices, L = 3 RISs, and one BS in the AirFL system,
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Fig. 5. Simulation setup of multi-RIS-aided AirFL systems (top view).

where all devices are uniformly distributed in a square area
of size 100 × 100 (in meters) with the BS located at its
center [20]. In the three-dimensional (3-D) Cartesian coor-
dinates, the location of the �th RIS is given by (x�, y�, z�) =
(50 cos(2π�/L), 50 sin(2π�/L), 20), and each RIS is equipped
with M = 60 reflecting elements. It is assumed that all devices
are on the horizontal plane, and the BS is located at (0, 0, 25).
Moreover, the maximum transmit power at each device is set
as P0 = 23 dBm, and the noise power is σ 2 = −80 dBm.
Other parameters are set to γ = 0.2 and ε0 = 0.01. The chan-
nel gain equals to the small-scale fading multiplied by the
square root of the path loss, refer to [42] for specific settings
of the channel model.

To verify the superiority of the designed algorithms for
federated learning systems aided by multiple RISs (labeled
“FL with multi-RIS”), we train a linear regression model in
a federated manner to predict the relationship between the
input x and the output y [26]. Note that x and y satisfy
y = −3x + 2 + 0.5 × n0, where the input data x is randomly
generated from [0, 1], and the Gaussian noise n0 follows
N (0, 1). Specifically, the regress function in MATLAB is
invoked to fit 30 on-device samples for linear regression at
each iteration. Moreover, the proposed FL framework is also
adopted to train a 6-layered convolutional neural network
(CNN) for image classification on the MNIST data set, and a
50-layered residual network (ResNet) on the CIFAR-10 data
set. For comparison purposes, the following four schemes are
considered as benchmarks in our experiments.

1) FL Without RIS: Only one BS and N devices are consid-
ered in the federated learning system, where AirComp
is adopted to compute specific functions via concurrent
transmission over multiaccess channels.

2) FL With Single-RIS: Compared to the above scheme,
one central RIS is deployed at (50, 0, 20) to assist the
model uploading from devices to the BS. For the fairness
of comparison, the number of reflecting elements for the
central RIS equals to L × M.

Fig. 6. Example of implementing FL for linear regression.

3) FL With Random-RIS: The single RIS with random
phase shifts is also considered as one benchmark. Note
that the elements in θ are randomly chosen from
[0, 2π ], while other variables are solved by our proposed
algorithms.

4) FL With Multi-AF: The deployment of multiple amplify-
and-forward (AF) relays is the same as that of FL with
multi-RIS scheme. Namely, there are three active AF
relays that work in half-duplex mode, and each consists
of M antennas.

B. Performance Evaluation

1) Implementing FL for Linear Regression: In Fig. 6, an
ideal scheme called “optimal FL” is invoked to illustrate the
performance upper bound, in which the communication con-
ditions are perfect between the BS and devices, namely, the
wireless noise is zero. Thus, the relationship between the input
x and the output y can be modeled without error. One can
notice that the proposed FL with multi-RIS scheme is capable
of training a near-optimal model close to the ideal scheme.
Compared with other benchmark schemes, such as “FL with
single/random-RIS” and “FL without RIS,” our scheme is able
to fit data samples more accurately. This is largely due to the
joint design of federated learning factors and wireless commu-
nication parameters. Besides, our scheme also carefully adjusts
the reflection matrix of distributed RISs to suppress noise dur-
ing the model aggregation process of federated learning. Then,
Fig. 7 shows that the proposed scheme can converge faster
to a smaller training loss, similar to the active scheme of
“FL with multi-AF.” This is mainly because the signal dis-
tortion caused by unfavorable wireless channels can be well
mitigated by judiciously reconfiguring the propagation envi-
ronment with the aid of multiple RISs. In Fig. 8, we can see
that when the number of selected devices grows, the test error
on the validation data set decreases to a low level. This comes
from that the global model becomes more accurate if much
more data samples are trained for aggregation. Thereby, the
test error of all schemes is decreasing due to the improve-
ment of prediction accuracy. One can observe from Fig. 9
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Fig. 7. Training loss versus the number of iterations.

Fig. 8. Test error versus K.

Fig. 9. Test error versus M.

that the test error decreases with the number of reflecting ele-
ments (or the number of antennas of each AF). This is due
to the fact that a larger number of reflecting elements can
lead to a smarter wireless environment and the propagation

Fig. 10. Number of iterations versus N.

Fig. 11. Train CNN on the MNIST data set.

error induced from the channel noise can be suppressed more
effectively. Finally, Fig. 10 illustrates that the number of itera-
tions decreases as the number of devices increases. When the
network size becomes larger, more devices can be selected to
participate learning process, which accelerates the convergence
of federated learning. Compared with other RIS-related bench-
marks, the proposed scheme can work more efficiently and
spend fewer communication rounds with the aided of multiple
RISs.

2) Implementing FL for Image Classification: In Figs. 11
and 12, we evaluate the learning performance for image clas-
sification on real data in terms of training loss and prediction
accuracy. Both the MNIST and CIFAR-10 data sets are divided
into five training batches and one test batch, each with 10 000
images. The on-device CNN or ResNet is trained in parallel
using randomly sampled images. To minimize loss, the SGD
solver with an initial learning rate of 0.01 is adopted as an opti-
mizer to update parameters at each iteration, where the size of
each mini-batch is specified as 128. Compared to benchmarks,
it is noted that the proposed scheme with multiple RISs can
achieve lower training loss and higher prediction accuracy on
both real data sets thanks to the reduced aggregation error.
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Fig. 12. Train ResNet on CIFAR-10 data.

Fig. 13. Network lifetime versus K and N.

3) Network Lifetime of the Considered FL System: In
Fig. 13, the impact of various K and N values on the network
lifetime is demonstrated. In our simulation, if one device
is selected to transmit its local parameters to the BS, it
will spend 1 unit energy for data sensing, local computing,
and communication processes, during which time the per-
centage of total energy consumption for communications is
denoted by λc. Thus, the remaining processes require 1 − λc

unit energy regardless of whether the device communicates
with the BS. Moreover, it is assumed that each device has
δ = 100 units energy, and the time until the first device dies
is defined as the network lifetime, which can be given by
�Nδ/(N − λcN + λcK)�, and �·� is the floor function. It can
be seen from this figure that a higher λc leads to a longer
network lifetime, i.e., more energy consumption for sensing
and computing will shorten the network lifetime. Additionally,
one can observe that the performance of network lifetime is
positively proportional to N and is also inversely proportional
to K. Namely, if more devices are deployed and less devices
are selected, a longer network lifetime can be achieved.
Therefore, the tradeoff between learning performance and
network lifetime is an interesting research direction in future
work.

VII. CONCLUSION

In this article, we investigated model aggregation and device
selection problems of federated learning systems aided by
distributed RISs. Considering the noisy fading channels, we
jointly optimized the transmit power, receive scalar, phase
shifts, and learning participants to minimize the aggrega-
tion error while accelerating the convergence rate of AirFL.
To solve this challenging bicriterion problem, we derived
closed-form solutions for the optimal transceiver design in the
cases of a single antenna. Meanwhile, we provided iterative
algorithms for the multiantenna cases by invoking relax-
ation methods, such as SDR, SCA, and DC programming.
Accordingly, we proposed an alternating optimization algo-
rithm to tackle the original MINLP problem for obtaining
a suboptimal solution. Simulation results demonstrated that
1) the aggregation distortion can be effectively reduced by
leveraging geodistributed intelligent surfaces to reconfigure the
wireless channels; 2) the learning behavior of AirFL can be
improved by the designed resource allocation and device selec-
tion algorithms; and 3) the designed alternating optimization
algorithm is also capable of reducing energy consumption and
prolonging the network lifetime of battery-constrained IoT
networks.

APPENDIX A
PROOF OF THEOREM 1

Due to the fact that |ah̄k|2 = |a|2|h̄k|2 ∀k, the con-
straints (18b) in problem (18) can be rewritten as |a|2 ≥
|h̄k|−2 ∀k. Thus, the problem (18) is reformulated as

min
a,θ

|a|2 (47a)

s.t. |a|2 ≥ ∣∣h̄k
∣∣−2 ∀k ∈ K (47b)

(9c). (47c)

It can be easily verified that at the optimal solution to
problem (47), all the constraints in (47) should be met, i.e.,

∣∣a∗∣∣ = 1

min
k

∣∣h̄k
∣∣ = max

k

∣∣∣∣∣hk +
L∑
�=1

ḡ���g�k

∣∣∣∣∣
−1

. (48)

Furthermore, it can be observed from (48) that the value
of |a∗| decreases as the value of |h̄k| increases. As a result,
the phase shifts of RISs should be finely tuned to render
the phase shift of

∑L
�=1 ḡ���g�k the same as that of hk for

all users, which can be expressed as arg(
∑L
�=1 ḡ��∗

�g�k) =
arg(hk) ∀k ∈K. This completes the proof of Theorem 1.

APPENDIX B
PROOF OF LEMMA 1

According to the definitions of τ and ρ̄ in Lemma 1, it
holds that

τ = max
k

ρ̄∣∣ah̄k
∣∣2
. (49)

Hence, it can be observed that the value of τ should be no
less than ρ̄/|ah̄k|2 for all users, i.e., τ ≥ ρ̄/|ah̄k|2 ∀k ∈ K.
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Then, problem (37) can be equivalently reformulated as

min
K,τ

τ − |K| (50a)

s.t. τ ≥ ρ̄∣∣ah̄k
∣∣2

∀k ∈ K (50b)

|a|2 − ρ
∣∣ah̄k

∣∣2 ≤ 0 ∀k ∈ K (50c)

1 ≤ |K| ≤ N (50d)

where the objective and constraints in (50) are obviously
equivalent to those in (38), and thus the proof of Lemma 1 is
completed. Note that constraint (50b) holds with equality for
at least one k of the optimal solution.
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