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Abstract
A new architecture with drone-assisted multi-ac-

cess edge computing (MEC) is proposed for vehic-
ular networks to support computation-intensive 
and delay-sensitive applications and services. Arti-
ficial intelligence (AI)-based resource management 
schemes are developed such that terrestrial and 
aerial spectrum, computing, and storage resources 
can be cooperatively allocated for guaranteeing 
the quality of service requirements from different 
applications. A case study on the joint manage-
ment of the spectrum and computing resources 
is presented to demonstrate the effectiveness of 
AI-based resource management schemes.

Introduction
Benefiting from advanced wireless communi-
cation technologies, onboard computing, and 
artificial intelligence (AI), vehicles are gradually 
becoming connected and autonomous [1]. With 
connected and autonomous vehicle (CAV) tech-
nologies, vehicles are allowed to communicate 
and be driven with less human intervention. In 
addition to navigation, more computation-inten-
sive and delay-sensitive intelligent transportation 
services are emerging, such as smart sensing for 
automated driving, in-car entertainment, and colli-
sion warning, to achieve better driving safety and 
onboard experience. However, vehicles usual-
ly have limited onboard computing and storage 
resources to support the increasing computation 
needs and satisfy the stringent service delivery 
requirements [2]. Moreover, services delivered 
from remote servers (e.g., high-definition [HD] 
map and video streaming) consume long data 
transmission delay, and some of the onboard 
computing tasks offloaded to the remote serv-
er also incur long computation response delay. 
Therefore, the allocation of spectrum and com-
puting resources is essential but challenging in sat-
isfying stringent latency service requirements [3].

To address the aforementioned challenge, com-
bining multi-access edge computing (MEC) with 
CAV technologies to realize a MEC-enabled vehic-
ular network (MVNET) architecture has drawn 
increasing attention from both industry and aca-
demia [2]. By connecting MEC servers to ground 
base stations (BSs), additional computing resources 
are provided for on-demand task processing. Bene-
fiting from the physical proximity between vehicles 

and MEC servers, computing tasks can be effi-
ciently offloaded with reduced response delay and 
low task offloading cost. However, a MEC-mount-
ed BS usually has preset computing and storage 
resources, which may lead to imbalanced sup-
ply-to-demand match due to spatio-temporal vari-
ations in vehicular communication and computing 
demands. Taking the advantage of maneuverability 
and flexibility from aerial devices (e.g., drones1), 
extending the MEC technology to enable aerial 
computing can effectively mitigate this issue in the 
MVNET [5–7].

Despite the advantages of real-time aerial 
computing, aerial-assisted MEC complicates the 
network architecture. The heterogeneous and 
dynamic network environment necessitates effi-
cient resource management to improve resource 
utilization while guaranteeing the quality of ser-
vice (QoS) requirements for diversified vehicular 
applications. Moreover, different applications may 
demand multiple types of resources; for example, 
spectrum and computing resources are demanded 
by computing task offloading, while spectrum and 
storage resources are demanded by content deliv-
ery and content caching. How to design a com-
prehensive resource management framework to 
adapt to various applications is critical to vehicular 
networks but challenging due to the highly dynam-
ic network environment [8]. Artificial intelligence 
(AI) technologies, especially machine learning, are 
being employed in many technological fields. As a 
data-driven technology, AI can be applied to CAV 
networks to realize intelligent service delivery by 
leveraging a vast amount of data collected from 
vehicles or road infrastructures (e.g., toll booths 
and traffic lights). Moreover, with the ability to 
learn to approximate various functional relations 
in a complex and dynamic network environment, 
AI can also be applied to solving resource manage-
ment problems in real time [9]. 

In this article, we comprehensively investigate 
how to use edge intelligence for multi-dimensional 
resource management to enhance overall resource 
utilization while guaranteeing vehicular applica-
tions’ QoS requirements. Specifically, we propose 
a drone-assisted MVNET architecture, which com-
bines the MEC and drone technologies to enable 
aerial computing in vehicular networks. This 
drone-assisted MVNET architecture can effectively 
accommodate the highly dynamic spectrum, com-
puting, and storage resource demands, and sup-
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port diversified vehicular applications. Also, both 
terrestrial and aerial MEC can provide resources to 
support the execution of AI-based algorithms. With 
the proposed architecture, we comprehensively 
study how to eff ectively manage the multi-dimen-
sional resources with AI technologies in terms of 
network-level spectrum slicing among BSs, spec-
trum/computing resource management, and joint 
resource management. To demonstrate the per-
formance of applying AI technologies in resource 
management, a case study is conducted to eval-
uate the performance of a joint spectrum and 
computing resource management scheme. Open 
research issues are discussed, followed by conclud-
ing remarks made in the fi nal section. 

A drone-AssIsted Mvnet ArchItecture
In this section, we fi rst summarize the CAV appli-
cations in vehicular networks and then present an 
MVNET architecture with aerial computing.

Mec for vehIculAr netWorKs
For the emerging CAV applications and services, 
the following new requirements are introduced.

Ultra-Low Latency: In addition to safety-related 
applications, some advanced use cases in vehicular 
networks also require ultra-low data transmission 
latency [10]. For example, to support vehicle pla-
tooning2 for cooperative driving, the maximum 
end-to-end delay for information exchange among 
vehicles within the same platoon is 25 ms.

Ubiquitous Connectivity: When driving in 
urban, suburban, or rural areas, vehicles demand 
ubiquitous connectivity to support a large range of 
intelligent transportation system (ITS) applications.

Computation-Intensive: In addition to low 
latency and ubiquitous connectivity, computing 
resources are also required by some ITS applica-
tions to process generated tasks such as image 
processing tasks for driving assistance and video 
analysis tasks for collision warning [11]. Moreover, 
some new AI-powered services, for example, auto-
mated driving and infotainment services with nat-
ural language processing, generally have intensive 
computing requirements.

The MEC technology, bringing the comput-
ing and storing capabilities physically close to the 
end users, is expected to fulfi ll these requirements 
and has been widely applied to support vehicu-
lar applications [2]. Compared to cloud comput-
ing, vehicles do not have to upload/download 

the related data to/from the core network in an 
MVNET. Thus, the backhaul link transmission bur-
den can be relieved, and a short response delay 
for task computing or content delivery can be 
achieved to satisfy the ultra-low-latency require-
ments. Moreover, some application programming 
interfaces (APIs), such as Group Specification 
(GS) MEC 012 API for radio network information 
service [2], are defi ned for the MEC technology 
to stimulate application innovations and enable 
fl exible implementation of new services.

drone-AssIsted Mvnet ArchItecture
In a terrestrial MVNET, MEC servers are placed at 
ground BSs to provide computing/storing capa-
bilities for moving vehicles with a short response 
delay. However, the amount of resources carried 
by each MEC-mounted BS is usually fi xed, which 
makes it challenging for the network to accom-
modate the dynamic numbers of off loaded com-
puting tasks and content delivery tasks. Through 
mounting MEC servers on aerial devices, comput-
ing and content requests from moving vehicles 
can be cooperatively supported and the overall 
spectrum effi  ciency can be improved by aerial-to-
ground communications on short-distance line-of-
sight channels.

As illustrated in Fig. 1, we consider a drone-as-
sisted MVNET where a macro eNodeB (MeNB) 
and several drones are equipped with MEC servers. 
The group of drones, denoted by , fl y within the 
coverage of the MeNB. Both manually operated 
traditional vehicles and autonomous vehicles with 
limited onboard computing/storage resources are 
moving on the road and randomly generate tasks 
with diff erent delay requirements to support their 
specifi c applications. The tasks generated by each 
vehicle are either communication tasks for data 
dissemination or computing tasks that need to be 
off loaded for further processing. In the drone-assist-
ed MVNET, the computing resource provider can 
be the MeNB, the drones, or the autonomous vehi-
cles3 with available onboard computing/storage 
resources. Once a computing task is generated, the 
vehicle fi rst sends a task off loading request, includ-
ing the size, CPU cycles, and/or delay requirement 
of the task, to the MEC-mounted MeNB, a drone, 
and/or the neighboring autonomous vehicles. 
According to all received requests, the computing 
resource provider returns a spectrum/computing 
resource allocation decision to the vehicle, and 
then performs task processing once it receives the 
vehicle’s computing task. 

leArnIng-bAsed resource MAnAgeMent
In the drone-assisted MVNET, the MEC-mounted 
MeNBs and drones cooperatively provide com-
munication coverage and on-demand computing 
resources to diff erent vehicular applications. How-
ever, with high vehicle mobility and time-varying 
resource demands generated by heterogeneous 
applications, it is difficult to conduct efficient 
and real-time resource allocation decisions via 
conventional optimization methods. With recent 
advances in AI technologies, machine-learning-
based methods (e.g., model-free deep reinforce-
ment learning) provide an eff ective way to solve 
the resource management problems. The learn-
ing architecture for resource management in the 
drone-assisted MVNET is depicted in Fig. 2. The 

FIGURE 1. An illustration of the drone-assisted MVNET.
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resource management policy can be learned by 
neural networks (NNs). With states and actions 
being input and output, we can train the NNs for 
obtaining the optimal resource management poli-
cy to maximize the accumulated reward. In what 
follows, we investigate how to apply reinforce-
ment learning methods to address the resource 
management problems in the drone-assisted 
MVNET, as summarized in Table 1. 

spectruM resource MAnAgeMent
We summarize the process of spectrum manage-
ment from diff erent time granularities.

Long-Term Spectrum Slicing: This is slicing the 
aggregated spectrum resources among different 
BSs. Time is partitioned into �W consecutive slicing 
windows, where each slicing window is composed 
of �t time slots.4 The spectrum slicing is controlled 
by the radio resource management (RRM) unit 
at the MeNB and is executed at the beginning of 
each slicing window. Define the communication 
workload of a BS as the number of communication 
tasks generated by vehicles within its coverage. 
Based on the average communication workloads 
of the MeNB and drones in each slicing window, 
the MeNB makes spectrum slicing and communi-
cation workload division decisions for the MeNB 
and drones. Available spectrum resources, Smax, 
are sliced with ratios m and d and are allocated 
to the MeNB and drones, respectively, where the 
drones share the spectrum resources, Smaxd, to 
increase the multiplexing gain. Furthermore, the 
communication workload under the coverage area 
of drone i is divided into two parts with the parti-
tioning ratios, i,m and i,u, which are assigned to 
the MeNB and drone i, respectively.

Short-Term Spectrum Allocation: This is operat-
ed at the beginning of each time slot within a slicing 
window. Once the spectrum slicing is done in a 
target slicing window, the amounts of spectrum 
resources available to the MeNB and the drones are 
fi xed at mSmax and dSmax, respectively. At a time 
slot within the target slicing window, vehicles send 
their communication requests to accessible MEC 
servers. According to the received communication 
requests, the MeNB and drone i then cooperative-
ly determine the vehicle-MeNB and vehicle-drone 
association patterns for vehicles under the coverage 
of drones and allocate proper amounts of spectrum 
resources to the associated vehicles.

In what follows, we take the long-term spec-
trum slicing for uplink transmission as an example 
to show how to utilize the learning-based methods 
for spectrum management (the short-term spec-
trum allocation is studied below).

For time slot t within a target slicing window, 
vehicles generate communication tasks with prob-
ability ps, size (), and delay requirement s(t). Let 
the MeNB act as an agent. The environment state at 
a target slicing window can be designed according 
to traffic flow, task generation frequency, and the 
average spectrum effi  ciencies from a vehicle to the 
MeNB and from a vehicle to drone i. Actions taken 
under a given environment state should include 
the spectrum slicing ratios and communication 
workload partitions. To guarantee the delay require-
ments for diff erent communication tasks while max-
imizing the overall spectrum utilization, a higher 
reward is obtained when more tasks are completed 
within s, and a low reward is achieved otherwise. 

As both spectrum slicing ratios and workload parti-
tions are continuous variables, the spectrum slicing 
policy can be efficiently learned by adopting pol-
icy-gradient algorithms, such as actor-critic, deep 
deterministic policy gradient (DDPG), and proximal 
policy optimization, for solving the long-term spec-
trum slicing problem. With the learned spectrum 
slicing policy, the agent can make an optimal spec-
trum slicing and workload division decision for each 
given environment state to achieve high spectrum 
utilization in the long run. 

coMputIng resource MAnAgeMent
Diff erent levels of computing capabilities are fi xed 
at edge servers and autonomous vehicles. Thus, 
diff erent from spectrum resources, managing the 
overall computing resources among vehicles is 
always achieved via adjusting the vehicle associa-
tion patterns for off loading computing tasks to dif-
ferent resource providers. With a given spectrum 
management strategy, the computing resource 
management problem can be transformed into 
a distributed computing task off loading decision 
making problem with an acceptable communica-
tion overhead to the network.

To be consistent with practical applications, we 
assume each vehicle generates a computing task 
with probability pc at a given time slot. Different 
computing tasks generated by vehicles have ran-
dom task sizes, numbers of CPU cycles required 
for task processing, and maximum tolerable delays. 
In each time slot, the MeNB, drones and autono-
mous vehicles update their current available com-
puting resources to vehicles within their service 
areas. According to the received resource informa-
tion, each vehicle makes an off loading association 
decision5 and offloads its computing task to the 
associated provider. When receiving a computing 
task offloaded from a vehicle, the provider allo-
cates the same number of CPU cycles as required 
by the vehicle to process the task if it has enough 
available computing resources, and discards the 
vehicle’s task otherwise. 

As vehicles compete for the providers’ comput-
ing resources with each other, we can model the 
distributed task offloading decision making prob-

FIGURE 2. Learning architecture overview.
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4 With a larger �t, the spec-
trum slicing cost would be 
reduced while resulting in low 
overall spectrum utilization. 
Thus, dynamically adjusting 
the slicing window size to bal-
ance this trade-off  is critical.

5 Allowing each vehicle to 
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achieve relatively low com-
putational complexity for 
resource management. We 
can also let each resource 
provider centrally allocate its 
computing resources among 
vehicles.
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lem as a competitive multi-agent learning prob-
lem [12]. Let vehicles with generated computing 
tasks act as learning agents. The local observation 
of a learning agent can be built according to its 
received resource information from the accessi-
ble providers, namely, the amounts of available 
computing resources carried by the MeNB and the 
drone as well as neighboring autonomous vehicles. 
Under a local observation, each agent makes a 
discrete action, including the offloading association 
pattern between the vehicle and the provider. To 
balance the task migration cost and task processing 
delay, an agent can define its reward by combining 
these two parts. For the task offloaded to a provid-
er, a positive reward should be returned when the 
task is completed within the tolerated delay while 
involving a penalty according to the task migration 
cost. Since each agent has discrete actions, learn-
ing algorithms that are suitable for dealing with dis-
crete actions, such as deep Q network (DQN), 
can be employed to learn each agent’s task off-
loading decision making policy. However, due to 
the resource competition relation among differ-
ent vehicles, each agent may face a non-stationary 
environment when other agents are adjusting their 
policies. To address this issue, the fingerprint meth-
od can be adopted, which allows each agent to 
augment its observation space with the estimated 
policies of other agents.

Joint Resource Management
The computing task offloading problem involves 
both spectrum and computing resource manage-
ment. In general, there are five steps to complete 
a computing task offloaded from a vehicle to a 
resource provider:
Step 1: The vehicle sends a task offloading request 

to the provider.
Step 2: The provider allocates proper amounts of 

spectrum and computing resources for trans-
mitting and processing the vehicle’s task.

Step 3: The vehicle offloads its task to the provid-
er over the allocated spectrum resources.

Step 4: The provider processes the received task 
with the allocated computing resources.

Step 5: The provider returns the task processing 
result to the corresponding vehicle.

Considering the small sizes of task offloading 
request and task processing result, transmission 
time on steps 1 and 5 are usually ignored. Thus, 
the total time consumption on the entire comput-
ing task offloading process mainly depends on how 
efficiently and optimally the spectrum and comput-
ing resources are allocated during steps 2–4.

The objective of the joint spectrum and com-
puting resource management is to maximize the 
number of offloaded tasks with satisfied delay 
requirements. Thus, the vehicle-provider associa-
tion patterns, including vehicle to MeNB, vehicle 
to drone i, and vehicle to neighboring autonomous 
vehicle v association patterns, are to be optimized. 
The proportions of the spectrum and computing 
resources allocated to each vehicle from the asso-
ciated resource provider are also to be optimized. 
When formulating the joint resource management 
problem, we use the step function to evaluate 
whether an offloaded task’s delay requirement is 
met or not, where the function value is equal to 
1 when the delay requirement is satisfied. Further-
more, the problem has vehicle association con-
straints that each vehicle can offload its task to only 
one provider, and the spectrum and computing 
resource constraints on the providers.

By solving the joint resource management 
problem, the optimal vehicle-provider association 
patterns and the optimal fractions of spectrum/
computing resources allocated to each vehicle are 
obtained. Due to the high network dynamic, cou-
pled relation among the management of spectrum 
and computing resources, the integer decision 
variables (i.e., vehicle-provider association pattern 
variables), and the non-convex objective function, 
solving the problem using conventional optimiza-
tion methods is computationally complex. Thus, we 
next show how to solve the problem by adopting 
learning-based methods to obtain an efficient joint 

TABLE 1. The application of AI technologies to resource management.

Spectrum resource management 
Computing resource management (given 
spectrum management strategy)

Joint spectrum and computing resource 
management

Objective Maximize spectrum resource utilization Maximize computing resource utilization Maximize spectrum/computing resource utilization 

Constraint Communication delay requirement 
Computing delay requirement, task 
migration cost 

Total time consumption requirement 

States 
1. Traffic flow  
2. Task generation frequency  
3. Vehicle-MEC spectrum efficiency 

1. Vehicle location  
2. Task offloading requests  
3. Available computing resources 

1. Vehicle location  
2. Task offloading requests  
3. Vehicle-provider spectrum efficiency  
4. Available spectrum and computing resources 

Actions 
1. Spectrum slicing ratios  
2. Communication workload division 

Vehicle-provider association 
1. Vehicle-provider association  
2. Computing resource allocation  
3. Spectrum resource allocation 

Rewards Spectrum resource utilization Computing resource utilization Spectrum and computing resource utilization 

Decision making manner Centralized Distributed Centralized/distributed

Decision making frequency Every slicing window (long-term) Every time slot (short-term) Every time slot (short-term)
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resource management scheme. Considering differ-
ent network scales and supportable wireless com-
munication overhead, centralized and distributed 
methods are employed here.

Centralized Method: For scenarios with a rel-
atively small number of vehicles within the cov-
erage of the MeNB, we let the MeNB act as an 
agent and build a single-agent learning framework. 
The environment state at a given time slot can be 
designed according to the received information 
about locations, computing tasks, and available 
computing resources from vehicles and drones. 
Actions made by the agent should include the vehi-
cle-provider association patterns and the fractions 
of spectrum/computing resources allocated to 
each vehicle from all providers. During the learn-
ing stage, the agent’s policy is adjusted to obtain 
the optimal action that maximizes the accumulat-
ed reward. To avoid allocating more resources to 
parts of the tasks for achieving a higher reward and 
guarantee fairness among vehicles, we integrate 
the logarithm function to define each vehicle’s 
reward. Namely, the vehicle’s reward is defined as 
log2(T’/Tde), where Tde and T’ denote the tolerable 
delay and the total time consumed for the vehicle’s 
task offloading and processing, respectively. Then 
the system reward can be designed as the average 
reward over all vehicles within the coverage of the 
MeNB. Considering the discrete action elements 
and the continuous action elements, the learning 
algorithms that are appropriate for parametrized 
actions (a combination of discrete and continu-
ous action elements), such as parametrized DQN 
(P-DQN) and multi-pass DQN (MP-DQN), should 
be employed here. The discrete action elements 
can also be loosened into real numbers for using 
policy-gradient algorithms.

Distributed Method: To avoid spectrum and 
time cost on wirelessly updating drones’ and 
autonomous vehicles’ resource information to the 
MeNB, we can allow each provider to manage its 
own spectrum/computing resources. Therefore, 
the joint resource management problem can be 
decomposed into multiple subproblems, each of 
which is solved by one provider. Let the providers 
act as learning agents and receive computing task 
offloading requests from vehicles under their ser-
vice areas. The observation of the MeNB agent is 
the same as the state in the centralized method. 
For drone i and autonomous vehicle v, their obser-
vations only include the information of vehicles’ 
locations and generated tasks under their service 
area. Actions made by a provider agent, includ-
ing the MeNB agent, drone i agent, and autono-
mous vehicle v agent, are designed according to 
vehicle-provider association patterns and the frac-
tions of spectrum/computing resources allocated 
by the provider to the vehicles. As vehicles under 
the service areas of a drone and an autonomous 
vehicle are also covered by the MeNB, non-station-
arity would occur when one agent’s observation 
no longer reflects the actual environment dynamics 
due to the other agents’ policy changing at the 
same time. Therefore, instead of building separate 
learning modules for each agent, we integrate the 
learning algorithms, such as P-DQN, MP-DQN, 
and policy-gradient algorithms, with a multi-agent 
learning architecture. By adopting a cooperative 
multi-agent learning algorithm [9], each agent’s 
learning module is trained simultaneously to 

achieve a maximum long-term common reward. 
In the implementation stage, each agent can make 
real-time resource management and task offloading 
decisions based on the trained module.

Case Study
In this section, we conduct a case study to 
demonstrate the effectiveness of employing learn-
ing-based methods to solve the joint spectrum 
and computing resource management problem 
in a drone-assisted MVNET. Two drones are flying 
with a constant speed of 10 m/s and an altitude 
of 40 m above a two-lane bidirectional road seg-
ment to cooperatively provide computing capa-
bilities for vehicles within the communication 
coverage of an MeNB. The amounts of spectrum 
resources available to vehicle-to-MeNB and vehi-
cle-to-drone communications are 6 MHz and 0.5 
MHz, respectively. The communication range of 
the MeNB is 600 m, and that of a drone is 100 m. 
We use VISSIM to generate a real vehicle mov-
ing trace. At each time slot, a vehicle generates a 
computing task, where the task size is in [0.5, 1] 
kb, the required number of CPU cycles for task 
processing is in [50, 100] cycles/s, and the maxi-
mum delay tolerated by the task is in [10, 50] ms. 

For the joint spectrum and computing resource 
optimization problem, we relax the integer deci-
sion variables (i.e., vehicle-MeNB and vehicle-drone 
association pattern variables) into real numbers in 
[0,1]. Based on the centralized method discussed 
previously, we utilize two policy-gradient algo-
rithms, DDPG and soft actor-critic (SAC), to learn 
the joint resource management policy. Specifically, 
the DDPG and SAC algorithms are appropriate 
for continuous actions and can achieve good con-
vergence performance [13]. However, the sizes 
of states and actions for the learning architecture 
both depend on the time-varying vehicle density, 
which is contradictory to the fixed sizes of input 
and output of an NN. Thus, to handle this issue, we 
set a relatively large size for both state and action,  
and let an element of the state or action be 0 when 
there is no vehicle corresponding to that element.

Figure 3 shows the convergence performance 
of the SAC and DDPG algorithms in solving the 

FIGURE 3. Convergence performance of the learning algorithms.
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joint spectrum/computing resource management 
problem. The x-axis represents the number of sim-
ulation episodes, where each episode contains 
1000 time slots. The y-axis shows the total rewards 
achieved by the agent in each episode. From the 
figure, we can see that under the same simula-
tion setting,6 the SAC algorithm converges after 
around 200 episodes, which is 100 episodes fast-
er than the DDPG algorithm. Moreover, the SAC 
algorithm can achieve higher total rewards in each 
episode with less fluctuation. This is because com-
pared to the DDPG algorithm, the SAC algorithm 
can further maximize the entropy of the policy 
while optimizing it for higher cumulative rewards.

The definition of reward indicates that a positive 
reward can be achieved when the delay require-
ment of an offloaded task is satisfied by the spec-
trum and computing resources allocated by the 
MEC server. During the training stage, with a higher 
reward, the SAC algorithm can better manage the 
overall spectrum/computing resources to satisfy the 
offloaded tasks’ requirements than DDPG. To fur-
ther demonstrate the performance of the SAC- and 
DDPG-based joint resource management schemes, 
we use the average delay satisfaction ratio, defined 
as the average proportion of offloaded tasks that 
are completed within its tolerated delay over 
10,000 time slots, as the evaluation criterion in the 
test stage. Figure 4 shows the delay satisfaction 
ratios achieved by the SAC-based, DDPG-based, 
and random resource management schemes 
under scenarios with different amounts of avail-
able computing resources. Considering the limited 
battery power and relatively small coverage area 
of drones, we assume the computing capability of 
each drone is one-tenth that of the MeNB. We can 
see that with the increase of amounts of available 
computing resources, more computing resources 
can be allocated to each offloaded task, resulting 
in higher average delay satisfaction ratios for the 
three schemes. Compared to the random resource 
management scheme, learning-based schemes can 
achieve better performance. Moreover, under the 
same scenario, higher delay satisfaction ratios are 

achieved by the SAC-based resource management 
scheme than the DDPG-based one.

Open Research Issues
To effectively manage the multi-dimensional 
resources in drone-assisted MVNETs, there are 
open research issues that require further inves-
tigation. Designing more flexible resource man-
agement schemes to dynamically accommodate 
the diverse applications still needs effort. More-
over, investigating comprehensive and data-priva-
cy-preserving resource management schemes that 
integrate drone trajectory planning and satellite 
technology to further improve resource utilization 
is still in its infancy.

Multi-Dimensional Resource Management
In addition to providing computing resources for 
computing-intensive applications, MEC servers can 
also benefit many data-sensitive applications, such 
as video streaming and online gaming. Caching 
some popular content at the edge can help to mit-
igate the traffic congestion in the core network 
and improve content delivery efficiency. Optimally 
placing the content at the MEC servers to maxi-
mize the storage resource utilization while allocat-
ing a proper amount of spectrum for delivering the 
content to vehicles is one of the critical research 
problems in the MVNETs. On the other hand, with 
more vehicular applications emerging, diverse tasks 
such as computing task offloading and content 
delivery usually require multi-dimensional resource 
support. Designing multi-dimensional resource 
management schemes to effectively manage the 
uplink/downlink communication, computing, and 
storage resources is still urgent.

Considering the heterogeneous QoS require-
ments of different applications and the highly 
dynamic vehicular network environment, AI tech-
nologies can be utilized to effectively manage 
the multi-dimensional resources in drone-assisted 
MVNETs. For scenarios where diversified vehic-
ular services have different priorities, the proce-
dure of multi-dimensional resource management 
can be summarized in two stages: multi-dimen-
sional resource planning among services (also 
referred to as service slicing) and multi-dimensional 
resource scheduling among vehicles. We can slice 
the multi-dimensional resources among different 
services based on priority level and the statistical 
resources demanded by each service via either 
optimization or AI methods. To reduce the com-
plexity of the learning algorithm and increase the 
convergence performance, the multi-dimensional 
resource scheduling problem can be decomposed 
into the computing task offloading subproblem and 
content placement/delivery subproblem, and then 
solved by combining learning algorithms with the 
hierarchical learning architecture [14].

Trajectory Planning
In our designed joint resource management 
scheme, we assume each drone flies with a fixed 
trajectory. In general, the trajectory of each drone 
should be dynamically adjusted according to the 
traffic flow, resource demand distribution, and 
drone power consumption to further improve the 
overall resource utilization and energy efficiency 
in drone-assisted MVNETs. For example, by opti-
mally adjusting the flying direction and speed in 

FIGURE 4. Performance of the joint resource management schemes.

6 When training the DDPG 
and SAC algorithms, we set 
the learning rates for the 
actor and critic to be 0.02 
and 0.0002, respectively. 
The reward discount factor 
used in the Q-value functions 
is 0.9. The smoothing coef-
ficient used to softly update 
the parameters of the target 
networks is 0.01. The replay 
buffer size and batch size are 
10,000 and 32, respectively.
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each time slot, we can increase the service cov-
erage and endurance of a drone. However, the 
drones’ trajectory planning significantly increases 
the network environment dynamic and challenges 
the convergence of the learning algorithms. How 
to design a learning architecture and build the 
learning model to cooperatively manage the over-
all resources and plan the trajectory for drones 
still needs effort. One of the potential methods is 
to decompose trajectory planning from resource 
management and build separate learning models 
for each of them. To cooperatively learn the two 
models, the drone’s trajectory obtained from the 
trajectory planning model should be regarded as 
a part of the environment state of the resource 
management learning model. 

Satellite Integration
Integrating satellite networks with drone-assist-
ed MVNETs (i.e., enabling satellite-air-ground 
MVNETs) can provide seamless signal coverage, 
high-capacity communication, and more flexible 
Internet access to support the increasing number 
of applications and services [15]. For example, 
satellite antennas can be embedded into the roof 
of a vehicle to allow the vehicle to receive satel-
lite signals even without signal coverage of the 
MeNB or drones. Moreover, embedding satellite 
antennas into small BSs to enable satellite-based 
small cells can provide vehicles with a high-ca-
pacity backhaul to access the cloud computing 
server. However, due to the mobility of vehicles, 
drones, and satellites, challenges arise in cooper-
atively managing the overall resources, including 
the satellite/terrestrial spectrum resources and 
the computing/storage resources carried by the 
cloud server, edge server, and autonomous vehi-
cles. How to achieve fast, adaptive, and efficient 
resource management is an urgent issue for satel-
lite-air-ground MVNETs.

Data-Privacy Preserving
Data privacy preservation is always an important 
concern for vehicles. Vehicles have to share their 
data with the cloud or MEC servers to support 
some AI-powered applications and services. For 
example, to enable automated driving, connect-
ed vehicles need to share their sensing data with 
the server to learn the optimal automated driv-
ing strategy. How to preserve the privacy of vehi-
cles’ data while allowing them to benefit from 
these applications is very important. One of the 
potential technologies to preserve data privacy 
in AI-powered applications is federated learning, 
also known as collaborative learning. With the 
federated learning technique, we can enable 
decentralized learning, namely, building the learn-
ing model at the server while training it in vehicles 
without uploading raw data to the server. 

Conclusion
In this article, we have proposed a drone-assisted 
MVNET architecture to facilitate responsive and 
adaptive multi-dimensional resource management. 
With the developed AI-based resource manage-
ment schemes, computation-intensive and delay-sen-
sitive applications can be supported with satisfied 
QoS requirements in the highly dynamic vehicular 
network scenarios. For our future works, we will 
integrate satellite communication technologies to 

enable a satellite-air-ground MVNET for global cov-
erage and diversified applications support.
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With the developed 
AI-based resource 
management schemes, 
computation-intensive 
and delay-sensitive 
applications can be 
supported with satisfied 
QoS requirements in 
the highly dynamic 
vehicular network sce-
narios. For our future 
works, we will integrate 
the satellite commu-
nication technologies 
to enable a satel-
lite-air-ground MVNET 
for global coverage and 
diversified applications 
support.
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