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Optimal Scheduling in IoT-Driven Smart Isolated
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Jiaju Qi, Lei Lei , Senior Member, IEEE, Kan Zheng , Senior Member, IEEE,
Simon X. Yang , Senior Member, IEEE, and Xuemin Shen , Fellow, IEEE

Abstract—In this article, we investigate the scheduling issue
of diesel generators (DGs) in an Internet of Things (IoT)-Driven
isolated microgrid (MG) by deep reinforcement learning (DRL).
The renewable energy is fully exploited under the uncertainty of
renewable generation and load demand. The DRL agent learns an
optimal policy from history renewable and load data of previous
days, where the policy can generate real-time decisions based on
observations of past renewable and load data of previous hours
collected by connected sensors. The goal is to reduce operating
cost on the premise of ensuring supply–demand balance. In spe-
cific, a novel finite-horizon partial observable Markov decision
process (POMDP) model is conceived considering the spinning
reserve. In order to overcome the challenge of discrete-continuous
hybrid action space due to the binary DG switching decision
and continuous energy dispatch (ED) decision, a DRL algorithm,
namely, the hybrid action finite-horizon RDPG (HAFH-RDPG), is
proposed. HAFH-RDPG seamlessly integrates two classical DRL
algorithms, i.e., deep Q-network (DQN) and recurrent determin-
istic policy gradient (RDPG), based on a finite-horizon dynamic
programming (DP) framework. Extensive experiments are per-
formed with real-world data in an IoT-driven MG to evaluate the
capability of the proposed algorithm in handling the uncertainty
due to interhour and interday power fluctuation and to compare
its performance with those of the benchmark algorithms.

Index Terms—Deep reinforcement learning (DRL), energy
management, microgrid (MG).

NOMENCLATURE

System Model

δt Surplus of generating capacity.
ηch,ηdis Charging/discharging efficiencies of the

battery.
DGd dth DG.
ad, bd, cd Quadratic/monomial/constant coeffi-

cient of DG power generation cost
curve.
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BDGd
t ON/OFF status of DGd.

CR, CS, CSR Fixed running/start-up/spinning reserve
cost coefficient.

cDGd
t DG power generation cost.

cOP
t The operating cost

cS_DGd
t , cR_DGd

t , Start-up/running/spinning reserve

cSR_DGd
t cost.

D,d Number/index of DGs.
Et SoC of the battery.
Emin, Emax Minimum/maximum energy level of the

battery.
PE

ch_lim, PE
dis_lim Charging/discharging power limits of

the battery.
PE

max Maximum charging or discharging
power of the battery.

PDG
min, PDG

max Minimum/maximum power limits.

PDGd_S
t Set-point for the DG output power.

PDGd
t Output power of DGd.

PEL
t Equivalent load.

PERR
t Unbalanced power after charging or

discharging battery.
PE

t Charging or discharging power of the
battery

PL
t Load consumption power.

PPV
t Output power of PV.

PUB
t Unbalanced power after DG output

power correction.
T ,t Number/index of time steps.
ut Charging or discharging status of the

battery.
UDGd

t Binary switching decision of DGd.

POMDP Model

α,β Learning rate for updating θ or ω.
γ Discount factor.
ÂSW Simplified switching action space.
k̂∗, aED

k̂∗
∗

Optimal switching and ED action derived
by the proposed algorithm.

A Action space.
ASW, AED Switching and ED action space.
AED

k ED action space corresponding to the
switching action k.

H History space.
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μk,λk Actor and critic networks for switching
action k.

π∗ Optimal policy.
τ Length of history time window .
θ , ω Weights of μk and λk.
aED

k Action in AED
k .

aSW
k kth action in ASW.

At Action at time step t.
ASW

t , AED
t Switching and ED action at time step t.

C1, C2 Weights that indicate the relative impor-
tance of unserved power situation and lost
power situation.

cUS
t Cost of aggregated unserved or lost active

power.
Ht History at time step t.
k Index of switching actions.
k∗,aED

k∗
∗

Optimal switching and ED action.
m Simplified switching action.
m∗ Optimal simplified switching action.
Ot Observation at time step t.
r(St, At) Reward.
Rπ Cumulative reward.
St System state at time step t.
ASW

m Subset within ASW that corresponds to m.

aED
k
∗

Optimal ED action of AED
k .

I. INTRODUCTION

M ICROGRIDS (MGs) are small-scale low- or medium-
voltage distribution networks comprising various on-

site generators. Nowadays, Internet of Things (IoT) plays an
essential role in MGs [1]. In a smart MG driven by the IoT
technologies, the system operator (SO) is deployed in the
edge or cloud server and connects with networked sensors
embedded in various MG components [2]. The real-time data
collected by these sensors are transmitted to the SO through
the IoT communication networks to reflect the status of the
MG system [3]. By fully analyzing the sensory data, the SO
makes intelligent energy management decisions to drive the
smart MG devices, such as diesel generators (DGs) [4].

MGs can operate either interconnected or isolated from the
main distribution grid [1]. Isolated MGs are deployed in many
remote areas all over the world [5], which often rely on a base
load generation source, such as reciprocating DGs of heavy
fuel oil. As DGs incur high costs of electricity in isolated MGs
due to the cost of fuel transportation and delivery, renewable
energy sources (RES), such as wind and solar, are a clean
complementary power source that greatly reduces the operat-
ing costs [6]. In this article, we focus on the optimal scheduling
problem in smart isolated MGs, which aims at minimizing the
operating cost by fully exploiting the RES power, while sat-
isfying the critical requirement to maintain a balance between
power generation and consumption. The main challenge stems
from the variability and uncertainty in RES generation and
load demand, making it difficult to guarantee energy balance
with efficient operations of DGs.

Compared with connected MGs, isolated MGs are less flex-
ible in dealing with the above challenge as they do not have
power support from the main grid and usually lack advanced

control hardware for demand-side management. Fortunately,
the energy storage elements in MGs, such as electrochemical
battery, can charge or discharge to compensate for short-term
unbalance, and thus help level off the power fluctuations to
some extent. Moreover, the battery can act as an additional
power source to minimize the operating cost of DGs. As the
maximum amount of energy that can be charged or discharged
at a certain point of time is limited by the State of Charge
(SoC) of the battery, which is, in turn, determined by the
previous charging/discharging behavior, optimal scheduling
becomes a sequential decision problem for a dynamic system
where earlier decisions influence future available choices.

In this article, we leverage deep reinforcement learning
(DRL) to learn an optimal scheduling policy from history RES
and load data of previous days where the policy can gener-
ate real-time decisions based on observations of past RES and
load data of previous hours. The main advantage of such an
approach is that it does not require prediction models and
therefore is not susceptible to prediction errors.

A. Related Works

Energy management for MGs includes several typical func-
tions, i.e., optimal scheduling (such as energy storage manage-
ment, energy dispatch (ED), unit commitment (UC) [7], etc.),
demand response [8], and energy trading [9]. Existing works in
this area can be classified into two broad categories, depending
on whether the MG is connected [10], [11] or isolated [12],
[13]. Our study falls into optimal scheduling in isolated
MGs, which has been an extensive study in the literature. To
determine the daily energy scheduling operation, various math-
ematical optimization models have been proposed, where the
objectives are normally to minimize the operating cost con-
sidering various constraints, such as operational, energy bal-
ance, and reserve constraints. Different problem formulations
have been studied, such as mixed-integer linear programming
(MILP) [14], [15], [16], mixed-integer quadratic program-
ming (MIQP) [17], [18], and mixed-integer and integer-free
second-order cone programming (SOCP) [19], [20]. In order
to address the challenge of uncertainty in RES generation and
load demand, several approaches, such as stochastic program-
ming (SP) [21], model predictive control (MPC) [12], [18],
[22], robust optimization [13], [20], and chance-constraint pro-
gramming (CCP) [23], [24], have been adopted. All of the
above methods require forecast models or probabilistic models
for the unknown data, where robustness to model inaccuracy
is limited.

To avoid the above limitations, intelligent energy manage-
ment policies can be derived by leveraging reinforcement
learning (RL) techniques. Compared with the non-RL meth-
ods, RL algorithms can learn the optimal control policies by
trial and error based on real-world data and do not require
rigorous mathematical models for RES and load [25]. In other
words, RL methods can directly learn optimal policies from
history data, without the need of prior modeling or parame-
ter identification. DRL is a promising branch of RL, where
the powerful deep neural networks (DNNs) make it possible
to learn and fit complex patterns better. Moreover, it is easy
for DRL methods to solve large-scale optimization problems
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in real-time after training the DNNs, since only the forward
propagation in the networks is involved.

In recent years, DRL has been adopted for energy man-
agement of MGs with the aim for learning optimal policies
of demand response [26], [27], [28], energy trading [29],
[30], [31], as well as optimal scheduling in both connected
MGs [32], [33], [34] and isolated MGs [35], [36]. Ji et al. [32]
adopted a classical model-free value-based DRL algorithm,
namely, deep Q-network (DQN) [37] to achieve real-time
scheduling of a connected MG, which did not require an
explicit model or a predictor for unknown data. The real-time
dispatch of DGs and battery as well as power transactions
with the main grid are optimized based on this approach.
Considering a similar online scheduling problem for a con-
nected MG, Shuai and He [33] adopted a model-based DRL
algorithm, namely, MuZero, to perform online optimization
of MG under uncertainties, which combined a Monte Carlo
tree search method with the neural network model. Du and
Li [34] considered a scenario where multiple MGs are con-
nected to the main grid, where each MG adopts a model-free
Monte Carlo DRL algorithm to learn its retail pricing policy.
While the above works focus on connected MGs, DRL-
based solutions for isolated MGs have received less attention.
François-Lavet et al. [35] presented a value-based DRL algo-
rithm to efficiently operate the storage devices in an isolated
MG. However, only three simple discrete actions are con-
sidered, i.e., charge, discharge, and idle. Lei et al. [36]
proposed new DRL algorithms to solve the ED problem in
an isolated MG. The algorithms combined classical actor–
critic algorithms, namely, deep deterministic policy gradi-
ent (DDPG) [38] and recurrent deterministic policy gradient
(RDPG) [39] with dynamic programming (DP) approach and
could effectively address the instability problem, finite-horizon
setting, and partial observable problem. However, the startup
and shutdown of DGs are not considered, which results in
inefficient operation.

Based on the review of related works, some important
research gaps in the field are identified as follows.

1) In non-RL methods, spinning reserve is usually consid-
ered a deterministic [12], [17], [18] or probabilistic con-
straint [23], [24] to guarantee energy balance under power
fluctuations. Deterministic constraint generally leads to
inefficient DG operation [23], while the probabilistic
constraint is vulnerable to model or parameter deviations.

2) When applying DRL for optimal scheduling of MGs,
one important challenge is the discrete-continuous
hybrid action space induced by the binary DG switching
decision and the continuous ED decision. Classical DRL
algorithms are not suitable to handle the hybrid action
space. Previous works in DRL usually approximate the
hybrid space by discretization [32], [33], which suffers
from performance loss.

B. Contributions

The main contributions are summarized as follows.
1) A novel partial observable Markov decision process

(POMDP) model is conceived to learn the optimal
scheduling policy that can provide sufficient spinning

reserve capacity to maintain energy balance while mini-
mizing the operating cost in the IoT-driven isolated MG.
Instead of considering spinning reserve as constraints, a
penalty for energy imbalance is included in the reward
function, and the recalculation of new set-points during
real-time operation is captured in the system transition
function, so that the DRL agent can learn to set the
optimal amount of spinning reserve.

2) A novel DRL algorithm, i.e., hybrid action finite-horizon
RDPG (HAFH-RDPG), is proposed. The integration of
actor–critic RDPG and value-based DQN characteristics
enables our algorithm to have great advantages in deal-
ing with the discrete-continuous hybrid action space.
Moreover, the DRL algorithm is embedded within the
finite-horizon value iteration framework to improve the
convergence stability and performance.

3) The capability of DRL in handling uncertainty is evalu-
ated at two time scales of power fluctuation: a) interhour
and b) interday. The capability to deal with interhour
fluctuation is assessed by comparing the performance of
the proposed algorithm in POMDP and Markov decision
process (MDP) environments, respectively. The capa-
bility to deal with interday fluctuation is assessed by
comparing the performance of the HAFH-RDPG algo-
rithm when it is trained using same-day and previous-
days data, respectively. Moreover, we analyze whether
the learned policy can make efficient use of the bat-
tery in achieving energy shifting and providing sufficient
spinning reserve with minimum cost.

The remainder of this article is organized as follows.
The IoT-driven isolated MG system model is introduced in
Section II. The POMDP model is developed in Section III.
The design of the HAFH-RDPG algorithm is presented in
Section IV. In Section V, experiments are conducted to ver-
ify the efficiency of the HAFH-RDPG algorithm. Finally, the
conclusion is drawn in Section VI.

II. SYSTEM MODEL

As shown in Fig. 1, the IoT-driven smart isolated MG
system considered in this article can be divided into sev-
eral parts, i.e., the controllable generation units (i.e., DGs),
uncontrollable generation units [i.e., photovoltaic cell (PV)],
an energy storage device (i.e., battery storage), loads, and an
SO (i.e., DRL-based intelligent energy management system)
to perform energy scheduling. To reflect the status of the smart
MG system, sensors are deployed to collect real-time data on
the load power consumption, the output power generated by
the PV panels, and the SoC of the battery storage. The sensory
data is delivered to the SO in the edge or cloud server, where
the DRL agent of the SO processes the data to make intelligent
decisions on optimal scheduling of DGs. The information of
sensory data and control decisions is transmitted between the
SO in edge/cloud server and the smart devices in MG through
the IoT communication networks.

The intraday operation of our MG system model is divided
into T time steps, indexed by {1, . . . , T}. The interval of each
time step is denoted as �t.
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Fig. 1. Schematic of the IoT-driven smart isolated MG system.

A. Diesel Generator Model

Consider there are D DGs in the MG, i.e., DG1, . . . , DGD,
where D > 1. Let BDGd

t denote the ON/OFF status of
DGd ∀d ∈ {1, . . . , D}, at the beginning of time step t, where
1 stands for ON and 0 for OFF.

Let UDGd
t denote the binary switching decision of DGd

at time step t. After UDGd
t is determined at time step t, the

ON/OFF status of DGd will be set accordingly for the rest
of the time step. Note that the ON/OFF status BDGd

t at the
beginning of time step t is the same as the switching decision
UDGd

t−1 at the previous time step t − 1. Therefore, we have

UDGd
t−1 = BDGd

t . (1)

At time step t, let PDGd
t denote the output power of

DGd ∀d ∈ {1, . . . , D}. When a DG is switched on, its out-
put power can be any real number between the minimum and
maximum power limits, i.e., PDG

min and PDG
max. Thus, we have

PDGd
t = 0, if UDGd

t = 0
PDG

min ≤ PDGd
t ≤ PDG

max if UDGd
t = 1.

(2)

B. Battery Model

Let Et be SoC of the battery at time step t, which is
constrained by the minimum and maximum energy levels as

Emin ≤ Et ≤ Emax. (3)

The SoC of battery Et+1 at time step t+1 can be calculated
based on the SoC state Et at time step t as

Et+1 = Et + ηchutP
E
t �t − (1− ut)P

E
t �t/ηdis (4)

where ηch and ηdis denote the charging and discharging effi-
ciencies of the battery, respectively. PE

t indicates the charging
or discharging power of the battery, and ut denotes charging

or discharging status, which is 0 if the battery is discharging
and 1 otherwise.

Let PE
max be the maximum charging or discharging power

of the battery. The charging and discharging power limits of
the battery can be calculated separately as

PE
ch_lim = min

(
PE

max, (Emax − Et)/(ηch�t)
)

(5)

and

PE
dis_lim = min

(
PE

max, ηdis(Et − Emin)/�t
)
. (6)

C. Energy Balance and Spinning Reserve

At each time step t, the total amount of energy dispatched
by the DGs, PV, and battery should meet the load demand
whenever possible, i.e.,

D∑

d=1

PDGd
t + PPV

t + ηchutP
E
t − (1− ut)P

E
t /ηdis = PL

t (7)

where PPV
t is the output power of PV, and PL

t is the load
consumption at time step t.

At the beginning of each time step t, a set-point for the
DG output power PDGd_S

t is determined by the DRL agent.
During real-time operation within the time step, as the actual
PV generation PPV

t and load demand PL
t are observed, correc-

tive actions must be taken to ensure the energy balance. For
an isolated MG without power support from the main grid,
the spinning reserve is an important resource to compensate
for power shortages due to uncertainty in PV generation and
load demand. Both the DGs and battery can provide spinning
reserve, where the battery is given a priority due to its lower
cost and faster response than the DGs. Similarly, the battery
is leveraged to cope with power oversupply before adjusting
DG output power.

1) Charging/Discharging of Battery: In order to maintain
energy balance in (7), the battery needs to follow load, where
the charging/discharging power PE

t and charging/discharging
status ut can be determined as follows. First, a variable δt is
defined to represent the surplus of generating capacity at time
step t assuming the DG output power is set to PDGd_S

t , i.e.,

δt =
D∑

d=1

PDGd_S
t + PPV

t − PL
t . (8)

When a surplus is generated, i.e., δt > 0, the excess power is
stored in the battery and the battery is in the charging status.
On the contrary, when the power generation of PV and DGs is
insufficient, i.e., δt < 0, the battery is in the discharging status
to provide the lacked power. In this way, ut can be determined
based on δt as

ut =
{

0, if δt < 0
1, otherwise

(9)

and PE
t can be derived based on δt as

PE
t =

⎧
⎨

⎩

min
(
−δt, PE

dis_lim

)
, if δt < 0

min
(
δt, PE

ch_lim

)
, otherwise.

(10)

Authorized licensed use limited to: University of Waterloo. Downloaded on November 03,2023 at 14:27:14 UTC from IEEE Xplore.  Restrictions apply. 



16288 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 18, 15 SEPTEMBER 2023

To elaborate on (10), when δt < −PE
dis_lim, even discharging

the battery cannot provide enough power to meet the load
demand. When δt > PE

ch_lim, the excessive power is beyond the
charging capability of the battery. In the above cases, we will
need to adjust the output power of DGs. For ease of notation,
we denote the unbalanced power after charging/discharging
battery as

PERR
t =

⎧
⎨

⎩

δt + PE
dis_lim, if δt < −PE

dis_lim
δt − PE

ch_lim, if δt > PE
ch_lim

0, otherwise.
(11)

2) Adjustment of DG Output Power: To maintain energy
balance in (7), the total output power of DGs is adjusted
subject to the power limits as follows:

D∑

d=1

PDGd
t

=
⎧
⎨

⎩

max
{∑D

d=1 UDGd
t PDG

min, PAdjusted
t

}
if PERR

t > 0

min
{∑D

d=1 UDGd
t PDG

max, PAdjusted
t

}
if PERR

t < 0
(12)

where

PAdjusted
t =

D∑

d=1

PDGd_S
t − PERR

t . (13)

We define the unbalanced power after DG output power
correction as

PUB
t =

D∑

d=1

PDGd
t + PPV

t + ηchutP
E
t − (1− ut)P

E
t /ηdis − PL

t .

(14)

When PUB
t = 0, energy balance in (7) is achieved. If PUB

t > 0,
the power generation is larger than demand, and the excessive
power will go to load bank, which will be lost. Large PUB

t
beyond the maximum capacity of load bank will cause the
undesirable reverse power flow in the MG. If PUB

t < 0, the
generation is smaller than demand, which will result in some
of the loads unserved.

D. Operating Cost

The operating cost includes four parts. For any DGd ∀d ∈
{1, . . . , D}, the DG power generation cost cDGd

t can be derived
by the conventional quadratic cost function in (15). The start-
up cost cS_DGd

t in (16) and the running cost cR_DGd
t in (17)

are penalty costs associated with turning on DGd and the ON
status of DGd, respectively. Finally, the spinning reserve cost
cSR_DGd

t in (18) depends on the spinning reserve capacity, i.e.,
the amount of unused capacity, provided by DGd

cDGd
t =

[
ad

(
PDGd

t

)2 + bdPDGd
t + cd

]
�t ∀d ∈ {1, . . . , D}

(15)

cS_DGd
t = CSUDGd

t

(
1− BDGd

t

)
�t ∀d ∈ {1, . . . , D} (16)

cR_DGd
t = CRUDGd

t �t ∀d ∈ {1, . . . , D} (17)

cSR_DGd
t = CSR

(
UDGd

t PDG
max − PDGd

t

)
�t. (18)

Note that in (15)–(18), ad, bd, cd, CS, CR, and CSR are the
coefficients, where ad, bd, and cd are fitted to fuel consumption
curves for DGs; while CS, CR, and CSR are weights that indi-
cate the relative importance of the start-up cost, the running
cost, and the spinning reserve cost, respectively.

Therefore, the operating cost cOP
t is the sum of the above

costs for all the DGs, i.e.,

cOP
t =

D∑

d=1

(
UDGd

t cDGd
t + cS_DGd

t + cR_DGd
t + cSR_DGd

t

)
. (19)

Note that (12) only provides the total DG output power
after adjustment. The output power of individual DGs can be
derived by minimizing the operating cost cOP

t in (19) after the
total output power is determined.

III. POMDP MODEL

In this section, we formulate a finite-horizon POMDP model
based on which the optimal scheduling decisions using DRL
can be made. The objective of our POMDP model is to
minimize the operating cost and ensure the supply–demand
balance, where the uncertainty of both fluctuating loads and
stochastic generation of PV are taken into account.

A. State and Observation

Let St = (PEL
t , Et, {BDGd

t }Dd=1) be the system state at time
step t ∀t ∈ {1, . . . , T}, where PEL

t = PL
t − PPV

t is the
equivalent load. Due to the uncertainties of load consump-
tion and PV generation, the agent is unable to observe PEL

t
at the beginning of time step t, but receives observation Ot =
(PEL

t−1, Et, {BDGd
t }Dd=1) instead. Note that PEL

t−1 = PL
t−1 − PPV

t−1
is the equivalent load at time step t − 1.

B. Action

Let At = (ASW
t , AED

t ) be the action at time step t ∈
{1, . . . , T}, where ASW

t = {UDGd
t }Dd=1 denotes the DG switch-

ing action, which is a vector of discrete variables. AED
t =

{PDGd_S
t }Dd=1 represents the ED action that determines the

DG output power set-point, which is a vector of continuous
variables.

The action space A = ASW×AED. As ASW is D permuta-
tions of 0 and 1, its size is 2D. Let aSW

k denote the kth action
in the switching action space ASW, where k ∈ {1, . . . , 2D} is
the index of the switching action. Since there is a one-to-one
correspondence between aSW

k and k, we substitute k for aSW
k

for convenience in the rest of this article.
According to (2), AED is related to the switching action k.

Therefore, let AED
k denote the ED action space corresponding

to the chosen switching action k. Let aED
k denote an action

belonging to the ED action space AED
k , i.e., aED

k ∈ AED
k .

C. History

As only the observation Ot is available instead of
state St, the agent is provided with history Ht to derive
the action At. The history is tailored for the optimal
scheduling of isolated MG and defined as Ht = (PEL

t−τ ,

Authorized licensed use limited to: University of Waterloo. Downloaded on November 03,2023 at 14:27:14 UTC from IEEE Xplore.  Restrictions apply. 



QI et al.: OPTIMAL SCHEDULING IN IoT-DRIVEN SMART ISOLATED MICROGRIDS 16289

PEL
t−τ+1, . . . , PEL

t−1, Et, {BDGd
t }Dd=1) ∀t ∈ {1, . . . , T}, where

τ is the length of the time window to look into the past.
Note that Ht includes history data of equivalent load statis-
tics {PEL

t′ }t−1
t′=t−τ

to implicitly predict the equivalent load state
PEL

t at time step t. Let H denote the history space.

D. Reward Function

The optimization objective in the IoT-driven MG system
is to minimize the operating cost within the considered time
horizon, i.e., one day while guaranteeing energy balance.
Therefore, we define the reward function as

r(St, At) = −
(

cOP
t + cUS

t

)
(20)

where cOP
t is the operating cost in (19). cUS

t represents the cost
of aggregated unserved or lost active power, i.e.,

cUS
t =

⎧
⎨

⎩

C1PUB
t �t, if PUB

t > 0
−C2PUB

t �t, if PUB
t < 0

0, otherwise
(21)

where C1 and C2 are weights that indicate the relative impor-
tance of unserved power situation and lost power situation,
and PUB

t can be derived according to (14).

E. Transition Probability

The state transition probability is derived as

Pr(St+1|St, At) = Pr
(
PL

t+1|PL
t

)
Pr
(
PPV

t+1|PPV
t

)

Pr
(
Et+1|Et, PL

t , PPV
t , AED

t

)
Pr
(

Bt+1|ASW
t

)
(22)

where the transition probabilities of load demands Pr(PL
t+1|PL

t )

and PV power outputs Pr(PPV
t+1|PPV

t ) are not available, but sam-
ples of the trajectory can be obtained from real-world data. The
transition probability of SoC Pr(Et+1|Et, PL

t , PPV
t , AED

t ) can be
calculated through (4) and (8)–(10). The last transition prob-
ability Pr(Bt+1|ASW

t ) is for the switching state, which can be
easily inferred from (1).

Similarly, the history transition probability is derived as

Pr(Ht+1|Ht, At) = Pr
(
PL

t |PL
t−τ , . . . , PL

t−1

)

Pr
(
PPV

t |PPV
t−τ , . . . , PPV

t−1

)
Pr
(

Bt+1|ASW
t

)

Pr
(
Et+1|Et, PL

t , PPV
t , AED

t

)
(23)

where the transition probabilities of load demands
Pr(PL

t |PL
t−τ , . . . , PL

t−1) and PV power outputs Pr(PPV
t |PPV

t−τ ,

. . . , PPV
t−1) can be obtained by the samples of the trajectory

from real-world data. The transition probability of SoC
Pr(Et+1|Et, PL

t , PPV
t , AED

t ) and the transition probability of
switching state Pr(Bt+1|ASW

t ) are the same as the transition
probabilities in (22).

F. Optimization Objective

We define the cumulative reward Rπ as the sum of rewards
over the finite horizon under a given policy π , i.e.,

Rπ =
T∑

t=1

r(St, At). (24)

Fig. 2. Schematic description of the learning process of the DRL agent.

Our objective is to derive the optimal policy π∗ to maximize
the expected cumulative reward, i.e.,

π∗ = arg max
π

E
[
Rπ
]
. (25)

IV. DRL SOLUTION

In this section, we present a DRL algorithm to solve the
POMDP model formulated in Section III. A schematic descrip-
tion of the learning process is provided in Fig. 2. The DRL
agent is trained using history PV and load data and can be
used for real-time optimal scheduling after training.

A. Dealing With the Hybrid Action Space

Since the action At in our POMDP model includes both
continuous and discrete variables, the action space A is a
discrete-continuous hybrid space, while most of the existing
DRL algorithms require either a discrete space or a continuous
space. Inspired by the P-DQN algorithm in [40], we break the
optimization problem down into two steps and design a new
algorithm to solve this problem.

First, the optimization objective in (25) is equivalent to
finding the policy π∗ that can maximize the action value
Q(Ht, k, aED

k ), i.e.,

π∗(Ht) =
(

k∗, aED
k∗
∗) = arg max

k∈{1,...,2D},aED
k ∈AED

k

Q
(
Ht, k, aED

k

)
(26)

where k∗ and aED
k∗
∗

denote the optimal switching action and
ED action, respectively.

For the discrete switching action k, there are 2D choices.
For any given switching action k ∈ {1, . . . , 2D}, we are able
to select the best ED action aED

k
∗

from the ED action space
AED

k by solving

aED
k
∗ = arg max

aED
k ∈AED

k

Q
(
Ht, k, aED

k

) ∀k ∈ {1, . . . , 2D}. (27)
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However, as aED
k is a continuous variable, (27) cannot be directly

solved by classical value-based algorithms, such as Q-learning
and DQN [40], unless the action space is discretized, which
will result in performance loss due to discretization error. In
contrast, the actor–critic algorithms can efficiently handle the
continuous action space. Therefore, our algorithm adopts the
actor–critic framework to calculate the optimal ED action aED

k
∗
.

Specifically, for a given switching action k ∀k ∈
{1, . . . , 2D}, an actor network μk(·; θ) : H → AED

k is intro-
duced to approximate the optimal ED action aED

k
∗

from the
continuous space AED

k such that

aED
k
∗ ≈ μk(Ht; θ), (28)

where θ is the weights of μk. Correspondingly, a critic
network λk(·;w) is applied to evaluate the ED action aED∗

k
and approximate the action value Q(Ht, k, aED∗

k ), i.e.,

Q
(

Ht, k, aED∗
k

)
≈ λk

(
Ht, aED∗

k ;w
)

(29)

where w denotes the weights of λk.
Once the optimal ED action aED

k
∗

for all the switching action
k ∀k ∈ {1, . . . , 2D}, are derived, we could choose the optimal
switching action k̂∗ from the 2D-dimensional discrete switch-
ing action space. The above action value Q(Ht, k, aED∗

k ) given
by the critic network λk can be used to evaluate the switch-
ing action k when the corresponding optimal ED action aED

k
∗

is applied. We choose the switching action k with the largest
action value as the optimal solution, i.e.,

k̂∗ = arg max
k∈{1,...,2D}

Q
(

Ht, k, aED
k
∗)

. (30)

As shown in Fig. 3, the above two-step framework is
summarized as follows.

1) For each switching actions k ∈ {1, . . . , 2D}, select the
corresponding optimal ED action aED

k
∗

by (27) in the
continuous action space.

2) Derive the optimal switching action k̂∗ in the discrete
action space according to (30).

In the following, we present Theorem 1 that states the
optimal policy for the objective in (26) can be derived by
the proposed two-step framework.

Theorem 1: For any history Ht, the action (k̂∗, aED
k̂∗
∗
)

derived by the two-step framework is as good as the optimal
action π∗(Ht) for the objective in (26), i.e.,

Q
(

Ht, k̂∗, aED
k̂∗
∗) = Q

(
Ht, k∗, aED

k∗
∗)

. (31)

The proof of Theorem 1 is given in Appendix A.
In order to train the actor and critic networks, we focus on

the action value function Q(Ht, At) = Q(Ht, ASW
t , AED

t ) based
on the Bellman equation as

Q
(

Ht, ASW
t , AED

t

)
= E

St|Ht

[
r
(

St, ASW
t , AED

t

)]

+ E

Ht+1|Ht,ASW
t ,AED

t

[

γ · max
k∈{1,...,2D} max

aED
k ∈AED

k

Q
(
Ht+1, k, aED

k

)
]

(32)

where γ is the discount factor that satisfies 0 < γ ≤ 1.

Fig. 3. Neural network framework of HAFH-RDPG.

Thus, the loss function Lk(w) of the critic network λk ∀k ∈
{1, . . . , 2D} can be calculated as the mean-square error, i.e.,

Lk(w) = E
Ht∼ρ

μ
k ,aED

k ∼μk

[(
yt,k − λk

(
Ht, aED

k ;w
))2]

(33)

where ρ
μ
k denotes the discounted state visitation distribution

following policy μk. yt,k denotes the target for each critic
network λk at time step t, which is defined based on the
Bellman equation in (32) as

yt,k ≈ rt + γ max
k∈{1,...,2D}λk(Ht+1, μk(Ht+1; θ);w). (34)

By minimizing the loss function Lk(w) via stochastic gra-
dient descent, the weight w of λk can be updated at each time
step by

w← w+ 2β
(
yt,k − λk

(
Ht, aED

k ;w
))∇wλk

(
Ht, aED

k ;w
)

(35)

where β is the learning rate for updating w.
The loss function of actor network μk ∀k ∈ {1, . . . , 2D}

can be defined as

Lk(θ) ≈ − E
H0∼ρ0

[λk(H0, μk(Ht; θ);w)] (36)

where ρ0 is the distribution of the initial history H0.
We use stochastic gradient decent to sample deterministic

policy gradient [41], and the weight θ of μk is updated by

θ ← θ − α∇θμk(Ht; θ)∇aED
k

λk
(
Ht, aED

k ;w
)|aED

k =μk(Ht;θ) (37)

where α is the learning rate for updating θ .

B. Designing the Framework

As we focus on energy management within one day with T
time steps, our task corresponds to a finite-horizon POMDP
model. There are a few popular DRL algorithms for solv-
ing POMDP, such as deep recurrent Q-learning (DRQN) [42]
and RDPG. The basic ideas of DRQN and RDPG are to add
recurrency to DQN and DDPG algorithms, respectively, by
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replacing the first fully connected layer with a recurrent long
short-term memory (LSTM) layer. However, the above DRL
algorithms are developed for an infinite-horizon setting, while
the value function, i.e., critic, and the policy, i.e., actor, are nor-
mally dependent on the time steps for the finite-horizon case.
Therefore, we propose a novel DRL algorithm named HAFH-
RDPG, which adopts a framework that is a combination of
DP and DRL, where RDPG with a fixed target is embedded
within the framework of finite-horizon value iteration.

In HAFH-RDPG, the finite-horizon value iteration starts
from the time step T , and uses backward induction to iter-
atively derive the value function and optimal policy for each
time step t ∈ {T, T − 1, . . . , 1}, until it reaches the first time
step t = 1. In each time step, the RDPG algorithm is used to
solve a simple one-step POMDP where the target actor and
critic networks, i.e., λ′t and μ′t, are fixed to be the trained actor
and critic networks of the next time step, i.e., λt+1 and μt+1,
which greatly increases stability and performance.

Algorithm 1 describes the pseudocode of HAFH-RDPG.
The calculation of the hybrid actions and the method to
update networks are presented by two functions separately,
i.e., Algorithms 2 and 3. In the Action Calculation function,
we introduce multiple actor networks to calculate the optimal
ED actions for every switching action. According to (30), we
choose the optimal switching action whose critic network has
the largest output value and the corresponding ED action.
In the Networks Updating function, in order to update the
critic networks, the minibatch of transitions B are further
divided into nonoverlapping subsets according to the switch-
ing actions. The critic network λk is updated by a minibatch of
transitions J in which the switching action of each transition
is k. After that, the actor networks can be updated based on
B using the sampled policy gradient.

The proposed HAFH-RDPG algorithm works for MG
systems with an arbitrary number of DGs. When the number
of DGs changes, we only need to add or remove actor–critic
pairs correspondingly and the training process will be in the
same way as before.

C. Reducing the Algorithm Complexity

Since the proposed method is a DRL-based algorithm, it
updates the network parameters instead of the Q values of
all state-action pairs in every iteration. The computational
complexity of training each pair of actor–critic networks in
HAFH-RDPG is the same as that of the classical RDPG algo-
rithm, which is associated with the size of neural networks
instead of the state and action spaces. In specific, the per-
iteration computational complexity is mainly dominated by
the matrix multiplication in the LSTM layer and fully con-
nected layers. However, note that the HAFH-RDPG algorithm
requires |ASW| = 2D pairs of actor and critic networks, thus
the computational complexity is O(2D). As the number of
DGs D increases, the number of actor and critic networks and
thus the computational complexity of HAFH-RDPG increases
exponentially.

In order to reduce the computational complexity, we map
the action space to a new space with reduced dimensionality.

Algorithm 1 HAFH-RDPG Algorithm
1: Randomly initialize actor networks μk(h; θk) and critic

networks λk(h, a;wk) with weights θk = θ0
k and wk =

w0
k , respectively, where ∀k ∈ {1, . . . , 2D

}
. Initialize target

networks μ′k
(
h; θ ′k

)
and λ′k

(
h, a;w′k

)
with θ ′k ← θk and

w′k ← wk;
2: for t = T, . . . , 1 do
3: Initialize replay buffer R
4: Initialize a random process N for action exploration
5: for episode e = 1, . . . , M do
6: Receive history H(e)

t

7: k(e)
t , AED

t
(e)=ACTION(H(e)

t ,μk(h; θk),λk(h, a;wk))
8: Execute action and observe reward r(e)

t and next
observation O(e)

t+1

9: Store transition
(

H(e)
t , k(e)

t , AED
t

(e)
, r(e)

t , O(e)
t+1

)

into R
10: Sample a random minibatch of N transitions B =(

H(i)
t , k(i)

t , AED
t

(i)
, r(i)

t , O(i)
t+1

)
from R

11: if t = T then
12: Set the target y(i)

T = r(i)
T

13: else
14: Construct H(i)

t+1
15: Set the target

y(i)
t = r(i)

t + γ · max
k∈{1,...,2D}λ

′
k

(
H(i)

t+1, μ
′
k

(
H(i)

t+1; θk

)
;wk

)

16: end if
17: UPDATE(B,y(i)

t ,μk(h; θk),λk(h, a;wk))
18: end for
19: Update the target networks: w′k ← wk, θ ′k ← θk

20: Save weight of the actor networks: θk,t ← θk

21: Reset weight of the actor and critic networks to initial
value: θk ← θ0

k , wk ← w0
k

22: end for

Algorithm 2 Action Calculation

1: function ACTION(H(e)
t , μk(h; θk), λk(h, a;wk))

2: for switching action k = 1, . . . , 2D do
3: Calculate ED action aED

k
∗(e) = μk

(
H(e)

t ; θk

)

4: end for
5: Select switching action k(e)

t =
arg max

k∈{1,...,2D}
λk

(
H(e)

t , aED
k
∗(e);wk

)

6: Select ED action AED
t

(e) = aED
k(e)

t

∗(e)

7: Adjust switching action k(e)
t based on ε-greedy policy

8: Adjust ED action AED
t

(e)
with exploration noise

9: return k(e)
t and AED

t
(e)

10: end function

For simplicity of explanation, we consider that the param-
eters of all D DGs are identical in the following. When
the parameters of only a subset of DGs are identical, our
method can be applied to the subset of DGs instead of all
the DGs. The new switching action space ÂSW is defined as
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Algorithm 3 Networks Updating

1: function UPDATE(B, y(i)
t , μk(h; θk), λk(h, a;wk))

2: for k = 1, . . . , 2D do
3: Sample the minibatch of transitions J =(

H(j)
t , k(j)

t , AED
t

(j)
, r(j)

t , O(j)
t+1 | k(j)

t = k
)

from B and corre-

sponding targets y(j)
t

4: Update the critic networks by minimizing the loss:

Lk = 1

|J |
∑

j∈J

(
y(j)

t − λk

(
H(j)

t , AED
t

(j);wk

))2
,

wk ← wk + β∇wk Lk

5: end for
6: Update the actor networks using the sampled policy

gradient:

∇θk Jk ≈ 1

|B|
∑

i

[
∇aλk(h, a;wk)|h=H(i)

t ,a=μk

(
H(i)

t ;θk

)

∇θkμk

(
H(i)

t ; θk

)]
, θk ← θk + α∇θk Jk.

7: end function

ÂSW = {0, 1, . . . , D}, where a simplified switching action in
the new space m ∈ ÂSW corresponds to the number of DGs
that are ON. Compared with ASW, the size of ÂSW is reduced
from 2D to D + 1, which can, in turn, reduce the number of
neural networks and the computation complexity from O(2D)

to O(D).
Note that there is a one-to-many relationship between m

and k. Specifically, each m corresponds to Cm
D possible switch-

ing actions k. When m DGs should be ON, the corresponding
switching actions k form a subset ASW

m within ASW. In
other words, ASW can be divided into D+ 1 nonoverlapping
subsets, i.e.,

D⋃

m=0

ASW
m = ASW. (38)

In the following, we introduce a strategy that maps a sim-
plified switching action m ∈ ÂSW to a unique switching action
km ∈ ASW

m .
DG Selection Strategy: First, a priority value is assigned for

each DGd ∀d ∈ {1, 2, . . . , D}, so that DG1 has the highest
priority and DGD has the lowest. If m DGs should be ON at
time step t where ∀m ∈ {0, 1, . . . , D}, the switching action
under this strategy km should be

km =
({

UDGd
t

}m

d=1
= 1,

{
UDGd

t

}D

d=m+1
= 0

)
. (39)

With the above strategy, we can first map each m to km, and
then choose the optimal m∗ as

m∗ = arg max
m∈ÂSW

Q
(

Ht, km, aED
km

∗)
. (40)

Specifically, the HAFH-RDPG algorithm given in
Algorithms 1–3 can be used to train the actor and critic
networks by replacing the switching action k with the

TABLE I
PARAMETER CONFIGURATION IN THE MG SYSTEM MODEL

simplified switching action m. However, in the eighth line
of Algorithms 1, m(e)

t should first be mapped to k(e)
t by

the DG selection strategy before its execution to derive the
reward and next state. Since each m corresponds to a unique
km, the reward r(St, m, aED

m
∗
) and transition probability

Pr(Ht+1|Ht, m, aED
m
∗
) can be derived by replacing m with km

in the expressions. Finally, the optimal simplified switching
action m∗ is mapped to the switching action km∗ .

We now provide Theorem 2 which elaborates that the two
switching actions, i.e., k∗ derived by (30) and km∗ with m∗
derived by (40), achieve the same performance.

Theorem 2: Suppose that all the DG parameters are identi-
cal, the POMDPs with action space ÂSW and ASW have the
same optimal performance given that the above DG selection
strategy is used to determine the m DGs that are ON, i.e.,

max
m∈ÂSW

Q
(

Ht, km, aED
km

∗) = max
k∈ASW

Q
(

Ht, k, aED
k
∗)

. (41)

V. NUMERICAL ANALYSIS

In order to evaluate the effectiveness of the proposed algo-
rithm, we perform experiments based on real-world data in an
IoT-driven MG and discuss about the simulation results. All
the experiments are performed on a Linux server, where the
DRL algorithms are implemented in Tensorflow 1.14 using
Python.

A. Experimental Setup

The MG system simulated in our experiments comprises
three DGs, a PV panel, and a battery. The setting of three DGs
is commonly adopted for experiments on isolated MGs [12],
[23], [24]. The parameters of the system model are listed in
Table I. Note that different values of coefficients CR, CS, and
CSR can result in different optimal policies, since varying these
coefficients will change the weights of the DG power genera-
tion cost cDGd

t , the start-up cost cS_DGd
t , running cost cR_DGd

t ,
and the spinning reserve cost cSR_DGd

t in the operating cost cOP
t

according to (15)–(19). Based on our setting, the DG genera-
tion cost occupies the largest proportion in the operating cost,
followed by the spinning reserve cost, the running cost, and
the start-up cost. Meanwhile, all the above costs are in the
same order of magnitude.
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Fig. 4. Trajectories of the PV power, load power, and equivalent load power
of one typical day in the experimental data.

1) Experimental Data: We use PV and load statistics in a
real IoT-driven isolated MG as the experimental data. These
data are collected by the sensors per hour. Therefore, the dura-
tion of a time step is set to 1 h, i.e., �t = 1 h. Each data at
a time step include two values, representing the average load
power and average PV power within the corresponding hour.
Fig. 4 shows the trajectories of the PV power, load power, and
equivalent load power of one typical day in the experimental
data. By observing the fluctuations over time in the curve,
we find that the PV power is nonnegative between 8:00 and
18:00 with a peak value of 180 kW at around 12:00; while the
load power drops to the lowest value of 400 kW between 4:00
and 6:00 and reaches a peak value of 700 kW between 18:00
and 21:00 We regard one-day data as an episode, where the
total number of time steps is T = 24. In order to evaluate the
capability of the proposed algorithm in dealing with interday
power fluctuation, two types of data sets are designed for the
experiment.

1) Type A: The data of one single day randomly sampled
from the data set are used as both the training and test
set.

2) Type B: The data of N continuous days randomly
sampled from the data set are used as the training
set, while the test set comprises data of the next
((N + 1)th) day.

Type A can provide a benchmark scenario, where there is
no uncertainty due to interday power fluctuation. Meanwhile,
Type B is used to evaluate the performance of the
proposed algorithm in a practical scenario. By comparing the
performance of the proposed algorithm under the two data
sets, we can evaluate whether the algorithm is able to learn a
good policy from history data, which is generalized enough to
work well for the next day with unknown PV generation and
load demand.

In addition, for both Types A and B, we randomly select
five sets of data on different days and train the DRL algorithms
in five runs. By comparing the performance of the proposed
algorithm under different runs, the stability of the proposed
algorithm can be evaluated.

2) DRL Environment: In order to evaluate the capability
of the proposed algorithm in dealing with interhour power

TABLE II
HYPERPARAMETERS OF THE DRL ALGORITHMS

fluctuation, two types of DRL environments are implemented
in the experiments.

1) MDP: The state information, including PV and load data
of the current time step, is available at the beginning of
a time step for making decisions.

2) POMDP: Only the PV and load data of the previous
τ time steps are available at the beginning of a time
step, which is regarded as the history data for making
decisions.

The MDP environment provides a benchmark scenario, where
there is no uncertainty due to interhour power fluctua-
tion. Meanwhile, the POMDP environment captures interhour
power fluctuation in a practical scenario. Comparing the
performance of the proposed algorithm under the two envi-
ronments can prove whether the proposed algorithm is able to
deal with partial observability problem and works well when
PV and load data for the coming hour is unknown.

3) Benchmark Algorithms: Several benchmark algorithms
are selected for performance comparison with the proposed
algorithm.

1) Myopic Algorithm: The action At is directly optimized
by minimizing the reward function rt(St, At) in (20)
without foreseeing the impact on future rewards at each
time step t ∈ {1, 2, . . . , T}.

2) Discrete Dynamic Programming (DDP) [12]: The finite-
horizon value iteration algorithm in DP, where the states
and actions are discretized. DDP guarantees to find
the global optimum for the MDP after discretization,
although performance loss could be incurred for the
original MDP depending on the discretization granular-
ity.

3) Hybrid Action Finite-Horizon DDPG (HAFH-DDPG):
The version of HAFH-RDPG for MDP environment,
where the LSTM layer is replaced by a fully connected
layer in actor and critic networks.

4) DRQN [42]: A popular value-based DRL algorithm for
solving POMDP problem. To deploy DRQN, the action
space needs to be discretized at proper granularity.

The hyperparameters of the DRL algorithms are listed in
Table II.

B. Experimental Results

1) Performance for Test Set: Table III summarizes the
individual, average, maximum performance, as well as the
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TABLE III
INDIVIDUAL, AVERAGE, MAXIMUM PERFORMANCE, AS WELL AS THE STANDARD ERROR OF THE PROPOSED AND BENCHMARK

ALGORITHMS ACROSS FIVE RUNS. IN EACH RUN, WE EXECUTED 100 EPISODES OF 24 TIME STEPS. THE INDIVIDUAL

PERFORMANCE IS THE AVERAGE CUMULATIVE REWARD OVER 100 TEST EPISODES

Fig. 5. Average performance curves of three DRL algorithms across five
runs in the training process. The ordinate corresponds to the performance,
i.e., the average cumulative reward over ten test episodes. The shaded areas
indicate the standard errors of the three algorithms.

standard error on five runs for all the algorithms. In each
run, we executed 100 complete episodes of 24 time steps for
each algorithm based on the test set, and obtain the individual
performance by averaging the cumulative rewards over the 100
episodes, where the cumulative reward of one episode is given
by (24). Therefore, the performance corresponds to the average
cumulative reward over 100 test episodes, which reflects the
optimization objective defined in (25). The myopic, DDP, and
HAFH-DDPG algorithms are implemented in the MDP envi-
ronment, while the HAFH-RDPG and DRQN algorithms are
implemented in the POMDP environment. Moreover, dataset
Type A is used for all the benchmark algorithms, while both
dataset Types A and B are used for HAFH-RDPG algorithms.

2) Convergence Properties: Fig. 5 shows the average
performance curves of the DRL algorithms across five runs,
which are obtained by evaluating the policies periodically
during training without noise. In specific, during the train-
ing process, we ran ten test episodes based on the current
model parameters every 100 training episodes in order to accu-
rately represent the training results. The abscissa is the number
of training episodes and the ordinate is the performance of
DRL algorithms, which denotes the average cumulative reward
over ten test episodes. The shaded areas indicate the standard
errors of the algorithms across the five runs. Moreover, for
HAFH-DDPG and HAFH-RDPG algorithms, we only show
the performance curves of the first time step t = 1, as the
performance curves for all T time steps are similar.

3) Energy Dispatch Results: Fig. 6 illustrates the energy
scheduling decisions and corresponding costs of different
algorithms over one day based on the test set of run 1.
Due to space limitations, only the results for myopic, DDP,
HAFH-DDPG, and HAFH-RDPG (Type A) are shown. In
Fig. 6(a), (c), (e), and (g), three curves are displayed corre-
sponding to the equivalent load trajectory, generation power
trajectory, and battery trajectory, respectively, in each fig-
ure. The generation power value at time step t is derived
by

∑D
d=1 PDGd

t − PE
t , i.e., the total power of DGs after

charging/discharging of the battery. Moreover, the charge or
discharge power of the battery and the power generated by
each of the three DGs are also shown through the bar chart.
In Fig. 6(b), (d), (f), and (h), the sum cost trajectory is dis-
played in each figure, where the sum cost at time step t is the
negative reward −r(St, At). Moreover, we use the bar chart
to visualize the individual values of different costs in detail.
Finally, Fig. (7) displays the sum cost trajectories of the dif-
ferent algorithms in the same figure to clearly show the sum
cost comparisons.

C. Analysis and Discussion

1) Capability in Handling Uncertainty Due to Interhour
Power Fluctuation: We focus on the performance of myopic,
DDP, HAFH-DDPG, and HAFH-RDPG algorithms when data
set Type A is used. Note that the benchmark algorithms are
all implemented in the MDP environment, where the PV and
load data of the current time step are assumed to be available,
while the proposed HAFH-RDPG algorithm is implemented
in the POMDP environment, where the PV and load data of
the past four time steps are used to determine the actions. It
can be observed in Table III that HAFH-DDPG has the largest
maximum performance, followed by HAFH-RDPG, DDP, and
myopic algorithms. Moreover, HAFH-DDPG also achieves the
best average performance across five runs among all the algo-
rithms, while DDP and HAFH-RDPG (for Type A) have the
second and third best average performance. The myopic algo-
rithm has the worst average performance on five runs. Finally,
HAFH-DDPG achieves the lowest standard error, followed by
HAFH-RDPG, DDP, and myopic algorithms.

For each run, the individual performance of HAFH-DDPG is
consistently better than those of the other algorithms. As HAFH-
DDPG is the version of HAFH-RDPG in the MDP environment,
its high performance indicates that our proposed algorithm
works well when there is no uncertainty due to interhour power
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Fig. 6. Equivalent load, generation power, battery, and sum cost trajectories of various algorithms for a specific test episode on run 1. The charge or discharge
power of the battery, the power generated by each of the three DGs, and the individual costs are shown through the bar chart. (a) Energy scheduling of
myopic. (b) Costs of myopic. (c) Energy scheduling of DDP. (d) Costs of DDP. (e) Energy scheduling of HAFH-DDPG. (f) Costs of HAFH-DDPG. (g) Energy
scheduling of HAFH-RDPG. (h) Costs of HAFH-RDPG.

fluctuation, and thus no performance degradation due to partial
observation. Moreover, although HAFH-RDPG is applied in
the POMDP environment, it outperforms DDP in the MDP
environment on run 1, run 4, and run 5, which demonstrates
that our proposed algorithm can exploit history data to deal
with the uncertainty due to interhour power fluctuation and
make efficient decisions. Although the performance of DDP

is comparable to that of HAFH-RDPG, it is trained in the
MDP environment ignoring the partial observable problem
due to the unavailable PV generation and load demand data
of the next hour. When prediction errors for the next-hour
data occur in realistic scenarios, it can be expected that the
performance of DDP will degrade and become worse than
that of HAFH-RDPG. More importantly, the computational

Authorized licensed use limited to: University of Waterloo. Downloaded on November 03,2023 at 14:27:14 UTC from IEEE Xplore.  Restrictions apply. 



16296 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 18, 15 SEPTEMBER 2023

Fig. 7. Sum cost trajectories for a specific test episode to compare the
performance of different algorithms.

complexity of DDP is much higher than that of HAFH-RDPG.
Although theoretically, DDP can obtain the optimal solution
when the discretization granularity of state and action space is
infinitely small, it is not a practical option as the computation
complexity O(|S|2 ∗|A|) depends on the state and action space
dimensions. In order to achieve the presented performance in
our experiment, we train DDP for 100 iterations, and the optimal
value function is updated by over 2.7 billion times in each
iteration. Overall, the running time of DDP is approximately
11 times that of HAFH-RDPG. Finally, the standard errors
across the five runs are mainly due to the differences in PV
and load data on different days instead of the instability of DRL
algorithms. This is corroborated by the fact that the standard
error of the myopic algorithm is higher than those of the DRL
algorithms. It can be observed that our proposed algorithm
performs stably in both MDP and POMDP environments, as
the HAFH-DDPG and HAFH-RDPG algorithms achieve the
first and second lowest standard errors.

Focusing on the convergence properties in Fig. 5, it can
be observed that HAFH-DDPG has the fastest convergence
speed and converges at approximately 600 episodes. Despite
being in the POMDP environment, HAFH-RDPG also con-
verges fast at approximately 800 episodes. Moreover, the
shaded areas of HAFH-DDPG and HAFH-RDPG are simi-
lar and have a large overlap, which indicates that the stability
of the proposed algorithms is comparable in both MDP and
POMDP environments.

For the ED results in Fig. 6, we find that the curves of load
and generation power match exactly for all the algorithms,
which means the basic energy balance requirement can be met.
A closer examination shows that the generation power and bat-
tery trajectories of DDP [Fig. 6(c)], HAFH-DDPG [Fig. 6(e)],
and HAFH-RDPG [Fig. 6(g)] are very similar. These algo-
rithms adopt similar strategies which try to keep the DGs
that are ON generating very high power, which can largely
reduce spinning reserve cost. The surplus power is charged
to the battery so that one or more DGs can be turned off to
reduce running cost when the battery has enough power to
meet the load demand. As a result, two DGs are ON at most
time steps, and sometimes only one ON DG is needed during
the morning and noon hours. In addition, it can be observed
visually that only two DGs are used in HAFH-DDPG except
for the first time step as shown in Fig. 6(e), which leads to the
lowest costs as shown in Fig. 7. This conclusion shows that

the MDP version of the proposed algorithm achieves the best
results, which is also verified by Table III. Most importantly,
although the PV and load power of the current time step cannot
be obtained by HAFH-RDPG, Fig. 6(g) shows that this algo-
rithm still outperforms DDP in energy scheduling on run 1.
Compared with DDP, HAFH-RDPG only incurs the start-up
cost three times at 9:00, 13:00, and 20:00, which reduces the
loss of frequently changing switching states. Finally, compared
with the above policies, the myopic algorithm is unable to take
advantage of the battery to charge in advance for the evening
peak and for energy shifting. Therefore, it has to turn on three
DGs after 17:00, which leads to great spinning reserve cost
and DG generation cost as shown in Fig. 7.

2) Capability in Handling Uncertainty Due to Interday
Power Fluctuation: We compare the performance of HAFH-
RDPG when both dataset Types A and B are used, respectively.
For Type B, we set the number of past days for training, i.e.,
N, to be 7, 14, and 21, respectively, to prevent the agent from
overfitting to the statistics of one particular day. Table III shows
that the best average performance for Type B (N = 7) is only
1.90% lower than that for Type A and the best maximum
performance for Type B (N = 14) is only 1.62% lower than
that for Type A, demonstrating that the proposed algorithm has
the capability in handling uncertainty due to interday power
fluctuation. Comparing the performance for Type B when dif-
ferent numbers of past days N are used for training, it can be
observed that the individual performance for N = 21 on each
run is always the worst. The individual performance for N = 7
is better than those for N = 14 on run 1, run 2, and run 4,
while the opposite is true on run 3 and run 5. Overall, the
average performance for N = 21 is 2.09% and 1.76% lower
than that for N = 7 and N = 14, respectively. This is because
when N is smaller, the training data are more recent, and there
is a higher probability that the statistics of PV and load data
are more similar to those of the test data. Meanwhile, in the
rare case, when the test data is an outliner, whose statistical
properties are much different from those of data in the recent
past, increasing N can make the training data more general and
thus improve the performance of the trained policy on the test
data. Therefore, the setting for N should strike a good tradeoff,
and both N = 7 and N = 14 are appropriate in this case.

Fig. 5 shows that the convergence speed and stability of
HAFH-RDPG are very similar when trained using dataset Type
A or B, which is as expected. In addition, notice that DDP
requires predictive models to handle the uncertainty due to
interday power fluctuation, while HAFH-RDPG directly learns
a policy from the history data. The resultant robustness to the
prediction model error is also an advantage of the proposed
algorithm over DDP.

3) Capability in Dealing With Hybrid Action Space: We
compare the performance of DRQN and HAFH-RDPG,
where both algorithms work in the POMDP environ-
ment. However, DRQN uses discretization to deal with the
hybrid action space, while HAFH-RDPG uses the proposed
method. Table III shows that HAFH-RDPG always has better
individual performance on each run than DRQN. The maxi-
mum performance of HAFH-RDPG is 7.74% larger than that
of DRQN, and the average performance of HAFH-RDPG is
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7.09% larger than that of DRQN, demonstrating the superior
capability of HAFH-RDPG in dealing the hybrid action space.
The standard error of DRQN is 0.79% larger than that of
HAFH-RDPG, which indicates that the proposed algorithm
is more stable than DRQN.

Focusing on the convergence properties, Fig. 5 shows that
HAFH-RDPG converges much faster and with smaller fluctu-
ation than DRQN. The former converges at approximately 800
training episodes, while the latter converges at approximately
7500 episodes. This is because HAFH-RDPG iteratively trains
to solve the one-period POMDP problem for each time step
using RDPG with a fixed target, which makes our proposed
algorithm much easier to converge and more stable.

VI. CONCLUSION

In this article, we have studied the energy scheduling
issue with low operation cost in IoT-driven isolated smart
MG systems by fully exploiting the renewable energy. The
DRL approach has been adopted to handle the uncertainty
of PV generation and load demand. A finite-horizon POMDP
model has been developed considering the spinning reserve.
The HAFH-RDPG algorithm has been proposed, which over-
comes the challenge of learning optimal policy with discrete-
continuous hybrid action space. Finally, experiments have been
performed to demonstrate that the proposed algorithm can
efficiently tackle with the uncertainty due to interhour and
interday power fluctuation and can achieve better performance
than the other benchmark algorithms. In the future, this work
will be further extended by optimizing the ED of network PV
panels jointly with the scheduling of DGs, which can help to
minimize reverse power flow in the isolated MGs. Due to the
distributed deployment of residential PV, multiagent DRL and
federated DRL can be leveraged.

APPENDIX A
PROOF FOR THEOREM 1

The optimal policy for the objective in (26) achieves the
optimal Q value, i.e.,

Q
(

Ht, k∗, aED
k∗
∗) = max

k∈{1,...,2D},aED
k ∈AED

k

Q
(
Ht, k, aED

k

)
. (42)

Combining (27) and (30), the policy derived by the two-step
framework also achieves the optimal Q value, i.e.,

Q
(

Ht, k̂∗, aED
k̂∗
∗) = max

k∈{1,...,2D} max
aED

k ∈AED
k

Q
(
Ht, k, aED

k

)
,

= max
k∈{1,...,2D},aED

k ∈AED
k

Q
(
Ht, k, aED

k

)

= Q
(

Ht, k∗, aED
k∗
∗)

. (43)

APPENDIX B
PROOF FOR THEOREM 2

Our proof is divided into two steps. The first step is to prove
that both k∗ and km∗ can achieve the maximum immediate
reward at any time step t. According to the definitions

in (21), (15), (17) and (18), it is obvious that DGs have
translatable symmetry for the supply–demand balance cost,
power generation cost, running cost, and spinning reserve
cost. Therefore, the sum of these costs is the same for any
k ∈ ASW

m , i.e.,

cUS
t,k1
+

D∑

d=1

(
cDGd

t,k1
+ cR_DGd

t,k1
+ cSR_DGd

t,k1

)

= cUS
t,k2
+

D∑

d=1

(
cDGd

t,k2
+ cR_DGd

t,k2
+ cSR_DGd

t,k2

)
,

∀k1, k2 ∈ ASW
m . (44)

In addition, the DG selection strategy can ensure that the max-
imum number of ON DGs at time step t is selected to be ON
at time step t + 1. In other words, the strategy minimizes the
number of DGs whose BDGd

t = 0 and UDGd
t = 1. According

to (1) and (16), the DG selection strategy in (39) leads to
the switching action km in ASW

m that minimizes the start-up
cost, i.e.,

km = arg min
k∈ASW

m

(
D∑

d=1

cS_DGd
t,k

)

. (45)

Therefore, according to the reward definition in (20), km

derived from the strategy maximizes the reward according
to (44) and (45), i.e.,

km = arg max
k∈ASW

m

(
r
(

St, k, aED
k
∗))

. (46)

Thus, we can derive

max
k∈ASW

(
r
(

St, k, aED
k
∗)) (a)= max

m∈ÂSW
max

k∈ASW
m

(
r
(

St, k, aED
k
∗))

(b)= max
m∈ÂSW

(
r
(

St, km, aED
km

∗))
(47)

where (a) is due to (38); and (b) follows from (46).
In the second step, we prove (41) using induction by the

Bellman equation (32). For the last time step T , we have

QT

(
HT , k, aED

k
∗) = E

ST |HT

[
r
(

ST , k, aED
k
∗)] ∀k ∈ ASW. (48)

Thus, combining (47) and (48), we have

max
m∈ÂSW

QT

(
HT , km, aED

km

∗) = max
k∈ASW

QT

(
HT , k, aED

k
∗)

. (49)

Then, we assume that

max
m′∈ÂSW

Qt+1

(
Ht+1, km′ , aED

km′
∗)

= max
k′∈ASW

Qt+1

(
Ht+1, k′, aED

k′
∗) ∀Ht+1 ∈ H. (50)

Next, we can prove
∑

Ht+1∈H
Pr
(

Ht+1|Ht, k1, aED
k1

∗) · max
k′∈ASW

Qt

(
Ht+1, k′, aED

k′
∗)

=
∑

Ht+1∈H
Pr
(

Ht+1|Ht, k2, aED
k2

∗) · max
k′∈ASW

Qt

(
Ht+1, k′, aED

k′
∗)

,

∀k1, k2 ∈ ASW
m . (51)
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This is because the history transition probability Pr(Ht+1|Ht, At)

consists of four parts according to (23), where the transi-
tion probabilities of load demands and PV output powers,
i.e., Pr(PL

t |PL
t−τ , . . . , PL

t−1) and Pr(PPV
t |PPV

t−τ , . . . , PPV
t−1), do not

depend on the switching action k. Moreover, all the switching
actions ∀k ∈ ASW

m lead to the same SoC state Et+1 according
to (4) and (8)–(10). Finally, the next switching state Bt+1 is
different for ∀k ∈ ASW

m , but the number of ON DGs at the next
time step t+ 1 is the same, i.e., m. Therefore, (51) is proved.

Finally, we can prove (41) at each time step t based on
mathematical induction by considering the following Bellman
equations in (32), i.e.,

max
m∈ÂSW

Qt

(
Ht, km, aED

km

∗)

(a)= max
m∈ÂSW

{
E

St|Ht

[
r
(

St, km, aED
km

∗)]

+ E

Ht+1|Ht,km,aED
km
∗

[
γ · max

m′∈ÂSW
Qt

(
Ht+1, km′ , aED

km′
∗)
]}

(b)= max
m∈ÂSW

{
E

St|Ht

[
r
(

St, km, aED
km

∗)]

+ E

Ht+1|Ht,km,aED
km
∗

[
γ · max

k′∈ASW
Qt

(
Ht+1, k′, aED

k′
∗)
]}

(c)= max
m∈ÂSW

max
k∈ASW

m

{
E

St|Ht

[
r
(

St, k, aED
k
∗)]

+ E

Ht+1|Ht,k,aED
k
∗

[
γ · max

k′∈ASW
Qt

(
Ht+1, k′, aED

k′
∗)
]}

(d)= max
k∈ASW

{
E

St|Ht

[
r
(

St, k, aED
k
∗)]

+ E

Ht+1|Ht,k,aED
k
∗

[
γ · max

k′∈ASW
Qt

(
Ht+1, k′, aED

k′
∗)
]}

(e)= max
k∈ASW

Qt

(
Ht, k, aED

k
∗)

(52)

where (a) and (e) are due to the definition of the Bellman
equation; (b) follows by (50); (c) is due to (51) and the defi-
nition of expectation; and (d) follows by (38). Therefore, (41)
in Theorem 1 is proved according to (52).
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