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Abstract—The advances in artificial intelligence (AI) and edge
computing enable edge intelligence to support pervasive intelli-
gent Internet of Things (IoT) applications in the future wireless
networks. We focus on deep neural network (DNN)-based classi-
fication tasks, and investigate how to improve the confidence level
and delay performance of DNN inference via device—edge collab-
oration. We first develop a stochastic cumulative DNN inference
scheme that aggregates multiple random DNN inference results
and generates a cumulative DNN inference result with improved
confidence level. Then, based on a computation-efficient DNN
model deployment strategy with shared computation between
a locally deployed fast DNN model and a full DNN model
partitioned between the device and edge, a closed-loop adap-
tive device—edge collaboration scheme is developed to support
cumulative DNN inference for multiple devices. We adaptively
determine how to offload DNN inference computation to the
edge and how to allocate transmission and edge-computing
resources among multiple devices, for Quality-of-Service (QoS)
satisfaction in terms of both confidence level and inference delay
with resource and energy efficiency. A reinforcement learning
(RL) approach is used for adaptive offloading decision, which
relies on a resource allocation solution for reward calculation.
Simulation results demonstrate the effectiveness of the adaptive
device-edge collaboration scheme for cumulative DNN infer-
ence, in terms of confidence level improvement, delay violation
minimization, network resource efficiency, and device energy
efficiency.

Index Terms—Device—edge collaboration, deep neural network
(DNN) inference, edge computing, edge intelligence, Internet of
Things (IoT), partial offloading, reinforcement learning (RL).
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I. INTRODUCTION

N THE future wireless networks, artificial intelligence

(AI) models, such as deep neural networks (DNNs), are
pervasively deployed to support diverse intelligent Internet
of Things (IoT) applications, such as intelligent surveillance,
autonomous driving, and factory automation [1], [2], [3], [4],
[5], [6]. Many intelligent IoT applications rely on DNN mod-
els for classification. For example, in autonomous driving, the
nearby objects should be detected and classified to build an
environment model for an autonomous vehicle [7]. For a gen-
eral classification task, a pretrained DNN model processes an
input data sample, such as raw sensing data, and generates a
classification result as output, which is referred to as DNN
inference. The DNN model output, also referred to as a DNN
inference result, has a random confidence level due to the ran-
dom amount of information provided by a single data sample.
For example, for an object moving under the surveillance of a
smart camera, one video frame can be sampled and processed
by a DNN model for object classification. However, due to
the random geometric factors (e.g., pose and angle) and pho-
tometric factors (e.g., illumination and bulur) that affect the
sensing data quality across different video frames, a DNN
inference result based on a random data sample may not
provide satisfactory confidence level and accuracy for object
classification.

As different data samples corresponding to the same object
(e.g., consecutive video frames containing an object) usually
capture different spatial/temporal features, and different DNN
models provide random DNN inference results with differ-
ent confidence levels by processing the same data sample, a
potential approach to improving the confidence level of a clas-
sification task is to consider multiple DNN inference results
based on different data samples and DNN models to exploit the
data diversity and model diversity. A straightforward method
is to select a DNN inference result with the maximum confi-
dence level and ignore other results. Then, if a confidence level
requirement is not satisfied, more data samples should be col-
lected and more computation should be triggered to obtain a
more accurate DNN inference result. This approach may lead
to high latency if the required confidence level is high, which
may violate a task completion time requirement. Actually, it
is inefficient to completely ignore the DNN inference results
with lower confidence levels, especially for those whose
confidence levels are close to the required threshold. This
observation motivates our investigation on a cumulative DNN
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Fig. 1. Tllustration of computation-efficient DNN model deployment.

inference scheme for a classification task, that progressively
incorporates the different contributions from multiple random
DNN inference results and improves a cumulative confidence
level for the classification task.

To obtain the multiple DNN inference results that sup-
port cumulative DNN inference with computing resource
efficiency, the tradeoff between confidence level and comput-
ing demand of different DNN models should be considered.
Typically, more complex DNN models with deeper layers pro-
vide a higher confidence level on average at the cost of high
computing demand. If DNN inference is executed locally, it
is intractable for the resource-limited IoT devices to satisfy
a high confidence level requirement with low latency. An
edge-only solution, which fully offloads the raw data sam-
ples with a large data size to a resource-rich edge server,
suffers from a long transmission delay. Recently, collabora-
tive inference over a device—edge—cloud computing hierarchy
has been investigated to improve the delay performance, by
partially offloading the DNN model computation to nearby
devices, edge server, or cloud [8], [9], [10], [11]. For exam-
ple, in a horizontal DNN partitioning scheme, the inference
before and at a selected cut layer is computed locally at the
device, and the remaining inference after the cut layer (referred
to as enhanced DNN inference) is computed at the edge server
based on the intermediate data generated at the cut layer out-
put, which reduces the total DNN inference delay [12], [13],
[14], [15], [16]. Benefiting from the delay improvement via
device—edge collaboration, a complex DNN model providing
a high confidence level can be used for real-time IoT applica-
tions. We refer to this complex DNN model partitioned across
device and edge as a full DNN model. To improve the comput-
ing efficiency, we also deploy a compact DNN model of less
layers with a lower confidence level at the device side, referred
to as a fast DNN model, which shares the local computation
with the full DNN model. Such a computation-efficient DNN
model deployment strategy with device—edge collaboration is
illustrated in Fig. 1. If both the fast and full DNN models
are executed for a data sample, two DNN inference results
(referred to as fast and full DNN inference results, respec-
tively,) are generated with a limited computation increase as
compared with the original DNN partitioning scheme.

Consider an edge-assisted multidevice IoT scenario,
where each IoT device has a classification task with
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Quality-of-Service (QoS) requirements in terms of the
confidence level and task delay, and the computation-efficient
DNN model deployment strategy with device—edge collabora-
tion is applied to each device. For each device, a new input
data sample is first processed locally by a fast DNN model,
generating a fast inference result. The intermediate data at the
cut layer is temporally stored in a local cache at the device,
which is obtained as a by-product during fast DNN inference.
A full inference result is generated by offloading a cached
intermediate data sample to the edge server for enhanced DNN
inference, which consumes network resources for transmission
and edge computing. The fast or full DNN inference results
are sequentially aggregated to obtain a continually updated
cumulative DNN inference result, until the cumulative confi-
dence level reaches a predefined threshold. If the confidence
level requirement is not satisfied within a predefined deadline
in time, a delay violation penalty is applied to the device.

To improve the cumulative confidence level within a given
time and reduce the delay violation probability, it is preferable
to execute more full DNN inference than fast DNN infer-
ence, i.e., offloading is preferred to local computing, as a
full inference result has a higher confidence level on average.
However, more offloading means consuming more transmis-
sion and edge-computing resources, both of which are shared
among multiple devices. Moreover, the local energy consump-
tion should be considered, as the IoT devices are usually
battery powered and thus the energy efficiency is a concern. As
the intermediate data size is relatively small, the local trans-
mission energy for offloading one intermediate data sample to
obtain one full inference result is usually smaller than the local
computing energy for fast DNN inference. A choice should
be made between using less local energy but more network
resources to offload a cached intermediate data sample for a
full inference result with a higher confidence level, and using
more local energy but no network resources to locally process
a new data sample for a fast inference result with a lower
confidence level.

In this article, a resource and energy-efficient adaptive
device—edge collaboration scheme is presented, which sup-
ports cumulative DNN inference among multiple devices in
an edge-assisted intelligent IoT scenario, for confidence level
satisfaction with a minimum delay violation penalty. The main
contributions are summarized as follows.

1) A data-driven stochastic cumulative DNN inference
scheme is proposed for classification tasks, to com-
bine the contributions of multiple fast and full infer-
ence results, based on nonparametric probability density
estimation of both the fast and full DNN model outputs.

2) A computation-efficient and device—edge collaborative
DNN model deployment strategy is proposed with
shared local computation between fast and full DNN
models, based on which full inference results can be
generated by reusing the intermediate data of fast
inference.

3) A learning-based control loop is designed to support the
cumulative DNN inference with adaptive device—edge
collaboration, as illustrated in Fig. 2. Based on a
continually updated cumulative confidence level, an
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Fig. 2. Learning-based control loop supporting cumulative DNN inference
with device—edge collaboration for one device.

adaptive offloading decision sequence is learned to
dynamically trigger the local fast DNN inference or
the remote full DNN inference for each device, until
the cumulative confidence level reaches a predefined
threshold.

4) A joint offloading and resource allocation problem is
studied, to minimize: a) the total cost accounting for
both network resources and local energy consumption
and b) the total delay violation penalty. The problem is
formulated as a Markov decision process (MDP) and a
deep Q-learning solution is proposed with a per-episode
updated extra experience replay.

The remainder of this article is organized as follows. Related
works are reviewed in Section II. The system model is
described in Section III, and a joint offloading and resource
allocation problem is formulated in Section IV. A reinforce-
ment learning (RL)-based solution is discussed in Section V.
Simulation results are presented in Section VI, and conclusions
are drawn in Section VII. Table I summarizes the main
mathematical symbols.

II. RELATED WORKS

Collaborative DNN inference has been extensively studied
in recent years. We give a brief overview of the state-of-the-
art collaborative DNN inference schemes that are based on
partial offloading for DNN inference acceleration.

In a typical horizontal DNN partitioning scheme, the
sequential layers of a linear-topology DNN model (e.g.,
AlexNet) are grouped into two subsets which are partitioned at
a selected cut layer. The inference before and at the cut layer
is computed locally at one network device, and the remaining
inference after the cut layer is computed at another network
device. The combination of the two network devices can be
an IoT device and an edge server, two IoT devices, or an
edge server and a cloud server [12], [13], [14]. For a DNN
model with branches (e.g., GoogleNet), which can be modeled
as a directed acyclic graph, the set of layers can be parti-
tioned into two or more disjoint subsets at multiple parallel
cut layers and deployed at multiple network devices in the
device—edge—cloud environment [15], [16], [17], [18]. How
to select the cut layer(s) for an efficient DNN model parti-
tioning between network devices has been extensively studied
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TABLE I
LIST OF IMPORTANT NOTATIONS

Parameters

c(k) Cost during time slot k
dA Computing delay for fast DNN inference at device %

3

dl.E (k) | Computing delay for enhanced DNN inference of device 4
during time slot k

le(k:) Transmission delay for offloading one intermediate data
sample from device ¢ to the AP during time slot k

ef Local computing energy at device ¢

eiT(k:) Transmission energy for offloading one intermediate data
sample by device ¢ during time slot k

ei(k) Local energy consumption at device ¢ during time slot k

fi (fo) | CPU frequency (in cycle/s) of device 7 (edge server)

K; Task completion time requirement for device ¢

P;(k) | Delay violation penalty of device ¢ at time slot k
qi (k) Number of intermediate data samples in local cache of
device ¢ at the beginning of time slot k&
w Intermediate data size (output data size of cut layer 1) in bit
nrT Confidence level requirement
n: (k) Cumulative confidence level of device ¢ at time slot k
W Computing demand in CPU cycles for layer I € £4 U LV
T Time slot duration in second
Decision variables
a; (k) Number of intermediate data samples offloaded by device ¢
during time slot k&
BT (k) | Fraction of bandwidth allocated to device 4 at time slot k
5? (k) | Fraction of edge computing resources allocated to device 4
during time slot k
p(k) Network resource consumption ratio during time slot k

to reduce the total inference delay and (or) the total energy
consumption for both communication and computing, by using
delay/energy performance regression techniques, optimization
models, and RL approaches [12], [13], [14], [15], [16], [17],
[18], [19]. Besides the horizontal DNN partitioning schemes
in which the DNN inference is divided into two serial parts
at selected cut layer(s), vertical DNN partitioning schemes
have been extensively investigated, which exploit the model
parallelism and improve the inference delay by distribut-
ing the fine-grained parallel inference workload to multiple
network devices [20], [21], [22], [23]. In [23], the principles
for input/output splitting of fully connected (FC) layers and
channel/spatial/filter splitting of convolution (CONV) layers are
introduced in detail.

Typically, a DNN model with deeper layers produces DNN
inference results of a higher accuracy at the cost of a longer
inference delay and a higher inference energy. To reduce the
average inference delay and energy without significantly sac-
rificing the accuracy, a DNN model early exit architecture has
been proposed, which adds one or more early exit outputs to
the original DNN model, and allows a DNN inference to fin-
ish at an early exit output as long as the confidence level is
satisfied [24], [25], [26], [27]. To further enhance the delay
performance for DNN inference, a new collaborative DNN
inference scheme has been proposed by combining the DNN
partitioning and the model early exit schemes, which dynami-
cally adjusts the cut layer locations and the early exit locations
under a dynamic network environment, while addressing a
tradeoff between accuracy and delay [28].

In summary, most existing works on collaborative DNN
inference focus on the performance enhancement for DNN
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inference based on single data sample in reducing the total
delay and (or) energy consumption without degrading the
accuracy. In comparison, our adaptive device—edge collabo-
ration scheme is to support the stochastic cumulative DNN
inference based on multiple DNN inference results over time,
to exploit the data and model diversity and further improve the
accuracy beyond the accuracy limit of a single DNN inference
result. We focus on how to satisfy a cumulative confidence
level requirement within a required time limit, while using a
minimum total network resource consumption and total device
energy consumption across multiple time slots. The underlying
DNN model partitioning and early exit design for a minimum
inference delay and energy is not the focus of this work. We
can use the existing approaches to select a proper cut layer and
an early exit location for our DNN model, which can boost
the overall delay and energy performance in the long run.

III. SYSTEM MODEL
A. Edge-Assisted Intelligent IoT Scenario

Consider an [oT scenario with one access point (AP) and
multiple stationary IoT devices, in a time-slotted system with
time-slot duration t. Let integer k (k > 1) be the time-slot
index. The AP is co-located with an edge server. For each
device i in a device set Z, we consider both a locally deployed
fast DNN model and a full DNN model partitioned between
the device and the edge server, with shared layers from an
input layer to a predetermined cut layer. The cut layer output
is referred to as an intermediate data sample. Let £4 and £V
denote the layer sets of the fast and full DNN models, respec-
tively, with subset Lo = LAN LY, including all the shared
layers. Let 1 € Lo denote the cut layer. For the full DNN
model, all the layers in subset Ly are executed locally, while
all the remaining layers in subset £Y\ Ly, corresponding to
enhanced DNN inference, are executed at the edge server.

Each device i initiates a classification task at the beginning
of time slot k = 1, with a task completion time requirement,
denoted by 7; in second and K; = [(7;/t)] in number of time
slots. For the task, there are multiple input data samples gener-
ated by an embedded data source in the device. For example,
a smart camera can generate consecutive video frames for the
classification of a moving object. Based on these input data
samples, multiple DNN inference results can be generated for
the task at device i over time by the fast and full DNN models.
A local cache is used at each device to temporarily store the
intermediate data samples during each execution of fast DNN
inference. Let g, € R/ZI denote the caching state at the begin-
ning of time slot k, where the ith element, g;(k), represents
the number of intermediate data samples stored in the local
cache of device i, with initial state g;(1) = 0. Let a; € RHZI
denote an integer offloading decision vector during time slot
k, where element a;(k) represents the offloading decision vari-
able for device i. Specifically, if a;(k) = 0, no offloading takes
place but one new data sample is locally processed by fast
DNN inference at device i, generating one new fast inference
result, and one new intermediate data sample is added to the
local cache; otherwise, a number of a;(k) intermediate data
samples are offloaded from the local cache of device i to
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the edge server for enhanced DNN inference, generating one
or more full inference results. Accordingly, the caching state
qr+1 = {gi(k+ 1) Vi € I} at the beginning of time slot k + 1,
is updated as

qi(k) + 1 Vie Zifajk)=0
[g:(k) — a;()]" Vi€ T if ai(k) > 0.
At most g;(k) intermediate data samples can be offloaded from
device i during time slot k, i.e.,

0 < ai(k) < qi(k) Viel. 2

gitk+1) = { (1)

B. DNN Model Layer Parameters

A DNN model for classification usually begins with a fea-
ture extraction module composed mainly of CONV layers and
pooling (e.g., MaxPool) layers, followed by a classifier com-
posed mainly of FC layers. A pooling layer downsamples the
output of a CONV layer and reduces the data dimension. An
activation layer is usually applied to each CONV and FC layer
output for nonlinearity. The last FC layer is usually activated
with Sof tmax function, to generate a nonnegative probability
vector adding up to one.

For CONV layer [ € LA U LY, let (H, WZI, D{) and
(HO, WZO ,DIO) denote the dimensions in height, width, and
number of channels, for the input and output feature maps,
respectively. To generate the output feature map at layer /, a
number of Dlo filters, each with a dimension of (4, A, Df ), are
applied to the input feature map, by sweeping each filter over it
and calculating the dot products [23], [29]. Each filter creates
a channel in the output feature map. Filter n (1 < n < D?)
at layer ! performs (h;)sz multiplications and (h1)2Df -1
additions, in calculating each of the HIOWIO data elements
in the jth channel of the output feature map. Thus, a total
number of 2(hl)2Df — 1 floating-point operations, including
both multiplications and additions, are required for computing
each of the HIOWIOD? output data elements at CONV layer /.
For FC layer [ € LAU LY, let Xll and XIO denote the input
and output dimensions, respectively. To compute each of the
XZO output data elements, the XlI -dimension inputs are multi-
plied with the corresponding weights, and the weighted inputs
are then summed with a bias. Hence, Xl’ multiplications and
X,’ additions are required for each output data element at FC
layer I. Accordingly, a total number of 2XII floating-point oper-
ations are required for computing each of the XZO output data
elements at FC layer /.

Let v; denote the number of output data elements at layer
le AU LY, given by

_ {HZOWIODIO, if layer / is a CONV layer
VE= ] xo if layer [ is an FC layer.
1> y y

Let m; denote the number of floating-point operations,
including both multiplications and additions, for computing
one output data element at layer / € £4 U LY, given by

3

o 2(h)?D} — 1, if layer [ is a CONV layer
= 2X1, if layer [ is an FC layer.
Note that m; is set to 0 by default, as other DNN layers, such
as the pooling and activation layers have negligible computing

demand in comparison with the CONV and FC layers.

(4)
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C. Computing Model

Let u; = @vym; denote the computing demand in number
of CPU cycles for layer [ € £4 U LY, where ¢ is the number
of CPU cycles for one floating-point operation. Let f; and fj
denote the CPU frequencies (in cycle/s) of device i and the
edge server, respectively.

Let d? denote the computing delay for one fast DNN
inference at device i, given by

d;‘zw VieT. (5)

fi

We should have t > max;c7 d;f‘, to ensure that the fast DNN
inference for one data sample at any device can finish in one
time slot. The local computing energy consumption for fast
DNN inference at device i, denoted by e‘i“, is given by

o =ki(fyd} =ki(f)* Y i Viel 6)

leLA

where k; is the energy efficiency coefficient for device i [30].
For enhanced DNN inference, each device is allocated
with a virtual CPU at the edge server. Let ﬂE (k) € RFI
denote an edge-computing resource allocation decision vector
at time slot k, with element ,BZE (k) representing the fraction
of edge-computing resources allocated to the virtual CPU for
device i. We have ,BI-E (k) = 0 for device i if a;(k) = 0, with

0<BE(k) <ai(M Viel (7)

where M > 1 is a very large constant. The computing delay
for enhanced DNN inference of device i during time slot k,
denoted by dlE (k), is given by

DleLv\co M
[BF (&) +efo
where ¢ is a very small constant parameter with 0 < & < 1.
Adding such a small value, e.g., 10_6, to ﬁlE (k) in the
denominator of (8) avoids df (k) being undetermined when no
edge-computing resources are allocated to device i at time slot
k, i.e., ,BlE (k) = 0, while making nearly no difference on the
optimal value of ﬂiE(k). Let constant CEI) = (ZIEEU\LO wi/fo)
be the value of df (k) for fy total edge-computing resources.

df (k) = el (8)

D. Communication Model

Let w = ¢v; denote the intermediate data size in bit, where
¢ is the number of bits to represent a floating-point number,
and v; is given by (3) if cut layer 1is a CONV or FC layer.
In practice, the cut layer is usually selected as a pooling layer
following a CONV layer. In this case, v; is the number of output
data elements after data downsampling by the pooling layer.

Consider orthogonal frequency division multiple access
(OFDMA) for the uplink wireless transmission between IoT
devices and the AP with total radio spectrum bandwidth B.
Let BT(k) € RZ! denote the bandwidth allocation decision
vector during time slot k, with element ,B,T (k) representing the
fraction of bandwidth allocated to device i. We have

0<plk) <a()M Viel. ©)
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The transmission delay for offloading one intermediate data
sample from the local cache of device i to the edge server via
the AP during time slot k, denoted by diT(k), is given by

w

df (k) = _
(Bl (k) + 8]Blog2(1 + 1%)

VieZ (10)

where p; denotes the transmit power of device i, g; denotes
the constant uplink transmission power gain between device
i and AP, and o2 represents the noise power. Let constant
C? = (w/Bl[log,(1 + pigi/o)]) be the value of d7 (k) when
using whole bandwidth B. We ignore the downlink delay for
transmitting the full inference results back to the devices due
to the small data size. The transmission energy consumption
for offloading one intermediate data sample from device i to
the AP during time slot k, denoted by el.T(k), is given by

el(ky =pidl (k) Viel. (11)

E. Cumulative DNN Inference Scheme

Consider an M-class classification task, where class label
Y is a random variable with M possible integer outcomes in
{1,..., M}. An input data sample, x, to the fast or full DNN
model is a random sample following an unknown probability
distribution. For example, a grayscale image with resolution
200200 is a random sample from a 200?-dimension unknown
joint probability distribution of pixel intensity values. A fast
or full DNN model output, i.e., a fast or full inference result,
is represented by an M-dimension estimated class probability
vector, Z = {z;}, with z,, = Pr(Y = m|x) denoting the esti-
mated conditional probability of class m € {1, ..., M} given
data sample x. The entropy of Y conditioned on x, calculated
as — Z%:l Zm log z,,, measures the uncertainty of the DNN
inference result z. We use one minus normalized entropy to
represent the confidence level of z, given by

oM 12)

M Zm 1og zim
n@ =1+ m; -
which has a value between 0 and 1 [24], [25]. Typically, a full
inference result has a higher confidence level on average than
a fast inference result.

Consider multiple DNN inference results for the M-class
classification task. Let z; = {zj ,} denote the jth DNN infer-
ence result. Let x; € {0, 1} indicate whether z; is generated
by the fast or full DNN inference, with x; = 1 indicating full
DNN inference, and yx; = 0 otherwise. Let Z; = {z1, ..., z;}
denote the set of DNN inference results up to z;. Define the
cumulative DNN inference result given Z; as an M-dimension
estimated class probability vector, denoted by 0; = {0} s}, with
0jm = Pr(Y = m|Z;) representing the estimated conditional
probability of class m given Z;. For true class 1, z;  is referred
to as the estimated true class probability by the jth DNN infer-
ence result, and o; ; is referred to as the cumulative estimated
true class probability given Z;. Based on Bayes’ theorem and
under the assumption of conditional independence among dif-
ferent DNN inference results given the same true class label,
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0j,m 1s written as

Pr(Y = m) [T,_, Pf<zf”y = ’")
Pr(zl, A ,Zj)

where Pr(Y = m) represents the prior class distribution, and
Pr(zy|Y = m) represents the joint probability density of the
J'th DNN inference result, i.e., vector zjr, given true class label
Y = m. Let ff}l (z) and f% (z) denote the joint probability density
functions of the fast and full DNN inference results given
Y = m, respectively. Then, we have

Pr(z; |Y = m) = (1= xp)fo () + x7f z7)-

We use a data-driven nonparametric probability density esti-
mation method, kernel density estimation (KDE), to profile
functions 4 (z) and fY(z) for each class m. Specifically, we
first partition a labeled training data set into M class-specific
subsets according to the known class labels. With each class-
specific data subset, we collect a subset of fast inference results
and a subset of full inference results by running the fast and
full DNN models. Then, f4 (z) and fY(z) can be profiled with
the corresponding subset of DNN inference results.

As denominator Pr(zy, ..., z;) in (13) is unknown, we can
calculate o; ,,, through normalization based on the property that
Z%:l oj,m = 1. Hence, (13) can be rewritten as

13)

Oj,m =

(14)

Pr(Y = m) [T, Pr(zy|Y = m)

S [Prr = m) [T, Prtey ¥ = m)]

The confidence level of cumulative DNN inference result o;,
denoted by 7(0;), is referred to as the cumulative confidence
level given Z;, and is calculated based on (12).

Note that (15) provides a general model to calculate a cumu-
lative DNN inference result given an arbitrary number (e.g., j)
of fast or full inference results for an M-class classification
task. In the considered scenario, each device i obtains either
one new fast inference result or at least one full inference
result during time slot k for its task, depending on offloading
decision a;(k). Let 5, € R’ denote the cumulative confidence
levels for all devices at the beginning of time slot k, where
element n;(k) represents the cumulative confidence level for
device i with n;(1) = 0. A cumulative DNN inference result
is updated at the end of time slot k£ for each device i based
on (15), by combining all the old inference results through
time slots 1 to k — 1 and the new inference results obtained
during time slot k. Accordingly, the new cumulative confi-
dence levels, i.e., ;. (, can be calculated. For each device i,
the update is performed iteratively across multiple time slots,
until the classification task is completed when the cumula-
tive confidence level reaches a predefined threshold, nr. If
the threshold, nr, is reached before or at the required task
completion time limit, K;, the QoS requirement of device i
is satisfied; otherwise, a delay violation penalty is applied to
the device. Let P;(k) denote the delay violation penalty of
device i at the end of time slot k. The penalty is zero for
1 < k < K;. For k > K;, if the required confidence level
is not satisfied, i.e., n;(k) < nr, the penalty increases lin-
early with the number of time slots behind deadline. Let P be

5)

OJ"m =
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a constant denoting the unit penalty for each time slot with
delay violation. Accordingly, we have

(k= Ki + )P, if ni(k) < nr

Pi(k) = {0, otherwise. (16)

Computational Complexity: At a data preprocessing stage
before the online execution of the cumulative DNN inference
scheme, the joint probability density functions should be pro-
filed using the KDE method. Consider an M-class training data
set including X training data samples for each class. Each of
the fast and full DNN models should be executed by MX times
to generate the subsets of fast and full inference results, which
incurs an O(MX) time complexity. For each class m, one KDE
is required to profile function f‘,“n (2), and one KDE is required
to profile function fV(z). Each KDE has a time complexity of
0(X?) for kernel function evaluation and optimal kernel band-
width selection, all depending on the number of data points,
X [31]. Thus, the total time complexity for the KDE of both
the fast and full inference results of all classes is O(MX?).
For a large data set, the computational complexity of KDE
can be prohibitive, but there are efficient algorithms, such as
the fast Fourier transform method, that can be used to speed
up the computation [31]. When the cumulative DNN inference
scheme is used online, an M-dimension cumulative DNN infer-
ence result is calculated in each time slot, where each element
is calculated based on (15). Accordingly, the time complexity
of the online cumulative DNN inference scheme in each time
slot is O(M).

IV. JOINT OFFLOADING AND RESOURCE ALLOCATION FOR
MULTIDEVICE CUMULATIVE DNN INFERENCE

A full inference result has a higher average confidence level
than a fast inference result, and more full inference results
generally improve more on the cumulative confidence level
once they are combined. Hence, device i tends to achieve a
higher gain in the cumulative confidence level (i.e., confidence
level gain) during time slot k for a larger value of a;(k), i.e.,
if more intermediate data samples are offloaded to the edge
server and processed by enhanced DNN inference. For each
device to reduce the delay violation penalty at task completion,
offloading more intermediate data samples for edge computing
is preferable in each time slot.

However, more offloading requires more resources for both
transmission and edge computing. In this work, we focus on
the fraction rather than the absolute value of total resource
usage for both transmission and edge computing. The factions
for both have the same range between 0 and 1. We do not put
more emphasis on minimizing the fraction of either the trans-
mission resource usage or the edge-computing resource usage,
but treat them equally. Define a network resource consumption
ratio during time slot k, denoted by p (k), which is a continuous
decision variable in [0, 1] representing an upper limit for the
fractions of total transmission and edge-computing resource
usage during time slot k. Accordingly, we have

Y Bl (k) < pk) and Y BF () < p(K).

i€l ieZ

a7)
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By minimizing such an upper limit, both the fractions of
total transmission and edge-computing resource usage can
be minimized. As the network resources are shared among
multiple devices, only feasible offloading decisions under the
network resource availability can be selected to guarantee the
delay performance in each time slot. Specifically, for device i,
in order to offload a;(k) intermediate data samples to the edge
server and obtain a;(k) full inference results during time slot
k, the total transmission and edge-computing delay should not
exceed time-slot length , given by

ai[dl (k) +dF ()] <t Viel. (18)

More offloading also requires more local transmission
energy at the devices for transmitting more intermediate data
samples to the edge server, while no offloading incurs local
computing energy consumption for executing fast DNN infer-
ence. Let &(k) = {&;(k) Vi € Z} be an auxiliary binary decision
variable set in time slot k, with &;(k) = 1 indicating that at
least one intermediate data sample is offloaded from device i,
and &;(k) = 0 otherwise. We have

a;(k)
M

Let e;j(k) denote the local energy consumption at device i
during time slot k, given by

ei(k) = &(kyai(kye] (k) +[1 — Ek)le}  VieT.

<é&i(k) =ai(k) Viel. 19)

(20)

Consider the total cost during time slot k, denoted by c(k),
as the linearly weighted summation of the total local energy
consumption among all devices and the network resource
consumption ratio, with weight w; € (0, 1), given by

ctk) = w1y eik) + (1= w)p(k)

iel
_ o PG |
= w ;{a(km(k)m + 1 — &kl

+ (I —w)pk).

To support the device—edge collaborative cumulative DNN
inference for multiple devices with QoS satisfaction and cost
efficiency, a joint offloading and resource allocation is neces-
sary, to minimize the long-run total cost and the total delay
violation penalty until the task confidence level requirements
at all devices are satisfied, by jointly determining the inte-
ger offloading decision variables, ay; the binary auxiliary
decision variables, &(k); and the continuous resource alloca-
tion decision variables, p(k), B (k), and BE (k), in each time
slot k. The long-run joint offloading and resource allocation
problem can be decoupled into a long-run adaptive offload-
ing problem, and multiple instantaneous resource allocation
subproblems in each time slot. Given an offloading decision
vector, ay, for time slot k, a resource allocation subprob-
lem in Section IV-A is solved to first check the feasibility
and then find the optimal resource allocation solutions, p*(k),
ﬁT*(k), and ﬁE*(k), with minimal cost ¢* (k). For the long-run
adaptive offloading problem, a sequence of feasible offload-
ing decisions are adaptively determined based on the evolving
network status, by solving an MDP in Section IV-B with
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a reward function incorporating the minimal cost ¢*(k) by
optimal resource allocation.

A. Resource Allocation Subproblem
Given an offloading decision vector, ai, for time slot k,
&(k) is a known vector determined by (19). Then, a resource
allocation optimization problem is formulated as
min

, mi c(k)
BT (k).BE (k). p (k)

st. BI(), BE(K), p(k) €[0,1] VieI (22a)
(N, 9, A7) (22b)
a(C @tk .
BT +e  BEGO +e <tViel. (22)

Constraint (22a) specifies the lower and upper limits for the

decision variables. The delay requirement in (18) is rewritten
as constraint (22c) with explicit resource allocation decision
variables. Problem (22) is a convex optimization problem due
to the convex objective function and all the convex inequal-
ity constraints. However, both the objective function and
constraint (22¢) involve the division by decision variables,
which is not supported by an optimization solver such as
Gurobi [32]. To solve the problem using a Gurobi optimization
solver, we transform the problem to a second-order cone
programming (SOCP) problem with zero optimality gap, by
introducing two auxiliary continuous decision variable sets,
¥ (k) = {yi(k) Vi € Z} and &(k) = {§;(k) Vi € Z}, and one
auxiliary continuous decision variable, {. An SOCP problem
has a linear objective function and all the constraints are either
linear or (rotated) second-order cone constraints, which is a
convex problem that can be solved in polynomial time using
interior point methods [33]. Let C = &(k)a;(k)p;C* and
C§4) =[1-— é,-(k)]e‘i“ be two constant values for device i given
ay. Then, the SOCP problem is given by

min o1 ) [Pl + 0]+ (1 - 0o
BT w0,BE (), .
¥ (k).8(k). p (k) i€l

st (22a), (22b)
a,-(k)[c}%,-(k) + c}”a,»(k)] <tVieT (23a)

[B7 (k) + e]witk) = ¢> VieT (23b)
[BE(K) +e]sitk) = ¢ Viel (23¢)
¢ =1 (23d)

An optimum of problem (22) is either a unique optimum
or one of multiple optimal solutions to SOCP problem (23).
Specifically, second-order cone constraint (23b) must be active
(i.e., achieving equality) in an SOCP optimum, and an SOCP
optimum with inactive second-order cone constraint (23c) can
always be mapped to another SOCP optimum with active
constraint (23c), without affecting other constraints and the
objective value. Relevant proofs involving the active/inactive
status of second-order cone constraints can be found in [34].

The feasibility of each candidate offloading decision, ay, is
checked by checking the feasibility of the SOCP problem.
Let A denote the set of feasible offloading decisions. The
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minimal cost, c¢*(k), under each feasible offloading decision,
ay, is precalculated by solving the SOCP problem.

B. Adaptive Offloading Problem

We formulate the adaptive offloading problem as an MDP,
where the offloading decisions are adaptively determined for
each device based on the evolving network status, to minimize
the total cost in the long run while reducing the delay violation
penalty. An MDP is represented as a tuple, (S, A, P, R, y),
where S is the state space, A is the action space, P is the
state transition probability matrix, with P(s'|s, a) denoting the
probability distribution of next state s’ € S given the current
state s € S and actiona € A, R : S x A — R is a reward
function, and y is a discount factor in [0, 1). The goal of an
MDP is to maximize an expected total discounted reward in
the long run, by adaptively taking action @ € A based on
dynamic network state s € S. The state, action, and reward of
the MDP are given as follows.

1) State: The cumulative confidence level, n;(k), for each
device i shows an increasing trend with random fluctu-
ations over time, as more fast or full inference results
are combined. Hence, the dynamics in the cumulative
confidence levels of all devices depend on the sequence
of offloading decisions. An offloading decision at time
slot k, which is to offload more intermediate data sam-
ples from a device whose current cumulative confidence
level, n;(k), is low and the remaining time to deadline,
K; — k, is short, potentially brings more benefit in terms
of reducing the total delay violation penalty. Therefore,
the current cumulative confidence levels at each device,
1k, and the current time slot index, k, should be consid-
ered in making adaptive offloading decisions over time.
Moreover, the caching state at each device, g, should be
considered, as the number of offloaded intermediate data
samples from a device should not exceed the number of
intermediate data samples currently stored in the local
cache. Accordingly, the state at time slot k, denoted by
Sk is given by

sk = [qr . k). (24)

2) Action: The action at time slot k is the integer offloading
decision vector during time slot k, i.e., a; € A, with
the ith element a;(k) € a; representing the offloading
decision for device i. Let A(s) C A denote a state-
dependent feasible action subspace, which includes all
actions satisfying constraint (2) at state s. The action at
time slot k should satisfy a; € A(sg).

3) Reward: To minimize the total delay violation penalty
for all devices while minimizing the total cost, we
consider a reward, r, for each time slot k as

ri = —exp(wac* (k) — ZPi(k)

i€l

(25)

where w; is a positive weight, ¢*(k) is the minimal cost
obtained by solving the resource allocation subproblem,
and P;(k) is the delay violation penalty for device
i at the end of time slot k. We use an exponential
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Algorithm 1: Proposed Deep Q-Learning Algorithm With
Extra Replay Memory

1 Initialize: @ and @ for evaluation and target DQNSs.

2 for each episode do

3 Initialize the state as s.

4 for each learning step do

5 Observe current state sy, and select action a; according
to an e-greedy policy.

6 Execute action ay, collect reward r; and next state
Sk+1, and determine uy (done signal).

7 Store transition (Sg, @k, g, Sk+1, Ux) into the ordinary
replay memory and temporary memory.

8 if done then

9 if rotal penalty is zero then

10 Pop out all transitions in the temporary

memory to the extra replay memory.
11 Empty out the temporary memory.
12 Sample random mini-batches of transitions

(Sn, @n, rn, Sy+1, un) from both the ordinary and extra
replay memory.

13 Perform a gradient descent step on 6 based on 2N
transitions according to (26).

14 Update € as € X Ag, if € > €.

15 Every Ky steps, set 6 = 0.

16 Output: Trained evaluation and target DQNs.

function of ¢*(k) to increase the cost gaps among dif-
ferent offloading decisions and make r; more sensitive
to the action.

V. DEEP REINFORCEMENT LEARNING SOLUTION

We propose a deep Q-learning algorithm presented in
Algorithm 1 to solve the MDP using an RL approach. Deep
Q-learning adopts two deep Q networks (DQNs) with the
same neural network structure, i.e., an evaluation DQN (Q)
with weights 6 and a target DQN (Q) with slowly updated
weights @, as approximators for a state-action value function

—_ / . .
O@sp,ar) = E 52}6 vk _krk/|sk,ak], where K is the maxi-

mum number of learning steps in an episode. Both 6 and 0
are randomly initialized before training (line 1) and then con-
tinually updated. Over every Ky learning steps, 8 is replaced
by 6 (line 15).

An RL agent running Algorithm 1 interacts with the intelli-
gent IoT environment in a sequence of episodes. Each episode
contains a finite and variable number of learning steps, one
learning step for one time slot. An episode starts when the
devices initiate a new group of classification tasks, and ends
when the last device finishes its task with confidence level
satisfaction. At the beginning of each episode, the state is
initialized as s1 = [gq, 7y, 1] = [0,0, 1] (line 3). The total
number of time slots in an episode can be smaller than
max;c7 K; if all tasks are finished before the required dead-
lines, in which case there is no delay violation penalty. It can
also be larger than max;c7 K; when there is delay violation
penalty. Let u; be a binary flag indicating if time slot k is
the last time slot in the corresponding episode. If uy = 1,
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the episode terminates at time slot k, and a done signal is
generated by the environment.

At the beginning of time slot k within each episode, the
RL agent observes environment state s; and takes action ay
using an e-greedy policy (line 5), i.e., a; is given by either
argmaxge 4(s,) 2 (Sk, @) with probability 1 —e based on the eval-
uation DQN, or a random action in A(s;) with probability €.
We use a gradually decreasing exploration probability, €, from
1 to a minimum value €y, with decaying factor A, € (0, 1),
to transit smoothly from exploration to exploitation (line 14).
Then, the RL agent informs each device of the new offload-
ing decision based on the action. At the end of time slot
k, the agent calculates reward r; for executing action ay,
and observes new state sx1. Specifically, the RL agent col-
lects the new cumulative confidence levels, 1, ;, which are
updated based on the cumulative DNN inference scheme at
each device, as illustrated in Fig. 2. The new caching state,
gy 1, can be updated inside the RL agent based on (1). The
done signal, uy, is checked at the end of time slot k to deter-
mine the episode termination (line 6). The signaling overhead
between the RL agent and the devices is negligible due to a
small signaling data size in comparison with the task data size.
Then, the new transition (Sg, @, 7, Sk+1, 4x) 1s added to both
an ordinary replay memory which is adopted in traditional
deep Q-learning algorithms and a temporary memory which
is a new component in our algorithm (line 7). The temporary
memory gradually gathers the transitions in each episode and
is emptied out per episode (line 11). Only if the total delay
violation penalty for all transitions in an episode is zero, the
corresponding transitions in the temporary memory are popped
out and stored in another new memory component, an extra
replay memory, before the temporary memory is emptied out
at the end of each episode (lines 9 and 10).

The per-episode updated extra replay memory, along with
the temporary memory, is dedicated for handling the delay
violation penalty which depends on all transitions from the
beginning of an episode. The extra replay memory stores
only transitions in the zero-penalty episodes, which are rare
transitions with QoS satisfaction especially at the early learn-
ing stage. Note that a traditional prioritized experience replay
which prioritizes the transitions with no instantaneous penalty
cannot provide the desired property of zero episode-level
penalty as the proposed extra replay memory [35], [36]. In our
problem, all the transitions before task deadline in all episodes
have no instantaneous delay violation penalty regardless of
their reward, but the transitions after the task deadline have
delay violation penalty. Most transitions with no instantaneous
penalty should not be prioritized especially in the early learn-
ing stage, because they may lead to eventual delay violation at
the end of the corresponding episodes. Only the transitions in
an episode whose total penalty is zero should be prioritized,
as in the proposed extra experience replay.

Then, for training the evaluation DQN via a gradient descent
step on #, a mini-batch of N experiences are sampled from the
ordinary replay memory and a mini-batch of N experiences
are sampled from the extra replay memory (lines 12 and 13),
which improves the sampling frequency for the rare no-penalty
transitions as compared with the traditional deep Q-learning
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algorithms. The gradient decent step is given by

0 < 0 + oaE[(yx — O(sk. ax: 0)) Vo Qsi. ar) | (26)

where « is the learning rate and yy is a target value estimated
by target DQN, given by

we=rity max Qs af). 27)

aE.A(SkJrl

If an episode terminates at time slot k, yi is set as rg.

Computational Complexity: In the offline training stage, the
time complexity depends on several factors, including the state
and action spaces, the neural network size for the DQNs, and
the number of iterations until convergence. The larger the
state and action spaces, the larger the neural network size,
and the more iterations required for convergence, the compu-
tational complexity for training the deep Q-learning algorithm
increases. In the online execution stage, we use the trained
DQN to select an optimal action with the largest O value based
on the current state. The time complexity for calculating the O
values depends on the state and action spaces, and the neural
network size. Given the trained neural network, the computa-
tion through the layers of the DQN in each time slot incurs
a predetermined time overhead, which is much smaller than
that for implementing the DNN inference of the classification
tasks, due to a much smaller neural network size. Moreover,
the reward calculation for each learning step in both the offline
training and online execution stages depends on solving an
SOCP problem, which has a polynomial time complexity [33].

VI. SIMULATION RESULTS
A. Simulation Setup

We set up a simulation model with three IoT devices, each
being a smart camera, under the coverage of one AP. A classifi-
cation task for each device is to classify a moving object under
its surveillance by using multiple video frames (data samples).
The devices have differentiated task completion time require-
ments, which are [9, 11, 13], respectively, in number of time
slots. The devices have the same confidence level requirement,
nr, for their classification tasks. Other system parameters are
given in Table II [30], [37], [38]. We use a typical video data
set UCF101 integrated in Tensorflow, which contains videos
capturing moving objects belonging to 101 classes. For sim-
plicity, we select 600 videos belonging to five classes, referred
to as UCF5 video data set. For each video, we extract the
video frames at a frame sampling rate of 5 frames/s, and ran-
domly select J = 50 video frames as data samples. All the
extracted data samples from the UCF5 video data set consti-
tute a 5-class image data set. By randomly reordering the J
data samples from each video by 100 times, we create 100 dif-
ferent sequences of data samples, each being a data trace based
on which a classification task is performed. As such, 60000
classification tasks with different data traces are simulated.
Note that the video frames are not disordered in a real IoT
scenario. Here, we disorder the video frames to create more
synthetic data traces for simulation.

Without loss of generality, we consider identical DNN
models for all devices. The full and fast DNN model architec-
ture and layer parameters (including input/output dimensions
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TABLE 11
SYSTEM PARAMETERS IN SIMULATION

Parameters |  Value
Bandwidth (B) 15 MHz
Noise power @ —104 dBm
Transmit power (p;) 20 dBm
Channel gain (g;) 4% 10713
Local CPU frequency (f;) 0.45 GHz
Edge server CPU frequency (fo) 20 GHz
Energy efficiency coefficient (x;) 1028
CPU cycles for a floating-point operation () 4
Bits for a floating-point number (¢) 32
Main output
Flatten
3*3*256
8*8*256
Full 3%3%256 Branch output
DNN < T 8*8*384 T 5
model | 3«3:334[  CONV | [ Fc |1 7
T 8*8*384 f 320
3*3*384| CONV | | Flatten |
1 8*8*256 1 g*g*s
[ MaxPool | [ MaxPool | Fast
t 17*17*256 1 17*17*s " DNN
5*5*256  CONV | [ CONV  |5*5*5 | model
17*17*32
36*36*32
L11%11*32 CONV Cut layer D
T 224%224*3
Input
Fig. 3. Full and fast DNN model architecture and layer parameters.

and filter size for each CONV layer) are shown in Fig. 3. The
structure of the full DNN model is based on the well-known
AlexNet model with slight difference customized to our use
case [39]. The full DNN model consists of five CONV layers,
three of which are followed by a MaxPool layer for data
dimension reduction. The 3-D output feature map of the last
MaxPool layer is flatten to a 1-D input to a sequence of
FC layers. Compared with the original AlexNet model with
default layer parameters, our full DNN model has two cus-
tomized modifications. First, instead of applying 96 filters with
size 11 x 11 to the input at the first CONV layer, we use 32
filters with size 11 x 11, to fit the IoT device with a limited
computing capacity; second, we add an extra FC layer with
five neurons at the model output to customize the AlexNet
model to our 5-class image classification problem. The fast
DNN model is composed of two CONV layers, two MaxPool
layers, and one FC layer, where the first group of CONV and
MaxPool layers are shared with the full DNN model. Due
to the layer sharing property, the fast and full DNN models
can be seen as a combined DNN model with one branch, as
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TABLE III
PARAMETERS IN DEEP Q-LEARNING ALGORITHM
Learning parameters ‘ Value
Learning rate (o) 1074
Discount factor () 0.85
Minimum exploration probability (eo) 0.01
Decaying factor for exploration probability (A.) 0.9995
Number of steps to replace 6 by 0 (K) 200
Memory size 2000
Batch size (V) 32

illustrated in Fig. 3, which can be trained as a whole by min-
imizing the combined loss of both model outputs based on
the 5-class image data set [24], [25], [26], [28]. The last FC
layers at each output are activated with Softmax function to
generate an estimated class probability vector, and all other
CONV and FC layers are activated with Relu function. With
the trained DNN models, we generate a set of fast inference
results and a set of full inference results corresponding to the
image data set, based on which the joint probability density
functions, f‘,‘;, (z) and f,[,], (z) for each class m, are profiled by the
KDE in MATLAB.

Under the simulation setup, we have constants Cfl) =0.02

and Cl@ = 0.115, and set the time-slot length as 7 =
d? = 0.288 s. At most two intermediate data samples can
be offloaded and finish the enhanced DNN inference during
one time slot. Accordingly, the action space, A, for the deep
Q-learning algorithm includes ten discrete offloading actions,
ie., (0,0,0), (0,0,1), (0,0,2), (0,1,0), (0,1, 1), (0,2,0),
(1,0,0), (1,0, 1), (1,1, 0), (2,0, 0). Both the evaluation and
target DQNs have three hidden layers with (128, 64, 32) neu-
rons and Relu activation functions. We set weight wy = 30
and unit penalty P = 400 in the reward function. Other
learning parameters are summarized in Table III. We evaluate
the performance of the deep Q-learning algorithm for three
different values of nr among {0.93, 0.95,0.97}. To evaluate
the tradeoff between local energy consumption and network
resource consumption, we vary the value of weighting fac-
tor w; in (21) among {0.90, 0.95,0.99}. The three weights
are all close to 1, but they place different priorities on the
two costs. Both w; = 0.90 and w; = 0.95 place more pri-
ority on minimizing the network resource consumption, while
w1 = 0.99 places more priority on minimizing the local energy
consumption. We use wj = 0.90 by default.

B. Performance Evaluation

We first evaluate performance of the proposed stochastic
cumulative DNN inference scheme and compare with two
benchmark DNN inference schemes. For each classification
task, a DNN inference is performed for each data sample
in the associated data trace containing J data samples, by
using either the full or fast DNN model, which generates J
different DNN inference results for the classification task. In
the proposed scheme, stochastic cumulative DNN inference
is performed by sequentially incorporating all the J DNN
inference results based on (15). At the jth (1 < j < J)
data sample, the cumulative confidence level based on the
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Fig. 4. Performance comparison between the proposed cumulative DNN
inference scheme and benchmarks for both (a) full and (b) fast DNN inference.

first j data samples in the data trace is recorded. In the first
benchmark scheme, no “cumulation” is considered, and the
confidence level of the DNN inference result based on each
single data sample in the data trace is reordered. In the sec-
ond benchmark scheme, a straightforward approach is used
to consider multiple data samples, which selects the DNN
inference result with the maximum confidence level among
the first j data samples and records the maximum confidence
level until the jth data sample as the “cumulative” confidence
level at the jth data sample. Fig. 4 shows the average (cumula-
tive) confidence level for 60000 simulated classification tasks
as the number of data samples increases, when all data sam-
ples are processed by either the full or fast DNN model, for
both the proposed and benchmark DNN inference schemes.
The standard deviations of the results are also plotted for
reference.

Due to the lack of data diversity in each single data sam-
ple, the confidence level achieved by the first benchmark
scheme without cumulation is low for both full and fast DNN
inference, showing a constant average confidence level with
a constant standard deviation across different data samples.
Both the proposed scheme and the second benchmark scheme
demonstrate the benefit of data diversity in increasing the
cumulative confidence level for a classification task, as the
average cumulative confidence level shows an increasing trend
and the standard deviation shows a decreasing trend as more
data samples are considered. However, as the number of data
samples increases, in comparison with a gradual increase of
the average cumulative confidence level to 1 by the proposed
scheme, the average cumulative confidence level by the second
benchmark scheme gradually converges to around 0.61 and
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0.55 for the full and fast DNN inference, respectively. In the
proposed scheme, every newly added data sample contributes
to the gradual increase of the cumulative confidence level in a
stochastic manner, thus leading to an almost certain estimation
when there is a sufficient number of data samples. However,
although the second benchmark scheme takes the maximum
confidence level among multiple data samples into considera-
tion, the performance is still limited by the “best” confidence
level of a single DNN inference result. As the number of data
samples increases, the DNN inference results with the best
confidence levels are gradually generated, and the maximal
achievable average cumulative confidence level converges to
the best confidence level.

Next, we focus on the performance of the proposed stochas-
tic cumulative DNN inference scheme. We observe that the
increasing speed of the average cumulative confidence level
with full DNN inference is higher than that with fast DNN
inference, demonstrating that the average confidence level gain
with one more full inference result is larger than that with
one more fast inference result. The average confidence level
gain per inference shows a decreasing trend and gradually
approaches zero. The standard deviation is large especially
at a small number of data samples, which gradually decreases
and approaches zero with more data samples, with a higher
decreasing speed for full DNN inference. A large standard
deviation captures the uncertainty in cumulative DNN infer-
ence, which is due to randomness in the DNN inference
results.

As the cumulative DNN inference scheme sequentially
incorporates different random DNN inference results corre-
sponding to each data sample in a data trace, the relationship
between the cumulative confidence level and the number of
data samples changes for different data traces. Fig. 5 shows
three different performance metrics for the proposed cumula-
tive DNN inference scheme with full DNN inference as the
number of data samples, j, increases in three different data
traces. The performance metrics include: 1) the cumulative
confidence level until data sample j, i.e., n(0;); 2) the estimated
true class probability with single data sample j, i.e., z; 7; and
3) the cumulative estimated true class probability until data
sample j, i.e., 0j ;. Only the results for j < 10 are shown, as
we observe in Fig. 4(a) that the average cumulative confidence
level with full DNN inference is very high with small standard
deviation at j = 10. The vertical dashed lines in Fig. 5 indi-
cate the data sample positions with false full inference results.
For a false inference result, z; = {zj}, the class label with
the maximum estimated probability is not the true class label
m, ie., m # argmax%zlzj,m, in which case z; 5 is usually
small, as demonstrated in the result. Next, we look into each
subfigure corresponding to different data traces. In Fig. 5(a),
1n(0;) keeps increasing from O until it approaches 1 with only
four data samples and then remains stable, while o; ; follows
a similar trend as 7(0;). We also observe that z; ; is around or
above 0.6 for j < 6, indicating that each inference result for
J < 6 provides correct inference with a good confidence level,
which results in the initial fast increasing speed for 1(0;) and
0; »- Although there are two consecutive false inference results
at j = 7 and j = 8, n(0;) remains high, as there have been
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Fig. 5. Performance of cumulative DNN inference scheme with full DNN inference for three data traces. Using data (a) trace 1, (b) trace 2, and (c) trace 3.

sufficient inference results providing correct inference with a
good confidence level before j = 7. In Fig. 5(b), n(0;) and o; ;,
also show a roughly gradual increasing trend with one big drop
at j = 2. The drop is due to a false inference result at j = 2. As
there is only one correct inference result with good confidence
level before j = 2, the false inference result at j = 2 brings a
significant negative impact. To counteract the negative impact
brought by false inference and to obtain a high cumulative con-
fidence level, it requires more data samples to be aggregated.
For data trace 2, four more data samples with correct infer-
ence and good confidence levels after j = 2 are aggregated to
have 1(0g) approaching 1. An interesting observation is that
the cumulative confidence level remains high although there is
a subsequent false inference at j = 7, indicating that the cumu-
lative DNN inference scheme is more robust to false inference
if there have been a sufficient number of data samples and if
the current cumulative confidence level is sufficiently high. In
Fig. 5(c), the initial values of n(0;) and o; 5 are small due to
two consecutive false inferences at the beginning. After that,
we see a gradual increasing trend for both 1(0;) and o; ;. The
false inference at j = 5 brings a small and almost negligible
drop in 7(0;), and the false inference result at j = 8 does not
degrade the performance, demonstrating the robustness of the
cumulative DNN inference scheme with a sufficient number
of “good” data samples.

For a classification task, define the offloading ratio as the
fraction of full inference results among all DNN inference
results that are combined using the cumulative DNN inference
scheme. Fig. 6 shows two performance metrics, i.e., the aver-
age cumulative confidence level and the accuracy, for 60 000
simulated classification tasks as the number of data samples
increases, under a different offloading ratio at 0% (i.e., pure
fast DNN inference), 20%, 60%, and 100% (i.e., pure full
DNN inference). Here, the accuracy is defined as the average
ratio of correct inference among all the simulated classification
tasks. The standard deviations of the cumulative confidence
levels for offloading ratios at 20% and 60% are also plotted for
reference. With more data samples, both performance metrics
gradually increase to one (100%), with a larger increasing
speed for a larger offloading ratio, demonstrating the benefit
of offloading in terms of both confidence level and accuracy
improvement. As the confidence level represents uncertainty in
a DNN inference result rather than its accuracy, a single DNN
inference result with high confidence level is possible to be
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Fig. 6. Performance of the cumulative DNN inference scheme versus number
of data samples for different offloading ratios. (a) Cumulative confidence level.
(b) Accuracy.

false, if the estimated probability for a wrong class is high.
However, if the cumulative confidence level is high, it is highly
likely that the cumulative DNN inference result is accurate, as
the estimated true class probability is improved by aggregat-
ing more data samples. Hence, the cumulative DNN inference
reduces the uncertainty in prediction results and increases the
robustness to randomness and even false detections in the
DNN inference results.

Next, we evaluate the performance of the proposed deep
Q-learning algorithm for adaptive offloading decisions. To
determine the state transitions for the cumulative confidence
levels, we use the average cumulative confidence level traces
obtained from the cumulative DNN inference scheme. Fig. 7
shows the convergence performance of the proposed deep
Q-learning algorithm in terms of the training loss versus
the number of learning steps at w; = 0.90, for different
confidence level requirements (7). As mentioned, weight
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w1 = 0.90 places more emphasis on minimizing the network
resource consumption than local energy consumption. In this
case, it is preferable to execute more fast DNN inference
locally to minimize the total cost. As each fast DNN infer-
ence tends to provide less confidence level gain and at most
one fast inference result can be generated at each device in
one time slot, it requires more time slots to satisfy the con-
fidence level requirement. Hence, if 5y is large, it is more
difficult for the RL agent to learn the no delay violation penalty
behavior corresponding to confidence level satisfaction before
deadline. Accordingly, with a larger value of nr, it is more
difficult for the learning algorithm to converge and it takes
a longer time to reduce the training loss to below 1072, For
example, the training loss for nr = 0.93 is quickly reduced to
below 107> at around 30000 learning steps, while the train-
ing loss for n7 = 0.97 is slowly reduced to below 1072 in
a more than doubled training time. For different confidence
level requirements, we can see that, although the training loss
is very small after convergence, there is still randomness in it
due to the random experience sampling in different learning
steps. Specifically, the training loss in each learning step is
the average loss after a gradient descent step for a randomly
sampled mini-batch of experiences from the replay memory.

Fig. 8 shows the episodic total reward during the train-
ing process at w; = 0.90, for different values of nr. It is
observed that the total reward for n7 = 0.93 increases most
quickly and converges at around 1700 episodes without delay
violation penalty (indicated by negative glitches in the episodic
total reward). In comparison, the total reward for ny = 0.95
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increases in a slightly slower speed and converges after 2000
episodes. The total reward for ny = 0.97 has the worst
convergence, with huge delay violation penalty before 2000
episodes and significant fluctuations between episodes 2000
and 5000. It finally converges after around 5000 episodes.
After convergence, the delay violation penalty is suppressed,
and a larger total reward (or a lower total cost) is obtained for
a lower confidence level requirement.

Fig. 9 shows the cumulative confidence levels over time for
the three devices with the trained RL agents at different val-
ues of nr for w; = 0.90. We observe that the confidence
level requirements for all the devices are satisfied at (or very
close to) the required deadlines, i.e., in [9, 11, 13] time slots.
As local computing incurs less cost than offloading but has
lower confidence level gain for w; = 0.90, the RL agent learns
an offloading decision sequence with minimal offloading that
satisfies the confidence level requirements without delay vio-
lation and with minimum cost. An intuitive solution which
always prioritizes offloading cannot provide such intelligence
in terms of cost minimization. The trained RL agent also learns
how to prioritize the offloading opportunities among the three
devices with different delay requirements. For device 1 with
the most stringent delay requirement, the cumulative confi-
dence level increases faster than the other two devices due to
earlier offloading opportunities.

Due to the priority on minimizing the network resource con-
sumption at w; = 0.90, we see in Fig. 10 that the episodic
average network resource consumption ratio (p) decreases
with more learning episodes, while the episodic total local
energy shows an increasing trend, demonstrating a tradeoff
between the two metrics. For a smaller value of nr, the
average resource consumption is lower as less offloading is
triggered to satisfy the QoS requirement, but the total energy
is higher due to a larger local computing energy for one fast
DNN inference than the transmission energy for offloading one
intermediate data sample under the simulation setup. Fig. 11
further demonstrates the tradeoff between energy and resource
consumption with different weight w; at a constant confi-
dence level requirement nr = 0.95. For both w; = 0.90 and
w1 = 0.95, we see a decreasing trend in average resource
consumption and an increasing trend in total local energy
over the training process. However, we see an opposite trend
for a large weight w; = 0.99, as energy becomes dominant
in the cost. For a smaller w; value, the average resource
consumption is lower and the total energy is higher after
convergence.

To evaluate the benefit of the extra experience replay in the
proposed deep Q-learning algorithm, we compare the episodic
(smoothed) total reward during the training process of the
proposed algorithm and a benchmark Q-learning algorithm
without extra experience replay at wy = 0.90 and nr = 0.97,
as shown in Fig. 12. A mini-batch of 2N experiences are
sampled from the ordinary replay memory for training at
each learning step in the benchmark. We observe that the
total reward in the proposed algorithm converges after around
5000 episodes with no penalty at most time instants, while the
penalty in the benchmark is still large after convergence. We
also observe that the total reward in the benchmark increases
earlier due to more training with diverse training experiences
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in the early training stage. In the proposed algorithm, the
sampled experiences from the extra replay memory lack diver-
sity in the early training stage, as the episodes with no
penalty are rare and the number of samples in the extra
replay memory increases slowly. As a result, the training with
sampled experiences from the extra replay memory does not
fully explore the state action space at the early training stage.
However, after the extra replay memory stores sufficient good
samples, the total reward finally converges to a larger value
with negligible delay violation penalty. For the benchmark, the
earlier convergence to a worse solution is because it cannot
put priority on remembering and learning from the special
good samples in the no-penalty episodes. In this case, all
the samples have equal priority, and are gradually replaced
by new samples once the memory is full. To summarize,
we can see that the advantages of the extra replay memory

Episode

Fig. 12. Comparison of episodic total reward versus training episode with
and without extra experience replay.

in improving the sampling efficiency toward the almost no-
penalty convergence results outweigh its disadvantages in the
slower reward increase at the early training stage.

VII. CONCLUSION

In this article, we develop a device—edge collaborative
inference framework in an edge-assisted multidevice intelli-
gent IoT scenario. A data-driven stochastic DNN inference
scheme is used at each device to improve the confidence level
for DNN-based classification tasks, while an RL-aided adap-
tive device—edge collaboration scheme supports the cumulative
DNN inference among multiple devices with QoS satisfac-
tion and cost efficiency. Simulation results demonstrate the
effectiveness of the proposed inference framework, including
both the cumulative DNN inference scheme and the adaptive
device—edge collaboration scheme. The former provides a
theoretical foundation for improving the confidence level of
general DNN-based classification tasks by combining multiple
DNN inference results under the performance limit of DNN
models, which is potentially useful in Al applications with an
extremely high reliability requirement, such as those in remote
surgery and autonomous driving. The latter demonstrates the
benefit of hierarchical computing (e.g., across the device
and edge hierarchy) in terms of cost efficiency and delay
satisfaction, which potentially can be explored for ultrareliable
low-latency applications in the future wireless networks.

In the future work, we will extend the cumulative DNN
inference scheme from the time domain to the space domain.
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For example, when a group of spatially distributed sensors
provide multiple data sources for one classification task, a
spatial cumulative DNN inference scheme is required, and the
sensor access control to AP and edge server is important in
the sensing data collection. We will also consider more general
application scenarios, extending from the device—edge collab-
oration to the device—edge—cloud and edge—edge collaboration
for network-wide efficient resource utilization.
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