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Abstract—The existing packet forwarding technology cannot
meet the increasing requirements of Internet development due
to its rigid framework. Application of artificial intelligence (AI)
for efficient packet forwarding is gaining more and more interest
as a new direction. Recently, the explosive development of pro-
grammable data plane (PDP) has provided a potential impetus to
packet forwarding driven by AI. Therefore, this paper presents
a survey on the recent research in AI-driven packet forward-
ing with PDP. First, we describe two of the most representative
frameworks of the packet forwarding, i.e., the traditional AI-
driven forwarding framework and the new one assisted by the
PDP. Then, we focus on capacity of the packet forwarding under
the two frameworks in four measures: delay, throughput, secu-
rity, and reliability. For each measure, we organize the content
with the evolution from simple packet forwarding, to packet for-
warding capacity enhancement with the assistance of AI, to the
latest research on AI-driven packet forwarding supported by the
PDP. Finally, we identify three directions in the development of
AI-driven packet forwarding, and highlight the challenges and
issues in future research.

Index Terms—Machine learning, packet forwarding, pro-
grammable data plane.

I. INTRODUCTION

PACKET forwarding (PF) is an essential operation of com-
munication in the Internet. Switching devices store and

forward received packets through a series of preset processes
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to complete the delivery of data. However, with the rapid
development of network technologies, the exponential growth
of global Internet traffic stimulates an unprecedented demand
in four aspects: low delay, high throughput, high security,
and high reliability [1], [2], [3]. Examples include a line-rate
packet forwarding capacitated with 6.50 Tbps [4], a low-
latency packet forwarding on the order of 0.32 ms [5], a
secure packet forwarding against high-volume attacks [6], and
a reliable packet forwarding for highly dynamic vehicular
networks [7]. The traditional framework of packet forward-
ing is rigid, using the same process in most scenarios. Many
efficient algorithms for improving network performance can-
not be easily deployed in the traditional framework, such as
dynamic network resource allocation for customized network
services or attack defending for a secure network.

The software defined network (SDN) architectures decouple
network control and forwarding functions, forming a control
plane (for control) and a data plane (for forwarding). Various
efficient algorithms can be easily deployed on the control plane
to control the forwarding logic. In addition, the control plane
highly matches the applications of artificial intelligence (AI)
in packet forwarding field and brings new possibilities.

AI, as an intelligent algorithm, has great potential for sat-
isfying the aforementioned demands [8], [9], [10]. Compared
to other algorithms, the application of AI can flexibly and
accurately allocate network resources according to different
service demands, enabling the implementation of customized
networks. At the same time, the application of AI is real-time.
When the network state changes, the resource allocation can
be adjusted in time to adapt to network dynamics. For exam-
ple, AI can effectively model dynamic features of multiple
heterogeneous network paths and find the optimal scheme
of resource allocation, to maximize the throughput of multi-
path packet forwarding [11]. In addition, the application of
AI can help improve network security, such as detecting a
distributed denial of service (DDoS) attack by identifying
complicated packet behaviors [12]. While AI can be applied to
effectively realize functions that packet forwarding cannot per-
form, deploying AI in networks has challenges. For example,
deploying AI in the controller in the control plane will intro-
duce unexpected delays, which becomes a stumbling block to
high-rate packet forwarding [13], [14]. Furthermore, the effec-
tiveness of an AI model is affected by the data accuracy of
network state information. The excellent AI model will also
cost many network resources to gather these data.
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Fig. 1. A Road Map of This Paper.

Recently, the rise of PDP provides a solution to the chal-
lenges of AI-based packet forwarding in the SDN architecture,
and attracts extensive attention for further performance
improvement. On the basis of SDN architecture, PDP enables
the data plane programmable and further realizes the cus-
tomization functions of packet forwarding logic. The PDP
provides support for new technologies such as network slic-
ing and priority queueing. The emergence of PDP has also
solved the previous problem of AI. The PDP can program
the operational process of switching devices so that the algo-
rithm can flexibly choose an appropriate plane to deploy. For
example, PDP provides a programmable plane to deply an AI
model to avoid the inter-plane delay caused by deploying in
a controller [15]. Meanwhile, the PDP can provide detailed
network state information for the AI model and only cost a
small amount of network resources. Due to the programmabil-
ity and flexibility, the PDP has a huge potential in AI-driven
packet forwarding.

Looking into the evolution of the Internet, we observe
that AI and SDN were introduced when traditional PF
could not follow the network development, and PDP was
created when AI-driven packet forwarding needed further
improvement. The evolution of the Internet is acceler-
ated with the convergence of technologies. Globally, there
have been extensive research activities on integrating PF,
AI and PDP. Existing surveys have summarized research
works on AI-driven and PDP-driven packet forwarding sep-
arately [16], [17], [18], [19], [20], [21], [22]. Other surveys
focus on the integration of AI or PDP with other technolo-
gies [8], [23], [24], [25]. A survey is in need to present a broad
view of state-of-the-art packet forwarding that integrates the
AI and the PDP. Therefore, this paper surveys AI-driven packet
forwarding mechanisms and the ones which can be supported
by the PDP. To our best knowledge, this survey is one of the
first state-of-the-art overviews of the packet forwarding that
combines AI and PDP. A road map of this paper is shown in
Fig. 1 and the main contribution of this paper is as following:

• First, we provide an overview of the traditional AI-driven
packet forwarding framework in SDN architecture and the
new framework supported by the PDP.

• Second, we focus on research works that integrate AI
and PDP to improve the delay, throughput, security, and
reliability performance of packet forwarding based on
the two frameworks. Our views of these studies are also
discussed.

• Third, we give a brief summary of future research direc-
tions and challenges of packet forwarding with AI and
PDP.

The remainder of this paper is organized as follows.
Section II describes the typical AI-driven packet forwarding
framework in SDN architecture and the new framework sup-
ported by the PDP. Section III and Section IV discuss research
works on improving the delay and throughput performance
respectively by the AI and PDP. Then, Section V presents the
security performance improvement and Section VI discusses
the reliability performance improvement by the AI and PDP.
Finally, Section VII identifies three potential directions and
open issues in future AI-driven packet forwarding with the
PDP and Section VIII draws a conclusion.

All frequently used acronyms in this survey are reported in
the Appendix.

II. FRAMEWORKS OF AI-DRIVEN PACKET FORWARDING

In this section, we first introduce the framework of AI-
driven packet forwarding in SDN architecture, and analyze
its advantages and limitations. Then, we give an overview of
how PDP can be evolved to enhance the framework (i.e., in
overcoming the limitations) and discuss an effective approach
that integrates AI and PDP for packet forwarding.

As a new architecture, SDN builds a control plane to
decouple the control functions and provides platform for
new technologies and efficient algorithms. A traditional SDN
packet forwarding framework usually includes a data plane
and a control plane. The data plane is the forwarding oper-
ation plane. It receives and parses packets, matches the key
field with forwarding tables, and sends packets to the next hop.
The control plane has a high programmability, which can con-
trol the packet forwarding logic in the data plane flexibly to
complete some complex functions. For example, the control
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Fig. 2. AI-driven Packet Forwarding Framework without the PDP.

plane can realize the multi-path transmission of packets, as
well as the data slicing and congestion control. Furthermore,
on the basis of this framework, researchers refine the control
plane. They decouple functions such as intelligent calculation
and policy translation functions and deploy them in a knowl-
edge plane. The knowledge plane has a high network view
and can “observe” the whole network widely and build global
efficient algorithms. Therefore, the AI applications are usually
deployed in this plane to organize the network information and
generate forwarding policies. The functions left in the control
plane are responsible for collecting data, translating the new
forwarding policies into actions and distributing them to the
data plane.

Machine learning (ML), as one of the popular AI tech-
nologies, can make packet forwarding more secure, efficient
and reliable [8], [26], [27]. As shown in Fig. 2, the AI-driven
packet forwarding framework without PDP includes data, con-
trol and knowledge planes from bottom to top. Information
is transferred from one plane to another (shown by arrows
in the figure), which forms a closed control loop. First, the
data plane periodically reports network state information (e.g.,
interface throughput) to the control plane during the process
of forwarding packets. Next, the control plane collects and
analyzes the information, builds a network state database, and
reports the network state to the knowledge plane. Based on
the network state, the knowledge plane selects an appropri-
ate forwarding model according to the network performance
demand. The forwarding models include global network secure
forwarding model, global network reliable forwarding model,
and so on. The forwarding model generates corresponding for-
warding action policies and the knowledge plane sends them to
the control plane. The control plane translates the policies and
distributes them through the network policy deployment mod-
ule. Once the data plane receives the policies, it can adjust
the forwarding table and improve the network performance.
Finally, a closed control loop is completed and ss the loop
continues again and again, the whole network will eventually
reach a steady and desired state.

This closed control loop has two drawbacks: (1) High
interaction latency: The interaction latency between any
two planes is long [28], which is not suitable for some
delay sensitive applications. For example, the ultra-reliable
low-latency communication (URLLC) scenario requires 1ms

Fig. 3. AI-driven Packet Forwarding Framework with the PDP.

latency [29] which is much shorter than the latency in the
AI-driven framework without PDP; (2) Coarse network state
information: Due to the fixed data plane, network teleme-
try can only obtain coarse-grained network state information
such as interface number and throughput, but cannot obtain
fine-grained information such as queue length of interfaces or
specific flow rate [30]. Using the coarse-grained information
will eventually lead to low accuracy of forwarding models,
such as low accuracy in DDoS classification [31].

The PDP provides possibility for overcoming the preceding
drawbacks. The AI-driven packet forwarding framework sup-
ported by PDP is shown in Fig. 3. Some forwarding models do
not need the global network state information and all they need
is just the information in one switching device. For example,
network security attack identification and interception model
only needs the information of received packets. Also, switch-
ing device priority queue model only needs the flow type.
These models can be deployed on the local device to fin-
ish their functions. In comparison with Fig. 2, these kinds
of model are transferred from the knowledge plane to the
data plane, which reduces the interaction latency. On the other
hand, the fine-grained network state information is collected
by the PDP. These kinds of model can directly take these
information and calculate. Other kinds of models are still
placed in the knowledge plane (e.g., global network conges-
tion control model) to complete the overall regulation of the
network.

The new framework has two advantages. On one hand, the
flexible modification of the packet forwarding process provides
a strong foundation for the optimization of operational mode in
the AI-driven framework. (1) The PDP can provide wire-speed
calculation to reduce ML decision delay (the calculation time
of ML model deployed on a programmable switch is about
several hundred nanoseconds [32], and the calculation time of
ML model on a general platform is tens of microseconds [33]);
(2) The match-action pipeline of the PDP can dynamically
adapt to the specific network packets such as packets for
information collection, and execute their specific forwarding
actions. The AI model deployed on the programmable data
plane is called “in-network model”. Depending on the network
requirements, the in-network model has different functions.
For example, Xiong et al. propose a mechanism to deploy
the in-network traffic classification model on a programmable

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:58:13 UTC from IEEE Xplore.  Restrictions apply. 



QUAN et al.: AI-DRIVEN PACKET FORWARDING WITH PROGRAMMABLE DATA PLANE: A SURVEY 765

Fig. 4. Three Network Delay Components and Corresponding Switch Operating Position (The Blue Part).

data plane to identify and classify service flows [32]. In terms
of network security, there are a large number of models,
such as in-network abnormal flow monitoring model [34],
in-network blackmail monitoring model [35], and in-network
DDoS monitoring model [36], [37]. In terms of network
performance, there are in-network cache model [38], [39],
in-network forwarding rule management model [40], in-
network interface queue management model [41], in-network
packet scheduling model [42], [43], in-network traffic flow
scheduling model [44], [45], in-network small flow schedul-
ing model [46], and in-network domain name system (DNS)
model [47]. In terms of network reliability, there are in-
network devices running validation models [48].

On the other hand, the PDP can collect the network state
information in fine granularity, which facilitates the AI mod-
els to realize functions with high performance. For example,
Li et al. use the PDP to collect network link state information,
and determine whether the corresponding network link is con-
gested [49]. They use an enhancement learning algorithm
to minimize the maximum link utilization to avoid network
congestion. The proposed global network congestion control
model is deployed in the centralized knowledge plane, forming
a closed control loop of “data plane uploading information -
control plane analyzing information - knowledge plane estab-
lishing model and generating policy - control plane translating
policy and distributing forwarding action - data plane updating
forwarding rules”.

The previous two frameworks are the basis of the researches
in this paper. In some studies, the knowledge plane is not
decoupled from the control plane. Therefore, deploying AI
model in the control plane is reasonable. We hope the readers
can understand this phenomenon.

III. NETWORK DELAY PERFORMANCE IMPROVEMENT BY

AI-DRIVEN PACKET FORWARDING WITH PDP

As a low delay is the basic requirement of most network
services, the delay performance is usually one of the most
important measures to be focused on. This section provides
an overview of research works on reducing network delay
by exploiting AI-driven packet forwarding with the PDP. The
network delay that we discuss in this section is the interaction
time from a user sending a request packet to the user receiving

a reply packet. In the traditional network, delay can be clas-
sified into transmission delay, processing delay and queueing
delay. However, in the SDN and PDP architecture, because
the switch functions are decoupled, the processing delay is
more complex compared to the original one, which not only
includes the time of processing packets but also includes the
communication time between planes. We still use the name of
“processing delay” to facility the reader, but actually the name
has a richer connotation. In the following, we discuss the way
of the AI and PDP enhance the forwarding function based on
the three components of delay.

A. Transmission Delay

The transmission delay represents the transmission time of
the packet on the link, which mainly depends on the distance
between the user and the data provider, and the selected for-
warding path. As shown in Fig. 4(a), when a service request
packet of the user arrives at a switch, the switch first matches
the service content table. If hit (that is, the service content
is cached on the current device), the cached service content
will be fed back to the user directly; otherwise, the service
request packet will be forwarded to the neighbor switches and
the neighbour switches will do the same procedure. The ser-
vice request packet is continuously forwarded until the service
content is found.

When the switch lacks the AI and PDP technology, it
cannot easily obtain the link state information of the whole
network, so it is difficult to select high-quality paths, such as
the shortest path, and will cause long distance between the
user and the provider. In order to reduce the distance, some
active approaches are adopted, including adding relay nodes
or selecting specific relay nodes to cache content, or actively
spreading content to the whole network. In the Internet of
Things (IoT), it is relatively easy to add virtual nodes in the
cloud and fog layer. Therefore, Azath et al. add fog nodes
in the network and spread delay-sensitive data between these
nodes, to provide the service content to users nearby [50].
At the same time, part of the computing power is deployed
on these node to provide users nearby with the comput-
ing power service. However, it is difficult to add nodes in
mobile opportunistic networks, so Patra et al. establish an
optimization model for the selection of nodes for caching
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service content [51]. They try to select relay nodes to realize
a low average transmission delay from these nodes to every
user who requests the content. Furthermore, they propose a
fast algorithm with time complexity (O(nlogn)) to solve the
optimization model. In addition to using relay nodes, actively
diffusing data is also a solution. Majeed et al. propose an active
service content dissemination mechanism [52]. The server and
switching nodes continuously push the critical service con-
tents to their neighbor switches to achieve content caching.
This active dissemination mechanism shortens the distance
between the user and the switch which stores service content,
and reduces the transmission delay.

When the AI is introduced for packet forwarding, the selec-
tion of relay nodes becomes more flexible and accurate. The
AI applications can analyze users’ behavior and predict the
contents that users may need. At the same time, The AI appli-
cations can control the switches of the whole network through
the controller to achieve accurate cache of content. Tsai et al.
build a deep learning model for social media networks [53].
They obtain the user’s conversation information and adopt the
convolutional neural network (CNN) to analyze the context
of the sentence, and then predict the service content that the
user may request. According to the prediction, the correspond-
ing service content is cached in the switch near the user in
advance. The model can reduce the transmission delay by
30% as compared with the traditional method. Compared to
the [53], Cheng et al. add individual content request probabil-
ity (ICRP) to the prediction model to predict the users’ request
and cache the service content [54]. Then, they use reinforce-
ment learning and Bayesian learning to further improve the
accuracy of prediction. Furthermore, the centralized AI model
is prone to the disclosure of user privacy information and influ-
ences the data security. Saputra et al. design an active caching
mechanism for service content caching with distributed deep
learning [38]. They collect the user information in several dis-
tributed models to protect users’ privacy, and further reduce
errors in content requirement prediction. In [55], Liu et al.
makes a prediction from the other side. Instead of analyz-
ing user needs, they propose a deep-learning-based content
popularity prediction (DLCPP) mechanism. The mechanism
collects the spatial-temporal joint distribution data of network
state and predict the content popularity. The highly popular
content is cached in nodes to provide users nearby.

The PDP can only provide limited help in term of trans-
mission delay. It mainly uses its flexible programmability to
provide rich and accurate network state information for the AI
models and increase the accuracy of model performance.

B. Processing Delay

The processing delay is the most complex part in network
delay and contains many component. As shown in Fig. 4(b),
when a request packet is forwarded, a switch that receives a
request packet will first check if there is any request content
stored locally. If not, the request packet needs to be forwarded.
The switch matches with the table of local forwarding rules. If
hit, request packets will be forwarded according to the rules
to the next switch to request content; otherwise, the packet

information is uploaded to the controller to request a new
forwarding rule. The controller generates and distributes new
forwarding rules according to the network state information
so that the request packet can be forwarded correctly and
the user can quickly acquire corresponding content. In this
mode, the size of the storage space in the switch, the load bal-
ance of the switch and the controller, and the speed of packet
processing in the switch all have important impact on the pro-
cessing delay. These three parts are the main issues in this
section.

In the traditional packet forwarding framework, switches
store the forwarding rules. However, the storage space of
switch is limited, and too much forwarding rules may cause
the overflow. Therefore, it is a feasible solution to store part
of the forwarding rules in the control plane. But this solu-
tion brings extra delay in the communication between two
planes. Therefore, Luo et al. formulate an NP-hard problem
to balance the delay of the two planes communication and
packet processing [56]. They design a heuristic caching algo-
rithm for forwarding rules to control the interaction between
switches and the controller, and minimize the end-to-end
transmission delay of data packets. Huang et al. study the
compromise point between the cost of switch caching and
the cost of network controller distributing forwarding rules,
and build a minimum weighted flow provisioning model [57].
According to the network flow information acquisition, they
design an off-line algorithm (i.e., after obtaining the network
flow information) and two online algorithms (i.e., before get-
ting the flow information) to optimize the deployment of
forwarding rules. In addition, before the packet is forwarded,
the controller has already initialized forwarding policies to the
switch. However, when a large number of users connect to the
same node, the switch and the controller will face a huge load,
which affects the operation performance. Therefore, Bera et al.
design a mobility-aware adaptive flow-rule placement scheme
for mobile access networks [58]. In the presence of user mobil-
ity, the scheme predicts the next possible location of the user
through a K-order Markov chain, and deploys the forwarding
rules to the corresponding switches in advance through the
active forwarding rule deployment method, so as to reduce
the network process delay.

The optimal solution of rule storage strategy calculated by
aforementioned heuristic algorithm is static, which is not suit-
able for the dynamic network. The AI applications can be used
to find a better way for rule storage and further improve the
network delay performance. Mu et al. design a mechanism
based on deep reinforcement learning to analyze and optimize
the storage balance between switches and controller, which
aims at reducing the controller overhead while ensuring the
switch forwarding rules storage [59]. The AI applications can
also help with load balancing. Filali et al. present a load bal-
ancing mechanism for multiple SDN controllers to reduce the
processing time of deploying forwarding rules [40]. First, the
mechanism predicts the load of controller through auto regres-
sive integrated moving average (ARIMA) and long short-term
memory (LSTM). Then, according to the predicted results, a
migration algorithm for forwarding rules based on reinforce-
ment learning is adopted to avoid a large service response
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delay in the high-load controller, which can minimize the
processing delay of deploying forwarding rules.

The PDP is different from AI in reducing the processing
delay. The load balancing problem is a global issue, which
cannot be solved directly by the PDP alone. But on the other
two issues, the PDP plays an important role. Grigoryan et al.
redesign the caching architecture based on the PDP and the
field programmable gate array (FPGA) for the massive for-
warding rules in the backbone network [60]. They design two
caching layers architecture and use FPGA to replace traditional
ternary content addressable memory (TCAM) in hardware to
accelerate the cache speed and realize fast forwarding table
matching when packet is forwarded. Zhang et al. also propose
a new data plane architecture [61]. They use behavioral level
caching mechanism to cache the packet processing behavior
of multiple forwarding tables in a unified manner, so that the
switch can still ensure a low processing latency under complex
forwarding rules. In contrast to [61], Zhang et al. propose the
ShadowFS system with small caches space to store and man-
age entries. The switch can obtain high frequency information
and feed these information back to the controller to adjust the
forwarding rules in time.

C. Queueing Delay

Queueing delay is mainly reduced by active queue manage-
ment (AQM) mechanism in the network. AQM contains a large
number of priority queueing algorithms, which can control the
delay of flows by adjusting the forwarding order of packets.
As shown in Fig. 4(c), in the traditional packet forwarding
framework, packets of various service flows enter the queue
according to their arrival time at the switch, and then leave the
queue according to the first-in first-out (FIFO) principle after
processing at the switch. This approach can complete packet
forwarding but is not suitable for some delay-sensitive service
flows.

Without AI and PDP, the AQM algorithm has been relatively
mature in tradition network. Jung et al. design a smart AQM
mechanism based on CoDel for the unique network fluctua-
tion of 5G network [62]. The mechanism dynamically adjusts
the queue priority according to the queue state, reduces the
queueing delay, and can also cope with the network fluctu-
ation. Olariu et al. design a queueing mechanism based on
packet delay requirement [63]. The mechanism classify pack-
ets in voice over Internet protocol (VoIP) into five priorities
according to the delay requirement and put them into differ-
ent push-in first-out (PIFO) queues. The design can avoid most
congestion of data packets and reduce the end-to-end delay.
Qiu et al. propose a backpressure queue scheduling algorithm
in order to make the switches respond to emergency packets in
a timely manner under the elephant flow [64]. The algorithm
provides the shortest forwarding path for emergency packets
and ensures that queues at the switches will not be congested
on this path, so as to reduce the end-to-end network delay.

With the help of AI, the queueing delay can be further
reduced. The approaches can be classified into two main ways.
On one hand, the AI applications can better classify the ser-
vice flows and preferentially forward delay-sensitive services.

Alnoman design a two-class priority queueing system based on
supervised learning [41]. They train and test the system from
simulated data sets and then identify delay-sensitive applica-
tions in the IoT network based on characteristics such as type
and location. The system assigns high priority queueing for
the delay-sensitive applications to reduce the end-to-end delay.
On the other hand, the AI applications can predict the demand
of service flow and forward these flows with different priority.
Zhu et al. propose SmartTrans, which provides multi-level pri-
ority queues for different flows [65]. They use deep learning
to classify and predict the ranking of different flows, and pro-
vide corresponding priority queues according to the prediction
results. In addition, they expand the buffer of the switch and
improve throughput when the network flow surges.

Because of the programmability of the PDP, the data plane
is the future platform to deploy AQM algorithm. However,
how to implement AQM on the PDP have become new chal-
lenges. The researches mainly focus on this issue. Papagianni
and Schepper implement an AQM algorithm (PI2) that needs
only the information on the data plane [66]. This algorithm
uses PDP and the information of inlet and outlet pipeline of
the switch. The queueing delay can be reduced in a short
time once PI2 is deployed. Kundel et al. also implement an
AQM algorithm (CoDel) based on PDP [67]. These researches
demonstrate that AQM can be supported for queue man-
agement in a network composed of programmable switches.
Alcoz et al. propose a solution (strict-priority PIFO (SP-PIFO))
to the challenge of deploying PIFO on PDP hardware [68].
Specifically, they use the P4 language to dynamically adjust
the priority of packets based on network state and provide
corresponding queues. The SP-PIFO can be fully imple-
mented on Barefoot Tofino switches with a low hardware
overhead.

In addition, realizing AI-based AQM is also a challenge.
Some AI-based AQMs are so complicated that it is difficult
to be deployed in traditional switches. The PDP provide a
solution to this issue. Shi et al. design a two level queueing
management mechanism based on the AI and PDP [69]. This
mechanism uses OpenFlow switch architecture and extreme
gradient boosting model (XGBoost) to accurately obtain
queueing delay of switches and provide differentiated ser-
vice priority for applications, which can improve the quality
of service and reduce the end-to-end delay. The PDP not
only can provide a platform for deploying complex AI-based
AQMs, but also can provide refined network state information.
Zhang et al. propose an application classification method based
on a hybrid deep neural network [70]. This method auto-
matically obtains a large amount of accurate network flow
processing information through PDP, and then learns it to
classify applications at a high accuracy.

D. Summary and Remarks

We start our review from related techniques about three
components of network delay, which is transmission delay,
processing delay and queueing delay. Then, we discuss how
AI and PDP can help further reduce the three network delay
components. In the following, we provide an conclusion of the
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three components, their corresponding research and discuss
our views.

Transmission Delay: The transmission delay is directly
affected by the distance and transmission path between the
user and the service content provider. Using relay nodes to
cache data is an effective way to shorten the distance. Without
the AI and PDP technologies, researchers often use algorithms
to calculate the best location of relay node in static network to
meet the demand of nearby service providing. However, these
algorithms can not adapt to the dynamic change of the network
well, resulting in non-optimal results. Actively pushing service
content to the network is another solution, but this solution will
bring a large amount of data traffic to the network, affecting
other network communications.

When AI is introduced, the selection of relay nodes becomes
more accurate and reasonable. Most researches determine the
relay nodes based on two stages: predicting service content
popularity and choosing their storage location.

In the first stage, the research can be classified into the
analysis of user behavior and the analysis of service flow.
On one hand, by analyzing the user’s behavior, the corre-
sponding service content popularity model can be established
to predict the service required by the user. On the other
hand, services can also be directly observed to analyze their
demands, so as to predict the popularity of each service.
No matter which analysis perspective, the prediction model
requires accurate data. Therefore, the introduction of the PDP
can provide guarantee and make the prediction results more
convincing.

In the second stage, according to the service content pop-
ularity, the content will be cached in relay nodes to provide
users with nearby service. The research in this part is rela-
tively simple, but there are many research points. When going
into the second stage, selecting an appropriate location should
also consider the switch state and link state. For example, if
a switch which stores a large amount of high popularity con-
tents is broken, its stored contents cannot be quickly provided
to users and the service quality is affected. Alternatively, when
the transmission link is congested, a switch closest to the user
no longer has the minimal transmission delay. In short, the
choice of caching location is not simply a ranking of content
popularity, but also depends on the actual network environ-
ment. Therefore, further research on AI models is required
to consider more about network state. The accurate and rich
network information provided by the PDP matches to this
future trend.

Processing Delay: The processing delay is mainly affected
by three aspects: the storage location of forwarding rules, the
load of switches and controllers, and the logic complexity of
switches. The first two aspects need to be balanced between
switches and controllers, while the third aspect is affected by
the operational architecture of the switch. Therefore, AI and
PDP have different roles in the studies of reducing processing
delay.

Without the AI and PDP technologies, the research mainly
relies on heuristic algorithms to balance the performance of the
switch and controller. Whether pursuing the minimum delay
or the minimum total cost, it is the solution in a static network.

But when facing the dynamic network changes, the algorithms
are not suitable.

Using AI applications can help the algorithms adapt to
dynamic networks. The AI applications can predict the future
network state based on the obtained network state information,
so that forwarding rules can be classified and deployed in dif-
ferent devices in advance. However, when the network state
changes, the forwarding rules need to be adjusted. There are
limited studies on the ways of adjusting existing forwarding
rules, which need to be researched in the future.

The PDP can reduce the processing delay in two ways. On
one hand, the PDP can provide the network state information
for the AI model. On the other hand, PDP can adjust switches
in the hardware and architecture level, such as increasing the
caching space in the switch or using new hardware to increase
the logic operation speed. These are the unique capabilities
of the PDP which makes it irreplaceable in future packet
forwarding.

Queueing Delay: The essence of reducing the queueing
delay is how to design the AQM. The traditional AQM has
plenty of algorithms for different optimization objectives,
such as achieving low delay or high throughput, but these
algorithms mainly adjust the packet forwarding order in the
queue.

The AI applications can help AQM in another aspect. By
predicting the service flow demand, the AI applications can
accurately classify the service flows and assign them with dif-
ferent priorities to ensure the high-quality transmission. The
programmability of the PDP can provide platform for flexi-
bly deployment and realize various intelligent and complicated
AQMs. Also, the PDP can provide accurate network state
information for flow classification. However, related research
on integration of AI and PDP is still in its infancy. There will
be more studies on AQM based on both AI and PDP, as it
deserves further research.

The three components of network delay are independent of
each other in operation, and their effective integration will
lead to a comprehensive delay reduction mechanism. As the
Internet requires lower and lower network delays, more and
more studies on this topic will continue to appear. The studies
discussed in this section for reducing network delay based on
AI and PDP are summarized in Table I for easy reference.

IV. NETWORK THROUGHPUT IMPROVEMENT BY

AI-DRIVEN PACKET FORWARDING WITH PDP

The exponential growth of network traffic increases the
throughput demand for various services. This section discusses
the approaches to improve throughput in traditional network,
and presents how to further improve the throughput with the
AI and PDP.

With the popularity and development of the Internet,
the amount of packet transmitted in the network increases
exponentially, and the throughput performance of various
services needs to be further improved. Before we talk about
the approaches for throughput improvement, we need to
clarify two important concepts: throughput and bandwidth.
Throughput and bandwidth are important metrics in network
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TABLE I
SUMMARY OF PUBLICATIONS ON REDUCING NETWORK DELAY BASED ON AI AND PDP

performance evaluation. Bandwidth is the theoretical upper
limit speed of data transmission, while throughput is the actual
value of data transmission speed. Therefore, improving the
throughput is to purse the upper limit speed and it has two
approaches. One approach is to improve the utilization of
bandwidth through algorithms in every single path, so that
the throughput can be increased to shorten the distance to
the bandwidth value. Another approach is to improve the

throughput by increasing the bandwidth. This approach can
be realized by multi-path transmission technology. Without
the help of the AI and PDP, traditional networks lack methods
in the former approach, and mainly rely on the latter one to
improve throughput. Specifically, in the latter approach, the
packet forwarding mechanism distributes a certain number of
packets to different network links according to a scheduling
algorithm, so as to achieve link bandwidth aggregation and
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Fig. 5. Three Flow Granularities of Multi-path Forwarding.

maximize network throughput. According to the number of
packets to be scheduled (i.e., the granularity of flow), the
packet forwarding algorithm can be classified into three cate-
gories: (1) multi-path scheduling with service granularity (all
packets of a service flow are distributed in a single path);
(2) multi-path scheduling with small flow granularity (a frac-
tion of packets of a service flow is distributed in a single path);
(3) multi-path scheduling with packet granularity (every packet
of a service flow is distribute in a single path) [72].

In multi-path scheduling with service flow granularity, as
shown in Fig. 5(a), the packet forwarding mechanism allo-
cates service flows to different network links according to the
scheduling algorithm, where all packets in a service flow are
forwarded into the same network link. Many algorithms based
on service flow granularity are studied. Zhou et al. propose
a weighted cost multipath algorithm (WCMP) to control the
traffic size of each path [73]. The algorithm sets weights for
each path according to the network state information, and
allocates service flows in different size into different path,
to improve the network throughput. Kheirkhah et al. design
maximum multi-path TCP (MMPTCP) algorithm to allocate
elephant flows (long duration flows) and mouse flows (short
duration flows) [44]. The algorithm solves the problem of
poor performance of mouse flows in traditional multi-path
TCP (MPTCP) by randomly scattering packets in the network.
Wang et al. and Liu et al. use software-defined networking
to perceive network topology and link resource information,
and adaptively allocate different service flows to network links
according to network resource state [74], [75].

The preceding multi-path scheduling algorithms of service
flow granularity improve network throughput via matching
service flows with different network links. One idea is to allo-
cate the service flows with their unique requirements, such as
assigning delay-sensitive service flows to links with a high-
quality forwarding environment. Another idea is to allocate
the flows based on their sizes. For example, we can distribute
an elephant flow on a link with more available resources and
distribute a mouse flow on a link with less resources. However,
the packet forwarding mechanism based on service flow gran-
ularity leads to the different size of service flow in each link,
making the utilization of links in an unbalanced state.

In order to avoid uneven utilization of network link
resources in the multi-path scheduling with service flow gran-
ularity, multi-path scheduling with packet granularity has been

studied to distribute packets in a service flow to different
network links, as shown in Fig. 5(c). All the red rectangles
represent packets belonging to the same service flow and are
assigned to two different network links. Zhang et al. propose
Hermes, a network balancer, to allocate link resources accord-
ing to packet granularity [76]. The Hermes can ensure high
utilization of network link resources by sensing the network
state of available link resources and cautiously adjust the
forwarding rules. Dan et al. utilize the centralized control
characteristic of the SDN to obtain the network link state
information, and present a multi-channel scheduling mecha-
nism with packet granularity to improve the network resource
utilization [42]. Liu et al. propose a scheduling method of
packet granularity on the basis of PDP, encapsulate different
network-layer headers for different packets of one service flow,
and forward them through different network links [77], [78].
The method not only improves the secure transmission capa-
bility of packets, but also achieves network link bandwidth
aggregation. The preceding packet granularity multi-path for-
warding algorithms improve network throughput by fitting
different network links with different packets. However, due
to unique characteristics of different network links such as in
terms of delay, the packet granularity multi-path forwarding
algorithms suffer from packets out of order [79].

In order to overcome the problems of uneven utilization of
network link resources with the service flow granularity and
packets out of order with packet granularity scheduling, a com-
promise is made with small-flow granularity scheduling which
breaks up the service flows into a number of small streams and
distributes the streams to different network links, as shown in
Fig. 5(b). Xue et al. design a small-flow multi-path forwarding
mechanism, dynamically scheduling and adjusting packet with
feedback, which enables service flows to be flexibly “cut” and
distributed to network links [80]. The mechanism ensures that
packets arrive in order and improves the network throughput.
Shi et al. develop a multi-path scheduling mechanism based
on network state information, which allocates network link
resources with small flow granularity and dynamically adjusts
the number of packets in a small stream according to network
link state [46]. Katta et al. use PDP for network telemetry
to perceive resource utilization of network links [81]. They
“slice” the service flows into streams according to the gap
between adjacent packets arriving at the switch, and distribute
the streams to each network link according to the perceived
utilization.

When the AI applications are introduced in packet forward-
ing, it is possible to realize efficient transmission algorithms
for improving bandwidth utilization. Different from the band-
width aggregation method of multi-path forwarding, these
algorithms mainly rely on machine learning to complete
the selection of data transmission path and distinguish ser-
vice priority. By assigning different services with different
paths, the service throughput is improved. Pasca et al. apply
machine learning techniques to the SDN architecture [82].
They establish a decision tree classifier through supervised
learning, which can classify and assign priority to service flows
according to their protocol and source/destination address.
As the switch processes the packets, the switch allocates
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different flows to different paths based on the priority. This
mechanism improves performance of high-priority services
and maximizes network throughput. Azzouni et al. propose
NeuRoute, an ML algorithm based dynamic routing frame-
work [83]. The framework uses deep learning to learn service
flow features and predict network flow changes. The new for-
warding rules can be generated and distributed to each switch,
which dynamically change the transmission path to increase
network throughput. Mohammed et al. develop a deep rein-
forcement learning algorithm [84]. By analyzing the state of
the wide area network, the algorithm adjusts the transmis-
sion path of the service flow, and reconfigures the traffic
of each link, which improves the link utilization and the
throughput.

The AI applications also play an important role in multi-
path transmission. In the multi-path transmission, multi-path
scheduling and balancing is the focus of recent research. In
order to maximize throughput, it is a normal idea to trans-
mit a small amount of traffic on a small bandwidth link and
to transmit a large amount of traffic on a large bandwidth
one. The AI applications can help for these flow allocation
and scheduling. Ji et al. propose an MPTCP-based automatic
learning selection path mechanism (ALPS-MPTCP) [85]. This
mechanism automatically obtains the network link states and
adaptively selects high-quality paths to transmit data pack-
ets. Li et al. design a multi-path packet forwarding congestion
control mechanism based on ML to solve the low throughput
problem caused by heterogeneous links in multi-path forward-
ing [11]. They use reinforcement learning to analyze network
congestion and dynamically adjust the congestion window, in
order to improve throughput aggregation. It is worth noting
that the training of reinforcement learning model is an off-line
process, which does not influence the decision making process
or introduce extra delay and overhead. Gilad et al. present
a high-performance multi-path congestion control architec-
ture [86]. This structure uses on-line convex optimization to
solve the balance problem of fairness and high performance.
Kanagarathinam et al. propose smart multi-path switch (SMS)
for MPTCP in a wireless network [87]. The SMS can use
machine learning to dynamically adjust and manage MPTCP
streams based on the state of the wireless network to improve
network throughput.

In the AI-based packet forwarding framework, the integra-
tion of the PDP has a relatively simple effect on through-
put improvement, which is mainly to provide platform for
deploying high-performance network state telemetry algorithm
to obtain rich and accurate information. PINT is a typi-
cal efficient network telemetry algorithm. By modifying the
communication packet and adding a 1-bit field, the network
state information can be obtained under normal communica-
tion [88].

In the research for bandwidth utilization improvement,
Li et al. propose a mechanism to classify application flows
with different QoS requirements based on C4.5 decision tree
and adjust switch packet queue depth [89]. The mechanism
provides different transmission parameters for application
flows with different priorities, which can reduce delay and
increase throughput for the application flows with the highest

priority. Liu designs a deep reinforcement learning based rout-
ing algorithm [90]. The algorithm transforms the performance
requirements of service flow into the resource requirements.
Then, according to the requirements, the algorithm classifies
service flows and allocates corresponding resources. In addi-
tion, the algorithm pays attention to network states regularly,
adjusts forwarding rules adaptively, and optimizes network
resource allocation.

In the research for multi-path transmission, Liu utilize
PDP to measure fine-grained network state information and
adopt a deep Q-learning model to make decisions on packet
forwarding path selection [91]. The model can reduce the
out-of-order packets rate in parallel multi-channel transmis-
sion, which improves the network throughput. Hardegen and
Rieger implement feature prediction for network flow based on
ML and collect a variety of heterogeneous network link state
information based on PDP [92]. They select each packet for-
warding path according to the feature prediction and network
link states to maximize the network throughput. Hu et al.
propose EARS, an intelligence-driven experiential network
architecture for automatic routing [93]. The EARS uses deep
reinforcement learning to control switches and modify for-
ward policies by interacting with the network environment to
improve network throughput.

Summary and Remarks: In the traditional Internet, through-
put is mainly improved by multi-path forwarding. Packet
forwarding algorithms with three flow granularities have their
own advantages and limitations. Algorithms based on service
flow can effectively transmit the same service flow over a
unique link, but will lead to uneven utilization of link band-
width. Although algorithms based on packet granularity can
improve link bandwidth utilization, but will lead to disordered
packets. The forwarding algorithms based on small flow is
between the two. It can achieve an appropriate utilization of
bandwidth while decreasing out-of-order packets. It achieves
satisfactory performance in all aspects, but not outstanding.
On the other hand, forwarding based on small flow is a static
balance. When the network fluctuates, the balance is broken,
and the throughput performance deteriorates significantly.

With the introduction of the AI and PDP, there are more
ways to improve throughput, which makes it possible for
improving bandwidth utilization. Both in the two improvement
approaches (single-path forwarding and multi-path forward-
ing), the AI applications can dynamically select network links
through various models to achieve reasonable resource alloca-
tion and purse high throughput. In addition, in the multi-path
forwarding, the AI applications can change inter-path balance
from static to dynamic, and can adapt to various network fluc-
tuations within a certain range, and stably maintain a high
performance of network throughput for a long time. Related
researches on the PDP are relatively simple, which only pro-
vide rich network state information for the AI models. The
scalability and the flexible programming plane of the PDP
do not show much in terms of throughput improvement. The
research on the AI and PDP for throughput performance
improvement is still at an early stage. In the future, studies
on more AI algorithms and PDP utilization method will be
carried out, to further enhance throughput improvement.
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TABLE II
SUMMARY OF PUBLICATIONS ON IMPROVING NETWORK THROUGHPUT BASED ON AI AND PDP

The research works on improving network throughput
performance based on AI and PDP discussed in this section
are summarized in Table II for easy reference.

V. SECURITY PERFORMANCE IMPROVEMENT BY

AI-DRIVEN PACKET FORWARDING WITH PDP

Ensuring data security of terminals and forwarding devices
is gaining increasing importance, which puts forward a high
requirement on the network security performance. This section
summarizes recent works on how the AI and PDP can improve
packet forwarding in terms of security. That is, AI-driven
packet forwarding with PDP can defense network attacks, such
as distributed denial of service (DDoS), ransomware, abnormal
network traffic detection (ANTD), and other security issues,
with high accuracy and low latency, and can mitigate the
attacks with high efficiency.

There are various kinds of network security issues, and
we select several typical network security attacks in this sec-
tion. First, we discussed DDoS and ransomware attacks. In
the network, DDoS attacks tend to target servers or important
nodes. An attacker controls multiple systems and constantly

sends malicious traffic to suppress the server, host or appli-
cation, which makes the computing or networking system
overload. As a result, the important node breaks down and can-
not provide services properly. A DDoS attack can be regarded
as a server-side attack. however, ransomware is on the opposite
side. Ransomware attacks user’s device by infusing viruses. It
hijacks important data and extorts money from the user. So,
ransomware is a user-side attack. Defense against user-side
attacks is different from defense against server-side ones. The
detail will be discussed in the following sections. Then, we talk
about the ANTD. ANTD no longer focuses on specific types of
network attacks, but analyzes whether the network traffic itself
is abnormal. Therefore, the ANTD is more difficult compared
to the DDoS and ransomware, because traffic anomalies con-
tain a large number of types. This makes the identification and
classification of traffic challenging. Finally, we briefly discuss
some other network security issues, including link flooding
attack (LFA) and eavesdropping.

A. Distributed Denial of Service

Distributed denial of service (DDoS) attack is that an
attacker controls multiple systems and constantly sends
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malicious traffic to suppress the server, host or application,
which makes the computing or networking system overload.
In the defense of traditional DDoS attack, a switch identifies
the fields of forwarding packet, and filters out the DDoS attack
packets by extracting feature information. However, due to
the limited performance of the traditional switch, the defense
method cannot reach a high speed and high efficiency.

As the network evolves to the SDN architecture, the target
of DDoS attack expands. The controller in SDN architec-
ture, as the core of the whole network, undertakes most of
the network work. Controllers have become the new target
for DDoS attacks. An attacker impinges massive traffic to the
controller and paralyzes it, which causes the switch network
to fail to work properly. In order to solve this problem,
researchers studied the DDoS attack defense for the SDN con-
troller. Shang et al. propose FloodDefender, a network defense
framework, to address the problem that communication links
between two planes in the SDN architecture are vulnerable to
DoS attacks [94]. The framework monitors network states in
real time. When an attack occurs, the neighbor switch takes
over the work of the victim switch and sends the received data
stream to the interceptor of the controller to identify whether
it is DoS attack. In addition, the controller updates the new
attack stream features in the interceptor in real time to improve
the efficiency of interception. Chen et al. use extreme gradi-
ent boosting (XGBoost) as a detection method for cloud-based
SDN networks [95]. The XGBoost classifier detects DDoS
attacks on packets collected by TcpDump. The method has
high detection accuracy, low false positive rate, fast detection
speed and scalability.

Servers are also vulnerable to DDoS attacks in the network.
With the development of technology, DDoS attacks can be
better disguised as normal packets, which challenging the
identification and classification algorithms in switches. The
AI applications can deal with this issue due to its excel-
lent learning ability. In the complex network environment,
the AI applications can learn the features of known DDoS
attack packets and detect new DDoS attacks accurately and
automatically. In the IoT network, attackers use insecure con-
sumer grade devices to carry out DDoS attacks on critical
infrastructure. Doshi et al. propose a mechanism that uses
IoT network specific behavior, such as a limited number of
IoT nodes, regular forwarding time interval between adjacent
packets, to conduct DDoS attack feature analysis [12]. In par-
ticular, they first capture network traffic, sorting packets based
on information such as IP address and time. Then, they extract
features from the packets and classify them into normal traffic
and DDoS attack traffic.

In the Internet, DDoS attacks are widely studied. Labeling
the data set of DDoS attack to complete the supervised learn-
ing is the first defense method. Idhammad et al. design a DDoS
detection mechanism based on semi-supervised learning to
solve the problems of low accuracy and high false positive
rate in typical DDoS detection [36]. The detection mechanism
consists of two main parts: unsupervised learning and super-
vised learning. Unsupervised learning estimates the entropy
of network traffic features based on a time sliding window
algorithm, and then calculates the information ratio of gains.

Network traffic with high information ratio of gains is consid-
ered abnormal. Supervised learning uses an classifier based on
an extra-tree algorithm to accurately classify abnormal traffic
and reduce the false positive rate of unsupervised learning.
The detection failure rate of the mechanism is low. The sec-
ond defense method is deep learning. Yuan et al. propose a
DDoS attack detection method, DeepDefense, based on deep
learning [96]. The DeepDefense uses a bi-directional recurrent
neural network and data sets to learn patterns from network
traffic sequences and track network attack activities. The
Deepdefense is better than shallow machine learning method in
recognition error rate and generalization. Niyaz et al. propose
a multi-vector DDoS detection system based on deep learn-
ing [97]. The system monitors network traffic, analyzes and
evaluates traffic tracks in different scenarios, and determines
whether DDoS attacks exist. Using support vector machine
(SVM) to classify data traffic is also a defense method.
Hu et al. propose a prototype system to defend DDoS attack in
real time [98]. During the process of packet forwarding, they
adopt flow-based information collection methods in switches
to quickly gather network state information, and use the SVM
model for data analysis to detect and judge DDoS attacks. At
the same time, they design a DDoS attack mitigation mech-
anism based on the white list, which can dynamic update
the packet forwarding rules to block the service packets that
are not in the white list and effectively reduce the damage
of DDoS attacks. Furthermore, the combination of SVM and
self organizing map (SOM) can better defend against DDoS
attacks. Phan et al. design a hybrid stream working mech-
anism based on SVM and SOM [99]. The mechanism uses
SDN to collect switch flow information and classify the flow
by SVM. Then, SOM is used to make the final decision,
and the switch transmission rules can be changed to reduce
network attacks. To compare the performance of these AI algo-
rithms, Santos et al. realize three different types of DDoS
attack detection (flow table attack, bandwidth attack and con-
troller attack) using four machine learning methods: SVM,
multilayer perceptron (MLP), decision tree and random forest
in an SDN simulation environment [100]. The results show that
the decision tree approach has the shortest processing time,
and the random forest approach has the highest absolute value
accuracy.

In SDN architecture, the AI algorithms are often deployed in
the controller. As a result, the communication time between the
data plane and the control plane makes the real-time effect of
the model decrease and affects filtering DDoS attack. The PDP
can directly deploy the defending algorithm on the data plane.
Prez-Daz et al. design an PDP-based security architecture con-
sisting of two independent systems, an intrusion prevention
system (IPS) and an intrusion detection system (IDS) [101].
The IDS is deployed at the host, and is trained by machine
learning for network traffic identification. If a flow is recog-
nized as an attack based on information collected by the PDP,
the flow will be processed by the IPS model to defend against
the DDoS attackers. The proposed architecture is practical for
identifying and mitigating DDoS attacks.

The integration of the AI and PDP is the development
direction of DDoS attack defense, which is mainly studied
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Fig. 6. Two Mechanisms about Defending DDoS Attacks with AI and PDP.

in three aspects. Firstly, the PDP provides multiple planes
to better deploy AI models, which can realize a DDoS
monitoring algorithm on wire speed and greatly reduce mon-
itoring latency [102], [103]. Secondly, fine-grained network
state information can be supplied by the PDP, including
queue length, network delay and so on, to provide more
multidimensional features for accurately identifying DDoS
attacks [104], [105]. Thirdly, the flexible and programmable
characteristics of the PDP provide the foundation for cus-
tomized DDoS attack monitoring [106]. The DDoS attacks
monitoring algorithm can be dynamically selected according
to requirements of security level. Therefore, aggregating the AI
and PDP for defending DDoS attacks has become a research
hotspot in the community.

Musumeci et al. use the AI and PDP to detect DDoS attacks
during packet forwarding in real time [107]. Their mechanism
workflow is shown in Fig. 6(a). In the packet forwarding pro-
cess with the PDP, the numbers of IP, UDP, TCP and SYN
packets are counted, and the local ML analysis and decision
module can use these numbers to judge whether there is a
DDoS attack. If there is, the decision forwarding engine dis-
tributes the forwarding rules containing the attacker’s IP and
other information in the form of table entry, and blocks the
attacks. Mi and Wang design an ML-Pushback mechanism
with deep learning and PDP to accurately identify and miti-
gate DDoS attacks [108]. The workflow is shown in Fig. 6(b).
The data collector is customized on the PDP, and gathers
real-time discarded packets in the network. When the number
of discarded packets reaches a threshold, the data collector
automatically extract packet information and uploads them
to the control plane. When the deep learning module of the
control plane receives the information, the feature extraction
sub-module will extract the IP source/destination address, pro-
tocol type, interface number and other features, and then hand
them to the decision tree of the analysis and decision module to
judge whether there is a DDoS attack. If a DDoS attack exists,
the features of DDoS attacker are further extracted. Then, the
analysis and decision model distributes the forwarding rules

to switches to limit the traffic from the attackers. Chen et al.
view the network from another aspect. They propose a dis-
tributed intrusion prevention system, CIPA, for programmable
networks based on artificial neural network (ANN) [109].
The CIPA distributes computing power to some or all of the
switches in the network, monitors the network and forms a
global view of the network states, and performs high-precision
intrusion detection and mitigation on discovered malicious
online traffic.

B. Ransomware

Ransomware is a kind of virus software that extorts the files
of victims. The attacker holds the file until the victim pays
enough money to redeem it. Because ransomware viruses exist
on user devices, studies in this area tend to focus on traffic in
the user side.

In traditional networks, defenders identify ransomware by
analyzing the data flow of user devices. The introduction
of the AI applications does not fundamentally change this
detection logic, only increases the speed and efficiency of iden-
tification. The AI algorithms have different way to defense
ransomware. The first way is based on the data information
on the user’s device. Poudyal et al. analyze the raw data,
library files, number of functional interface calls and other
multi-level data of the user’s computer, and use Bayesian
network, random forest and other supervised learning algo-
rithms to detect ransomware [110]. Also, ransomware can be
found by analyzing user opcodes. Zhang et al. first analyze
the opcodes of the user terminal and generate an N-gram
sequence, then extract the features from the sequence with the
TF-IDF data mining algorithm, and finally construct a ran-
somware detection model with the extracted features [111].
The third way does not target the raw data, but identifying
ransomware by analyzing the information entropy of the data.
Lee et al. make comprehensive use of information entropy
and AI methods to classify ransomware [35]. Their classi-
fication scheme can accurately identify ransomware with low
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Fig. 7. Mechanism on Defending Ransomware Attack with ML and PDP.

false positive and false negative rates compared with the exist-
ing detection methods. Analyzing network interface traffic is
the forth way of detecting ransomware. Alhawi et al. design
NetConverse to identify ransomware [112]. Specifically, they
analyze network flow, extract its features, and compare them
with the features of the learned ransomware attacks to deter-
mine whether it is a ransomware flow. The last way is to build
a firewall to block ransomware. Shaukat and Ribeiro propose
RansomWall, a layered defense system for defending against
crypto-ransomware [113]. RansomWall combines static and
dynamic analysis to extract file features and send them to the
feature collector. The feature collector sends suspicious file to
the machine learning model to make the final judgment on
whether it is a ransomware software.

Although there are many ways to defend against ran-
somware, AI-based defense modes are on the user side. These
defense modes are passive and can only be triggered when
the attack reaches the user. However, if the PDP technology is
introduced into ransomware defense, the passive defense mode
can be changed into an active one. The new deployment loca-
tion of defending algorithms is on the network side, which can
identify and detect ransomware attacks early. Once the attack
traffic enters the network, it can be monitored, identified, and
intercepted by the PDP switch, so that the attack traffic cannot
reach the user’s device. Cusack et al. propose a ransomware
precise detection mechanism based on the AI and PDP [114].
As shown in Fig. 7, the mechanism mainly includes two mod-
ules: network stream processing module and network stream
classification module. First, the network stream processing
module uses the PDP to quickly collect the information of
each packet, and extracts the network stream features (packet
5-tuple information), including packet timestamp, packet size
and byte number. Then, the network stream classification mod-
ule gathers the feature information to identify the ransomware
stream by the random forest algorithm. By adjusting the num-
ber (40) and depth (15) and the maximum amount of features
in random forest decision trees, the accuracy of detection ran-
somware reaches 86%, and the failure rate of detection is
only 11%.

C. Automating Network Traffic Detection

Automating network traffic detection (ANTD) mainly
addresses the attacks caused by abnormal network traffic.

Especially in the data center, a large amount of network
traffic needs to be monitored for a safe network environ-
ment. However, the ANTD technique has low performance
in a traditional network and brings potential risks for network
security.

Similar to the detection of DDoS attacks, analyzing and
identifying abnormal data traffic through the AI applications
has great advantages in network security. The AI applications
can construct an abnormal network traffic model and accu-
rately detect abnormal traffic, which achieves a high security
level. Due to its wide range, the ANTD has been studied in
various networks, and the parameters used in the AI models
are different. Salman et al. establish an abnormal traffic detec-
tion framework for the IoT network based on ML [34]. In this
framework, network traffic information is collected from the
IoT network devices. Then, the information is extracted into 39
network traffic features for further classification. The ML algo-
rithm keeps running to identify abnormal network traffic with
a high accuracy. However, in the P2P networks, dynamic port
numbers make it difficult to analyze abnormal traffic based on
former AI method. Additional parameters is required to iden-
tify abnormal flows. Kong et al. design an anomaly encrypted
traffic detection method based on machine learning and behav-
ior features [115]. This method extracts behaviour features of
application programs and classifies abnormal traffic based on
machine learning. This method can effectively improve the
accuracy of abnormal encrypted traffic detection. In big data
networks, the detection performance of unbalanced abnormal
traffic needs to be further improved. Yong et al. design a par-
allel cross convolutional neural network (PCCN) for network
traffic detection [116]. The PCCN fuses two branches of
convolutional neural network with excellent learning ability.
It can complete the learning of traffic characteristics in the
case of a small number of samples. In addition, it adopts an
improved original flow feature extraction method and achieves
fast convergence speed of network traffic classification and
identification, which lead to a quick detection.

In the Internet, ANTD has the most related researches,
most of which use the SVM to identify and classify traf-
fic. Boero et al. use the SVM algorithm as the core of the
system to detect abnormal traffic with the features of byte rate,
packet rate and average packet length [117]. Their scheme
has a high detection rate. Bhunia and Gurusamy establish
an SDN-based framework called SoftThings, where switches
continuously monitor the traffic of IoT devices and provide
the traffic information to the cluster SDN controller [118].
The controller detects abnormal behaviors by analyzing traffic,
and dynamically sets traffic rules in the switches. In this pro-
cess, abnormal traffic can be quickly detected at the network
edge. Kong et al. propose an abnormal traffic identification
system (ATIS) based on the SVM [119]. The system deter-
mines abnormal traffic in four steps: data collection, traffic
features extraction, data processing, and SVM classification.
The system can classify and identify various attack traffic
applications.

Random forest, deep learning and other algorithms can
also be used in ANTD. Song et al. propose an abnor-
mal traffic defense mechanism based on SDN and machine
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learning [120]. The mechanism first extracts the features
of network traffic, then evaluates the malicious degree by
using a random forest algorithm, and finally makes defense
decisions to effectively prevent abnormal traffic transmis-
sion. Ajaeiya et al. design a lightweight traffic detection and
defense system [121]. The system periodically collects traffic
information from the SDN OpenFlow switch. Then, it extracts
and aggregates a set of features to analyze traffic information,
so as to achieve high performance abnormal flow detection.
Tuan et al. use deep learning to detect abnormal traffic in an
SDN environment [122]. They use the NSL-KDD data set to
build a deep neural network anomaly flow detection model.
Then the model is used to analyze network traffic and identify
abnormal traffic. Experiments show that the model has great
potential in abnormal flow detection.

In addition to the above studies, there are also related
research on AI model optimization. Ji et al. utilize ML to
model a deep attack pattern of network abnormal traffic [123].
Specifically, they design a mechanism based on ML and SVM
algorithm to analyze abnormal network traffic and predict the
categories of network attacks. Niu et al. propose a network
intrusion detection method based on transfer component anal-
ysis (TCA) [124]. The method uses TCA to map the traffic
features of the source domain and the traffic features of the tar-
get task to a shared subspace for domain adaptation, and then
uses K-nearest neighbors (KNN), SVMs and random forests
(RF) as base classifiers for training detection models to find
abnormal traffic.

The high processing performance of the PDP facilitates the
wire-speed analysis and detection of network abnormal traffic.
The PDP can be used to design a fine-grained traffic collec-
tion and analysis mechanism in the packet level to ensure
real-time and accurate abnormal traffic analysis [125], [126],
[127], [128]. Using PDP to monitor network traffic can avoid
sending too many network packets to the centralized control
plane, and can reduce abnormal network traffic analysis deci-
sion delay [129]. Therefore, integrating the AI and PDP to
improve ANTD has become a hot topic in the security field.

Lee and Singh propose an endogenous abnormal traffic anal-
ysis mechanism based on PDP, and deploy a random forest
algorithm on switches to realize real-time online abnormal
traffic detection in networks [130]. The specific workflow is
shown in Fig. 8. First, 12 network traffic features are selected
as the judgment basis, e.g., the TTL from source to desti-
nation terminal (STTL), the TTL from destination to source
terminal (DTTL) and the number of packets from destination
to source terminal (DPKTs). Then, the 3-order random forest
decision tree algorithm is used to carry out abnormal analysis
of network traffic. If abnormal network traffic is confirmed,
the corresponding packet forwarding rules will be distributed
to the switches and the abnormal traffic packets are discarded;
otherwise, the packets will be forwarded following the default
flow table rules. Busse-Grawitz et al. deploy a supervised
learning model on the top plane of PDP to detect the endoge-
nous traffic in the network [15]. First, due to the memory
and floating operation constraints in the PDP, they modify the
feature selection process in the supervised learning to adapt
the information from the PDP. Then, they design a real-time

Fig. 8. Two Mechanisms about ANTD with AI and PDP.

accurate network traffic analysis mechanism based on the AI
and PDP. In the model training stage of the mechanism, the
labeled network traffic data is used to train the classification
model of supervised learning, and then the classification model
is deployed on the PDP to realize the wire-speed online classi-
fier. The workflow is shown in Fig. 8. First, 18 network traffic
features are extracted by counting the first three packets of a
network traffic as the judgment basis. Then, the random for-
est algorithm with semantic association is used to conduct
abnormal network traffic analysis. If abnormal network traffic
exists, the corresponding traffic will be discarded according
to the packet forwarding rules; otherwise, the packets will be
forwarded following the default flow table rules.

D. Other Security Issues

In this section, we discuss some other network secu-
rity issues and their defense methods, mainly including link
flooding attack (LFA) and eavesdropping.

LFA is a variant of DDoS attack. Different from traditional
DDoS attacks, attacker for LFA sends a large amount of nor-
mal traffic to cause network congestion in network links, and
finally isolates the target area from the Internet [131]. Attack
traffic in LFA is normal traffic, so it is difficult to identify
LFA as DDoS attack, which puts forward new requirements
for network security defense. In particular, in SDN architec-
ture, because of the centralized characteristics, attacking SDN
controller can isolate the switch network controlled by it and
paralyze the network device on a large scale. Traditional fea-
ture extraction, classification, and filtering of traffic cannot
effectively defend against this attack. Therefore, gaining other
information of traffic is helpful in this issue. Rasool et al. pro-
pose CyberPulse [132]. They use the deep learning model to
continuously monitor the communication traffic in SDN archi-
tecture. In addition to extracting content features, they also
analyze the behavior of the traffic and judge whether it is an
LFA.

The eavesdropping attack occurs inside the link. The
attacker can analyze the data content by eavesdropping the
communication traffic, resulting in data leakage. In addi-
tion to keeping the data confidential to protect the content,
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the defense party can also proactively intercept eavesdrop-
pers by analyzing and identifying eavesdropping behaviors.
Hoang et al. classify the traffic behavior by one-class SVM
in the unmanned aerial vehicle network, and then use the K-
means algorithm to cluster the classified behavior and judge
the eavesdropping attack [133]. Xiao et al. propose a beam-
forming control scheme for visible light communication based
on deep reinforcement learning, which intelligently adjusts the
beam structure according to the behavior of eavesdroppers
to enhance information security [134]. Liu et al., combine
the AI and PDP, and propose a three-layer defense mecha-
nism for eavesdropping, including (1) identifying abnormal
network states and adjusting forwarding decisions through the
minimum risk machine learning algorithm, (2) splitting sen-
sitive data through multi-path transmission, and (3) highly
compatible with the original defense means [135].

E. Summary and Remarks

Section V describes various types of network security issues
and corresponding defense methods. These network security
attacks threat the network security from different sides. The
main target of DDoS attacks is the server. By sending mali-
cious packet to the server, the attacker will eventually make
the server overload and stop working. Ransomware attacks
users by hijacking their important data through viruses in order
to extort money. ANTD targets at identifying a broad range
of abnormal data traffic. LFA attacks the network domain
and isolates the specific network by causing link congestion.
Eavesdropping targets data packets and analyzes important
information about users by stealing the contents of data pack-
ets. Different network security issues have different defense
methods, and we will briefly summarize these methods and
discuss our views.

DDoS: DDoS attacks exist on all types of networks. The
main defense method is to analyze the features of data traffic.
So, how to identify DDoS attack packets more efficiently and
accurately is the research direction. The AI applications can
learn the features of known DDoS attack packets, identify and
filter the new type attack packets. While providing accurate
packet information, the PDP can support an ML model to run
on the data plane, avoiding the process of data upload and
policy distribution, and improving the real-time interception.
Existing solutions have the capability for successfully filtering
DDoS attacks with high accuracy. However, identifying and
filtering functions are in general deployed in the switch near
the victim, which is relatively passive and only triggered at
the arrival of DDoS attack packets. Is it possible to intercept
DDoS attacks at the edge of the network when the packets
enter the network? If so, it will not only successfully defend
against DDoS attacks early, but also reduce a large number of
junk packets in the network.

Ransomware: Ransomware attacks user devices through
viruses. In the early days of the network, ransomware is
defended primarily through user-side analysis. The defend-
ing methods analyze user’s information to detect ransomware,
including data, operation behavior, information entropy and
so on. Although it can effectively defend against ransomware

attack, on the one hand, it is triggered once the attack reaches
the user’s device, which makes the defense passive. On the
other hand, it may cause privacy issues due to the analysis of
user information. Therefore, in the recent research, the deploy-
ment location of defense method is changed from the user side
to the network side. With the help of two powerful technolo-
gies, the AI and PDP, ransomware attacks can be detected and
intercepted sooner and faster.

It is worth noting that the ransomware blocking rate of
each study is generally less than 90% which is not suffi-
ciently high as desired. The reason is that ransomware can
be packaged in various types of packets, which is very dif-
ficult to identify. In the future Internet, there will be more
protocol format of packet, which will lead to higher level
for ransomware identification. Identifying them and extracting
common features of ransomware packets correctly and quickly
is the future research direction. How to integrate the AI and
PDP to maximize ransomware defense capabilities requires
further studies.

ANTD: ANTD has defensive effect against all kinds of
abnormal network traffic. However, because it does not focus
on the defense of specific security issues, the ANTD is
extremely difficult and challenging. ANTD defense model
requires a large amount of network state information and com-
plex feature extraction and identification algorithms. So, the
technology integration effect of the ANTD, AI and PDP is
the best and has the most related research. The development
direction of ANTD is not further integrating technology, but
reducing computational load and increasing accuracy. How
to optimize AI model and how to acquire targeted network
information is the research direction of ANTD.

LFA and Eavesdropping: LFA, as a variant DDoS attack,
presents a great challenge for network security. The data traf-
fic of LFA is normal traffic, and traditional feature extraction
cannot effectively identify this attack. Although data traffic
behavior analysis can increase the accuracy, it still overlooks
a large number of LFA. Therefore, how to better identify LFA
is the future direction. The security problem of eavesdropping
is not closely related to packet forwarding technology, and
it is mainly defended by data encryption. However, packet
forwarding technology can defending eavesdropping in other
ways. For example, multi-path transmission is a good direc-
tion. By splitting the data and transmitting it over different
paths, the network can defend single-way eavesdropping. At
present, there are few researches on using packet forwarding
to solve eavesdropping issue, and we hope there will be more
novel perspectives in the future.

The papers related to network security improvement based
on the AI and PDP discussed in this section are summa-
rized in Table III, Table IV and Table V respectively for easy
reference.

VI. RELIABILITY PERFORMANCE IMPROVEMENT BY

AI-DRIVEN PACKET FORWARDING WITH PDP

Reliability refers to the quality of data transmission and
is an important issue of the network. Reliability is mainly
affected by two aspects: (1) Congestion of transmission link;
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TABLE III
SUMMARY OF PUBLICATIONS ON DEFENDING DDOS ATTACK BASED ON AI AND PDP

(2) Operation logic of the forwarding device. The first aspect
mainly corresponds to the network congestion control mech-
anism, while the second aspect mainly corresponds to the
network forwarding device self-verification mechanism. These
two aspects will be discussed in detail in the following sec-
tions. In addition, the connection of the network is complex,
and it is difficult to find network congestion or faulty device.
So, researchers often use network telemetry technology to
find problem links or devices. Among these network teleme-
try algorithms, in-band telemetry (INT) has become the most
commonly used technology because of its simplicity and quick
detection. Therefore, network telemetry will be discussed first.

A. Network Telemetry

Network telemetry refers to how information from various
data sources is collected by using a set of automated commu-
nication processes and transmitted to the corresponding device
for analysis tasks. INT, as the most commonly used technology
for network telemetry, is deployed in the PDP. By extending
the fields of the packet, telemetry data can be stored and trans-
mitted to the collector along with the packets. However, the

expansion of packet fields inevitably brings extra overhead for
transmission. Therefore, the expansion mode of packet fields
has become one of the key points of research.

Basat et al. propose a network state telemetry mechanism
based on PDP to collect information such as interface queue
length, packet forwarding processing delay, packet forward-
ing interface [88]. The mechanism needs to insert only one
bit telemetry information when packets are forwarded. The
network state telemetry information can be partitioned and
restored in multiple packets, which greatly reduces the over-
head of telemetry. Janakaraj et al. design a distributed in-band
network telemetry system (S-INT) and a wireless network
operating system (WINOS) [136]. The S-INT reduces the
overhead of monitoring network traffic by embedding a spe-
cialized INT header in the data stream. At the same time, the
WINOS system can collect distributed telemetry information
and connect with an SDN network to realize fast machine
learning algorithm and network control. Vestin et al. develop
a fast INT reporting collector based on the PDP [137]. The
collector uses P4 language and is deployed on the stream pro-
cessor of switches. It can quickly obtain the switch data plane
information, while requiring a low network overhead.
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TABLE IV
SUMMARY OF PUBLICATIONS ON DEFENDING RANSOMWARE BASED ON AI AND PDP

The INT technology can be used to monitor the network
state in real time and locate faulty device. Zhou et al. design
a real-time traffic monitor [138]. The monitor closely deploys
multiple information collection modules in programmable
switches and periodically collects switch information to obtain
the network states. Holterbach et al. use the PDP to quickly
detect network failures, and send rerouting signals to the
control plane to ensure rapid recovery of services [139].

When network telemetry is assisted by the AI algorithm,
the telemetry performance is further improved. First, the INT
technology requires the switch to store the forwarding rules of
the INT packets, which poses a new challenge to the switch
with limited storage space. Lazaris and Prasanna propose a
DeepFlow framework to enable fine-grained measurements in
programmable switches [140]. The framework can adaptively
measure the activity of service flow and provide different fine-
grained network state information for different activity levels.
In addition, the framework uses historical measurements to
train a cloud-based deep learning model to provide short-term
traffic predictions when switch resources are limited. Second,
different networks have different telemetry information, and
the INT assisted by AI can intelligently select telemetry data.
Hohemberger et al. formulate an INT’s assignment plan model
and enhance it with machine learning algorithms [141]. The
enhanced model can improve the ability of INT to identify
abnormal network states. Third, the AI applications can deploy
INT algorithm in advance and speed up network telemetry
rates. Yang et al. propose a high-speed network telemetry
mechanism called Fast-INT [142]. The Fast-INT monitors
network change events through a reinforcement learning algo-
rithm, and dynamically deploys and adjusts INT monitoring
tasks to achieve efficient network monitoring in a short time.

In addition, the AI applications can obtain information from
INT to perform high-quality network functions. Mayer et al.
propose a soft-failure localization framework based on
ML [143]. The framework can be applied in the case of

Fig. 9. Framework of Network Telemetry with AI and PDP.

failure of telemetry equipment that cannot use INT to detect.
In this framework, an artificial neural network is used to simu-
late network failures, and the approximate location of failures
can be obtained quickly, which speeds up failure location
determination. Pashamokhtari establishes a security monitor-
ing mechanism for the IoT network [144]. The PDP is used
to dynamically monitor the packet information of various IoT
devices. A set of AI models are used to classify and detect
the information to find whether there is malicious behavior.

Overall, the combination of AI and PDP has a huge advan-
tage in terms of INT technology. The framework of its
operation is shown in [145]. Hyun et al. use an in-band
telemetry mechanism of the PDP to obtain accurate network
state information. Based on the information, they use ML to
build a knowledge-defined network whose system framework
is shown in Fig. 9. The system is mainly divided into four
planes, i.e., programmable data plane, management plane, con-
trol plane and knowledge plane. In the programmable data
plane, the network state information is collected and summa-
rized in the process of packet forwarding and uploaded to
the management plane and the control plane. The manage-
ment plane acquires the network state information and then
carries on data statistics, analysis and processing, and finally
constructs the network state database. The control plane gath-
ers the short-term reports from the management plane and

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:58:13 UTC from IEEE Xplore.  Restrictions apply. 



780 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 1, FIRST QUARTER 2023

TABLE V
SUMMARY OF PUBLICATIONS ON AUTOMATING NETWORK TRAFFIC DETECTION BASED ON AI AND PDP

the information from the programmable data plane, and then
show the network configuration and state for visualization.
The knowledge plane acquires the long-term data of network
state from the management plane, extracts the features of the
network state and trains the ML model to form the knowl-
edge of network traffic scheduling and abnormal detection.
Then, the packet forwarding policies are generated through
the knowledge and deployed to the control plane. The control
plane translates the policies into packet forwarding rules and
distributes the rules to the programmable data plane.

B. Network Congestion Control and Management

Network congestion control and management is to ensure
the network transmission performance remains at a high level
for a long time. The traditional congestion control mechanism
is to adjust the congestion window to reduce the degree of con-
gestion when it occurs, which is very passive. With the help of
AI, the passive approach can be changed into active one. By
establishing a congestion prediction model, the AI applications

can detect network congestion in advance and adjust forward-
ing rules in time to avoid congestion. Jain et al. obtain a large
amount of data from practical telecommunication network and
train the network traffic prediction model [146]. The model can
predict the occurrence of network congestion and use big data
to adjust the packet forwarding rules and improve the quality
of service. Zhou et al. propose a supervised learning regres-
sion model that can capture global routing behavior [147].
The model can obtain whole network routing information and
predict network congestion.

The PDP enhances the congestion control mechanism from
the source of network state information. Feldmann et al. use
PDP to identify elephant flow at wire-speed level and assign
an independent queue for each elephant flow through multi-
queue management [148]. Further, they monitor queue state
information in real time to detect network congestion. If con-
gestion is about to occur, a congestion signal will be sent
to inform the upstream node to change the packet forward-
ing rules, which can avoid network congestion and achieve
accurate congestion control.
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Fig. 10. Framework of Network Congestion Control with AI and PDP.

In recent years, researchers have explored using the AI and
PDP to realize efficient and predictable in-network conges-
tion management. Mai et al. propose a network congestion
detection and management mechanism based on reinforcement
learning for network congestion caused by instantaneous burst
of elephant flows [149]. When an elephant flow fluctuates, the
mechanism can adjust queueing assignment based on real-time
feedback from reinforcement learning to avoid network con-
gestion. Li et al. design a TCP-proximal policy congestion
control (TCP-PPCC) algorithm [150]. The algorithm obtains
network state information through the PDP, updates the for-
warding policy offline, and further adjusts the new policy
online. It can effectively prevent network congestion.

The typical congestion control framework combining the AI
and PDP is shown in [49]. Li et al. use the PDP to accurately
collect network link state information, based on which, they
determine whether the corresponding network link is about
to be congested. Further, they adopt an enhancement learn-
ing algorithm to minimize the maximum link utilization to
avoid network congestion. The workflow of this mechanism is
shown in Fig. 10. First, the network state information is col-
lected through the INT when the packets are forwarded in the
PDP. Then, the INT agent in the control plane gathers the col-
lected network state information and extracts the load of each
network link and each node device as the state parameters for
reinforcement learning. After that, the reinforcement leaning
model generates routing adjustment policies to avoid network
congestion based on the state parameters. Finally, the control
plane translates the policies into packet forwarding rules and
distributes them to the network devices on the programmable
data plane.

C. Network Device Runtime Verification and Management

With the popularity of programmable switches, customized
packet forwarding becomes the basis of more and more
research works. The smooth and complete forwarding logic
can reduce the interruption of packet transmission and greatly
improve the packet transmission performance. At the same
time, refined forwarding code can reduce useless processing
logic and improve data processing performance. Along with
the trend, verification and management of the functional feasi-
bility of programmable network devices and the validity of the
runtime forwarding table have become a research hotspot. The
functional feasibility verification of network device refers to
the analysis of whether the PDP packet forwarding processing

Fig. 11. Framework of Runtime Verification with AI and PDP.

has bugs [151], [152], [153], [154]. The validity of the runtime
forwarding table refers to the analysis of whether there is an
abnormal packet forwarding rules in matching tables when
the PDP is running [48], [154], [155]. For example, mali-
cious attackers can tamper a forwarding table to interrupt the
user’s services [154]. A verification mechanism is completed
by Zhou et al. They design an anomalous runtime forwarding
table mechanism [48]. The mechanism uses an intermediate
representation based on a binary decision diagram to form
the data plane probe of switch and to monitor the anomaly
of packet forwarding. The mechanism can ensure that packets
are transmitted efficiently and smoothly across the PDP.

In addition to manually collecting network packet forward-
ing state information to verify and manage the functional
feasibility and the validity, researchers explore the AI appli-
cations to realize automatic verification and improve the
correctness and feasibility of packets forwarding manage-
ment. Jagadeesan and Mendiratta formulate an approach to
enhance automated verification with machine learning-based
analysis and detect the faulty or malicious behaviors [156].
The approach takes the switch behavior as input and deter-
mines whether there is an faulty or malicious behavior through
machine learning analysis. Furthermore, the approach has
low operational requirements and can easily be deployed on
the switch. Shukla et al. propose a variation-coefficient and
fuzzy-evaluation mechanism guided by reinforcement learning
to verify the validity of packet forwarding logic and for-
warding table during the operation of programmable network
devices [157]. The workflow is shown in Fig. 11. First, the
users describe expected packet forwarding behavior on the
PDP through P4Q lightweight language, and provide packet
forwarding logic described by P4 language. Second, the reward
system of reinforcement learning generates two kinds of test
packets according to information from the users. One is
the ordinary packet, which is used for samples (seeds) of
the initial environment state of reinforcement learning. The
other is specific boundary packets (such as Ethernet address
FF:FF:FF:FF:FF:FF), which is used to verify whether there
are bugs in the packet forwarding logic. The reward system
sends the ordinary test packets to complete the initialization
of the reinforcement learning system. Then, the reward system
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Fig. 12. Future Trends, Challenges and Open Issues of AI-driven Packet Forwarding.

sends out a specific boundary test packet, at which time the
agent fuzzily selects an action expected to forward the packet.
Meanwhile, the reward system monitors the forwarding pro-
cess of the packet in real time. Finally, the forwarding of this
packet is finished and the reward system compares the two
actions and gives a reward value. The agent checks whether
the reward value triggers the bug threshold. If it is, the agent
will notify the user that there is a bug in the packet forwarding.

VII. FURTHER TRENDS, CHALLENGES AND OPEN ISSUES

Packet forwarding is the foundation and the core of the
Internet and still has a long way to go in the future. AI-
driven packet forwarding technology is the basic development
direction, and intelligence is one of the most important fea-
tures of future networks [158], [159]. This section discusses
the future AI-driven packet forwarding technology from three
development trends, and highlights challenges and research
issues respectively. The structure of this section is shown in
Fig. 12.

A. AI-Driven Packet Forwarding for Diverse
Network Architectures

Future Internet architecture is one of the most discussed
research hotspots in recent years. Traditional IPv4 networks
can no longer meet the needs of the current diversified and
intelligent network requirements. Thus various new network
architectures have emerged, such as open programmable
network (ForCES, SDN), new service-oriented network system
(SOI, NetServ, COMBO, SONA), content center network
(NDN, DONA, PSIRP, NetInf), new mobility-oriented network
system (MobilityFirst, HIP, LIN6, Six/One), intent-driven
networks (IDN), and smart identifier networks (SINET). The
explosion of proposed new network architectures has brought
about today’s Internet, where the traditional IPv4 network is
deployed as the core and diversified new network archictures
are accessed as private networks.

1) Challenges: Packet forwarding technology is an
indispensable part in both traditional and new network

architectures. However, different network architectures have
different deployment planes and functional requirements
for packet forwarding, which leads to the first challenge
of future packet forwarding technology – How to properly
deploy packet forwarding in various network architectures?
In addition, to satisfy differentiated network architecture
requirements, high-performance programmable hardware
appears and can be utilized for efficient and customized
packet forwarding. How can we better integrate packet
forwarding and high-performance programmable hardware?
The integration becomes a new challenge. On one hand,
diverse network architectures have different requirements,
and the compatibility of high-performance programmable
hardware in the context becomes a problem. On the other
hand, the enrichment of forwarding functions requires
high-performance hardware to provide more programming
interfaces, which undoubtedly puts forward new challenges
for hardware design.

Furthermore, a careful look at today’s Internet results in
a question: whether today’s Internet with IPv4 as the core
network and new architectures as the private networks will
continue to have a development momentum? The new archi-
tecture is supposed to break the bottleneck of the traditional
Internet and replace IPv4 network. But the actual situation is
that the widespread IPv4 provides poor compatibility between
new network architectures. New network architectures can
exist only in the form of private networks. Can we develop
a super network? We call this super network as “unified
network”. It should have excellent forwarding compatibility,
which can replace IPv4 network completely at low cost. At
the same time, it should have extensive backward compatibil-
ity, which can easily access various new networks and truly
realize the integration of the Internet.

2) Research Issues: In response to the challenges, we
identify three research issues.

• Modularization of packet forwarding functions:
Functional modularity is not a new concept in pro-
grammable network. In network architecture ONOS,
various network functions exist in the form of APP,
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and the ONOS can arbitrarily take part of functions
to meet user needs. In essence, packet forwarding is a
network function, and its basic elements are the packet
storage and packet forwarding. Hence, it is possible
to represent it as separate modules with multiple API
interfaces and can be embedded in different network
architectures. Even if the network architecture changes,
packet forwarding can be deployed and updated.

• High-performance programmable forwarding: The
enhancement of high-performance programmable
forwarding can be carried out from two aspects:
general hardware chip and interface enrichment. The
high-performance programmable forwarding must be
deployed on specific network devices. For example,
DPDK is deployed on supported NICs and FPGA is
deployed on programmable network cards. All these
hardware requires unique interface and hardware of
forwarding devices. General hardware chips may be an
answer. The packet forwarding can be integrated into a
chip placed in the general network hardware. Devices
in various network architectures can install this network
hardware to implement the packet forwarding. Interface
enrichment addresses the integration of programmable
forwarding capabilities with high-performance hardware.
The richer the forwarding functions are, the more
interfaces the hardware needs to provide. How to design
high-performance programmable hardware supporting
multiple forwarding functions deserves further studying.

• Modularization of Internet architectures: The modular-
ization of Internet architectures is an important approach
towards the super network. Compared to the modu-
larization of forwarding functions, network architecture
modularization looks at the network from a higher per-
spective. The core of the super network can be similar
to that of an Android system. The system itself does not
realize any network functions, but establishes a frame-
work for the operation of all network functions and
coordinates mutual communications of various networks.
Such approach allows for freedom to design a unique
network architecture and install it in the system as an
APP. The network architecture can operate internally as
an independent entity while communicating with other
network architectures as a subnet.

B. AI-Driven Packet Forwarding for Enhanced
Network Security

We discuss network security alone because network security
is receiving more and more attentions in the global community.
With the rapid advances of information technology, the digi-
talization of information dominates the industry, and network
security has become one of the most important technical
issues.

1) Challenges: Network security defense and security
attack are an opposing and unified topic. For any security
attack, given a sufficient time, each security defense mech-
anism can be developed. In turn, each security defense mech-
anism faces vulnerabilities to new security attacks. Therefore,

security attack and security defense are two sides of the coin.
There is no security attack that cannot be solved and no
security defense that cannot be broken. How to continuously
enhance network security defense? This is a challenge to the
development of network security solutions. In addition, most
existing network security defense mechanisms defend against
a specific type of security attacks. However, paying too much
attention to each specific type of security attack defense leads
to lack of the coordination between security defense mech-
anisms and causes new vulnerabilities. How to defend more
types of security attacks? How to coordinate different secu-
rity defense mechanisms? These challenging question requires
more research efforts.

2) Research Issues: In view of the challenges, we focus
on typical network security defense mechanisms related to
packet forwarding technology and divide them into four cat-
egories: data security, transmission security, service security
and collaboration of security defense mechanism.

• Data securtiy: Data security includes data encryption
and data recovery. For data encryption, data sources or
switching devices encrypt important data before send-
ing or forwarding them into the network. In this way,
attackers cannot decrypt the packets to obtain the origi-
nal information. The AI applications can help the switch
select an appropriate encryption algorithm and generate
random encryption keys to further improve data secu-
rity. Block-chain establishes an information chain with
multiple nodes responsible for security. The information
in block-chain is difficult to be modified. Future research
may focus on the integration of block-chain and AI-
driven packet forwarding technology to realize decen-
tralized data communication and intelligent packet for-
warding [160]. In addition, block-graph brings more pos-
sibilities for block-chain [161]. Block-graph transforms
two-dimensional lines into three-dimensional graphs, fur-
ther expanding the secure responsibility of nodes and
enhancing mutual supervision between nodes.
In packet transmission, attackers can destroy a packet
to make data incomplete when reaching the destination.
Data recovery is necessary for that. Data recovery algo-
rithms can use network coding to increase redundancy
in a packet. When the packets arrive at the destination
terminal, the terminal only needs partial data to restore
the complete original information. The network coding
and AI-driven forwarding technology can be integrated.
A network coding algorithm should be flexibly selected
by intelligent forwarding technology, so as to ensure more
secure data.

• Transmission security: If we compare data security to
putting data into a safe, then transmission security is pro-
tecting the delivery of the safe. One popular approach in
transmission security is multi-path transmission technol-
ogy, which arranges data packets and sends them into
different paths to hide the transmission routes. When
an attacker intercepts packets on only one path, the
original data cannot be completely obtained. The AI
applications can help switches select more secure routes
to forward packets, further improving the transmission
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security. Another research hotspot is quantum commu-
nication, which uses quantum entanglement technology
to completely eliminate the possibility of path intercep-
tion. Although quantum communication remains a theory,
it may have a great potential to improve transmission
security.

• Service security: Service security does not protect packets
in the network, but protects critical network nodes such as
DNS servers or cloud servers. There are different servers
that need to be defended, but the attack types are similar,
including DDoS attacks and abnormal flow attacks. The
typical defense mechanism for service security attacks
is malicious packet detection and filtering, which is dis-
cussed in Section V. In fact, the interception and filtering
of malicious packets also block the forwarding of nor-
mal packets, affecting the quality of service. Therefore,
improving the accuracy of identification by the AI model
is an issue worth studying.

• Collaboration of Security mechanism: Collaborative
security is no longer a single security defense, but a secu-
rity defense for the entire network. Collaborative security
establishes a intelligent collaborative system, which can
flexibly schedule various security defense mechanisms
(e.g., firewall, intrusion detection system, security audit
system, and log analysis system) by the AI algorithm
to implement comprehensive network security defense.
However, with more types of security attacks and more
diversified security defense mechanisms, rapid scheduling
among these mechanisms becomes increasingly difficult.
Future security coordination systems with high efficiency
are worth studying.

C. AI-Driven Packet Forwarding for Customized
Network Scenarios

“Internet Plus” has become a new model for Internet devel-
opment. The formation of intelligent information platform
providing services for vertical industries is another trend of
Internet development. Vertical industries are diverse and have
different performance requirements for the Internet. According
to characteristics of the industries, the Internet should focus
on providing efficient performance in a certain aspect, such
as ultra-low delay for telemedicine, network collaboration for
industrial Internet, and network intelligence for smart home.
The Internet and various vertical industries have formed vari-
ous kinds of private networks, which plays an important role
in society.

1) Challenges: The traditional Internet has relatively sin-
gle functions and simple forwarding technology, which cannot
provide customized network requirements for various indus-
tries. How to meet the differentiated needs of each scenario?
This is a major challenge in the trend of network scenario
customization. It is an effective solution to select appropri-
ate Internet function modules according to the requirements
of each scenario, provide corresponding service performance,
and form demand-centered forwarding scheduling. In addi-
tion, it is difficult for private networks to communicate with
each other. Each network scenario uses independent network

protocols and packet forwarding technologies to achieve effi-
cient internal communication. However, if a device in one
scenario wants to access a device in another scenario, problems
may occur. The compatibility of network protocol recognition
and packet forwarding technology becomes the largest obsta-
cle. How to ensure information transfer across scenarios? This
poses technical challenges.

2) Research Issues: There are many kinds of network sce-
narios. We select some popular ones, discuss the AI-driven
packet forwarding in them, and point out their research issues.

• Telemedicine: Telemedicine is a popular network sce-
nario in recent years. With the COVID-19 outbreak,
the need for telemedicine has become more obvious.
Doctors can remotely control surgical equipment and
operate on patients through a dedicated network, forming
a new operation mode with no contact and zero infection.
Telemedicine has a high requirement for network delay,
and it is necessary to ensure that doctors at different phys-
ical locations carry out surgical operations synchronously.
AI-driven packet forwarding can meet these needs. On
one hand, the AI applications can select a dedicated
packet transmission path to ensure the stability of sur-
gical operations. On the other hand, the AI applications
can adjust the different network delay of doctors at dif-
ferent physical locations to ensure the synchronization
of operations. Therefore, how to further improve ultra-
low delay and keep the operation synchronized are the
research issues of telemedicine.

• Internet of vehicles and intelligent transportation:
Internet of vehicles is another scenario with high require-
ments on network delay, which is an important part
of intelligent transportation. Internet of vehicles ensures
instant information exchanges between vehicles, estab-
lishes effective vehicle prediction models, and prevents
traffic accidents through intelligent traffic control algo-
rithms. Internet of vehicles and intelligent transportation
also have high requirements on network computing and
network reliability [162]. Vehicle network information
changes frequently and rapidly. Timely information pro-
cessing and strategy generation are important prerequi-
sites to ensure intelligent transportation. The AI applica-
tions can adjust the load of data computing nodes in the
vehicle network to improve computing speed. AI-driven
packet forwarding can ensure high-speed and stable data
transmission. However, the deployment of AI in vehicles
puts high demands on the hardware, which slows down
the further vehicle network development. Therefore, opti-
mizing AI algorithms and proposing the deployment
strategies are the research issues for Internet of vehicles
and intelligent transportation.

• Industrial Internet: Industrial Internet is a platform for
the effective integration of communication technology
and industrial economy, which can promote the devel-
opment of industry digitization, networking and intelli-
gence. Industrial Internet focuses on network coordina-
tion ability. It connects the four systems of network, plat-
form, data and security to provide a perfect application
model for industrial production and services. Information
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collaboration and integration between systems is the
key to an industrial Internet. AI-driven packet forward-
ing technology can coordinate the work of the four
systems and improve the network collaboration capability
on the basis of ensuring the transmission performance.
Therefore, deploying AI-driven packet forwarding for
high network collaboration ability is the research issue
of industrial Internet.

• Cloud/fog computing networks: Cloud/fog computing
networks generally are an essential component of network
scenarios. A cloud/fog computing network has high
information computing and processing capacity, which
can provide efficient data processing for many network
scenarios. The deployment and allocation of resources
are important issues for the development of cloud/fog
computing. AI-driven packet forwarding can reduce the
data transmission delay between computing nodes, bal-
ance the computing load, and improve resource allo-
cation. Utilizing AI-driven packet forwarding for better
resource deployment while maintaining a high computing
performance is the research point of cloud/fog computing
in the future.

• Smart home: Smart home focuses on the ability to gen-
erate policies and respond to network service demands.
Smart home can obtain the needs of the user, generate
the control instructions and realize intelligent control of
the homely electrical devices. The response time of smart
home program is closely related to the user experiences.
The realization of fast and efficient control through AI-
driven packet forwarding is the research issue of smart
home.

In addition to the three research directions discussed in
this section, there are other development directions for AI-
driven packet forwarding, such as network resource allocation,
network devices management and network fault detection.
These directions are also worth studying.

VIII. CONCLUSION

This paper presents a survey on AI-driven packet forward-
ing with PDP. We first discuss the typical framework of
AI-driven packet forwarding and show the problems of this
framework. Then, we introduce the new framework of PDP-
assisted AI-driven packet forwarding to show that PDP can
improve AI-driven packet forwarding. After that, we discuss
the delay, throughput, security and reliability performance
improvement based on the evolution of packet forwarding:
packet forwarding, AI-driven packet forwarding, and AI-
driven packet forwarding with PDP, and discuss the studies
on them. Finally, we elaborate our own views on the AI-
driven packet forwarding evolution and propose three research
directions.

The AI with PDP can effectively improve the performance
of packet forwarding in many aspects, which play an impor-
tant role in the development of the Internet. However, there
are still many challenges in this field. This paper attempts to
study the current development of packet forwarding and dis-
cusses the future research direction. We hope that our research

and discussion can provide more information for other schol-
ars to study packet forwarding and make contributions to the
development of advanced networking technology.

APPENDIX

LIST OF ACRONYMS

AI Artificial Intelligence
ANN Artificial Neural Network
ANTD Abnormal Network Traffic Detection
AQM Active Queue Management
ARIMA Auto Regressive Integrated Moving Average
CNN Convolutional Neural Network
DDoS Distributed Denial of Service
DNS Domain Name System
FIFO First-in First-out
FPGA Field Programmable Gate Array
ICRP Individual Content Request Probability
IDS Intrusion Detection System
INT In-band Telemetry
IoT Internet of Things
IPS Intrusion Prevention System
KNN K-nearest Neighbors
LFA Link Flooding Attack
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multi-layer Perceptron
MPTCP Multi-path TCP
PDP Programmable Data Plane
PF Packet Forwarding
PIFO Push-in First-out
RF Random Forests
SDN Software Defined Network
SOM Self Organizing Map
SVM Support Vector Machine
TCA Transfer Component Analysis
TCAM Ternary Content Addressable Memory
URLLC Ultra-Reliable Low-Latency Communication
VoIP Voice over Internet Protocol
WCMP Weighted Cost Multi-path Algorithm
XGBoost Extreme Gradient Boosting Model
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