
Enabling Secure and Versatile Packet
Inspection With Probable Cause Privacy

for Outsourced Middlebox
Hao Ren , Student Member, IEEE, Hongwei Li , Senior Member, IEEE, Dongxiao Liu ,Member, IEEE,

Guowen Xu , Student Member, IEEE, and Xuemin (Sherman) Shen , Fellow, IEEE

Abstract—Middlebox is an intermediary network equipment which can be outsourced to remote cloud servers for low-cost and

customizable network services, such as load balancer and intrusion detection. A fundamental function of the middlebox is packet

inspection, where both the packet header and payload are extracted and analyzed based on inspection rules. However, as the packet

may contain sensitive individual or organizational information, it may raise severe privacy concerns without proper countermeasures. In

this article, we propose a secure and versatile packet inspection scheme for outsourced middlebox. The proposed scheme builds upon

two non-collusion cloud servers, where the first server conducts the inspection task over the ciphertext domain and the second reveal

the inspection results. By doing so, the proposed scheme achieves versatile inspection functionalities: range-query-based header

inspection and token-based payload inspection, while preserving the privacy of packet header, payload, and inspection rules. Moreover,

we identify and address two challenging issues in the state-of-the-art literatures. First, we tailor the design of mis-operation resistant

searchable homomorphic encryption (MR-SHE) and somewhat homomorphic encryption in the two-server model, to resist offline

dictionary attack on payload headers. Second, we propose a key management mechanism with compelled access for the middlebox, to

achieve fine-grained probable cause privacy. We also conduct extensive experiments and compare the results with existing schemes to

demonstrate the feasibility of the proposed scheme.

Index Terms—Cloud computing, middlebox, privacy-preserving, homomorphic encryption

Ç

1 INTRODUCTION

MIDDLEBOX [2] is an intermediary network equipment.
It is widely deployed in modern computer net-

works to provide a wide range of network services, such
as firewalls and intrusion detections. As the network
traffic is segmented into packets and sent from a source
to a destination, packet inspection, that pries into both
packet headers and payloads, serves as a fundamental
function of the middlebox. First, the header inspection
[3], [4], [5] aims to determine the legitimacy of the
packet source and destination. For example, a firewall
may ban IP addresses ranging from 192.168.1.1 to
192.168.1.100. Second, the payload inspection filters out
malicious packets, e.g., a terrorist speech and Denial of

Service (DoS) attacks [6], [7], [8], and intercepts sensitive
information at the gateways of private networks.

With the ever-increasing of network traffic, the deploy-
ment andmaintenance costs of themiddlebox increase signifi-
cantly for enterprise-level network managements. As a result,
outsourcing the network middlebox to public cloud servers
[2], [9] becomes a prevalent choice among enterprises, to enjoy
low-cost, easy-to-implement and customized network serv-
ices. However, the cloud-based service paradigm may raise
severe privacy concerns on the packet inspection function,
since a large amount of packets containing personal or com-
mercial data are directed to the cloud servers [2], [10]. First, a
packet header may reveal the location or affiliation of the
sender [11] (e.g., a staff in an enterprise who sends packets to
the external web sites). The whole enterprise network topol-
ogy can even be recovered by analyzing large-scale IP
addresses of the passing packets [4]. Second, the packet pay-
load could contain sensitive personal or commercial informa-
tion, such as photos and business contracts. As a result, it
becomes an urgent requirement of the packet sender to pre-
serve privacy of both the packet header and payload in the
outsourced middlebox [10]. Third, the packet inspection rules
should also be concealed since the customized inspection con-
figurations directly indicate security policies of the enterprise
networks. Once the inspection rules are grabbed by attackers,
it will be much easier to evade the security functions of the
outsourcedmiddlebox.

A straightforward method to protect the packet privacy
(header and payload) and inspection rule is to encrypt them

� Hao Ren and Hongwei Li are with the School of Computer Science and
Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China, and also with the Cyberspace Security Research
Center, Peng Cheng Laboratory, Shenzhen 518000, China. E-mail: renhao.
uestc@gmail.com, hongweili@uestc.edu.cn.

� Dongxiao Liu and Xuemin (Sherman) Shen are with the Department of
Electrical and Computer Engineering, University of Waterloo, Ontario
N2L 3G1, Canada. E-mail: {dongxiao.liu, sshen}@uwaterloo.ca.

� Guowen Xu is with the School of Computer Science and Engineering, Uni-
versity of Electronic Science and Technology of China, Chengdu 611731,
China. E-mail: guowen.xu@foxmail.com.

Manuscript received 11 Mar. 2020; revised 26 Oct. 2020; accepted 8 Feb. 2021.
Date of publication 12 Feb. 2021; date of current version 6 Dec. 2022.
(Corresponding author: Dongxiao Liu.)
Recommended for acceptance by Y. Yang.
Digital Object Identifier no. 10.1109/TCC.2021.3059026

2580 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

2168-7161 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7909-3753
https://orcid.org/0000-0001-7909-3753
https://orcid.org/0000-0001-7909-3753
https://orcid.org/0000-0001-7909-3753
https://orcid.org/0000-0001-7909-3753
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
mailto:renhao.uestc@gmail.com
mailto:renhao.uestc@gmail.com
mailto:hongweili@uestc.edu.cn
mailto:dongxiao.liu@uwaterloo.ca
mailto:sshen@uwaterloo.ca
mailto:guowen.xu@foxmail.com

using conventional crypto systems (e.g., AES, RSA, etc.).
Unfortunately, significant technical challenges are intro-
duced to support the same packet inspection functions over
the encrypted packet contents. First, it becomes challenging
for the outsourced middlebox to check the range of IP
addresses in the ciphertext domain. Second, it is also a non-
trivial task to support the richness of expressive inspection
rules over the ciphertext, such as payload keyword filtering.
In response to the challenges, several approaches are pro-
posed recently. The first secure packet inspection scheme
named as BlindBox [6] is proposed by Sherry et al. In Blind-
Box, two connections are built between the packet sender
and packet receiver. One is used for secure inspection over
the encrypted payload and the other is the traditional TLS/
SSL connection. Meanwhile, the inspection rules are also
obfuscated before being deployed on the middlebox.
Shortly afterward, Yuan et al. [7] propose a secure and effi-
cient packet inspection scheme for cloud-assisted middle-
box. Only fast symmetric encryption and Cuckoo hashing
[12] are used to encrypt the packet payload and the inspec-
tion rules. Canard et al. [13] and Fan et al. [14] explore public
key based approaches for advanced functionalities includ-
ing inspection result verification and malware detection. In
Embark [3], the first secure header inspection scheme is pro-
posed. A new symmetric key encryption scheme Prefix-
Match is presented for secure and fast header inspection. In
[4], [5], Guo et al. point out that PrefixMatch needs to use pre-
fixes to represent the numerical ranges, which increases the
number of rules. Thus, they utilize order-revealing encryp-
tion [15] (ORE) to support encrypted range detection [16].

While existing works achieve rich functionalities and
performance gains for the secure packet inspection, some
important and challenging issues still receive insufficient
attention. 1) Dictionary attack on the packet header. The
message space of header domains is usually small. For
example, the range of TCP port number is ½0; 65535�. As a
result, it is easy for an attacker to conduct dictionary attack
to the encrypted port number. Moreover, with some back-
ground information such as the usage frequency of each
port, the attacker can easily infer the real port number from
the encrypted network traffic. 2) Fine-grained probable
cause privacy. It is time-consuming to conduct advanced
payload inspection such as machine learning based mal-
ware detection over ciphertext domain [14], [17]. A new par-
adigm named as probable cause privacy [6] can mitigate
such issue. Specifically, once strong evidences of malicious
contents in the payload inspection over the encrypted net-
work traffic are captured, the middlebox should be autho-
rized to inspect the payload over plaintext domain.
However, the contents of the regular packets should not be
exposed to the middlebox [6]. Meanwhile, it is also risky to
use the same secret key [6] for all packets. As a result, how
to preserve the privacy of the regular packets for probable
cause privacy remains a challenging problem.

In this paper, we propose a Secure and Versatile Packet
Inspection (SVPI) scheme with probable cause privacy for
outsourced middlebox. The middlebox is deployed over
two non-collusion cloud servers [4], [18], where one server
carries the most computational inspection task and the other
reveals the final inspection results. SVPI supports versatile
inspection functionalities: the range-query based header

inspection and token-based payload inspection. Specifically,
the contributions of this paper are as follows:

� We tailor the designs of mis-operation resistant
searchable homomorphic encryption (MR-SHE)
scheme [19] and somewhat homomorphic encryp-
tion [20] in the two-server model to resist offline dic-
tionary attack on the packet header.

� The privacy of inspection rules, packet header and
the packet payload are all well preserved without
sacrificing inspection functionalities. Moreover, a
new key management method is designed to support
fine-grained probable cause privacy without breach-
ing the confidentiality of regular packets.

� Extensive experiments are conducted with a real-
world intrusion detection rule set. We compare the
experimental results of SVPI with the existing
schemes [4], [13] to demonstrate the efficiency of
SVPI in terms of computation and communication
overheads.

The remainder of this paper is organized as follows. In
Section 2, the system, threat models and privacy requirements
are described. In Section 3, we review some building blocks
used in this paper. In Section 4, we show the details of SVPI.
The security analysis and the performance evaluation are pro-
vided in Sections 5 and 6, respectively. Related works are
reviewed in Section 7. Section 8 concludes the paper.

2 MODELS AND PRIVACY REQUIREMENTS

In this section, we first present the systemmodel to show the
role of each entity, which captures the most typical out-
sourced middlebox scenarios [4], [6]. We then give an exam-
ple of the usage scenario and describe the work flow to show
how a packet is sent from the sender to the receiver. Under
such a systemmodel, the threat model is defined and the pri-
vacy requirements of sensitive contents are given.

2.1 System Model

As shown in Fig. 1, the system model consists of four enti-
ties: Sender (S), Gateway (GW), Middlebox (MB) and
Receiver (R).

� S: In an enterprise network, any authorized end
user could be a packet sender (S). For instance, S
could be a staff in a company who wants to send a
commercial contract to the customer (i.e., packet
receiver).

Fig. 1. System model of outsourced middlebox.

REN ETAL.: ENABLING SECURE AND VERSATILE PACKET INSPECTIONWITH PROBABLE CAUSE PRIVACY FOR OUTSOURCED... 2581

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

� GW: GW is the administrator of the enterprise net-
work that offers system initialization and key man-
agement services. GW first prepares the encrypted
rules for header and payload inspection and then
outsources them to the cloud (i.e., MB). Then, it gen-
erates private and public keys and distributes them
to S and MB. GW should be the only outlet of the
entire enterprise network.

� MB:MB is deployed on two cloud servers denoted as
A and B. A stores the encrypted rules of header and
payload inspection, and carries the most computa-
tion tasks. B reveals the final detection result of each
rule. If any rule is asserted to be matched,MB should
trigger the pre-defined actions, such as sending an
alert toGW or even cutting off the connection. Other-
wise,MBwill let the GW send the packet to R.

� R: Upon receiving the encrypted packets, it first
decrypts them to obtain the packet contents. Then, R
generates the verification objects and sends them to
MB to verify whether S encrypts the packet payload
correctly.

Discussion. In this paper, we use the classical two-server
model [5] to instantiateMBwith the following benefits:

� The first benefit is reducing the communication
round between the cloud server and the packet
sender. Since homomorphic encryption [19], [20] can-
not directly support comparison over ciphertext, the
cloud server must interact with the packet sender
to reveal (decrypt) the final inspection result. When
the number of senders reaches a certain threshold,
the communication costs can be expensive. In a two-
server setting, we can eliminate the communication
between senders and the server by directly revealing
inspection result at the server side.

� Since the decryption of the final inspection result is
carried by the cloud serverB, the computational over-
head for the packet sender is significantly reduced,
especially for the resource-limitedmobile users.

2.2 Usage Scenario

Suppose Alice is an employee in a company. Alice can use
the company network to send personal messages, such as
social media messages. In this case, the company would like
to ensure that no sensitive information is sent out while
Alice uses the company network. Alice can also sometimes
try to deliberately send sensitive information from internal
networks to an external entity Bob in a more convert way.
To resist such risks, all the packets sent from the internal com-
pany network should be inspected by the middlebox. As the
middlebox is implemented on the public cloud servers,
Alice may feel uncomfortable for privacy concerns since her
personal information is also inspected. For the first case,
Alice can apply the traditional end-to-end encryption proto-
col (e.g., SSL/TLS) to hide the personal information. Mean-
while, the packet header and payload are also encrypted
using homomorphic encryption to support header and pay-
load inspection without disclosing the original contents of
the packets. Thus, Alice has enjoyed the security function
offered by the outsourced middlebox without compromis-
ing her privacy. For the second case, the company can

install encryption modules on company devices to correctly
encrypt packet header and payload for remote inspections.
Similarly, Alice could also be a student in a university or a
staff in the security agencies of government. In practice,
Alice may attempt to send malware or fraud information to
Bob [14]. Bob can verify the encrypted tokens sent from
Alice for security concern [7].

2.3 Work Flow

As shown in Fig. 2, if Alice (S) wants to send a packet to Bob
(R). She first builds a TLS/SSL connection with Bob and
uses the conventional end-to-end encryption method to con-
ceal the packet payload. To support header and payload
inspection, each packet should be processed through the fol-
lowing three steps. In the first step, the packet header and
payload are encrypted separately using homomorphic
encryption. The payload should be segmented (tokenized)
into tokens before encryption. In the second step, the
encrypted header and tokens (used for inspection) along
with the end-to-end encrypted payload (TLS/SSL connec-
tion) are all sent to the gateway (GW). GW holds the traffic,
and all these encrypted contents are forwarded to the mid-
dlebox (MB) for inspection. After inspection, MB returns the
result to GW. In the third step, if no rule is matched, GW
should transfer the end-to-end encrypted payload along
with the encrypted tokens to Bob. Otherwise, alerts will be
triggered and sent to GW. Note that, since probable cause pri-
vacy is supported, some advanced inspections such as
machine learning based malware detection [14] can be con-
ducted by the outsourced middlebox. Thus, the advantages
of cloud computing including large storage and high perfor-
mance are fully explored.

2.4 Threat Model

Following the widely applied threat model of cloud server
in [7], [21], we consider the cloud server A and B to be
semi-honest (i.e., honest-but-curious) [22]. Concretely, the
cloud servers will strictly execute the pre-defined protocols
but may be interested in the content of the passing
encrypted traffic for commercial or personal benefits. A
and B do not collude with each other or exchange any
information that is not permitted by the protocol. In prac-
tice, the two servers can be different cloud service pro-
viders with a middlebox service agreement, which legally
regulates service providers’s behavior. Moreover, due to
the competitive relationship between service providers, it
is of high risk for them to collude and break the agreement.
Only A can get access to the encrypted packet header and

Fig. 2. Work flow of middlebox services.

2582 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

payload uploaded by S and B is allowed to possess the
private keys. The security properties achieved by doing so
will be discussed in Section 5. GW is the owner of
encrypted rules and is fully trusted in the whole system. In
the reality, S is possible to be malicious and try to evade
the detection system. Thus, R should verify the correctness
of received encrypted tokens.

Remark. We acknowledge that the two non-collusion
model needs a more careful instantiation. In the reality, the
cloud server is possible to be malicious and try to collude
with the other server. Then, the threat model is changed
from semi-honest to malicious. To resist malicious cloud
server, GW has to verify the correctness and integrity of the
returned result. Then, the cloud servers and GW have to
bear additional computational overheads. In this paper, we
adopt non-collusion (semi-honest) model to reap better per-
formance. For real-world deployments of this model, users
can choose a CSP with recognized reputation; especially the
big ones, such as Amazon, Microsoft, Google, etc. Users can
also deploy their middleboxes over two different CSP.
Then, the risk of collusion will be significantly decreased.
By doing so, the only extra cost is the increased communica-
tion delay between two cloud servers, which can be simply
addressed by increasing the budget for network bandwidth.

2.5 Privacy Requirements

In this part, we describe the privacy requirements of the
sensitive contents.

� Header privacy: Since the packet header may reveal
sensitive information, the uploaded encrypted
header should not disclose the original contents of
the header.

� Payload privacy: The payload may contain personal
data that should be concealed from MB. The end-to-
end encrypted payload (TLS/SSL connection) as
well as the encrypted tokens should not reveal the
original contents of packet payload. Especially, the
encrypted tokens are another ciphertext version of
the packet payload. As a result, the information leak-
age introduced by these encrypted tokens may also
breach the payload privacy. Therefore, both two
parts should be carefully designed to preserve the
privacy of payload.

� Rule set privacy: Rule set directly reflects all the secu-
rity and privacy policies of the whole system. It will
suffer from intensive internal and external attacks.
Consequently, the rule set privacy should be well
preserved.

3 BUILDING BLOCKS

3.1 Basic Cryptographic Primitives

1). A function F : X �K ! Y is a secure pseudo-random
function (PRF) if for all randomly chosen keys k 2 K (key
space), all probabilistic polynomial-time (PPT) adversaries
A and a real random function fðk; �Þ from X (message space)
to Y (output space), jPr½Afðk;�Þ ¼ 1jf : X ! Y� � Pr½AF ðk;�Þ ¼
1jk K�j � neglðkÞ, where neglð�Þ is a negligible function.

2). A symmetric crypto-system consists of three polyno-
mial time algorithms P ¼ ðKeyGen;Enc;DecÞ. KeyGenð�Þ is

the key generation algorithm that takes the security parame-
ter � as the input and produces a secret keyK. Given a mes-
sage m, it is encrypted as c ¼ EncðK;mÞ. To decrypt the
ciphertext c, we can computem ¼ DecðK; cÞ.

3.2 Boneh-Goh-Nissim Crypto-System

Boneh-Goh-Nissim crypto-system (BGN) [20] is a somewhat
homomorphic encryption consisted of three algorithms.

� BGN:KeyGenð�Þ: � 2 Zþ is the security parameter.
The tuple ðp; q;G;G1; eÞ is generated and n ¼ pq is the
order of cyclic groups G;G1, where p; q are two large
primes. Let g; u 2 G and h ¼ uq. It outputs public key
PK ¼ ðn;G;G1; e; g; hÞ and private keySK ¼ p.

� BGN:EncðPK;mÞ: Given message m 2 f0;ZTg; T �
q, it computes C ¼ gmhr 2 G and outputs ciphertext
C, where r 2 Zn is a random number.

� BGN:DecðSK;CÞ: To decrypt C, it calculates Cp ¼
ðgmhrÞp ¼ ðgpÞm using private key p. Then, the mes-
sage can be recovered by computing the discrete log-
arithm of Cp base gp.

Let fCm1
; Cm2

; Cm1þm2
; Cm1�m2

g be the ciphertexts of mes-
sages fm1;m2;m1 þm2;m1 �m2g respectively. And e is the
bilinear paring: G� G! G1. Given g1 ¼ eðg; gÞ, h1 ¼ eðg; hÞ
where h ¼ gaq;a 2 Z. Then, BGN supports following homo-
morphic properties. 1). Cm1

� Cm2
¼ Cm1þm2

2 G. 2).
eðCm1

; Cm2
Þ ¼ Cm1�m2

2 G1. Note that, in group G1, the first
property is still supported.

3.3 MR-SHE

MR-SHE is short for Mis-operation Resistant Searchable Homo-
morphic Encryption, which is proposed by Emura et al. [19]. To
resist the mis-operations (homomorphic operation between
two different data domains) launched by cloud servers, MR-
SHE requires one-time keyword matching before conducting
homomorphic operations. Thus, from the aspect of functional-
ity, MR-SHE can support keyword search and homomorphic
operation over ciphertext domain simultaneously. The defini-
tion ofMR-SHE is shown as follows:

� MR-SHE:KeyGenð�Þ: A key generation algorithm
that takes the security parameter � as the input and
produces the encryption public key PK along with a
decryption secret key SK.

� MR-SHE:HKeyGenðPK; SK;wÞ: Given a keyword
w 2 W and the key pair ðPK; SKÞ, it generates a
homomorphic operation key HKw for the keyword
w, whereW is the keyword space.

� MR-SHE:TrapðPK; SK;wÞ: Given a keyword w 2 W
and the key pair ðPK;SKÞ, it generates a trapdoor
Tw for the corresponding keyword w. Trapdoors
refer to encrypted keyword for searching or match-
ing over the encrypted data.

� MR-SHE:EncðPK;w;mÞ: Given a keyword w 2 W, a
message m 2 M and the public key PK, it encrypts
m and returns the ciphertext C. M is the plaintext
space.

� MR-SHE:TestðPK; Tw; CÞ: To detect whether a
ciphertext C matches a keyword w, the public key
PK, trapdoor Tw of w and C are taken as the input,
and it outputs the matching result: 1 (matched) or 0
(not matched).

REN ETAL.: ENABLING SECURE AND VERSATILE PACKET INSPECTIONWITH PROBABLE CAUSE PRIVACY FOR OUTSOURCED... 2583

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

� MR-SHE:DecðPK; SK;w;CÞ: Given key pair
ðPK;SKÞ, a keyword w and a ciphertext C, it
decrypts C and returns the plaintext m if the key-
word w is matched. Otherwise, it returns ?.

� MR-SHE:EvalðPK;HKw;C1; C2Þ: To perform homo-
morphic operation over two ciphertexts C1; C2, it
first checks the integrity of C1; C2 using PK and
HKw. If the integrity is not breached, a ciphertext C
(multiplicative homomorphic operation result of
C1; C2) is returned. Otherwise, it returns ?.

3.4 Self-Revocable Encryption

Self-revocable encryption [23] (SRE) is a cryptographic tech-
nique that aims to address the problem of compelled access
for the cloud storage system. In the reality, the authority
may force an individual to surrender the access credentials
(e.g., secret key, password, PIN, etc.) of sensitive data stored
on cloud servers or even the personal mobile devices. When
encountered with this compelled access, the authority will
get full access of one’s private data. To solve this privacy
concern, SRE allows user to revoke an encrypted file and
this operation is indistinguishable from deleting a file.
Afterwards, if necessary, user can recover the revoked file
using the private restoration token, which is securely stored
on a private device. The authors propose a secure erasable
index to achieve SRE, which is a tree with encrypted key on
each node. The erasable index is adopted in this paper to
support probable cause privacy.

4 PROPOSED SCHEME

In this section, we present SVPI in detail. The proposed
packet inspection scheme can support secure header and
payload inspection simultaneously. In specific, the secure
header inspection mainly focus on detecting the header
information of each packet and payload inspection can filter
out the illegitimate contents of the payload. To promote the
practicality, a new mechanism is designed to support proba-
ble cause privacy, which allows the cloud server to decrypt
the packet payload if some rules are matched or suspected
contents are detected. Note that, header inspection should
be executed before payload inspection, which is a standard
practice [8].

4.1 Secure Header Inspection

Before we dive into the details, we show that as the typical
use case of packet header inspection, firewall rules can be
well-supported by using numerical range query [4], [5],
[16]. As shown in Table 1, the first rule permits all the pack-
ets with source IP address 192.168.1.* and destination IP
address 172.16.1.*. Here, “*” is the wildcard character. Thus,

192.168.1.* represents the IP range 192.168.1.1 	
192.168.1.254 and 172.16.1.* represents the IP range
172.16.1.1 	 172.16.1.254. The prefix matching is then con-
verted to a range query. In the reality, most applications
only open part of the TCP/UDP ports. Some of the rules
only open specific source or destination ports, such as the
third rule shown in Table 1. The other rules may open a
range of ports or block dangerous ports which are shown in
the second and forth rules. All these special cases can be
resolved by conducting range query. Consequently, range
query is frequently used, and header inspection is the foun-
dation function of a firewall system.

Next, we illustrate the protocols of range query based
secure header inspection on cloud server A and B over
ciphertext domain. First, we define some symbols. Let Ga

and Gb be groups with prime order q and e : Ga � Ga ! Gb

be a symmetric bilinear pairing [24]. W
 Zq denotes the
keyword space andM
 Gb represents the message space.
Let {H ¼ HHK : G4 ! f0; 1; . . . ; q � 1gjHK 2 HK} be a TCR
hash family [25], where HK is the homomorphic operation
key space. f : Gb ! Y is a smooth function. We use x X
to denote an element x randomly chosen from set X .
� Overview
It is difficult to directly conduct range query over the

encrypted data. Thus, we propose a strategy to convert the
problem of range query into the computation of vector inner
product. This method can be well supported on two-server
model. No additional communication round is required.
Specifically, Cloud server A can compute the inner product
and let server B reveal the result. We give a brief overview
of the scheme as follows:

� Initialization phase: In this phase, GW generates the
public, secret and homomorphic operation keys. GW
also generates a trapdoor for each keyword. Here the
keyword means the types of packet header domains such as
IP, TCP, UDP and so on. The keys and trapdoors are
then distributed to MB and S. Given the ranges of
header information (defined in the rules), such as the
permitted TCP ports, GW encrypts them and shares
them with the outsourcedMB.

� Header encryption phase: In this phase, S encrypts the
keywords and corresponding header domains (e.g, IP
address, TCP/UDP ports, etc.) using the samemethod
as the encryption of the ranges of header information.

� Header range detection phase: In this phase, MB first
checks whether the keyword is matched or not.
Then, the header inspection is converted to range
query over ciphertext domain. In specific, cloud
server A computes the encrypted inner product of
two encrypted vectors and sends the result to server

TABLE 1
An Example of Firewall Rule Table

Rule number Source IP Destination IP Source Port Destination Port Protocol Action

1 192.168.1.* 172.16.1.* * * TCP Permit
2 172.16.3.* 192.168.1.10 	 192.168.1.116 * [1230,5150] TCP Permit
3 192.168.4.* 172.16.*.* 8090 * TCP Permit
4 192.168.3.* 192.168.*.* * [130,150] UDP Deny
...

2584 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

B. Then, B reveals the result and check that if the
value of header information is located within the
range using secret key.

� Initialization
� Key generation: Given the security parameter, GW

invokes MR-SHE:KeyGenð�Þ to obtain the public
and secret keys ðPK; SKÞ as:

HK HK; fg; h1; h2; h3; h4g Ga;
a Zq; g1 ¼ ga;
PK ¼ fg; g1; h1; h2; h3; h4; f;HKg;
SK ¼ a:

8
>><
>>:

The homomorphic operation key HKw and the trap-
door Tw of the keyword w are exactly the same. GW
runs MR-SHE:TrapðPK; SK;w�Þ to obtain HKw and
Tw as

w� ¼ F ðKF ;wÞ mod q;

rw;i Zq; hw;i ¼ ðhig
�rw;iÞ1=ða�w�Þ; i ¼ f3; 4g;

HKw ¼ Tw ¼ fgw� ; rw;3; rw;4; hw;3; hw;4g:

8
<
:

where F is an instance of PRF and KF is the secret
key of F .

� Key distribution: PK is shared to all the other entities
in the system including S, R and MB. KF should be
delivered to S. SK is sent to cloud server B.
fTw;HKwg along with the encoded keywords w� are
sent to cloud server A.

� Review of MR-SHE:Enc: Given the encoded keyword
w� and the message m, randomly choose a number
r Zq,MR-SHE:EncðPK;w�;mÞ computes as

cm;1 ¼ gr1g
�rw� ; cm;2 ¼ eðg; gÞr;

cm;3 ¼ m � eðg; h1Þ�r; cm;4 ¼ eðg; h2Þr;
um ¼ HHKðcm;1; cm;2; cm;3; cm;4Þ;
hm ¼ fðeðg; h3Þreðg; h4ÞrumÞ;
Cm ¼ ðcm;1; cm;2; cm;3; cm;4; hmÞ:

8
>>>><
>>>>:

Let Cm be the ciphertext of messagem.
� Encrypt ranges of header: Given a range of packet

header (e.g, permitted TCP ports) ½u; v�, let �u and
�v be the inverse of u and v in group Gb. GW uses
Catalano-Fiore transformation [26] to encrypt u as

m1 ¼ ð�uÞ � n1 mod T; n1 ZT ;
G ¼ eðg; gÞ; Cn1 ¼ MR-SHE:EncðPK;w�; Gn1Þ:

�

Then, the ciphertext of u is ðm1; Cn1Þ. The encryption
of v is exactly the same as u and we use ðm2; Cn2Þ to
denote the ciphertext of v.

� Distribution of encrypted ranges of header: All the
encrypted range boundaries such as ðm1; Cn1Þ and
ðm2; Cn2Þ are forwarded to the server A.

Note that, the original MR-SHE scheme [19] disclosed gw

to the cloud server as part of the trapdoor. According to
the discrete logarithm problem [27], adversary cannot
deduce w with g; gw. However, the background knowledge
is easy to be accessed by the cloud server and the keyword
space {TCP,UDP,IP, . . .} is small, the adversary can raise
dictionary attack to reveal w. Thus, we further encode w

using PRF F with secret key KF , adversary cannot infer w
without KF .
� Header Encryption

� An example of header encryption: Given the source TCP
port number port num as an example, S encrypts it
as follows:

m ¼ port num� n mod T; n ZT ;
Cn ¼ MR-SHE:EncðPK;w�; GnÞ:

�

Thus, the ciphertext of port num is ðm; CnÞ.
� Packet uploading: S sends the encrypted headers to

GW. Afterwards, for header inspection, the
encrypted headers are uploaded to MB. Note that,
the encrypted payload for payload inspection pro-
cess should also be sent toMB.

� Header Range Detection
MB detects the packet header by conducting keyword

matching and range query over encrypted rules. To
resist the unexpected homomorphic operations cross dif-
ferent header domains, MB should first test whether the
keyword of the packet domain matches the trapdoor. If
so, MB performs range query. If the encrypted header
domain falls into the pre-defined range, MB will return
the result to GW and the pre-defined actions should be
taken. If the keyword is not matched, MB continues to
check the next rule. If none of the rule is matched, MB
informs GW of the result and the packet should be sent
to R by GW.

� Convert range query: We give an example to show
how to convert the range query into one-time vec-
tor inner product and one time positive/negative
test. Given the source port number x ¼ port num
and the permitted domain range ½u; v�; u < v,
the following inequations are equivalent to each
other.

u � x � v, ðx� uÞ � ðx� vÞ � 0

, x2 þ ð�uÞxþ ð�vÞxþ ð�uÞð�vÞ � 0;

, ðx; x; x;�uÞ � ðx;�u;�v;�vÞ � 0:

Thus, the problem of range query is converted into
checking an inequation V1 � V2 � 0, where V1 ¼
ðx; x; x;�uÞ; V2 ¼ ðx;�u;�v;�vÞ. Note that, there are
more than one instances of V1 and V2. For example,
the third inequation still holds if V1 ¼
ðx;�x;�x; uÞ; V2 ¼ ðx; u; v; vÞ. Furthermore, all the
inequations are still equivalent to each other if dif-
feren instances of V1 and V2 are used. As mentioned
above, x is encrypted by S and u; v should be
encrypted by GW. Thus, if V1 ¼ ðx; x; x;�uÞ; V2 ¼
ðx;�u;�v;�vÞ, S will not need to compute the
inverse of x. By doing so, the computational burden
of S is further reduced.

� Keyword matching: Let the ciphertext of port num be
ðm; CnÞ, Tw be the trapdoor of keyword w. Cloud
server A invokes MR-SHE:TestðPK;Tw; CnÞ to con-
duct keyword matching as follows:

REN ETAL.: ENABLING SECURE AND VERSATILE PACKET INSPECTIONWITH PROBABLE CAUSE PRIVACY FOR OUTSOURCED... 2585

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

1). A parses the trapdoor Tw and Cn as

Tw ¼ ðgw� ; rw;3; rw;4; hw;3; hw;4Þ;
Cn ¼ ðcn;1; cn;2; cn;3; cn;4; hnÞ:

�

2). A calculates un ¼ HHKðcn;1; cn;2; cn;3; cn;4Þ.
3). A checks if hn ¼ fðeðcn;1; hw;3h

un
w;4Þc

rw;3þunrw;4
n;2 Þ

holds. If so, w is matched. Otherwise, A contin-
ues to check the next rule.

� Review ofMR-SHE:Eval : Let the ciphertext of u and v
be ðm1; Cn1Þ and ðm2; Cn2Þ. As an example,
PK;HKw;Cn1 ; Cn2 are taken as the inputs.

1). A parses Cn1 and Cn2 as

Cn1 ¼ ðcn1;1; cn1;2; cn1;3; cn1;4; hn1Þ;
Cn2 ¼ ðcn2;1; cn2;2; cn2;3; cn2;4; hn2Þ:

�

2). To verify the integrity of Cn1 , Cn2 , A computes

un1 ¼ HHKðcn1;1; cn1;2; cn1;3; cn1;4Þ;
un2 ¼ HHKðcn2;1; cn2;2; cn2;3; cn2;4Þ;

tn1 ¼ fðeðcn1;1; hw;3h
un1
w;4Þc

rw;3þun1 rw;4
n1;2

Þ;
tn2 ¼ fðeðcn2;1; hw;3h

un2
w;4Þc

rw;3þun2 rw;4
n2;2

Þ:

8
>>><
>>>:

If hn1 ¼ tn1 and hn2 ¼ tn2 , the ciphertext is inte-
grated and A returns 1. Otherwise, it returns ?.

3). If A returns 1, A chooses a random number r
Zq and computes

c1 ¼ cn1;1cn2;1 � gr1g�rw;
c2 ¼ cn1;2cn2;2 � eðg; gÞr;
c3 ¼ cn1;3cn2;3 � eðg; h1Þ�r;
c4 ¼ cn1;4cn2;4 � eðg; h2Þr;
u ¼ HHKðc1; c2; c3; c4Þ;
h ¼ fðeðc1; hw;3h

u
w;4Þc

rw;3þurw;4
2 Þ;

C ¼ ðc1; c2; c3; c4; hÞ:

8
>>>>>>>><
>>>>>>>>:

Finally, A returns C as the homomorphic opera-
tion result of Cn1 , Cn2 .

� Encryption of V1 � V2 : Let ðm1; Cn1Þ and ðm2; Cn2Þ be the
ciphretext of u and v. Let “þ” be one time execution
of MR-SHE:Evalð�Þ and m1Cn2 be m1 times execution
ofMR-SHE:Evalð�Þ. A encrypts V1 � V2 as:

1). A computes

Cuv ¼ MR-SHE:EncðPK;w�;m1m2Þ þ m1Cn2 þ m2Cn1 :

2). Let ðCuv; Cn1 ; Cn2Þ, ðCxx; Cn; CnÞ, ðCxu; Cn; Cn1Þ and
ðCxv; Cn; Cn2Þ be the ciphertexts of u � v; x �
x; xð�uÞ and xð�vÞ, respectively.

3). A computes S ¼ Cxx þ Cxu þ Cxv þ Cuv.
4). A returns CV1�V2 that equals to

ðS; ðCn; CnÞ; ðCn; Cn1Þ; ðCn; Cn2Þ; ðCn1 ; Cn2ÞÞ;
along with the encoded keyword w� to the cloud
server B.

� Result revealing:
1). B decrypts each component of CV1�V2 using SK ¼

a with encoded keyword w�. By invoking the
algorithm MR-SHE:Decð�Þ and computing these
discrete logarithms, the plaintext of V1 � V2 will
be revealed.

2). If V1 � V2 � 0, the rule can be asserted to be
matched. Then, MB triggers the pre-defined
action. Otherwise, B continues to process the
next rule. Note that, the action could be allowing
the packet passing or any other actions.

4.2 Secure Payload Inspection

MB aims to filter out the keywords in the passing packet pay-
loads that are considered as malicious contents defined in
the rules. S should first pre-process (tokenization) the
packet payload and encrypt the tokens. The encrypted
tokens are then uploaded to MB by GW. Note that, the
repeated symbols in this part are irrelevant to the header
inspection scheme.

4.2.1 Traffic Pre-Processing

Example of Payload Inspection Rule. We first give an example
of a real payload inspection rule. As shown in Fig. 3, the
No. 494 rule has two keywords, that are “Command” and
“completed” (the words after “content:”). If a passing
packet contains both keywords (i.e., the pattern “Command
completed”), this rule is matched. The actions could be
sending an alert to R or cut off the connection, which are
pre-defined by GW.

Then, we give a brief introduction on the tokenization
method. As we know, there are two methods to tokenize
the packet payload. That are delimiter and window based
schemes [6], [14]. Window based scheme segments the
string into tokens with same length. Delimiter based
method segments the string according to the position of the
delimiters. Thus, the lengths of the tokens are different. In
this paper, we choose delimiter-based method, because the
size expansion of the traffic is smaller than window based
scheme. Both the traffic and rule keywords are tokenized
before being sent to MB. For an example, given a string
“login.php?user=David”, it can be tokenized as “login.”,
“login.php”; . . . ; etc.

4.2.2 Keyword Matching

� Initialization
GW first invokes BGN:KeyGenð�Þ to generate public key

PK ¼ ðn;G;G1; e; g; hÞ and private key SK ¼ p. PK is then
shared to other entities of the system including MB, S and
R. SK is only sent to cloud server A. Given an encrypted
keyword k that is tokenized, it is encrypted as bk ¼ gn�khr1 2
G, where r1 is randomly chosen from Zn. All the tokenized
keywords should be encrypted in the same way. Finally, the
encrypted keywords are sent to server A. It is worthy to
point out that the decryption of bk is not n� k. As mentioned
in Section 3.2, n is the order of G and n� k ¼ ðp� 1Þq þ q �
k. Thus, q � k is the decryption of bk.
� Traffic Sending
S and R build a TLS/SSL connection and encrypt the

traffic using the generated session key. Then, S converts the
packet payload into tokens using delimiter based method.

Fig. 3. No. 494 snort rule [28].

2586 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

For token t, it is encrypted as bt ¼ gthr2 2 G, r2 2 Zn. Finally,
the encrypted traffic (only contains encrypted packet pay-
loads, i.e., TLS/SSL protocol) along with the encrypted
tokens are redirected toMB (cloud server A) by GW.
� Inspection
Here, we use the encrypted token bt as the example to

show the inspection processing. Upon receiving bt, server A
computes the matching discriminator as d ¼ bt � bk ¼
gnþt�khr1þr2 2 G. Then, d will be sent to B to reveal the
matching result. Directly decrypting d is very time-consum-
ing due to the computation of discrete logarithms. Thus, we
let B only conduct one-time modular exponentiation. Spe-
cifically, if t� k ¼ 0, �d ¼ ðgnÞp should be the identity ele-
ment of the group G. For simplicity, we let �d ¼ ðgnÞp ¼ 1.
Thus, if �d ¼ 1 holds, the token is then matched. B should
hold the traffic and continues to inspect the remain discrim-
inators. If any rule is matched, the result should be returned
to GW, and the corresponding actions should be executed
by GW. Otherwise, the encrypted tokens along with the
encrypted traffic are forwarded to R byGW. Note that, if t 6¼
k, �d ¼ dp ¼ ðgpÞq�kþt 2 G. Thus, thes difference value D ¼
t� kmay be disclosed to server B.
� Verification
According to the threat model described in Section 2.4.S is

possible to be compromised and attempts to evade the inspec-
tion rules. Thus, R should verify the encrypted tokens sent
from S. Since the decryption of the BGN encrypted tokens
leads to low efficiency, we let B decrypt the traffic and token-
ize the payload using the same method of S. Afterwards, w
randomly chosen tokens fn� t1; n� t2; . . . ; n� twg are
encrypted using BGN as the verification object that should be
sent to MB. Then, MB can simply conduct equality checking
between verification object and encrypted tokens uploaded
by S. If any token is found to be not the same (not matched),
warnings will be sent to R. The size of verification object is
determined by R based on the historical performance of S.
The verification operation is also optional for R which
depends on the trust level ofS and the state of the connection.
� Privacy Enhancing Operation
As discussed in Inspection phase, the difference value D of

the token and keyword may be disclosed to server B. Using
the private key p, B can easily reveal the plaintext of D ¼ t�
k when t > k. Base on this leakage, when large-scale differ-
ence values are obtained, it is possible to reveal the data dis-
tribution. Thus, the encrypted tokens are then put into risk.
To solve this problem, a privacy enhancing operation is
proposed.

The main idea is randomizing the difference values
before being sent to B. A first samples a random number r3
from Zn and computes the hash value as Hðr3Þ. Hð�Þ is a
cryptographic hash function. Afterwards, Hðr3Þ is
encrypted as bHðr3Þ ¼ gHðr3Þhr3 2 G. Given a matching dis-
criminator d ¼ gnþDhr1þr2 2 G, we randomize d by mapping
it to group G1 which is shown as follow.

bd ¼ eðd; bHðr3ÞÞ
¼ g

Hðr3ÞðnþDÞ
1 h

ðnþDÞr3þr3ðnþDÞþbqðr1þr2Þr3
1 2 G1;

(1)

where b 2 Z. If D ¼ 0, ðbdÞp ¼ ðgnÞp ¼ 1. Therefore, this oper-
ation still supports equality checking. If D 6¼ 0, ðbdÞp is a

random number. Consequently, D is protected from B. In
order to boost the efficiency, all the hashing and encryption
of random numbers can be pre-processed. Also, the bilinear
paring can be computed in parallel.

4.2.3 Probable Cause Privacy

In this part, we propose a method to achieve the property of
probable cause privacy [6]. We first review the basic concept
of probable cause privacy and the scheme proposed in
BlindBox [6]. Then, we point out the critical privacy risks of
BlindBox [6] and discuss the drawbacks of the heuristic
scheme. Afterwards, a practical method is proposed by
carefully tailoring the key technical component (erasable
index) of SRE [23].

Probable cause privacy [29] is a privacy policy that
requires the middlebox is authorized to decrypt the
encrypted traffic only if the suspicious keywords or rules
with high security risks are matched. In specific, GW
defines the PCP policy such as malicious keywords. A
packet containing the malicious keyword should be
decrypted and inspected over plaintext by the middlebox.
For example, if the keyword “violence” is found in a
packet, decryption of the packet is then permitted. The out-
sourced middlebox can further conduct inspection over the
plaintext of the packet. In reality, some complex payload
inspection functions, such as regular expressions and deep
learning-based techniques for malware detection, must
access the plaintext. BlindBox [6] addresses this problem
by embedding the secret TLS/SSL session key SKSSL into
the encrypted tokens. Thus, the MB can easily obtain the
secret keys. This method brings two privacy risks. First,
the secret key is easy to be revealed by middlebox or any
passive adversary, which directly puts high risk on the
confidentiality of the packets encrypted with SKSSL. Sec-
ond, if MB is authorized to reveal the secret key, all the fol-
low up packets can also be decrypted by the same key.

To address these issues, a heuristic method is using a
new secret key when middlebox requests plaintext inspec-
tion. This method is simple and easy to be deployed. Never-
theless, the history packets that have already been
inspected are exposed to the cloud server if MB is out-
sourced. Another troublesome problem is the network
administrator has to ask S to update the secret key. In
another word, S will know that the previously sent packet
is required to be decrypted. There must be some keywords
matched. Thus, a malicious S may analyze this packet and
try to avoid using sensitive words in the following packets.
Thus, S should not get involved into secret key update
when plaintext inspection happens, which makes it difficult
to support probable cause privacy.

To this end, we find that a privacy-preserving and practi-
cal key management scheme is a practical method. Inspired
by the concept of compelled access and SRE [23], we consider
S is the owner of the packets who has the right to delete/
restore any packet. Meanwhile, MB is authorized to decrypt
the payload using secret key when strong evidence is pro-
vided. We propose a key management scheme that meets
these two conflicting requirements. In the initialization
phase, as shown in Fig. 4, S constructs a key tree using sym-
metric encryption P ¼ ðKeyGen;Enc;DecÞ. The root node

REN ETAL.: ENABLING SECURE AND VERSATILE PACKET INSPECTIONWITH PROBABLE CAUSE PRIVACY FOR OUTSOURCED... 2587

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

is a secret key k7 encrypted by the master key mk. The chil-
dren of the root are also secret keys k5; k6 encrypted by k7.
In the same way, all the leaf nodes are secret keys
{k1; . . . ; k4} encrypted by k5; k6. S should share fk1; k2; k3; k4g
with R as the TLS/SSL session keys. Intuitionally, the best
security could be achieved by using different keys for each
packet. However, the number of keys will explode and both
S and R have to manage huge amount of session keys,
which is impractical. Thus, we define an integral constant l
to represent the number of generated session keys. l is set
by S. The session keys are denoted as fk1; k2; . . . ; klg. The
Nth packet payload is then encrypted by ki, where i ¼
N mod l. If S doubts that key ki may be disclosed, S can
delete the corresponding leaf node. In doing so, no entity
except R can decrypt the packets encrypted by ki. Thus, for
MB, the packets encrypted by ki are then deleted. Moreover,
if the root of the key tree is removed by S, all the previously
sent encrypted packets are then deleted in the view ofMB.

To support the compelled access, all the session keys are
encoded and uploaded to GW. Given key ki; 1 � i � l; S
computes bki ¼ ki � tkres � i, where tkres is a random num-
ber generated by S. Thus, the encoded keys stored on GW
can be denoted as f bk1; bk2; . . . ; bklg. S also shares tkres with
MB as the token for session key request. Once a keyword or
an inspection rule is matched and plaintext inspection is
highly recommended by the policy, MB sends the current
packet number N and all the matched encrypted tokens to
GW to request the session key. Then, GW detects the tokens
to figure out whether the key request is necessary or not. If
so, GW computes i ¼ N mod l, and �ki ¼ bki � i. Afterwards,
GW sends �ki to MB. The session key ki can be revealed by
conducting one-time XOR as ki ¼ �ki � tkres. Finally, MB can
decrypt the packet payload using ki to conduct further anal-
ysis. Note that, in this scheme, only cloud server A is
involved to support probable cause privacy.

Discussion. As mentioned above, all the packets are
encrypted cyclically using a group of keys (represented by a
encrypted key tree). Suppose packet A is encrypted using
key k1, and the next packet B is encrypted using k2, the
decryption of P1 will not breach the privacy of P2.

We argue that PCP may not improve the comprehen-
sive performance of secure header inspection signifi-
cantly. Compared to payload inspection, the function of
the header inspection is simple. Advanced operations
such as the regular expression based inspection is not
needed. Moreover, the encrypted header cannot be used
for packet routing directly. Thus, it needs at least one
round of interaction between the cloud server and the
gateway. If any dangerous content is detected, the gate-
way can receive the warning information immediately.
Since most of the header fields are numerical values,
cryptographical tools are sufficient to support the

inspection functions. Overall, the benefit of introducing
PCP to header inspection is not significant.

5 SECURITY ANALYSIS

In this section,we give a thorough analysis on the security and
privacy issues of SVPI according to the privacy requirements
listed in Section 2.5, these are header privacy, payload privacy
and rule set privacy. Versatile security properties proposed in
the privacy requirements are achieved.

5.1 Header Privacy

In SVPI, the header domains are encrypted by MR-SHE
[19], which is formally proved to be secure under chosen
ciphertext attack (IND-CCA) secure. In the view of cloud
server A, only the ciphertexts of the header domains are
accessible. No PPT adversary is able to deduce additional
information over the ciphertexts. The decryption algorithm
of MR-SHE is able to detect the illegal homomorphic oper-
ations over different domains. For instance, A cannot
invoke MR-SHE:Evalð�Þ over encrypted TCP and UDP data
(the keywords are different). Thus, without the secret key
KF that is used to encode the keywords, no PPT adversary
is able to generate the ciphertext that can be the input of
MR-SHE:Evalð�Þ. Due to the security property provided by
PRF, the encoded keywords cannot be distinguished from
a real random number by a PPT adversary. Consequently,
the problem of small message space is solved. In the view
of cloud server B, the inner product of V1 and V2 is dis-
closed. Therefore, the rough range of the encrypted header
domain is revealed to B. According to the threat model,
server A and B are not allowed to exchange data unless it
is required by the pre-defined protocol. Thus, B still cannot
figure out the original value of the encrypted header
domains. In a word, the header privacy is well preserved.

5.2 Payload Privacy

Since the payload is encrypted using two different methods,
we discuss the privacy issues separately.

5.2.1 End-to-End Encrypted Payload

A widely applied and simple way to protect the privacy of
packet payload is using the end-to-end encryption provided
by HTTPS protocol. Previously proposed private key based
schemes [3], [6], [7] all choose this method. The packet pay-
load is encrypted with the session key of HTTPS. Therefore,
MB cannot extract any sensitive private information from
the traffic. The public key based protocols in [13], [14] also
keep the session key as a secret from MB. Thus, traffic pri-
vacy is well preserved.

Another security property achieved by SVPI is that the
probable cause privacy scheme is transparent to S. Using
the shared token tkres and the encoded secret key received
from GW, MB can recover it by conducting XOR operation.
Meanwhile, S is not involved. This property is important
because if S knows which packet is required to be
decrypted, it may attempt to analyze the content of the
packet payload or even cut off the connection to evade the
further inspection. According to the threat model, GW is
fully trusted. But we still let S encode the secret keys before

Fig. 4. An example of key tree.

2588 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

uploading them to the MB. This operation strictly follows
the rule that one’s privacy should be protected unless there
is evidence for suspicion [6].

5.2.2 Encrypted Tokens

In SVPI, we use BGN to encrypt each token. BGN [20] is a
probabilistic crypto-system that is proved to be IND-CPA
secure. Thus, in the view of A, all the received tokens cannot
be distinguished from the random numbers. Without the pri-
vate key, no additional information can be deduced from the
encrypted tokens. The information leaked to server B is the
matching discriminators. B can recover the final result using
discriminator and the secret key to obtain a random number
or 1 (identity element). Since the encrypted tokens and key-
words are stored onA and are out the reach ofB. Therefore,B
cannot deduce the original values. Even if the privacy-enhanc-
ing operation is not conducted for the sake of efficiency, it is
still difficult forB to infer the raw values of the token and key-
word. Given a simple example, the difference value of key-
word k1 and token t1 is denoted as D ¼ t1 � k1 (t1 > k1).
Then, B can reveal the plaintext of D using private key. How-
ever, there should exist other pairs of tokens and keywords
with exactly the same difference value (D). Formally,
9ðti; kjÞ; 0 < i 6¼ 1; j 6¼ 1 < T let the equation D ¼ ti � kj
holds. Consequently, the token privacy iswell protected.

5.3 Rule Set Privacy

The rule set for header inspection is encrypted by MR-SHE
[19] which is proved to be IND-CCA secure. Due to the prop-
erty of mis-operation resistance of MR-SHE, server A cannot
guess the range of an individual rule by conducting homo-
morphic operations. Specifically, A could encrypt a number
within the message space and conduct homomorphic opera-
tion on the ciphertext of this number and the encrypted range.
Then, A can figure out if the number locates within the range
with the help of server B. Since the message space is small
(e.g., the TCP port number range is [0, 65535]), it is possible to
recover the encrypted range only using normal homomorphic
operations. MR-SHE solves such problem by embedding the
domain name (e.g., TCP,UDP; . . . ;etc) into the ciphertext.
However, since the space of the domain name is extremely
small, it is easy to enumerate all the domains.We conquer this
problem by encoding the domain name using PRF and the
secret key is only shared with GW and S. Without the
encoded domain name, A cannot generate ciphertext that is
eligible to support homomorphic operation. Furthermore, A
may force to raise homomorphic operation which will be
detected by B. Therefore, we claim that SVPI provides strong
rule set privacy protection.

The rule set for payload inspection is encrypted by BGN.
Since the message spaces of the tokens as well the keywords
are large, it is difficult to recover the plaintext only using
homomorphic operation. Thus, the privacy of the rules is
well preserved.

6 PERFORMANCE EVALUATION

In this section, we give a comprehensive discussion on the
performance of SVPI in terms of functionality, communica-
tion and computational overheads. We mainly focus on the
factors that have key impacts on the performance. The

proposed Secure Header Inspection (SHI) scheme and
Secure Payload Inspection (SPI) scheme are evaluated sepa-
rately. We also compare the experimental results with
GWYJ (presented by Guo et al. [4]) and BlindIDS [13] to
demonstrate the feasibility of SHI and SPI.

The experiments are conducted on a 2.10 GHz processor
(Intel(R) Xeon(R)), 16 GB memory server with Ubuntu 18.04
operation system. The program language is Java 8. The pub-
lic lightweight intrusion detection rule set Snort [28] is used
as the payload inspection rules and a simulated firewall
rule set is adopted. We take the real website data (e.g., ABC,
CNN, BBC, etc.) as the data source.

6.1 Functionality

In this paper, the secure header and payload inspection are
supported simultaneously. Moreover, in order to deal with
advanced and complex inspection, probable cause privacy
is also supported. Compared to existing schemes [3], [4], [6],
[13], [14], SVPI achieves versatile functionality. BlindBox [6]
has focused on payload inspection and probable cause pri-
vacy. SPABox [14] and BlindIDS [13] support payload
inspection. GWYJ [4] pays attention to header inspection.
The listed schemes in Table 2 are representative schemes.

6.2 Evaluating Secure Header Inspection

Communication Overhead of S. The communication
between S and MB includes TLS/SSL traffic, encrypted
tokens and some other control information. We only con-
sider overhead brought by encrypted tokens that are the
main different factor between different schemes. The
tokens encrypted by MR-SHE consists of two parts.
Using ðm; CnÞ as an example, m is sampled from ZT

where T should be no larger than the result of inner
product. Since IP address is small than 232, T is set as 4 �
264. Then 66 bits will be enough for T . Cn consists of five
parts, that are one element of group Ga, three elements
of group Gb and a hash value. We use SHA-512 as the
hash function and jGaj ¼ jGbj ¼ 128 Bytes. Thus, the total
size of one encrypted token should be 0.58 KB. GWYJ [4]
uses ORE [15] to encrypt the tokens. As claimed in [4],
when the block size is 4 bits, the ciphertext will be 528
Bytes. If the block size is 8 bits, the ciphertext will be
1040 Bytes. Larger block size provides a higher security
level. GWYJ uses AES-128 and HMAC-256 to encrypt the
tokens. As shown in Fig. 5a, when the number of tokens
reaches 104, the total communication overheads will be
10.5 MB for GWYJ (8 bits block), 5.3MB for GWYJ (4 bits
block) and 5.8MB for SHI. In modern access networks,
the time cost for sending 5.3MB message should be
acceptable. In north America, the average network speed
has reached 17MB per second in 2020. Thus, sending 104

TABLE 2
Comparison of Functionality

[6] [14] [13] [4] SVPI

Header inspection � � � @ @
Payload inspection @ @ @ � @
Probable cause privacy @ � � � @

REN ETAL.: ENABLING SECURE AND VERSATILE PACKET INSPECTIONWITH PROBABLE CAUSE PRIVACY FOR OUTSOURCED... 2589

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

encrypted tokens only cost roughly 0.34 seconds. The
communication overheads of both schemes increase line-
arly with the number of tokens.

Encryption Time on S. To encrypt one port, SHI has to con-
duct five modular exponentiations, five bilinear parings and
three hashing operations. It should be time-consuming if we
process these operations one by one. Since g; h1; h2; h3; h4 are
elements of the public key, all the paring operations
feðg; gÞ; eðg; h1Þ; eðg; h2Þ; eðg; h3Þ; eðg; h4Þg could be operated
in advance. To boost the efficiency, the modular exponentia-
tion as well as the encryption of different ports could be exe-
cuted in parallel. On average, it will take roughly 2.6ms to
encrypt one port. When the number of ports is 104, the
encryption time reaches 24.5s. Thus, on average, to encrypt
one port, the time cost is 2.45 ms. For the packet sender,
such time cost is little and no significant latency is intro-
duced. As shown in Fig. 5b, the executing time increases lin-
early with the number of ports.

Rule Preparation Time on GW. Here, a rule refers to a port
range. GW prepares the encrypted rules by generating the
ciphertext version of each single range. Thus, after the key-
word is encoded using PRF, the upper bound and the lower
bound of the range are encrypted with exactly the same
way as the token encryption on sender side. On average, it
takes 5.9ms to prepare one rule. When the number of rules
is 2500, the time cost will be 14.4s. Since the encrypted rules
are reusable for different connections, 14.4s time cost is lit-
tle. As shown in Fig. 5c, the encryption time of SHI increases
linearly with the number of rules.

Detection Time on MB. MB should detect whether an
encrypted port is within the encrypted ranges. First, the
cloud server A processes keyword matching using hash
functions. If the keyword (header domain name) is
matched, A computes the encrypted inner product of vector
V1 and V2. Then, A sends the encrypted inner product to
server B for decryption. Otherwise, A continues to check
the next rule. Hashing is very fast while the encryption and
decryption of vector inner product are time-consuming. On
average, if the keyword is matched, the time cost is 67ms.
We assume that every keyword is matched. Thus, as shown
in Fig. 5d, when the number reaches 2500, the time cost is
167s. The detection time increases linearly with the number
of rules. Note that, for real firewall rule, one port can only
match with a part of the rules (< 1=3). Moreover, we let the
server conduct detection one port by one port, one rule by
one rule. To boost the efficiency, they can be computed in
several virtual machines in parallel. By doing so, the time
cost will be significantly reduced. Here, we only show the

lower bound of the detection efficiency and leave the opti-
mization process as the future work.

Discussion. The encryption, decryption and detection effi-
ciency of symmetric encryption based schemes [3], [4] are
indeed higher than SHI. We acknowledge that this should
be the limitation of public key based schemes. Nevertheless,
SHI has enhanced the packet header privacy and reduced
the communication overhead of S. The interested readers
can refer to literature [4] to acquire the performance details
of GWYJ.

6.3 Evaluating Secure Payload Inspection

Communication Overhead of S. An encrypted token of SPI
only has one element of the group G. We set jGj ¼ 128
Bytes. The ciphertext of one token generated by BlindIDS
[13] consists of four parts. That are two elements of a
cyclic group with prime order, one random number in Zq

and a half hash value, where q is a large prime. The used
hash function is SHA-256 and the size of the group is not
given. To be fair, we set the same size as G, and use
127 bits Mersenne prime to instantiate q. Thus, the total
size of an encrypted token will be roughly 280 Bytes. As
shown in Fig. 6a, the communication overheads of SPI
and BlindIDS are 1.2 MB and 2.7 MB respectively when
the number of tokens is 104. Thus, SPI has reduced more
than half of the communication cost. As mentioned in sec-
tion 6.2, in modern network environment, such communi-
cation load can be fastly transmitted.

Encryption Time on S. To encrypt one token, only
one-time BGN [20] encryption is required for SPI. It requires
one time of bilinear pairing and four times of modular expo-
nentiation for BlindIDS to encrypt a token. As shown in
Fig. 6b, the time costs of token encryption of SPI and Blind-
IDS [13] increase linearly with the number of tokens. To
encrypt 2500 tokens, it takes SPI and BlindIDS 1.8s and 5s
respectively. Therefore, SPI has reduced the encryption
time on sender side.

Rule Preparation Time on GW. Since the public key based
payload inspection schemes allow the users to share the same
encrypted rules, we evaluate the rule preparation efficiency
over the same size (3K) rule set. Thus, as shown in Fig. 6c, the
encryption time of SPI and BlindIDS [13] are two constants.
This should be an advantage of public key based schemes.
The number of connections is irrelevant to the rule prepara-
tion time. It is a constant. Specifically, to encrypt a rule, Blind-
IDS needs one modular exponentiation and one hashing
operation. On average, for whole rule set, the time cost is 2.7s.

Fig. 5. Performance of SHI (SVPI) and GWYJ [4] (communication overhead).

2590 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

For SPI, the rules are also encrypted by BGN (i.e., one key-
word one BGN encryption). The encryption time of SPI is
totally 8.358s. As a result, SPI is able to deal with large-scale
and frequently established/revoked connections. However,
symmetric key based scheme BlindBox [6] has to generate
new rules for newly built connections, which leads to high
connection initialization overhead.

Detection Time on MB. The total rule detection time of
BlindIDS, our basic and advanced scheme (privacy
enhancing operation is conducted) are clearly shown in
Table 3. One-time bilinear pairing and one-time hashing
are required for BlindIDS [13] to determine the matching
result of a token and a keyword. For our basic scheme,
only one modular multiplication and one exponentiation
operation are required for single keyword matching. In
our advanced scheme, we enhance privacy with one-
time bilinear paring and one-time hashing. On average,
to conduct 3K rule detection for one packet, the time
cost of BlinIDS and our basic scheme are 475.17s, 287.53s
respectively. Nearly half the time cost is reduced. In
BlindIDS, the experimental result is 74s using a server
with better configurations. Indeed, public key based
schemes are time-consuming and can hardly fit the real
network traffic speed. As mentioned above, we argue
that, since all the computation can be processed in paral-
lel over several virtual machines, it is possible to signifi-
cantly boost the efficiency.

Verification Time of R. According to the threat model,
the sender could be compromised and generate the
tokens without following the pre-defined protocol. Thus,
the receiver has to verify the received encrypted tokens.
The decryptable searchable encryption [30] used in
BlindIDS [13] supports the recovery of encrypted tokens.
Most existing schemes attempt to check every token one
by one. We argue that it is unnecessary to verify every
encrypted token. In SPI, w tokens are randomly chosen
for verification. If the total number of tokens is n, then
w ¼ 0:1 � n. As shown in Fig. 6d, both BlindIDS and SPI

lead to linear time costs, but SPI performs better. When
the number of tokens is 2500, the time cost of SPI is
451ms while BlindIDS needs 1885ms.

7 RELATED WORK

In this section, we give a brief introduction to the recent
state-of-art works that closely relate to our scheme.

The first work that aims to outsource the traditional mid-
dlebox services to the cloud server is proposed by Sherry
et al. [2]. The authors have designed and implemented a
platform called APLOMB that significantly improves the
scalability and functionality of middleboxes with reasonable
overheads. However, they did not consider the security and
privacy issues brought by the outsourcing. This concern
could be the barrier of the deployment of cloud-assisted
middleboxes. Fruitful achievements are presented to
address such issues. They can be divided into two catego-
ries, that are secure header and payload inspection. We
elaborate on each of them as follows:

7.1 Secure Header Inspection

Lan et al. [3] designed and implemented a system called
Embark to deploy middlebox services on the cloud
server with privacy preserving. The key technique con-
tribution of Embark is the efficient and secure prefix
matching algorithm named as PrefixMatch. This algo-
rithm only supports IPv6 and is failed to process range
query based rules. Theoretically, it is possible to convert
a port range to several prefixes. The storage and commu-
nication overheads will be increased due to the expan-
sion of rules. Embark also supports payload inspection
by directly using the existing searchable encryption
schemes [31] without any modification. To extend the
functionality, Guo et al. [4] presented a range query
based scheme using the order-revealing encryption [15].
ORE provides IND-CPA secure with the cost of signifi-
cant ciphertext expansion. If the message space is large,
the storage overhead will be high. Besides, the rule
update is complex and time-consuming. Guo et al. [5]
also presented a secure stateful firewall. The authors
added counters into rules and using ORE to conduct
range query. Note that, the above schemes are all
designed base on symmetric encryption. Thus, if any
compromised user discloses the secret key, the whole
system will be under risk.

Fig. 6. Performance comparison of SPI (SVPI) and BlindIDS [13].

TABLE 3
Comparison of Detection Time

Description BlindIDS Basic scheme Advanced scheme

1 Token, 1 Rule 5.11ms 2.84ms 7.37ms
1 Packet, 1 Rule 286.26ms 173.35ms 463.17ms
1 Token, 3K Rules 4.53s 2.72s 7.79s
1 Packet, 3K Rules 475.17s 287.53s 727.18s

REN ETAL.: ENABLING SECURE AND VERSATILE PACKET INSPECTIONWITH PROBABLE CAUSE PRIVACY FOR OUTSOURCED... 2591

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

7.2 Secure Payload Inspection

The first work towards secure payload inspection named as
BlindBox is proposed by Sherry et al. [6]. The authors use
Gabled circuit [32] to obfuscate the rules. The tokens are
encrypted by advanced encryption standard (AES). Due to
the using of heavy gabled circuit and each connection
requires a newly obfuscated rule set, the connection initiali-
zation of BlindBox becomes time-consuming. To solve this
problem, Yuan et al. [7] use Cuckoo hash table [12] as the
token filter. In doing so, the preparation of the rule filter
and the encoding of the tokens are significantly boosted in
terms of time complexity. Recently, Ning et al. [33] design a
secure traffic inspection scheme named as PrivDPI. It offers
reusable obfuscated rules using public key encryption.
PrivDPI has significantly boosted the efficiency of building
connections and achieved the same security and privacy
guarantee. Moreover, the encrypted tokens are also reusable
for packet senders. Yuan et al. also presented a verifiable
secure payload inspection scheme [34] for cloud computing
that allows the users to verify the correctness of the protocol
execution results. In [35], the authors have proposed an
lightweight and fine-grained verification scheme for sym-
metric key based packet inspection. Another important
issue is the update of the encrypted rules, especially for
symmetric encryption based schemes. Thus, Guo et al. [5]
also use two-server architecture to support secure and
dynamic payload inspection without disclosing the access
pattern. Similar to header inspection schemes, the symmet-
ric encryption based payload inspection schemes are also
plagued by the problem of secret key leakage.

In [14], Fan et al. designed a new and simple additive
homomorphic crypto-system based on discrete logarithm
problem to support secure payload inspection. The
authors also explore malware detection using privacy-
aware machine learning method (SVM) [36]. The pro-
posed SPABox [14] gains higher efficiency with the cost
of leaking the plaintext of rule set to middlebox. Thus, it
may be difficult to deploy SPABox on cloud server.
Recently, BlindIDS [13] was proposed by Canard et al.
that adopts decryptable searchable encryption [30] to
process token matching. BlindIDS allows the users to
share the same encrypted rule set. However, the heavy
sender side encryption and cloud side detection are the
barriers of BlindIDS for real deployment. Indeed, public
key based schemes [13], [14] including SVPI all face the
problem of heavy encryption operations. Thus, we sug-
gest that the middlebox services can be implemented on
the local fog nodes [16] to reduce the high traffic latency.

Discussion. Secure and privacy-preserving middleboxes
developed on Trusted Execution Environment (TEE) [37]
(e.g., SGX [38]), also have been intensively explored. The
private and sensitive data can be processed over the enclave
without using cryptograph techniques. Compared to cryp-
tographic schemes [3], [6], [13], [14], the performances of
TEE based schemes can be increased for specific applica-
tions. As reported in LightBox [37], which should be the lat-
est result, the packet I/O can achieve 10Gbps. In ShieldBox
[39], the authors designed a secure cloud-assisted frame-
work for rich network functions atop shielded execution
[40]. The ENDBOX [41], for the first time, implemented the

middleboxes on the client machine to improve the scalabil-
ity of middleboxes. We argue that it seams out of reach to
design a highly efficient scheme without using TEE. How-
ever, TEE needs additional equipment costs and is difficult
to be outsourced or virtualized. Moreover, TEE requires
trusted remote attestations and specialized code designs for
different applications, and may suffer from side-channel
attacks [42]. Thus, users may decide which system to imple-
ment depending on the demands.

8 CONCLUSION

In this paper, we have proposed a packet inspection
scheme to support secure header and payload inspection
on two non-collusion cloud servers. We have carefully
tailored the designs of latest cryptographic techniques to
offer versatile functions of range query based header
inspection and token-based payload inspection. The
security analysis has proved that the proposed SVPI can
well preserve the privacy of packet header, payload and
the outsourced inspection rules. The performance evalua-
tion has demonstrated that SVPI offers competitive per-
formance. The observations and countermeasures of
privacy leakages in the real-world packet inspection
functions may shed light on the design and analysis of
future middlebox services. Therefore, in the future, we
will explore secure and highly reusable inspection rules
for cloud-assisted middleboxes. We will also investigate
privacy-preserving network function virtualization for
the next generation network.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China under Grants 2017YFB0802300 and
2017YFB0802000, in part by the National Natural Science
Foundation of China under Grants 62020106013, 61972454,
61802051, 61772121, and 61728102, in part by Sichuan Sci-
ence and Technology Program under Grants 2020JDTD0007
and 2020YFG0298, in part by the Peng Cheng Laboratory
Project of Guangdong Province PCL2018KP004. Special
thanks should be given to the professors and research col-
leagues of BBCR Lab at University of Waterloo for the valu-
able discussion. The preliminary result of this article was
presented at the 10th International Conference on Wireless
Communications and Signal Processing (WCSP 2018) [1].

REFERENCES

[1] H. Li, H. Ren, D. Liu, and X. Shen, “Privacy-enhanced deep packet
inspection at outsourced middlebox,” in Proc. 10th Int. Conf. Wire-
less Commun. Signal Process., 2018, pp. 1–6.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM Conf.
Appl. Technol. Architectures Protocols Comput. Commun., 2012,
pp. 13–24.

[3] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely outsourcing middleboxes to the cloud,” in Proc. 13th Use-
nix Conf. Netw. Syst. Des. Implementation, 2016, pp. 255–273.

[4] Y. Guo, C. Wang, X. Yuan, and X. Jia, “Enabling privacy-preserv-
ing header matching for outsourced middleboxes,” in Proc. IEEE/
ACM 26th Int. Symp. Quality Service, 2018, pp. 1–10.

2592 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

[5] Y. Guo, C. Wang, and X. Jia, “Enabling secure and dynamic deep
packet inspection in outsourced middleboxes,” in Proc. 6th Int.
Workshop Secur. Cloud Comput., 2018, pp. 49–55.

[6] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: Deep
packet inspection over encrypted traffic,” in Proc. ACM Conf. Spe-
cial Interest Group Data Commun., 2015, pp. 213–226.

[7] X. Yuan, X. Wang, J. Lin, and C. Wang, “Privacy-preserving deep
packet inspection in outsourced middleboxes,” in Proc. 35th Annu.
IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[8] C. Wang, X. Yuan, Y. Cui, and K. Ren, “Toward secure outsourced
middlebox services: Practices, challenges, and beyond,” IEEE
Netw., vol. 32, no. 1, pp. 166–171, Jan./Feb. 2018.

[9] J. Liang, Z. Qin, S. Xiao, L. Ou, and X. Lin, “Efficient and secure
decision tree classification for cloud-assisted online diagnosis
services,” IEEE Trans. Dependable Secure Comput., to be published,
doi: 10.1109/TDSC.2019.2922958.

[10] X. Liu, R. Deng, K. R. Choo, and Y. Yang, “Privacy-preserving
outsourced support vector machine design for secure drug dis-
covery,” IEEE Trans. Cloud Comput., vol. 8, no. 2, pp. 610–622,
Apr.–Jun. 2020.

[11] Y. Mao, Y. Zhang, X. Zhang, F. Xu, and S. Zhong, “Location
privacy in public access points positioning: An optimization
and geometry approach,” Comput. Secur., vol. 73, pp. 425–438,
2018.

[12] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proc. 10th ACM
Int. Conf. Emerg. Netw. Experiments Technol., 2014, pp. 75–88.

[13] S. Canard, A. Diop, N. Kheir, M. Paindavoine, and M. Sabt,
“BlindiDS: Market-compliant and privacy-friendly intrusion
detection system over encrypted traffic,” in Proc. ACM Asia
Conf. Comput. Commun. Secur., 2017, pp. 561–574.

[14] J. Fan, C. Guan, K. Ren, Y. Cui, and C. Qiao, “SPABox: Safeguard-
ing privacy during deep packet inspection at a middlebox,” IEEE/
ACM Trans. Netw., vol. 25, no. 6, pp. 3753–3766, Dec. 2017.

[15] K. Lewi and D. J. Wu, “Order-revealing encryption: New con-
structions, applications, and lower bounds,” in Proc. ACM SIG-
SAC Conf. Comput. Commun. Secur., 2016, pp. 1167–1178.

[16] H. Ren, H. Li, Y. Dai, K. Yang, and X. Lin, “Querying in Inter-
net of Things with privacy preserving: Challenges, solutions
and opportunities,” IEEE Netw., vol. 32, no. 6, pp. 144–151,
Nov./Dec. 2018.

[17] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and
verifiable federated learning,” IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 911–926, 2020.

[18] L. Melis, H. J. Asghar, E. De Cristofaro, and M. A. Kaafar, “Private
processing of outsourced network functions: Feasibility and con-
structions,” in Proc. ACM Int. Workshop Secur. Softw. Defined Netw.
Netw. Function Virtualization, 2016, pp. 39–44.

[19] K. Emura, T. Hayashi, N. Kunihiro, and J. Sakuma, “Mis-opera-
tion resistant searchable homomorphic encryption,” in Proc. ACM
Asia Conf. Comput. Commun. Secur., 2017, pp. 215–229.

[20] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formu-
las on ciphertexts,” in Proc. Theory Cryptogr. Conf., 2005, pp.
325–341.

[21] W. Shen, J. Qin, J. Yu, R. Hao, J. Hu, and J. Ma, “Data integrity
auditing without private key storage for secure cloud storage,”
IEEE Trans. Cloud Comput., to be published, doi: 10.1109/
TCC.2019.2921553.

[22] A. Yang, J. Xu, J. Weng, J. Zhou, and D. S. Wong, “Lightweight
and privacy-preserving delegatable proofs of storage with data
dynamics in cloud storage,” IEEE Trans. Cloud Comput., to be pub-
lished, doi: 10.1109/TCC.2018.2851256.

[23] N. Tyagi, M. H. Mughees, T. Ristenpart, and I. Miers, “BurnBox:
Self-revocable encryption in a world of compelled access,” in Proc.
27th USENIX Conf. Secur. Symp., 2018, pp. 445–461.

[24] D. Liu, A. Alahmadi, J. Ni, X. Lin, and X. Shen, “Anonymous rep-
utation system for IIoT-enabled retail marketing atop PoS block-
chain,” IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3527–3537,
Jun. 2019.

[25] E. Andreeva et al., “New second-preimage attacks on hash
functions,” J. Cryptol., vol. 29, no. 4, pp. 657–696, 2016.

[26] D. Catalano and D. Fiore, “Using linearly-homomorphic
encryption to evaluate degree-2 functions on encrypted data,”
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur.,
2015, pp. 1518–1529.

[27] N. P. Smart, “The discrete logarithm problem on elliptic curves of
trace one,” J. Cryptol., vol. 12, no. 3, pp. 193–196, 1999.

[28] Snort rules, 2018, Accessed: May 31, 2018. [Online]. Available:
http://https://www.snort.org/

[29] P. Ohm, “Probably probable cause: The diminishing importance
of justification standards,” Minnesota Law Rev., vol. 94, 2009, Art.
no. 1514.

[30] T. Fuhr and P. Paillier, “Decryptable searchable encryption,” in
Proc. Int. Conf. Provable Secur., 2007, pp. 228–236.

[31] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-pre-
serving multi-keyword ranked search over encrypted
cloud data,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 1,
pp. 222–233, Jan. 2014.

[32] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proc. ACM Conf. Comput. Commun. Secur., 2012,
pp. 784–796.

[33] J. Ning, G. S. Poh, J.-C. Loh, J. Chia, and E.-C. Chang, “PrivDPI:
Privacy-preserving encrypted traffic inspection with reusable
obfuscated rules,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2019, pp. 1657–1670.

[34] X. Yuan, H. Duan, and C. Wang, “Bringing execution assurances
of pattern matching in outsourced middleboxes,” in Proc. IEEE
24th Int. Conf. Netw. Protocols, 2016, pp. 1–10.

[35] H. Ren, H. Li, D. Liu, G. Xu, N. Cheng, and X. Shen, “Privacy-pre-
serving efficient verifiable deep packet inspection for cloud-
assisted middlebox,” IEEE Trans. Cloud Comput., to be published,
doi: 10.1109/TCC.2020.299116.

[36] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011,
Art. no. 27.

[37] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren,
“LightBox: Full-stack protected stateful middlebox at lightning
speed,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2019,
pp. 2351–2367.

[38] J. Van Bulck et al., “Foreshadow: Extracting the keys to the Intel
SGX kingdom with transient out-of-order execution,” in Proc. 27th
USENIX Conf. Secur. Symp., 2018, pp. 991–1008.

[39] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and
C. Fetzer, “ShieldBox: Secure middleboxes using shielded exe-
cution,” in Proc. Symp. SDN Res., 2018, pp. 1–14.

[40] S. Arnautov et al., “SCONE: Secure linux containers with intel
SGX,” in Proc. 12th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2016, pp. 689–703.

[41] D. Goltzsche et al., “EndBox: Scalable middlebox functions using
client-side trusted execution,” in Proc. 48th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., 2018, pp. 386–397.

[42] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in
Proc. IEEE Symp. Security Privacy, 2015, pp. 640–656.

Hao Ren (Student Member, IEEE) is currently
working toward the PhD degree with the School
of Computer Science and Engineering, University
of Electronic Science and Technology of China
(UESTC), China. He is also a visiting PhD student
at ECE Department, University of Waterloo, Can-
ada from February 2018 to January 2020. His
research interests include applied cryptography,
security and privacy for cloud computing, and
machine learning.

Hongwei Li (Senior Member, IEEE) received the
PhDdegree from theUniversity of Electronic Science
and Technology of China, China, in June 2008. He is
currently the head and a professor with the Depart-
ment of Information Security, School of Computer
Science and Engineering, University of Electronic
Science and Technology of China, China. He worked
as a postdoctoral fellow with the University of Water-
loo, Canada from 2011 to 2012. His research inter-
ests include network security and applied
cryptography. He is the distinguished lecturer of IEEE
Vehicular TechnologySociety.

REN ETAL.: ENABLING SECURE AND VERSATILE PACKET INSPECTIONWITH PROBABLE CAUSE PRIVACY FOR OUTSOURCED... 2593

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2019.2922958
http://dx.doi.org/10.1109/TCC.2019.2921553
http://dx.doi.org/10.1109/TCC.2019.2921553
http://dx.doi.org/10.1109/TCC.2018.2851256
http://https://www.snort.org/
http://dx.doi.org/10.1109/TCC.2020.299116

Dongxiao Liu (Member, IEEE) received the PhD
degree from the Department of Electrical and
Computer Engineering, University of Waterloo,
Canada, in 2020. He is currently a postdoctoral
research fellow with the Department of Electrical
and Computer Engineering, University of Water-
loo, Canada. His research interests include
applied cryptography and privacy enhancing
technologies for blockchain.

Guowen Xu (Student Member, IEEE) received
the BS degree in information and computing sci-
ence from the Anhui University of Architecture,
China, in 2014. Currently, he is working toward
the PhD degree with the School of Computer Sci-
ence and Engineering, University of Electronic
Science and Technology of China, China. His
research interests include cryptography, search-
able encryption, and the privacy-preserving deep
learning.

Xuemin Shen (Fellow, IEEE) received the PhD
degree from Rutgers University, Brunswick, New
Jersey, in electrical engineering, in 1990. He is a
university professor with the Department of Elec-
trical and Computer Engineering, University of
Waterloo, Canada. His research focuses on
resource management in interconnected wire-
less/wired networks, wireless network security,
social networks, smart grid, and vehicular ad hoc
and sensor networks. He is a registered profes-
sional engineer at Ontario, Canada, an Engineer-

ing Institute of Canada fellow, a Canadian Academy of Engineering
fellow, a Royal Society of Canada fellow, and a distinguished lecturer of
IEEE Vehicular Technology Society and Communications Society. He
has received the R.A. Fessenden Award, in 2019 from IEEE, Canada,
Award of Merit from the Federation of Chinese Canadian Professionals
(Ontario) presents, in 2019, James Evans Avant Garde Award, in 2018
from the IEEE Vehicular Technology Society, Joseph LoCicero Award, in
2015, and Education Award, in 2017 from the IEEE Communications
Society, and Technical Recognition Award from Wireless Communica-
tions Technical Committee (2019) and AHSN Technical Committee
(2013). He has also received the Excellent Graduate Supervision Award,
in 2006 from the University of Waterloo, Canada and the Premier’s
Research Excellence Award (PREA), in 2003 from the Province of
Ontario, Canada. He served as the Technical Program Committee chair/
co-chair for the IEEE Globecom’16, the IEEE Infocom’14, the IEEE
VTC’10 Fall, the IEEE Globecom’07, the Symposia chair for the IEEE
ICC’10, and the chair for the IEEE Communications Society Technical
Committee on Wireless Communications. He is the elected IEEE Com-
munications Society vice president for Technical and Educational Activi-
ties, vice president for publications, member-at-large on the Board of
Governors, chair of the Distinguished Lecturer Selection Committee,
and member of IEEE Fellow Selection Committee. He was/is the editor-
in-chief of the IEEE Internet of Things Journal, IEEE Network, IET Com-
munications, and Peer-to-Peer Networking and Applications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2594 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 21:18:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

