
Privacy-Preserving Efficient Verifiable Deep
Packet Inspection for Cloud-Assisted Middlebox

Hao Ren , Student Member, IEEE, Hongwei Li , Senior Member, IEEE,

Dongxiao Liu , Student Member, IEEE, Guowen Xu , Student Member, IEEE,

Nan Cheng ,Member, IEEE, and Xuemin Shen , Fellow, IEEE

Abstract—With the increasing traffic volume, enterprises choose to outsource their middlebox services, such as deep packet

inspection, to the cloud to acquire rich computational and communication resources. However, since the traffic is redirected to the

public cloud, information leakages, such as packet payload and inspection rules, arouse privacy concerns of both middlebox owner

and packet senders. To address the concerns, we propose an efficient verifiable deep packet inspection (EV-DPI) scheme with strong

privacy guarantees. Specifically, a two-layer architecture is designed and deployed over two non-collusion cloud servers. The first

layer fast filters out most of legitimate packets and the second layer supports exact rule matching. During the inspection, the privacy

of packet payload and the confidentiality of inspection rules are well preserved. To improve the efficiency, only fast symmetric

crypto-systems, such as hash functions, are used. Moreover, the proposed scheme allows the network administrator to verify the

execution results, which offers a strong control of outsourced services. To validate the performance of the proposed EV-DPI scheme,

we conduct extensive experiments on the Amazon Cloud. Large-scale dataset (millions of packets) is tested to obtain the key

performance metrics. The experimental results demonstrate that EV-DPI not only preserves the packet privacy, but also achieves high

packet inspection efficiency.

Index Terms—Cloud computing, middlebox, network function outsourcing, privacy-preserving

Ç

1 INTRODUCTION

MIDDLEBOX [1] is a network equipment that supports
a wide spectrum of network functions for enterprise

networks. For instance, a middlebox can provide firewall,
load balancer and deep packet inspection (DPI) services [2].
Nowadays, some of the modern middlebox services are
delay sensitive. Moreover, it is also challenging to offer high
efficiency facing with the explosion of traffic volume.
For instance, DPI is a typical delay sensitive network func-
tion. One of its key performance metrics is the packet
throughput within a certain period of time. Thus, to achieve
high efficiency, the most appealing solution is outsourcing
the DPI service to the cloud platform [3], [4]. Various benefits
can be acquired with the assistance of the cloud servers. First,
powerful computation and communication capabilities [5]

are provided, which makes it feasible to support efficient
DPI over large-scale traffic volume. Second, for the owner of
middlebox, diverse DPI functions can be customized to meet
the new requirements without purchasing additional hard-
ware. Third, the heavy burden of the daily management of
DPI system is released. In addition, the advanced DPI func-
tions, such as machine learning [6], [7] based malware detec-
tion [8], can be efficiently supported by cloud computing.
Consequently, significant attentions have been paid to the
outsourcing of DPI for cloud-assistedmiddlebox [5].

Unfortunately, the DPI outsourcing also introduces sev-
eral security and privacy concerns. In specific, the network
traffic has to be redirected to the cloud for inspection. As a
result, an important privacy concern is the exposure of
packet payload. For example, the personal information of
enterprise employees is inevitably disclosed to the cloud
server if without any protection. The cloud service provider
may even attempt to analyze the private contents for eco-
nomic interest. Moreover, the passing packets may contain
sensitive information that relates to commercial secrets of
an enterprise. If these kinds of information are leaked to the
cloud or any competitor, serious losses may be caused.
Another crucial issue is the confidentiality of the DPI rules.
Usually, the details of the DPI rules directly reflect the secu-
rity and privacy policies. If an internal or external attacker
has accessed the DPI rules, it will be easier to evade the
inspection. With such strong background information,
the attacker can even find some loopholes of the system.
Thus, both the packet payload and the DPI rules should be
protected from the public cloud. A simple way to achieve

� H. Ren and H. Li are with the School of Computer Science and Engineer-
ing, University of Electronic Science and Technology of China, Chengdu
611731, China, and also with the Cyberspace Security Research Center,
Peng Cheng Laboratory, Shenzhen, Guangdong 518066, China.
E-mail: renhao.uestc@gmail.com, hongweili@uestc.edu.cn.

� D. Liu and X. Shen are with the Department of Electrical and Computer
Engineering, University of Waterloo, Ontario N2L 3G1, Canada.
E-mail: {dongxiao.liu, sshen}@uwaterloo.ca.

� G. Xu is with the School of Computer Science and Engineering, University
of Electronic Science and Technology of China, Chengdu, Sichuan 611731,
China. E-mail: guowen.xu@foxmail.com.

� N. Cheng is with the School of Telecommunication Engineering, Xidian
University, Xian, Shanxi 710071, China. E-mail: dr.nan.cheng@ieee.org.

Manuscript received 16 July 2019; revised 16 Dec. 2019; accepted 23 Apr. 2020.
Date of publication 29 Apr. 2020; date of current version 7 June 2022.
(Corresponding author: Hongwei Li.)
Recommended for acceptance by Y. Cui.
Digital Object Identifier no. 10.1109/TCC.2020.2991167

1052 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

2168-7161� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7909-3753
https://orcid.org/0000-0001-7909-3753
https://orcid.org/0000-0001-7909-3753
https://orcid.org/0000-0001-7909-3753
https://orcid.org/0000-0001-7909-3753
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0001-7907-2071
https://orcid.org/0000-0001-7907-2071
https://orcid.org/0000-0001-7907-2071
https://orcid.org/0000-0001-7907-2071
https://orcid.org/0000-0001-7907-2071
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
mailto:renhao.uestc@gmail.com
mailto:hongweili@uestc.edu.cn
mailto:dongxiao.liu@uwaterloo.ca
mailto:sshen@uwaterloo.ca
mailto:guowen.xu@foxmail.com
mailto:dr.nan.cheng@ieee.org

this goal is using standard crypto-systems (e.g., AES, RSA) to
encrypt the packet payload and the DPI rules. Unfortunately,
it is usually difficult to process DPI directly over ciphertext
domain [5]. Therefore, it is challenging and urgent to design
a privacy-preserving DPI scheme over cloud platform.

Some approaches have been proposed to offer DPI service
on the public cloud with privacy protection. The first mile-
stone-like work BlindBox [2] formally defined the security
and privacy requirements of middleboxes. It also provided
an efficient solution using symmetric encryption. BlindBox
[2] utilized garbled circuit [9] to obfuscate the DPI rules,
which could be time-consuming for large-scale connections.
Yuan et al. [10] adopted broadcast encryption [11]. It can sup-
port the sharing of encrypted rules between different connec-
tions. Later, their subsequent work [12] proposed an efficient
method that is able to verify the inspection results. Recently,
Guo et al. [13] designed a dynamic DPI scheme to support
rule update. Several public key encryption based schemes
[8], [14], [15] are also proposed to explore diverse functions
such as malware detection and decryptable matching.
Due to the using of public key crypto-system, computation
overheads are inevitably increased. As a result, the time cost
on packet sender side becomes higher. Meanwhile, the total
packet throughput is significantly decreased.

Previously proposed works have provided diverse DPI
services with different levels of privacy preservation. There
are still some issues not fully addressed. On one hand, larger
packet throughput without compromising the privacy pro-
tection is one of the crucial design goals. On the other hand,
efficient and fine-grained inspection result verification is not
well supported. These issues are challenging to solve due to
the natural conflicts between functionality, efficiency and
privacy. To tackle these challenges, we present three observa-
tions that are not considered by existing works. 1). First, in
the reality, most contents of the packet payloads are not
matched (more than 99 percent) by any DPI rules. Therefore,
these packets should be fast filtered out. Intuitively, the con-
tent filtering and exact rule matching should be conducted
separately. By doing so, the whole DPI process efficiency can
be boosted significantly. 2). Second, result verification may
introduce extra packet delay, if the results are verified before
packet forwarding. As a practical method, the verification
should be executed independently. 3). Third, since most of
the packets will not be matched, only verifying the final exe-
cution result is insufficient. Thus, the execution details
should be proved to offer a fine-grained verification.

In this paper, we propose an efficient verifiable deep
packet inspection scheme (EV-DPI) with privacy protection
over two non-collusion cloud servers. EV-DPI adapts fast
symmetric encryption primitives [16] to support privacy-
preserving DPI. EV-DPI also achieves inspection result veri-
fication using Cuckoo hashing [17], [18]. The verification and
DPI can be processed independently. This design guarantees
the high performance in terms of network latency. The main
contributions of this paper are summarized as follows.

� We propose a two-layer inspection architecture. The
first layer can fast filter out the most legitimate pack-
ets using encoded Bloom filter [19]. The second layer
supports exact rule matching using carefully tailored
conjunctive searchable encryption scheme [16]. By

doing so, EV-DPI achieves lower packet processing
cost on sender side and larger packet throughput on
middlebox side. Moreover, the intermediate and
final inspection results returned by both cloud serv-
ers can all be efficiently verified.

� EV-DPI can preserve the privacy of packet payload
and the confidentiality of DPI rules against semi-
honest cloud servers [20]. Moreover, to conceal the
size pattern (i.e., the number of keywords) of each
DPI rule, we propose a secure rule extension scheme.
By doing so, the cloud server cannot distinguish two
encrypted rules based on the size pattern. Thus, the
confidentiality of DPI rules stored on the cloud serv-
ers is further enhanced.

� Extensive experiments are conducted over Amazon
Cloud [21] to demonstrate the efficiency of EV-DPI.
In specific, the network administrator (gateway) is
simulated by a local server. The prototype of middle-
box is implemented on the cloud based on the public
DPI rule set [22]. Without compromising the privacy,
EV-DPI is more efficient in terms of packet latency
and packet throughput.

The remainder of this paper is organized as follows. In
Section 2, the system and threat models are described.
Based on the models, the design goals are presented. At
last, the building blocks are reviewed. In Section 3, we show
the design details of EV-DPI. The security analysis and the
performance evaluation are provided in Sections 4 and 5,
respectively. In Section 6, closely related works are
reviewed. Section 7 concludes the paper.

2 MODELS AND DESIGN GOALS

In this section, we first review the system and threat model.
Then, we present the design goals to capture the require-
ments of functionality, privacy and efficiency. At last, the
cryptographic primitives used as the building blocks are
briefly introduced.

2.1 System Model

As shown in Fig. 1, the proposed system consists of four
entities to capture the typical scenarios of the cloud assisted
middlebox. The gateway (GW) is the administrator of the

Fig. 1. System model.

REN ETAL.: PRIVACY-PRESERVING EFFICIENT VERIFIABLE DEEP PACKET INSPECTION FOR CLOUD-ASSISTED MIDDLEBOX 1053

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

internal network. It is responsible for key management and
DPI rule generation. At the system initialization phase, GW
outsources the encrypted DPI rule set to the middlebox.
Afterwards, all the packets sent from the internal network
will be gathered by GW. The payload of each packet should
be encoded for privacy protection. At last, the encoded
packets are redirected to middlebox (MB). The MB is imple-
mented by two non-collusion cloud servers. One is token fil-
tering server (TFS) and the other is rule matching server
(RMS). Note that, MB can be instantiated by two real or vir-
tual cloud servers. The external server provides various
services to the users of internal network that could be file
storage, e-mail, web and so on. To clarify the details of the
system, we describe the work flow as follows.

� System initialization: GW generates an encoded filter,
an encrypted rule set, and uploads them to TFS and
RMS, respectively. All the secret keys will be gener-
ated and distributed to TFS and RMS. To support
the verification of the inspection results, GW also
constructs two encoded hash tables and uploads
them to TFS and RMS.

� Packet processing: GW tokenizes the payloads of pack-
ets sent from the internal network. Each token is then
encoded. Afterwards, encoded tokens along with the
packets are redirected toMB for DPI process.

� Token filtering: This is the first layer of EV-DPI. Upon
receiving the encoded tokens, TFS fast filters out all
the matched tokens. If there is no token matched, the
traffic should be transmitted to the external server.
Otherwise, TFS and RMS will collaboratively con-
duct exact rule matching. Note that, TFS should gen-
erate the verification object for each token to prove
the execution correctness.

� Rule matching: This is the second layer that returns
the final inspection result. RMS needs to determine
whether each rule is exactly matched or not. During
the matching process, RMSmay interact with TFS. If
any rule is matched, RMS will trigger the pre-
defined actions. RMS also needs to return the result
to GW for further detection. Otherwise, the packet
should be forwarded as usual. It is also needed for
RMS to generate the verification objects.

� Verification: TFS and RMS each maintains a verifica-
tion space. They are used to store the verification
objects. The size of the verification space is decided
by GW. And GW can verify the returned results at
any time. The verification only involves GW. TFS
and RMS are unaware of when and which packet is
verified.

Life-Cycle of a Packet. Here, we review the life-cycle of a
packet to show the basic work flow. Suppose a packet
sender needs to send a packet to the external server. The
packet is first forwarded to GW. Then, the payload of the
packet is segmented into tokens. GW encodes all the tokens
and sends them to the cloud server. Each encoded token
should be tested by TFS. It filters out the tokens that also
appears in the outsourced middlebox rule. If no token is
matched, TFS can transmit the packet to the external server
as usual. Otherwise, TFS generates search tags for all the
matched tokens. Then, the search tags are sent to RMS. In

the last step, RMS conducts exact rule matching using the
search tags. If any rule is asserted to be matched, RMS may
choose to drop the packet or even cut off the connection.
Meanwhile, RMS needs to return the result to GW. If no
rule is matched, RMS forwards the packet as usual. This is
how a packet is processed and inspected.

Benefits of Using Two Non-Collusion Cloud Servers. Using
two non-collusion cloud servers to implement secure and
privacy-preserving system is a common method in public
key based schemes [15], [23]. Normally, one server carries
the computational burden and the other reveals the result.
Recently, Guo et al. [13] also adopt this design to implement
a symmetric key based scheme. By doing so, more functions
are achieved with less information leakage. In this paper,
we use this method to boost the efficiency and reduce the
information leakage simultaneously. We summarize the
benefits as follows.

1) Reduced leakage: TFS is unaware of the final match-
ing result. Thus, it is difficult to launch attacks rely on
the information of result pattern. RMS cannot access the
original encoded tokens. Moreover, some side channel
information such as the volume of matched tokens is pro-
tected from RMS.

2) Improved efficiency: First, due to the using of two cloud
servers, the interaction between MB and GW is avoided.
Thus, the network delay is also reduced. Second, TFS filters
out most of the unmatched tokens and generates new search
tokens for previously matched tokens. Then, GW is released
from heavy token encryption burden.

2.2 Threat Model

In this paper, GW is considered to be fully trusted. It is per-
mitted to have full access to all the secret keys and
encrypted packets. The cloud-assisted middlebox including
TFS and RMS are semi-honest [24], [25]. They will follow
the pre-defined protocols, yet they may be interested in the
contents of passing packets. TFS and RMS may attempt to
recover the distribution or even the contents of encrypted
DPI rule set and passing tokens. Thus, any information lea-
kages of the protocols may be abused by TFS or RMS. For
instance, the size of the DPI rule set, the matching result of
DPI rules and so on. These two servers are not allowed to
exchange any information that is not pre-permitted. For-
mally, this model is defined as two non-collusion servers
[13], [23]. Moreover, the cloud servers are possible to be
“Lazy” [12]. For economic benefit, the cloud service pro-
vider may only perform partial computational tasks (e.g.,
only 70 percent packets are inspected) to reduce the compu-
tational cost.

2.3 Design Goals

Under the system and threat model, EV-DPI should be care-
fully designed to meet the requirements of functionality,
privacy protection and efficiency. In specific, the design
goals of EV-DPI are shown as follows.

� Functionality: As the basic DPI function, rule match-
ing must be supported. Any token that appears in
rule set should be detected. Also, the corresponding
actions should be triggered. If any rule is matched,
the middlebox is required to return the encrypted

1054 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

matched rules as well as the matched tokens to GW.
Verifiability is a desirable function that should be
supported. It allows GW to verify the correctness of
inspection result.

� Privacy protection: To preserve the privacy of senders,
the contents of the packet payload and tokens should
be concealed fromMB. The confidentiality of the out-
sourced DPI rules should also be preserved.

� Efficiency: On the GW side, the token encryption
algorithm should be lightweight. On the MB side,
the unmatched tokens should be filtered out effi-
ciently. To boost the efficiency, we aim to support
paralleled computing on both GW andMB sides.

2.4 Cryptographic Primitives

Basic Cryptographic Primitives. 1). A pseudo-random function
(PRF) is a one-way function G : X �K ! Y if for all ran-
domly chosen key k 2 K, all probabilistic polynomial-time
adversary A cannot distinguish Gðk; �Þ from a real random
function fðk; �Þ fromX to Y . 2). A symmetric encryption con-
sists three polynomial-time algorithms S ¼ ðKeyGen;Enc;DecÞ.
KeyGenð�Þ can generate the secret key k. Message m is
encrypted as c ¼ Encðk;mÞ and decrypted asm ¼ Decðk; cÞ.

Bloom Filter. Bloom filter [19] is a storage-efficient data
structure that supports membership test. Given a binary
vector BF ½i� ¼ 0, where i 2 ½1; l� and l is the length of BF .
To add an element x into BF , k hash functions fh1; . . . ; hkg
are used as BF ½hjðxÞ mod l� ¼ 1. Thus, given an element
y, we can compute hjðyÞ mod l and check the value
BF ½hjðyÞ mod l�. If for all j 2 ½1; k�, BF ½hjðyÞ mod l� ¼ 1,
then y is within BF . The standard Bloom filter supports the
operation of adding new element. However, it fails to pro-
cess deletion of inserted elements. Bloom filter may introdu-
ces false positive during the membership test. The formal
analysis of the false positive rate is given in [19].

Cuckoo Hashing. Cuckoo hashing [17] is implemented by
two tables T1; T2 with same size S. Given two hash functions
h1; h2, an element e can be inserted into one of the two
locations T1½h1ðeÞ mod S�; T2½h2ðeÞ mod S�. If the locations
T1½h1ðeÞ mod S� and T2½h2ðeÞ mod S� are all occupied. Then,
it let e still take the computed location and the original ele-
ment is deleted and inserted again using the same method.
If no empty location is found during the insertion, we have
to re-build two larger hash tables. To search an element, at
most two times of hashing are required.

Tuple Set. Tuple set (T-set) is presented by Cash et al. [26].
It is an inverted index that supports searchable encryption
(encrypted keyword search). T-set consists three algorithms
G ¼ ðTsetSetup; TsetGenTag; TsetSearchÞ. An array T is
indexed by keywords. Algorithm TsetSetupðT Þ returns the
private key K and the index Tset. T-set runs stag
TsetGenTagðK;wÞ to obtain the search token stag. TsetSearch
is the search algorithm that can return the identifiers of
matched files associated with stag.

Symmetric Hidden Vector Encryption. Symmetric hidden
vector encryption (SHVE) is recently proposed by Lai et al.
[16]. SHVE is a prediction encryption that is able to deter-
mine the intersection of two sets over ciphertext domain.
Let Q be an attribute set with finite size, � be the wildcard
and Q� ¼ Q [f�g. Given a PRF F : f0; 1g� � f0; 1g�þlog� !

f0; 1g�þlog�, a symmetric encryption S ¼ ðKeyGen;Enc;DecÞ
with the same plaintext and key space f0; 1g�þlog�.
� SHVE:Setupð�Þ : It takes the security parameter � as

the input and samples a mater key mk uniformly
from f0; 1g�. The message space is defined as
M¼{“True”}. It outputs ðmk;MÞ.

� SHVE:KeyGenðmk;u 2 Qs
�Þ : u ¼ ðu1; . . . ; usÞ is the

predicate vector with s elements. We use L ¼ f1 �
li � sjuli 6¼ �g; 1 � i � jLj to denote the locations in u
that are not wildcard characters. We samples a key
K uniformly from f0; 1g�þlog� and compute k1 ¼
ð�i2½jLj�ðF ðmk; uli jjliÞÞÞ � K and k2 ¼ EncðK; 0�þlog�Þ.
Then, it outputs the decryption keyKD ¼ ðk1; k2; LÞ.

� SHVE:Encðmk;m ¼“True”; v 2 QsÞ : It takes the
master key mk, the message m and the index vector
v ¼ fv1; . . . ; vsg as the inputs. For all i 2 ½s�, it calcu-
lates ci ¼ F ðmk; vijjiÞ and outputs C ¼ fcjjj 2 ½s�g as
the ciphertext.

� SHVE:QueryðKD;CÞ : It takes the ciphertext C, the
decryption key KD as the inputs and parses them as
C ¼ fcjjj 2 ½s�g; KD ¼ ðk1; k2; LÞ. It computes K ¼
ð�i2½jLj�cliÞ � k1 and m0 ¼ DecðK; k2Þ. If m0 ¼ 0�þlog�,
it outputs “True”; otherwise ?.

3 PROPOSED SCHEME

In this section, we first give an example of real DPI rule to
show the use case of EV-DPI. Then, a brief overview of the
scheme is given. In specific, the inspection procedure of
a packet is described. Afterward, the technical details of
EV-DPI are presented. Specifically, the two-layer DPI
processing and execution result verification are described
step by step.

Example of Real DPI Rule. We give an example of a DPI
rule sampled from the public Snort rule set [22]. As shown
in Fig. 2, the pattern“Volume Serial Number” that appears
after “content:” are the keywords. And the number of this
rule is 1292 (i.e., sid:1292). Thus, this rule can be tokenized
as three keywords {“Volume”,“Serial”,“Number”}. If these
three keywords appears in the same packet in succession,
then the No.1292 rule can be asserted to be matched. For a
matched rule, the pre-defined actions should be triggered
by MB (RMS). The action could be sending an alert to GW
(network administrator), discarding the packet, cutting off
the connection, etc.

Scheme Overview. As shown in Fig. 3, a packet is used as
an example to describe the more detailed work flow. It starts
from the packet payload tokenization to the final step of EV-
DPI. We assume that the encoded token filter (ETF) and
encrypted rule set (ERS) are all already generated by GW.
ETF and ERS are then shared with TFS and RMS, respec-
tively. ETF is a Bloom filter with all the encoded keywords
of DPI rules as the elements. ERS can be parsed as
ERS ¼ ðTset; cBF Þ. Tset is the inverted index of DPI rules.

Fig. 2. An example of DPI rule.

REN ETAL.: PRIVACY-PRESERVING EFFICIENT VERIFIABLE DEEP PACKET INSPECTION FOR CLOUD-ASSISTED MIDDLEBOX 1055

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

cBF is an encrypted Bloom filter that supports conjunctive
keyword matching. Each step of EV-DPI is described as
follow.

1) Packet tokenization: Once the packet is forwarded to
GW. The payload is tokenized as ftk1; tk2; :::g.

2) Token encoding: Given the tokens, GW encodes them
as fetk1; etk2; :::g using PRF and sends them to TFS.

3) Fast token filtering: For each encoded token, TFS uses
ETF to fast filter out the unmatched tokens. This step
is the standard Bloom filter membership test.

4) Main keyword search: Let fetk1; etk2; :::etkog be the
matched token. Then, etk1 is chosen as the main key-
word. Afterward, TFS invokes TsetGenTag to gener-
ate a T-set search token stok for etk1. stok is sent to
RMS. The size of the search result jtj (number of
matched rules) are returned to TFS.

5) Token extending: Given the matched tokens fetk1;
etk2; :::etkog, TFS extends them to n tokens as fetk1;
etk2; :::etkng, where n is also the size of extended DPI
rules.

6) xtok generation: To inspect the remain tokens
fetk2; . . . etkng, TFS computes new search tokens as
xtok½ct� ¼ fxtok½ct; 2�; . . . ; xtok½ct; n�g; ð1 � ct � jtjÞ.
Afterward, TFS sends xtok½ct� to RMS.

7) Compute the locations: Upon receiving xtok½ct�, RMS
computes the locations using hash functions and
return them to TFS. Here, locations indicate the 00100

positions in a Bloom filter (not encrypted).
8) Vector encryption: TFS generates a vector vct with

value 00100 in the computed locations. Then, TFS
invokes SHVE:KeyGen to generate the search tokens
vxtokct and sends them to RMS.

9) Matching result revealing: After searching vxtokct overcBF , RMS reveals the final matching result of each
DPI rule. Once a rule is matched, pre-defined actions

will be triggered by RMS. Otherwise, the packet
should be forwarded to the external server.

10) Result verification: GW can verify the results returned
by TFS and RMS independently at any time.

3.1 Two-Layer Deep Packet Inspection

� System initialization:
In this phase, GW generates ETF and ERS. Afterwards,

ETF should be uploaded to TFS and ERS should be
forwarded to RMS. ETF serves as the first layer of EV-DPI
and ERS serves as the second layer.

Algorithm 1. Build ETF

1: Input: Select secret key KT for PRF F , keyword set of the
DPI rule R, t hash functions {h1; . . . ; ht}, binary vector BF ½�
whose length ism.

Output: ETF.
2: Set BF ½�� ¼ 0.
3: for all keywords k 2 R do
4: for i 2 ½t� do
5: Compute bk ¼ F ðKT ; kÞ.
6: Compute loc ¼ hiðbkÞ mod m, BF ½loc� ¼ 1.
7: end for
8: end for
9: Set ETF = BF .
10: Output ETF.

The generation of ETF is clearly shown in Algorithm 1.
First, each keyword in rule set R is encoded by PRF F with
secret key KT . Then, each encoded keyword is mapped into
the Bloom filter BF using t hash functions. Afterward, BF
is attached to ETF. Note that, in the reality, multiple rule
sets can be represented by the same or different Bloom fil-
ters. The design details are similar to single rule set. Here,
we only consider one rule set. At last, ETF along with the t
hash functions are uploaded to TFS.

Fig. 3. Scheme overview.

1056 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2. Build ERS

1: Input: Secret keys KT ;KS;KD for PRF F , KI;KZ;KX for
PRF Fp, KE for symmetric encryption S, mk for SHVE.
Keyword set of the DPI rule R. t hash functions
{h1; . . . ; ht}. Binary vector BF ½�whose length ism.

Output: ERS.
2: ————————————————————————
3: (a). Build an index for all the keywords using Tset:
4: for all keywords k 2 R do
5: Set list t ¼ fg.
6: Compute bk ¼ F ðKT ; kÞ,KE ¼ F ðKS; bkÞ.
7: RðkÞ : all the rules that include keyword k.
8: for rid 2 RðkÞ do
9: Set counter ct ¼ 1.
10: Compute xrid ¼ FpðKI; ridÞ.
11: Compute zk ¼ FpðKZ; kjjctÞ, yct ¼ xrid � z	1k .
12: Compute eridct ¼ EncðKE; ridÞ.
13: Set ct ¼ ctþ 1 and add ðyct; eridctÞ to t.
14: end for
15: Set T½bk� ¼ t.
16: end for
17: Run ðTset;KRÞ TsetSetupðTÞ.
18: ————————————————————————
19: (b). Extend the DPI rules into same size:
20: for all rules R
 R andR� ¼ ? do
21: Parse each rule R as fk1; . . . ; kog.
22: Compute fbk1; . . . ; bkog ¼ fF ðKT ; k1Þ; . . . ; F ðKT ; koÞg.
23: for i ¼ oþ 1; i � n; iþþ do
24: Compute bki ¼ F ðKD; bk1jj:::jjbkojjiÞ.
25: end for
26: Set R� ¼ fbk1; . . . ; bkng andR� ¼ R� [R�.
27: end for
28: ————————————————————————
29: (c). Map the extended rules into an encrypted Bloom filter:
30: Set BF ½�� ¼ 0.
31: for all encoded keywords bk 2 R� do
32: for all rid 2 R�ðbkÞ do
33: Compute xrid ¼ FpðKI; ridÞ.
34: for j ¼ 1; j � t; jþþ do
35: Compute loc ¼ hjðgFpðKX;bkÞ�xridÞ mod m.
36: Set BF ½loc� ¼ 1.
37: end for
38: end for
39: end for
40: Compute cBF ¼ SHVE:Encðmk;“True”; BF Þ.
41: ————————————————————————
42: Return ERS¼ ðTset; cBF Þ.

To implement the second layer of EV-DPI, we build an
encrypted index (ERS) of the keyword set R. As illustrated
in Algorithm 2, ERS consists of three parts. The first part is
an encrypted inverted index Tset [26]. The construction of
Tset is similar to OXT [26]. The ID of each DPI rule is
denoted as rid. For the rules that contains the same keyword
k (rid 2 RðkÞ), the IDs of the rules will be attached to the
list t. Note that, PRF Fp can map a message to Z�p, where p is
a large prime number. TsetSetup also outputs a secret
key KR, that is used to generate search tokens for Tset.
The implementation details of Tset can be found in [26]. The
second part is an extension method of all the DPI rules. The
main purpose of this operation is to hide the number of key-
words in each rule. Therefore, we choose to extend it to the

same size. Suppose the largest number of keywords in a sin-
gle rule is n. Given any rule that contains o keywords, n	 o
dummy keywords will be added. The dummy keywords are
generated by embedding real keywords with the sequence
numbers. The extended encoded keywords set is denoted
as R�. In the third part, we map each encoded keyword bk
into a Bloom filter and encrypt it as cBF using SHVE. In this
step, the relationship between each encoded keyword bk and
the rule identifier rid is build and encrypted. At last, the
Algorithm. 2 returns ERS¼ ðTset; cBF Þ. GW uploads RMS
and the secret keys fKR;KD;KX;mkg to TFS.
� Packet processing:
Packets sent from the internal network are all conver-

ged to GW. First, GW tokenizes the packet payload using
delimiter-based scheme [2]. Delimiters could be any sym-
bols such as space, comma, connector, etc. For instance,
given a string “login.net?user=Allen”, the typical tokens
could be “login.”, “login.net”, “user=Allen”, etc. Formally,
given a long string (i.e., the packet payload), it is segmented
as follows. Let fS1; S2; . . . ; Smg be all the non-delimiter
strings and fP1; P2; . . . ; Png be all the delimiters. They both
appear in the order of their indexes. Then, the algorithm
scans the payload and finds the first delimiter P1. If the S2

appears after P1, the generated tokens are fS1; S1P1;
S1P1S2g. Then, the algorithm repeats the same method for
P2. If P2 just appears after P1, it continues to find S3. Then,
the generated tokens are fS1; P1P2; ; S1P1P2g, and the link of
all the strings from P2 to S3 (S3 is not included). The algo-
rithm can segment the whole payload recursively using this
method. Second, each token tk is encoded as
etk ¼ F ðKT ; tkÞ. Finally, all the encoded tokens and the
packets are sent toMB (TFS).
� Fast token filtering:
TFS uses ETF to filter out most unmatched tokens.

Specifically, given an encoded token etk, TFS computes t
hash functions as:

loc1 ¼ h1ðetkÞ mod m; . . . ; loct ¼ htðetkÞ mod m:

Then, TFS checks whether ETF½loci� ¼ 1 holds, where
1 � i � t. If so, token etk can be asserted to be matched. TFS
continues to check the remain tokens until all the encoded
tokens of a packet are inspected. If there is no token
matched, the packet should be forwarded to external server
as usual. Otherwise, TFS continues to conduct exact rule
match with the help of RMS.
� Exact rule matching:
In this phase, TFS should generate search trapdoors

using matched tokens. Then TFS sends them to RMS to
find out the final rule matching results. Suppose a series of
matched tokens fetk1; . . . ; etkog appear one after the other.
Then, fetk1; . . . ; etkog will be encrypted as a trapdoor that
supports conjunctive keywords matching [16], [26] over
ERS. The details are shown as follows:

Step 1: Given a series of matched tokens fetk1; . . . ; etkog.
TFS randomly chooses an encoded token as the main token.
Without loss of generality, we let etk1 be the main token.
Then, TFS computes stok ¼ TsetGenTagðKR; etk1Þ and
sends stok to RMS.

Step 2: RMS first parses ERS as ðTset; cBF Þ. Then, RMS
invokes t ¼ TsetSearchðstok;TsetÞ to obtain the search
result t of the main token. If t is empty (no rule is matched),

REN ETAL.: PRIVACY-PRESERVING EFFICIENT VERIFIABLE DEEP PACKET INSPECTION FOR CLOUD-ASSISTED MIDDLEBOX 1057

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

RMS let TFS transmit the packet to external server. And
TFS should continue to process the next packet. Otherwise,
the number of matched rules jtjwill be returned to TFS.

Step 3: Upon receiving jtj, TFS extends the tokens as
etki ¼ F ðKD; etk1jj:::jjetkojjiÞ, where i ranges from oþ 1 to n
with step length 1. Then, for ct ranges from 1 to jtj and j
ranges from 2 to n, both with step length 1; TFS computes

xtok½ct; j� ¼ gFpðKZ;etk1jjctÞ�FpðKX;etkjÞ;

and sends xtok½ct� ¼ fxtok½ct; 2�; . . . ; xtok½ct; n�g to RMS.
Step 4: For ct ranges from 1 to jtj and j ranges from 2 to n,

both with step length 1; RMS parses the result pairs ðyct;
eridctÞ from t and computes:

xtag ¼ xtok½ct; j�yct ;

locct;j;1 ¼ h1ðxtagÞ mod m; . . . ; locct;j;t ¼ htðxtagÞ mod m:

Then, RMS returns flocct;j;1; . . . ; locct;j;tg to TFS.
Step 5: For ct ranges from 1 to jtj and j ranges from 2 to n,

both with step length 1; TFS initializes vct ¼ �m and sets
vct½locct;j;1�; . . . ; vct½locct;j;t� ¼ 1. Afterwards, TFS invokes

vxtokct ¼ SHVE:KeyGenðmk; vctÞ:
Finally, TFS sends fvxtok1; . . . ; vxtokjtjg to RMS.

Step 6: Upon receiving fvxtok1; . . . ; vxtokjtjg, for ct ranges
from 1 to jtj, RMS invokes

hct ¼ SHVE:Queryðvxtokct; cBF Þ:
Let G ¼ fg be the result set. If hct ¼“True”, the correspond-
ing DPI rule is exactly matched. RMS should trigger the
action and set G ¼ G [feridctg. The matched encrypted rule
set G along with the uploaded trapdoors should be returned
to GW for further analysis. If no hct equals to “True”, packet
will be transmitted to external server.

Discussion. The second layer of EV-DPI can support
exactly rule matching using the technique of conjunctive
searchable encryption [16]. As we know, compared to the
previously proposed OXT [26], the used method in this
paper introduces an additional communication round
between the two cloud servers. Here, we argue that it is wor-
thy to do so. First, OXT discloses the result pattern, which
indicates the intermediate results (the search result of the
partial of the keywords). This information leakage can be
used to recover the search keywords [27], [28]. Thus, the
cloud server is required to return the final result directly.
Second, through the experiment, we find that few of the
tokens (near 0.1 percent) are matched. And only matched
tokens introduces one more round of communication. So,
the extra delay is worthy for the benefit of less information
leakage.

3.2 Execution Result Verification

As discussed in Section 2.2, the cloud server is possible to be
“Lazy”. Thus, the correctness of the returned result should
be verified. In specific, the motivation of offering verification
service to theGW (middlebox owner) are mainly two-folds.

First, in the reality, most of the packets will not be
matched to any rule. Thus, the cloud server can just forward
parts of the packets without inspection. It is also difficult for

GW to detect such irresponsible behavior. Concretely, if 30
percent of the packets are not inspected, then the cloud ser-
vice provider can save 30 percent of the computing resour-
ces. Thus, the verification is necessary to resist such “Lazy”
cloud servers.

Second, any outsourced middlebox is the potential attack
target of both internal and external attackers [5], [29]. It
should be the cloud service provider’s responsibility to
resist the attacks. Thus, the cloud server needs to use the
verification objects to prove that it strictly follows the proto-
cols. Moreover, the verification offers a full control of the
outsourced middlebox. GW can also measure the quality of
the cloud computing service through verifying the inspec-
tion results.

In this paper, the fast filtering processing accomplished
on TFS, and the exact rule matching conducted on RMS
should all be verified by GW.
� Verification on TFS:
We use Bloom filter [19] to support the membership

checking of the encoded tokens. And only fast hashing oper-
ations are conducted. Thus, the verification of the returned
result is simple. If a token is asserted to be matched, the
encoded token itself is the verification objective (VB). For an
unmatched token, VB should be the encoded token and the
hash functions that maps the token into the positions with
value 0. Afterwards, VBs are stored on verification space. To
verify the matched tokens, GW redo the hashing operations
which is exactly the same as the filtering process. If all the
mapped positions of the Bloom filter are set as 1, GW will
accept the result. Otherwise, the result is incorrect and should
be rejected. To verify the unmatched tokens, only one-time
hashing is required. If the mapped position has the value 0,
the result can be accepted. Otherwise, GW rejects the result
and sends alert to TFS.
� Verification on RMS:
The verification of exact rule matching on RMS are

accomplished with two steps. The first step is verifying the
correctness of the search results on Tset and the second step
is verifying the query results on cBF . In the view of search-
able encryption (SE) [30], [31], the first step is to verify the
result of single keyword search on Tset. Here, we adopt a
latest non-dictionary verifiable SE scheme [18] to support
such function. The details are shown as follow.

GW generates hash tables that consists of all the possible
verification objectives and outsources them to RMS. For all
the keywords k 2 R, we select a secret key KV for PRF F .
Then, GW computes bk ¼ F ðKT ; kÞ and ek ¼ F ðKV ; 0jjbkÞ. Let
jRj be the number of keywords; ðh1; h2Þ be the hash func-
tions used for building hash tables. Then, GW maps all the
keywords R into two cuckoo hash tables ðT �1 ; T �2 Þ with size
jRj þ 1. For each ek, we have T �1 ½h1ðekÞ� ¼ ek or T �2 ½h2ðekÞ� ¼ ek.
For x ¼ 1; 2, i ranges from 1 to jRj þ 1 with step 1, if
T �x ½i� ¼ ek, GW calculates

Tx½i� ¼ fek; F ðKV ; xjjijjekÞ; F ðKV ; 3jjekjjRðkÞÞg;
otherwise, GW computes

Tx½i� ¼ fnull; F ðKV ; xjjijjnullÞ; nullg:
Therefore, for each ek, one of the following two equations
should hold.

1058 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

T1½h1ðekÞ� ¼ fek; F ðKV ; 1jjh1ðekÞjjek; F ðKV ; 3jjekjjRðkÞg;
T2½h2ðekÞ� ¼ fek; F ðKV ; 2jjh2ðekÞjjek; F ðKV ; 3jjekjjRðkÞg:

�

At last, GW shares the secret keyKV with TFS and outsour-
ces fT1½��; T2½��g along with fh1; h2g to RMS.

To support verification on RMS, each main token etk
(i.e., token used to search on Tset) should be encoded
again as fetk ¼ F ðKV ; etkÞ. Afterwards, fetk is sent to RMS.
Let t be the search result on Tset. RMS searches the two
hash tables as:

fa1; b1; c1g ¼ T1½h1ðfetkÞ�; fa2; b2; c2g ¼ T2½h2ðfetkÞ�:
If fetk ¼ a1, set pf ¼ c1 and if fetk ¼ a2, set pf ¼ c2. Otherwise,
pf ¼ fa1; b1; a2; b2g. Then, RMS outputs the verification

objective VB ¼ ffetk; t; pfg of the searched encoded token etk

and stores it on the verification space.
To verify the search result of etk,GW first checks whether

pf ¼ c1 or pf ¼ c2. If so, it continues to check if pf ¼
F ðKV ; 3jjfetkjjtÞ holds. If this equation holds, GW accepts the
result. Otherwise, the result should be rejected. If pf ¼
fa1; b1; a2; b2g and fetk 2 fa1; a2g or t 6¼ ? or b1 6¼ F ðKV ;
1jjh1ðfetkÞjja1Þ or b2 6¼ F ðKV ; 2jjh2ðfetkÞjja2Þ, the result should
be rejected; otherwise, accepted.

Note that, the search results on cBF are verified by GW.
To boost the efficiency, TFS first links the remain n	 1
tokens as one token. Then, it is encoded using PRF F with
secret key KV . Thus, only one-time verification is required.
Moreover, the generation of the hash tables and VBs are
exactly the same as the main keyword. Here, we omit the
details.

4 SECURITY ANALYSIS

In this section, we discuss the security and privacy pro-
perties of EV-DPI according to the threat model and design
goals presented in Section 2. In specific, two issues are
considered. One is the privacy of packet payload and the
other is the confidentiality of DPI rules.
� Privacy of packet payload:
The content of packet payload is tokenized and encoded

using PRF F with secret key KT . In the view of TFS, the
encoded tokens are randomized. Thus, it is hard to be recov-
ered by a polynomial-time attacker according to the security
property of PRF. For the matched tokens, TFS generates
stags and xtoks using four secret keys fKR;KD;KZ;KXg.
These four secret keys are kept private from RMS. There-
fore, the generation of stags and xtoks has further promoted
the security level of encoded tokens. In the view of RMS, no
additional information can be deduced from received stags
and xtoks. Note that, RMS cannot access the original
encoded tokens. Moreover, the packet payload itself can be
encrypted by using any secure and efficient end-to-end
encryption method such as AES [2]. Thus, both TFS and
RMS cannot infer the plaintext of passing encrypted packet
payload. In a word, the privacy of packet payload is well-
preserved by using PRFs.
� Confidentiality of DPI rules:
The confidentiality of outsourced DPI rules directly relies

on the design details of two encrypted filters ETF, ERS and
the Cuckoo hash tables generated for result verification. We

discuss the confidentiality of ETF, ERS and the Cuckoo hash
tables successively.

1) ETF is constructed using standard Bloom filter [19]. If
the plaintext of each keyword is directly mapped into the
Bloom filter, an attacker can infer the data distribution
through large-scale membership test. In EV-DPI, each key-
word is first encoded using PRF F with the secret key KT .
By doing so, the distribution of data is concealed. Therefore,
it becomes difficult for RMS to recover the original data.
Moreover, similar construction method used in [32] has been
theoretically and practically proved to be semantic secure.

2) ERS can be parsed as ERS¼ ðTset; cBF Þ. Thus, the con-
fidentiality of DPI relies on the instantiation approach of
Tset and the encryption method SHVE used for cBF . In EV-
DPI, we follow the instantiation method of Tset presented
in [26], which is proofed to be secure. SHVE is constructed
using PRFs and secure symmetric encryption. Formally, in
[16], the authors proved that SHVE is selectively simula-
tion-secure. Therefore, cBF can preserve the confidentiality
of the dataset (i.e., xtags). Note that, TFS cannot access
Tset; cBF . Moreover, the final matching result is also kept
secret from TFS. Thus, it is hard for TFS to recover the
encrypted DPI rules through searching huge number of
tokens and analyzing the search result.

3) Three elements in Cuckoo hash tables fT1½��; T2½��g are
all encoded by PRF F with secret key KV . And only GW is
allowed to accessKV . Thus, RMS cannot distinguish the ele-
ments in fT1½��; T2½��g without KV . The verification objects
stored on TFS leaks no additional information. Therefore,
the proposed verification scheme can well conceal the origi-
nal DPI rules.

In summary, the confidentiality of outsourced DPI rules
is well preserved.

Discussion. Here, two critical security issues related to
EV-DPI are discussed.

1) As shown in Algorithm 2, some dummy keywords are
added into each rule. Thus, in the exactly rule matching
phase, each query and rule are extended to the same size.
RMS then cannot distinguish two queries or two rules
through the number of tokens or keywords. Also, the size of
each encrypted rule is exactly the same. Therefore, the cloud
server is unable to distinguish an individual rule through
this side channel information.

2) Another important issue is the randomness of encoded
tokens and keywords. Since PRFs provides no randomness
over the same inputs, the equality between different
encoded tokens and keywords are revealed. To address this
issue, there are two existing methods [2], [10] are proposed.
a). The first one is presented by Sherry et al. [2]. They con-
struct two synchronization tables over the middlebox and
the packet sender. In the table, each entry is a counter for a
token. And the counters in two tables are updated simulta-
neously when a token appears repeatedly. Then, each token
is encoded together with the counter. Therefore, both packet
sender and middlebox have to construct and maintain two
tables. Moreover, the message space of tokens could be
large, which will definitely introduce large tables. b). To
mitigate this problem, Yuan et al. [10] choose to trade stor-
age for the efficiency. The main idea is to attach an integer
number behind the token or keyword before encoding.
Thus, each token has multiple encoded versions. All the

REN ETAL.: PRIVACY-PRESERVING EFFICIENT VERIFIABLE DEEP PACKET INSPECTION FOR CLOUD-ASSISTED MIDDLEBOX 1059

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

versions will be used repeatedly. The only cost is that the
size of DPI rule has to be extended. According to the analy-
sis over real dataset, the authors find that 3 versions are ade-
quate. However, this method still cannot provide real or
even pseudo randomness. We argue that this could be an
open problem of symmetric key based schemes.

5 PERFORMANCE EVALUATION

In this section, a comprehensive evaluation on the perfor-
mance of EV-DPI is given. In specific, the functionality and
efficiency are discussed. We also compare the experiment
results with the latest proposed scheme GWJ [13] which is
also designed based on symmetric key encryption.
� Functionality:
First, EV-DPI supports basic DPI rule matching over

ciphertext domain. It is also supported in previously pro-
posed schemes [2], [10], [14], [33]. Second, EV-DPI can
return the matching details to GW for further analysis. Such
as the encrypted rule identification, intermediate result, etc.
Third, token-level verification is supported that allows GW
to verify the matching result of each passing token. Thus,
EV-DPI has achieved the comprehensive design goals in
terms of functionality.

EV-DPI adopts a two-layer inspection architecture. The
first layer fast filters out suspicious packets. The second layer
could be enabled to decrypt the suspicious packets and
inspect the packets in the plaintext domain. For instance, if
some tokens or basic rules are matched, then such packet
should be considered as dangers packet. The confidentiality
of this packet will not be protected. Thus, the middlebox can
decrypt it and perform complex inspection rules in the plain-
text domain. This method is demoted as probable cause privacy
[2]. By dong so, the basic DPI functions is supported and the
privacy is preserved. Moreover, the advanced functions,
including complex regular expression and machine learning
[34] based detection can all be well supported.
� Implementation details:
The gateway is simulated by a local server. It offers Intel

Xeon E5-2620CPU (2.1GHz) and 32GBmemory. Themiddle-
box is simulated on the Amazon Cloud with instance
“c4.4xlarge”. This instance provides Intel Xeon E5-2666 CPU
(2.9GHz) and 30GBmemory. Through the test, themaximum
network throughput of this instance is nearly 4.9 Gbit/s. Since
EV-DPI supports parallel processing, the middlebox also can
be simulated by multiple cloud servers. For instance, if the
function of TFS is implemented over multiple servers, the
inspection efficiency can be significantly improved. Especially
when larger-scale of packets and connections need to be

processed. The communication between gateway and mid-
dlebox is not simulated in the real world. The additional com-
munication cost is mainly brought by the encoded tokens
generated by gateway. These tokens will be sent from gate-
way to middlebox. Thus, we can directly compute the size of
the total tokens based on the implementation details of PRF.
The operation system is Linux and the programming lan-
guage is Java. To boost the efficiency, the multi-threading
technique is applied for every phase that supports parallel
processing. The lightweight public instruction detection rule
set Snort [22] is adopted. The public intrusion detection evalu-
ation dataset DARPA [35] is used. We use OpenSSL to imple-
ment cryptographic tools. The HMAC-SHA2 is used to
instantiate PRFs and the output is truncated as 128 bits. AES-
128 is adopted as the symmetric encryption.
� Efficiency evaluation on GW:
Initialization Overhead. In EV-DPI, the initialization phase

can be divided into three parts. That are the construction of
encrypted filter ETF, the index ERS and the Cuckoo hash
tables fT1½��; T2½��g. As shown in Fig. 4a, the time costs of EV-
DPI and GWJ [13] increase linearly with the number of
rules. When the number of rules reaches 3000, the total cost
of EV-DPI is roughly 3.82s. The construction of ERS takes
nearly 3.1s while ETF and fT1½��; T2½��g only cost 0.23s and
0.49s, respectively. As shown in Algorithm 2, modular
exponential operations are conducted to build cBF . Thus,
the computation of ERS costs much more time than ETF
and fT1½��; T2½��g. Since only PRFs and symmetric encryption
are used, GWJ requires totally 0.72s to build the index. Both
schemes let GW tokenize and encode the packet payload.
Thus, only one-time initialization is required (i.e., constant).
Thus, we argue that 3 seconds additional cost is acceptable.

Packet Processing Time. Packets gathered by GW are all
tokenized and encoded before being uploaded to MB. For
each token, EV-DPI only requires one-time PRF calculation
while GWJ needs to conduct two-time of PRF calculation
and one-time symmetric encryption. Therefore, the total
packet processing time is significantly reduced. As shown
in Fig. 4b, with the increasing of the number of packets, the
time costs of EV-DPI and GWJ increase in linear. When the
number of packets reaches 106, the time cost of EV-DPI and
GWJ are roughly 500s and 1400s, respectively.

Communication Overhead. The communication overhead
between GW and MB depends on the size of encoded
tokens. It is determined by the encoding method. For EV-
DPI, each token is encoded by a PRF with 128 bits (trun-
cated) output. For GWJ, the encoded token consists of three
parts. In specific, two parts are computed using PRF and
one part is the ciphertext of the token. GWJ uses the same

Fig. 4. Performance comparison on GW side.

1060 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

HMAC and truncates the output as 128 bits. As shown
in Fig. 4c, the costs of EV-DPI and GWJ are 152.6 MB and
352.9 MB, respectively, when the number of tokens is 107. In
practice, the communication latency is a crucial factor that
significantly affects the whole performance of the system.
Since EV-DPI produces smaller encoded tokens, it can
achieve lower communication latency.

Verification Time. Since EV-DPI is able to support inspect
result verification on both two cloud servers, we evaluate
the efficiency respectively. For each server, the whole verifi-
cation process consists of two parts. One is the generation of
verification objects (VBs) and the other is verifying the
result based on VBs. As shown in Fig. 4d, GW costs much
more time to verify the result returned by TFS than RMS.
Because the matching result of every token on TFS should
be verified but only about 0.1 percent packets are matched
on RMS. Roughly, GW takes 10 percent time to verify the
result returned by RMS. When the number of tokens
reaches 107, the total time cost is 300s. Note that, the total
cost includes the generation of VBs, the interaction latency
between GW andMB, and the verification result revealing.
� Efficiency evaluation onMB:
We evaluate the packet throughput of MB to prove the

efficiency, which is the key performance metric. To inspect
one packet, all the encoded tokens are first fast filtered by
TFS. Then, to support exact rule matching, additional com-
putation and interaction with RMS are required. Since the
membership test time for one token over the Bloom filter is
constant, the whole-time cost of inspection over MB is sig-
nificantly boosted. The reason is that only very few tokens
are matched on TFS. From the result of experiment, we find
that roughly 7.5 percent time is consumed for exact rule
matching. And the proportion of two parts are clearly
shown in Fig. 5. To inspect a large number of packets that
reach one million, the whole time cost of EV-DPI is 997s. In
order to support rule update, GWJ [13] needs to check the
rules one by one for each token. So, the time cost of one
token matching increases linearly with the number of DPI
rules. It takes 2717s to inspect one million packets. On aver-
age, the total latency for single packet inspection of EV-DPI
is 2.1 ms and GWJ is 3.7 ms. Thus, EV-DPI has improved
the packet throughput and reduced the latency.

Conclusion. Here, we give a conclusion of the main differ-
ences between the baseline scheme GWJ [13] and EV-DPI.

The first difference is the functionality. GWJ has conside-
red the issue of rule update. The authors utilize two non-
collusion servers to support the update of DPI rules. We
acknowledge that this function is useful and it deserves
further study. In EV-DPI, we target on the inspection result
verification, which offers a strong control of outsourcedmid-
dlebox. The second difference is the initialization cost. GWJ
has only built one encrypted filter for all the DPI rules. In
EV-DPI, two encrypted filters are built. One is used for fast
token filtering and the other is used for exact rule matching.
Therefore, EV-DPI causes more initialization costs than
GWJ. Note that, both schemes only require one-time initiali-
zation for all the connections. In anther word, the cost is irrel-
evant to the volume of network traffic. The third difference is
the token generation. One encoded token in GWJ contains
three parts. In EV-DPI, one encoded token only contains one
part. Thus, EV-DPI has reduced the token generation and
communication costs. The fourth difference it the inspection
efficiency. EV-DPI can filter out most of the regular packets
efficiently in the first place. Thus, EV-DPI has improved the
inspection efficiency.

Discussion. The accuracy of the inspection result is an
important issue that should be considered. In specific,
inspection accuracy is the ratio of packets that should be
matched to the given DPI rule, yet they are wrongly
regarded as regular packets. In the proposed EV-DPI, if a
packet matches a DPI rule, the packet will be captured in
the second layer inspection. It is guaranteed by the adopted
searchable encryption technique [16]. However, EV-DPI
cannot support all the DPI rules [22] in the plaintext
domain. For EV-DPI, the fraction of addressable rules in the
ciphertext domain is 67 percent, which is the same as Blind-
Box [2] and GWJ [13]. It is worthy to note that EV-DPI can
increase the overall ratio of addressable rules if probable
cause privacy is well supported. Thus, we acknowledge that
how to efficiently support probable cause privacy is an impor-
tant and challenging future work.

6 RELATED WORK

In this section, we give a brief review of previously pro-
posed schemes that are closely related to this paper. A con-
siderable amount of works is presented towards diverse
secure and privacy-preserving network functions for out-
sourced middleboxes [36]. Roughly, they can be divided
into two categories. The privacy-preserving DPI schemes
[2] can inspect the packet payload and the secure header
matching schemes [37] can detect the packet header. And
all the works [5] explore diverse functions over ciphertext
domain. We also discuss the topic of searchable encryption
[38] used in the second layer of EV-DPI.
� Privacy-preserving DPI:
Symmetric key Based Schemes. The first privacy-preserving

DPI scheme named as BlindBox is proposed in [2]. BlindBox
provides a definition of the threat model and the system
model to lay a foundation of this topic. It assumes that there
are two connections between the packet sender and the
receiver. One is the traditional TCP connection and the
other is a virtual connection used for payload inspection.
The payload is first tokenized and then encrypted using
AES. And the DPI rules are obfuscated using garbled circuit

Fig. 5. Packet throughput of MB.

REN ETAL.: PRIVACY-PRESERVING EFFICIENT VERIFIABLE DEEP PACKET INSPECTION FOR CLOUD-ASSISTED MIDDLEBOX 1061

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

[9]. Yuan et al. [10] utilize broadcast encryption [11] to con-
trol the membership of the network. Thus, all the autho-
rized users can share the same encrypted DPI rules. They
also leverage Cuckoo hash [17] to fast filter the passing
tokens. Yuan et al. [12] also explore anther important issue,
that is the verification of the DPI execution results. In [12],
the verification technique ringer [5] is adopted. The authors
extend the basic scheme to support multiple middleboxes,
which has the potential to support service function chain
[39]. Lan et al. directly use searchable encryption scheme
without any modification to implement privacy-preserving
DPI. Thus, it may suffer from higher packet latency.
Recently, Guo et al. [13] achieve dynamic DPI over two non-
collusion cloud servers, which allows the middlebox to
update the encoded DPI rules. The system and threat mod-
els of this scheme are similar to EV-DPI. EV-DPI has not
only improved the efficiency, but also provided fine-grained
result verification.

Public Key Based Schemes. The first public key basedprivacy-
preserving network function outsourcing scheme is presented
by Melis et al. [23]. The somehow homomorphic encryption
(BGN) [40] is used to support additive and one-time multipli-
cative homomorphic operations over the ciphertext domain.
Our previously proposed scheme [15] also utilize BGN to pro-
cess DPI and machine learning based malware detection.
Similarly, Fan et al. [8] also leverage homomorphic encryption
to support DPI as well as malware detection. Recently, a
scheme based on decryptable searchable encryption [41]
named as BlindIDS is presented by Canard [14]. BlindIDS
allows the packet receiver directly decrypt the received tokens
to verify that whether the tokens are generated and encrypted
correctly.
� Secure header matching:
The first secure headermatching is proposed in [33] by Lan

et al. The authors design a new algorithm named as Prefix-
Match to support the prefixmatching over ciphertext domain.
PrefixMatch is implemented in [33] and is proved to be quite
efficient. Guo et al. [37] convert the header matching problem
into privacy preserving range query [42], [43] over ciphertext
domain. The numerical ranges in the rules are encrypted
using order-revealing encryption (ORE) [44]. The right cipher-
text of ORE can achieve semantic secure under chosen plain-
text attack. Guo et al. [13] also leverage ORE to support
stateful firewall, which lays a foundation for the real deploy-
ment of headermatching based network functions.
� Searchable encryption:
As pointed out by Lan et al. [33], searchable encryption

(SE) [38] can be adopted to support privacy preserving DPI.
Moreover, the recent advancement of secure range query
[25] shows that SE can also be adapted to support semantic
secure and efficient range query. Thus, we argue that the SE
techniques have the potential for processing the diverse out-
sourced network functions. SE was originally designed for
keyword search [30] over ciphertext domain. With the fast
development of this area, many useful properties such as
multi-keyword search [45], conjunctive keyword search
[16], [26] and even privacy preserving machine learning
[46] are supported. In this paper, we adapt the scheme pre-
sented in [16] to implement the second layer of EV-DPI. In
[16], the information leakage of the intermediate search
result (result pattern) is formalized and concealed.

7 CONCLUSION

In this paper, we have proposed an efficient verifiable deep
packet inspection (EV-DPI) scheme with privacy preserva-
tion. EV-DPI can well support the verification over final and
intermediate inspection results. Both inspection and verifi-
cation protocols are able to preserve the privacy of packet
payload and confidentiality of DPI rules. We have demon-
strated the high performance of EV-DPI through extensive
experiments and compared the results with the existing
scheme. In the future, we will explore the blockchain techni-
ques and learning-based approach to secure diverse out-
sourced middlebox services.

ACKNOWLEDGMENTS

The authorswould like to thank the anonymous reviewers for
their important comments to improve the quality of this
article. This work was supported by the National Key R&D
Program of China under Grants 2017YFB0802300 and
2017YFB0802000, the National Natural Science Foundation of
China under Grants 61972454, 61802051, 61772121, 61728102,
and 61472065, the Peng Cheng Laboratory Project of Guang-
dong Province PCL2018KP004, the Guangxi Key Laboratory
of Cryptography and Information Security under Grant
GCIS201804, the China Scholarship Council (CSC) NO.
201706070048. Special thanks should be given to the professor
and research colleagues of BBCR Lab at University of Water-
loo for the valuable discussion.

REFERENCES

[1] Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Designing
optimal middlebox recovery schemes with performance guaran-
tees,” IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2373–2383,
Oct. 2018.

[2] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: Deep
packet inspection over encrypted traffic,” in Proc. ACM SIG-
COMMConf., 2015, pp. 213–226.

[3] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. Shen, “Cost-
efficient resource provisioning for dynamic requests in cloud
assisted mobile edge computing,” IEEE Trans. Cloud Comput., to
be published, doi: 10.1109/TCC.2019.2903240.

[4] X. Liu, R. Deng, K. R. Choo, and Y. Yang, “Privacy-preserving out-
sourced support vector machine design for secure drug discov-
ery,” IEEE Trans. Cloud Comput., to be published, doi: 10.1109/
TCC.2018.2799219.

[5] C. Wang, X. Yuan, Y. Cui, and K. Ren, “Toward secure outsourced
middlebox services: Practices, challenges, and beyond,” IEEE
Netw., vol. 32, no. 1, pp. 166–171, Jan./Feb. 2018.

[6] N. Cheng et al., “Space/Aerial-assisted computing offloading for
IoT applications: A learning-based approach,” IEEE J. Sel. Areas
Commun., vol. 37, no. 5, pp. 1117–1129, May 2019.

[7] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and
privacy-enhanced federated learning for industrial artificial
intelligence,” IEEE Trans. Ind. Inform., to be published, doi:
10.1109/TII.2019.2945367.

[8] J. Fan, C. Guan, K. Ren, Y. Cui, and C. Qiao, “SPABox: Safeguard-
ing privacy during deep packet inspection at a middlebox,” IEEE/
ACM Trans. Netwo., vol. 25, no. 6, pp. 3753–3766, Dec. 2017.

[9] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and
F. Koushanfar, “TinyGarble: Highly compressed and scalable seq-
uential garbled circuits,” in Proc. IEEE Symp. Security Privacy,
2015, pp. 411–428.

[10] X. Yuan, X. Wang, J. Lin, and C. Wang, “Privacy-preserving deep
packet inspection in outsourced middleboxes,” in Proc. 35th Annu.
IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[11] T. V. X. Phuong, G. Yang, W. Susilo, and X. Chen, “Attribute
based broadcast encryption with short ciphertext and decry-
ption key,” in Proc. Eur. Symp. Res. Comput. Secur., 2015,
pp. 252–269.

1062 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCC.2019.2903240
http://dx.doi.org/10.1109/TCC.2018.2799219
http://dx.doi.org/10.1109/TCC.2018.2799219
http://dx.doi.org/10.1109/TII.2019.2945367

[12] X. Yuan, H. Duan, and C. Wang, “Bringing execution assurances
of pattern matching in outsourced middleboxes,” in Proc. IEEE
24th Int. Conf. Netw. Protocols, 2016, pp. 1–10.

[13] Y. Guo, C. Wang, and X. Jia, “Enabling secure and dynamic deep
packet inspection in outsourced middleboxes,” in Proc. 6th Int.
Workshop Security Cloud Comput., 2018, pp. 49–55.

[14] S. Canard, A. Diop, N. Kheir, M. Paindavoine, and M. Sabt,
“BlindIDS: Market-compliant and privacy-friendly intrusion dete-
ction system over encrypted traffic,” in Proc. ACM Asia Conf. Com-
put. Commun. Security, 2017, pp. 561–574.

[15] H. Li, H. Ren, D. Liu, and X. Shen, “Privacy-enhanced deep packet
inspection at outsourced middlebox,” in Proc. 10th Int. Conf.
Wireless Commun. Signal Process., 2018, pp. 1–6.

[16] S. Lai et al., “Result pattern hiding searchable encryption for con-
junctive queries,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2018, pp. 745–762.

[17] G. Levy, S. Pontarelli, and P. Reviriego, “Flexible packet matching
with single double cuckoo hash,” IEEE Commun. Magazine,
vol. 55, no. 6, pp. 212–217, Jun. 2017.

[18] W. Ogata and K. Kurosawa, “Efficient no-dictionary verifiable
searchable symmetric encryption,” in Proc. Int. Conf. Financial
Cryptogr. Data Security, 2017, pp. 498–516.

[19] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[20] Y. Zhang, C. Xu, X. Lin, and X. Shen, “Blockchain-based
public integrity verification for cloud storage against procras-
tinating auditors,” IEEE Trans. Cloud Comput., to be published,
doi: 10.1109/TCC.2019.2908400.

[21] “Amazon cloud,” Accessed: Mar. 27, 2019, 2019. [Online]. Avail-
able: https://aws.amazon.com/cn/

[22] “Snort rules,” Accessed: Mar. 7, 2019. 2019. [Online]. Available:
https://www.snort.org/

[23] L. Melis, H. J. Asghar, E. De Cristofaro, and M. A. Kaafar, “Private
processing of outsourced network functions: Feasibility and con-
structions,” in Proc. ACM Int. Workshop Security Softw. Defined
Netw. Netw. Function Virtualization, 2016, pp. 39–44.

[24] Y. Zhang, C. Xu, H. Li, K. Yang, J. Zhou, and X. Lin, “Healthdep:
An efficient and secure deduplication scheme for cloud-assisted
ehealth systems,” IEEE Trans. Ind. Informat., vol. 14, no. 9,
pp. 4101–4112, Sep. 2018.

[25] H. Ren, H. Li, Y. Dai, K. Yang, and X. Lin, “Querying in internet of
things with privacy preserving: Challenges, solutions and oppor-
tunities,” IEEE Netw., vol. 32, no. 6, pp. 144–151, Nov./Dec 2018.

[26] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and
M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Proc. Annu. Cryptol. Conf.,
2013, pp. 353–373.

[27] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proc. 22nd ACM SIGSAC
Conf. Comput. Commun. Security, 2015, pp. 668–679.

[28] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” in Proc. USENIX Conf. Security Symp., 2016, pp. 707–
720.

[29] X. Yuan, H. Duan, and C. Wang, “Assuring string pattern match-
ing in outsourced middleboxes,” IEEE/ACM Trans. Netw., vol. 26,
no. 3, pp. 1362–1375, Jun. 2018.

[30] H. Li, D. Liu, Y. Dai, T. H. Luan, and S. Yu, “Personalized search
over encrypted data with efficient and secure updates in mobile
clouds,” IEEE Trans. Emerg. Topics Comput., vol. 6, no. 1, pp. 97–109,
First Quarter 2018.

[31] I. Ghosh Ray , Y. Rahulamathava, and M. Rajarajan, “A new light-
weight symmetric searchable encryption scheme for string identi-
fication,” IEEE Trans. Cloud Comput., to be published, doi:
10.1109/TCC.2018.2820014.

[32] S. Kamara and T. Moataz, “Boolean searchable symmetric encryp-
tion with worst-case sub-linear complexity,” in Proc. Annu. Int.
Conf. Theory Appl. Cryptogr. Techn., 2017, pp. 94–124.

[33] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely outsourcing middleboxes to the cloud,” in Proc. 13th Use-
nix Conf. Netw. Syst. Des. Implementation, 2016, pp. 255–273.

[34] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and veri-
fiable federated learning,” IEEE Trans. Inf. Forensics Security, vol. 15,
no. 7, pp. 911–926, Jul. 2020.

[35] “DARPA traffic,” Accessed: Mar. 7, 2019. 2019. [Online].
Available: https://www.ll.mit.edu/r-d/datasets

[36] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACMSIGCOMMConf. Appl.
Technol. Architectures Protocols Comput. Commun., 2012, pp. 13–24.

[37] Y. Guo, C.Wang, X. Yuan, and X. Jia, “Enabling privacy-preserving
header matching for outsourced middleboxes,” in Proc. IEEE/ACM
26th Int. Symp. Quality Service, 2018, pp. 1–10.

[38] D. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Security Privacy,
2000, pp. 44–55.

[39] M. Huang, W. Liang, Y. Ma, and S. Guo, “Maximizing throughput
of delay-sensitive NFV-enabled request admissions via virtual-
ized network function placement,” IEEE Trans. Cloud Comput.,
2019, doi:10.1109/TCC.2019.2915835.

[40] D. Boneh, E.-J. Goh, and K.Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Proc. Theory Cryptogr. Conf., 2005, pp. 325–341.

[41] T. Fuhr and P. Paillier, “Decryptable searchable encryption,” in
Proc. Int. Conf. Provable Security, 2007, pp. 228–236.

[42] G. Xu, H. Li, Y. Dai, K. Yang, and X. Lin, “Enabling efficient and
geometric range query with access control over encrypted spatial
data,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 4, pp. 870–885,
Apr. 2019.

[43] J. Liang, Z. Qin, S. Xiao, J. Zhang, H. Yin, and K. Li, “Privacy-
preserving range query overmulti-source electronic health records
in public clouds,” J. Parallel Distrib. Comput., vol. 135, no. 7,
pp. 127–139, 2020.

[44] K. Lewi and D. J. Wu, “Order-revealing encryption: New con-
structions, applications, and lower bounds,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, 2016, pp. 1167–1178.

[45] Y. Yang, X. Liu, X. Zheng, C. Rong, and W. Guo, “Efficient
traceable authorization search system for secure cloud storage,”
IEEE Trans. Cloud Comput., to be published, doi: 10.1109/
TCC.2018.2820714.

[46] J. Liang, Z. Qin, S. Xiao, L. Ou, and X. Lin, “Efficient and secure
decision tree classification for cloud-assisted online diagnosis
services,” IEEE Trans. Dependable Secure Comput., to be published,
doi: 10.1109/TDSC.2019.2922958.

Hao Ren (Student Member, IEEE) is currently
working toward the PhD degree in the School of
Computer Science and Engineering, University of
Electronic Science and Technology of China
(UESTC), China. He is also a visiting PhD student
at ECE Department, University of Waterloo,
Canada. His research interests include Applied
Cryptography, Security and Privacy for Cloud
Computing, and IoT.

Hongwei Li (Senior Member, IEEE) received the
PhD degree from the University of Electronic
Science and Technology of China, in 2008. He is
currently the head and a professor with the
Department of Information Security, School of
Computer Science and Engineering, University of
Electronic Science and Technology of China. He
worked as a postdoctoral fellow with the Univer-
sity of Waterloo from 2011 to 2012. His research
interests include network security and applied
cryptography. He is the distinguished lecturer of
IEEE Vehicular Technology Society.

Dongxiao Liu (Student Member, IEEE) received
the BS and MS degrees from the School of Com-
puter Science and Engineering, University of Elec-
tronic Science and Technology of China (UESTC),
China in 2013 and 2016, respectively. Currently, he
is working toward the PhD degree with the Depart-
ment of Electrical and Computer Engineering,
University of Waterloo, Canada. His research inter-
ests include applied cryptography and privacy
enhancing technologies for blockchain.

REN ETAL.: PRIVACY-PRESERVING EFFICIENT VERIFIABLE DEEP PACKET INSPECTION FOR CLOUD-ASSISTED MIDDLEBOX 1063

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCC.2019.2908400
https://aws.amazon.com/cn/
https://www.snort.org/
http://dx.doi.org/10.1109/TCC.2018.2820014
https://www.ll.mit.edu/r-d/datasets
http://dx.doi.org/10.1109/TCC.2019.2915835
http://dx.doi.org/10.1109/TCC.2018.2820714
http://dx.doi.org/10.1109/TCC.2018.2820714
http://dx.doi.org/10.1109/TDSC.2019.2922958

Guowen Xu (Student Member, IEEE) received
the BS degree in information and computing sci-
ence from the Anhui University of Architecture, in
2014. Currently, he is working toward the PhD
degree in the School of Computer Science and
Engineering, University of Electronic Science and
Technology of China , China. His research inter-
ests include Cryptography, Searchable Encryp-
tion, and the Privacy-preserving Deep Learning.

Nan Cheng (Member, IEEE) received the BE and
MS degrees from the Department of Electronics
and Information Engineering, Tongji University,
Shanghai, China, in 2009 and 2012, respectively,
and the PhD degree from the Department of Elec-
trical and Computer Engineering, University of
Waterloo, in 2016. He is currently a professor with
the School of Telecommunication Engineering,
Xidian University, Shaanxi, China. He worked as a
post-doctoral fellow with the Department of Elec-
trical and Computer Engineering, University of

Toronto, from 2017 to 2018. His current research focuses on space-air-
ground integrated system, big data in vehicular networks, and self-driving
system. His research interests include performance analysis, MAC,
opportunistic communication, and application of AI for vehicular
networks.

Xuemin (Sherman) Shen (Fellow, IEEE) received
the PhD degree in electrical engineering from
Rutgers University, New Jersey, in 1990. He is a
university professor, with the Department of Elec-
trical and Computer Engineering, University of
Waterloo, Canada. His research focuses on
resource management in interconnected wireless/
wired networks, wireless network security, social
networks, smart grid, and vehicular ad hoc and
sensor networks. He is a registered professional
engineer of Ontario, Canada, an Engineering Insti-

tute of Canada fellow, a Canadian Academy of Engineering fellow, a Royal
Society of Canada fellow, and a distinguished lecturer of IEEE Vehicular
Technology Society and Communications Society. He is the editor-in-chief
for IEEE Internet of Thing Journal and the vice president on publications of
IEEE Communications Society. He received the Joseph LoCicero Award,
in 2015, the Education Award, in 2017, the Harold Sobol Award, in 2018,
and the James Evans Avant GardeAward, in 2018 from the IEEECommu-
nications Society. He has also received the Excellent Graduate Supervi-
sion Award, in 2006, and the Outstanding Performance Award, in 2004,
2007, 2010, 2014, and 2018 from the University ofWaterloo, the Premier’s
Research Excellence Award (PREA) in 2003 from the Province of Ontario,
Canada. He served as the Technical Program Committee chair/co-chair
for IEEE Globecom’ 16, IEEE Infocom’14, IEEE VTC’10 Fall, the Sympo-
sia chair for IEEE ICC’10, the Tutorial Chair for IEEE VTC’11 Spring, the
chair for IEEE Communications Society Technical Committee onWireless
Communications, and P2PCommunications and Networking.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1064 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:55:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

