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Abstract—Digital twin (DT) has attracted a lot of attention
from both industry and academia since it was proposed over a
decade ago. A DT can be viewed as a virtual implementation
of a real physical system (PS) and used as a representation of
the PS for various applications. Despite the great potential of
DTs in various fields, implementing DTs to obtain the desired
functionality is not always straightforward. Specifically, accurate
real-time synchronization between the features at a PS and its
DT is essential for the DT to represent the PS. In this case,
appropriate networking support is a key component to enable
future DT development and applications. Currently, the research
on DTs from a networking standpoint is still at an early stage,
and only limited work has been done on DT implementation
in practical systems. To fill this gap, this article investigates
networking-related issues for DTs. Based on the existing liter-
ature, a feature-based method is provided for describing the
desired properties and quality of DTs from the networking per-
spective. A stage-based implementation framework is presented
for creating large-scale DTs for complex PSs by considering
various networking constraints. Networking-related challenging
issues and open research topics are discussed at the end.

Index Terms—Digital twin (DT), DT features, DT properties,
stage-based DT implementation.

I. INTRODUCTION

D IGITAL twin (DT) is a concept where a digital/virtual
representation is created for a physical system (PS) of

interest. The DT can be used to complement the PS for a
variety of purposes in the design, evolution, and deployment
stages. The DT idea was originally introduced for “product life
cycle management” [1], but since then, it has been applied in
many other areas, such as industrial manufacturing. The first
use of DTs in manufacturing was for various purposes, such as
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improving product performance, flexibility, and competitive-
ness through simulation, data acquisition and communications,
cyber–physical interaction, and advanced analytics [2], [3], [4],
[5], [6], [7], [8]. DTs have been successfully used in the cre-
ation of cost- and time-effective designs of space vehicles by
NASA [9] and in other areas of aviation [10], [11]. The use
of DTs has also been applied to fields, such as healthcare
and telemedicine [12], [13], [14], smart homes [15], [16], and
smart cities [17], [18], [19], [20], [21], [22]. A review of DT
applications in the industry is given in [23], a comprehensive
survey of DTs in the IoT field is provided in [24], and [25]
summarizes the existing work on applications of DTs in smart
cities and DT-based smart city projects.

Although the “DT” terminology has been widely used in
many applications, its use in networking scenarios is at a
relatively early stage. Since the inception of the DT con-
cept, the DT functionality has evolved along with advances
in various technologies including networking techniques, as
summarized in [10], [26], and [27]. However, the implemen-
tation of fully functional DTs for complex physical objects
or systems requires further investigation. In [4], DT was
defined as “rich representations of products that are virtually
indistinguishable from their physical counterparts.” Although
achieving this goal is difficult, if not impossible, in most cases,
a fully functional DT implementation should replicate (in soft-
ware) the key aspects of its physical counterpart, such as in
temporal, spatial, and functional dimensions. In other words,
a DT should be capable of reflecting all the features of the
PS that are required by an application. To achieve this goal,
networking support is critical for future DT implementations.

In the early days, DT creation and maintenance were often
limited by the capabilities of data transmission, processing,
and storage [28], [29]. Early DTs, for example, may consist
of an offline computer model/simulator that is used to predict
the behavior of the PS as its inputs evolved [4]. Data collected
from the real system would be manually provided to the dig-
ital (or virtual) system so that the state of the digital system
can reflect the real PS. This offline mechanism obviously lim-
its the ability of the DT to accurately reflect the current state
of the PS. With the advancement of sensing, communications,
and networking technologies, large volumes of data can be
collected automatically and exchanged between PSs and the
corresponding digital systems with a low latency [3], [8], [30],
[31]. The real-time bidirectional information exchange and
state update between a PS and its corresponding digital system
is referred to as “synchronization” between the two.

To realize the PS-DT synchronization, there have been dif-
ferent proposals for DT architectural frameworks based on
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targeted applications and intended functionalities [10], [24],
[26]. However, the study on DT framework design to achieve
a desired level of performance for a given application is still
in its infancy stage. In this work, we present a comprehensive
review of DT from a networking perspective. This article is
different from [27], which summarizes the existing definitions,
characteristics, current applications, and general supporting
technologies for DT networks. DT implementation issues are
also described in [24], although it emphasizes software aspects
rather than networking ones.

The remainder of this article is organized as follows.
The existing definitions of DTs are briefly reviewed, and
a feature-based method for describing DT quality is pro-
vided in Section II. The desired DT properties are discussed
in Section III with an emphasis on their relationship to
networking support. Section IV describes possible architec-
tures for placing a DT in the network and Section V discusses
the benefits of using DTs in different applications. A stage-
based implementation framework is presented in Section VI
for creating DTs of large and complex PSs, and several
implementation examples are provided in the same section.
A summary of the recent networking-based research work on
DTs is presented in Section VII, and some networking-related
open research problems and challenging issues are listed in
Section VIII. Section IX concludes this article.

II. DT DEFINITIONS AND FEATURES

In this section, we first summarize the DT definitions from
the literature, while emphasizing the importance of networking
support in building and running DTs. We then introduce fea-
tures that describe the quality of DTs and discuss factors that
affect the quality of DTs.

A. Summary of Existing DT Definitions

When the concept of DT was first introduced by Michael
Grieves for product lifecycle management (PLM) in 2003, it
was intended to be a “digital equivalent to a physical prod-
uct” [4]. Using mainly manual data synchronization delivery
and offline modeling, real-time electronic communications and
networking were not widely used to build DTs. In 2011, the
DT concept was used to create virtual sensors for predicting
aircraft structural lifetime under various flight conditions [32].
This “digital representation” incorporated some important
properties, e.g., structural defects or projected lifetime of the
actual physical product, i.e., the aircraft. Without real-time
synchronization between the physical and digital objects, DTs
were mainly used for fault diagnosis, predictive maintenance,
and performance analysis [33].

In 2012, a DT framework was defined to include three ele-
ments [9], i.e., the physical product, virtual (or digital) product,
and the linkage between them. This linkage includes two-
way interactions between the digital and physical products.
The work also emphasized the benefits of such interactions,
i.e., “the physical product can be made more ‘intelligent’ to
actively adjust its real-time behavior according to the ‘rec-
ommendations’ made by the virtual product” and “the virtual
product can be made more ‘factual’ to accurately reflect the
real-world state of the physical product.” This idea defines the

mutual interactions between the physical and digital products,
which implies that real-time communications are required in
DT implementations.

Building the virtual or digital product of a physical product
often exploits mathematical modeling, computer simulation,
and other forms of data processing. In 2013, a virtual repre-
sentation of the system was defined as “an integrated system
of data, models, and analysis tools applied over the entire life
cycle” of a product so that it can be used throughout the life-
time of the product [34]. By connecting this definition with
that in [9], the importance of networking support for DTs
became more prominent. This is because real-time interac-
tions between the physical and digital products may require
significant resources for communications, computations, and
data storage.

In 2014, Grieves formally introduced DTs in a whitepa-
per [4], where the DT was defined to include the same three
elements as in [9], and the digital systems should be “virtually
indistinguishable from their physical counterparts.” Although
achieving such virtual products was impractical in many cases,
various efforts have been made since then using real-time syn-
chronization between the physical and virtual products, which
help achieve this objective [6], [35].

As the DT concept was introduced into a wider range of
industrial applications [36], [37], [38], the concept has also
been extended to more general physical objects. In [33], a DT
is defined as “a living model of the physical asset or system,
which continually adapts to operational changes based on the
collected online data and information, and can forecast the
future of the corresponding physical counterpart.” According
to this DT definition, a physical object and its performance
can be mirrored by its virtual counterpart, which can predict
potential issues and the remaining lifetime of the physical
object. In other words, the physical and virtual systems should
influence and synchronize with each other continuously and
evolve together. The idea of mutual influence and synchro-
nization between the PS and the DT has been coupled with
the Internet of Things for efficient sensing, data collection,
and data processing [24], [33].

With all the previous DT definitions, Minerva et al. [24]
defined a consolidated DT as “the constant entanglement
between an artifact (the PO) and its software representations
(the LO),” where PO is the physical object or system, and
LO is the logical or virtual object of the PO. The “constant
entanglement” is achieved through the communication linkage
between the physical and virtual objects.

Consistent with the consolidated DT definition,
Tao et al. [23] discussed the fundamental parts of DT
modeling, including physical, virtual, and connection aspects.
Physical modeling deals with issues surrounding the defini-
tion, description, and extraction of key features of the PS.
Virtual modeling builds a representation of the PS based
on these features and on the behavior data provided by the
physical model. The connection model is the linkage between
the physical and virtual parts which supports a frequent
transfer of data between the physical and the virtual systems.
This real-time data synchronization allows the DT to reflect
the true status and behavior of the PS and represent the PS
to interact with third-party applications.
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DT functionality has evolved from a “digital representa-
tion” of a static physical product to one that continuously
evolves with the latter. This trend has increased importance
of networking communications. The implementation of DTs
often requires multiple types of network resources, e.g., com-
putation, communication, and storage resources. Both physical
and virtual modeling consumes computation resources, and the
computation resource requirement increases with the increas-
ing complexity of many modern systems. The synchronization
between the DT and its physical counterpart is typically real-
ized by communication links using network connections. In
addition, communications are required to support the interac-
tions between the DT and third-party applications. DTs may
also have significant data storage requirements. In addition to
storing data for modeling the PS, the DT may also maintain
historical data of the PS for long-term behavior modeling and
future state prediction [7], [32], [33], [39]. Therefore, the joint
allocation of multiple types of network resources [40], [41],
[42] is an important issue for successfully implementing and
maintaining DTs.

B. DT Features

The existing DT definitions as summarized above are all
descriptive, which is not convenient for evaluating quality of
the DTs or analyzing their performance. In this section, we
describe a feature-based method that provides a consistent
framework for evaluating DT quality in different situations.

Consider a PS, and its state at time t is denoted as s(t).
Sometimes one may be interested in a particular subset of the
system state. Therefore, we define multiple types of system
state, sk(t) ∀k ∈ K, where K is a set of different state types.
Note that different subsets of system states may have common
system state types depending on the particular focus.

Various features that reflect the PS behavior can be derived
from the system state. For example, a feature for a tempera-
ture sensor could provide an average of temperature readings
taken over the past 24 h. Let i ∈ I represent the ith defined
feature of the PS, and fi(t, s(ts)) represent the feature i output
at time t based on the PS state at time ts. In the temperature
sensor case, this feature at time t would provide the aver-
age temperature over the one-day period prior to time ts. The
distinction between times t and ts in fi(t, s(ts)) provides for
the case where a feature based on the system state at time ts
requires computational processing, and as a result, the feature
is not available until time t, where t − ts is the processing
latency. This definition also applies to the DTs, where a PS
feature provided by a DT at time t may be based on a past
PS state at time ts. In this case, the time difference may also
include both communications latency between the PS and DT
and feature processing time at the DT.

In a more general case, for example, a substate of a man-
ufacturing plant could include temperature, humidity, noise,
etc., at different locations. Based on this, features such as
whether a given machine is within a safe working condition
can be provided. The PS is characterized by all its features as
f(t) = [fi(t, s(ts(i))), i ∈ I]. In this case, the ith feature at time
t may have used state information at different times, ts(i).

A DT is intended to reflect the state and actions of its PS
as closely as needed. As discussed above, because of latencies
caused by communications and data processing, the current
state at the DT may not be the same as that at the PS. That
is, if we define s̃(t) to be the PS state available at time t
at the DT, then typically s̃(t) �= s(t). For the same reasons,
features offered at the DT on behalf of the PS will often not
exactly reflect the current PS features. Let �t be the age of
the PS state information at the DT, i.e., s̃(t) = s(t − �t).
We, therefore, define the features offered by the DT as f̃(t) =
[f̃i(t, s̃(ts)), i ∈ I], where f̃i(t, s̃(ts)) is the ith feature of the PS
reflected at the DT at time t, and this feature information is
based on the received and processed data at the DT at time ts.
Although the state at the PS changes in continuous time, the
update of information at the DT may be initiated at discrete
time instants.

Ideally, a feature at the DT is an exact replica of that at
the PS. That means that the difference between fi(t, s(ts)) and
f̃i(t, s̃(td)) should be zero, i.e.,

fi(t, s(ts)) = f̃i
(
t, s̃(td)

)
(1)

∀ t ≥ 0, i ∈ I, where ts and td are the state information times
used to create the feature at the PS and DT, respectively. Note
that ts ≤ td since the state information available at the DT is at
best a delayed version of that at the PS. Equation (1) simply
states that this delay has no effect under ideal conditions.

In a practical application, achieving a DT that exactly
reflects the PS features at all times as defined by (1) is often
difficult for a variety of reasons, such as:

1) the state information at the DT is normally obtained
by synchronizing with the PS, which often happens
periodically at discrete time instants;

2) the features available at the DT incur processing delays
at the DT;

3) the number of features is too large for the DT due to
limited resources for data storage and processing.

Depending on its intended use, a DT can be deployed to
represent only a subset of the features of the PS. A DT imple-
mentation is considered fully functional, if it implements all
PS features with an acceptable level of deviation.

III. DT PROPERTIES

In this section, we review some specific DT properties that
are dependent on networking support, including promptness,
similarity, reliability, composability, scalability, and flexibility
(or adaptability). Although these properties have been intro-
duced and discussed before [3], [24], they will be described
in a manner that incorporates the DT feature definition in
Section II-B.

Promptness: Promptness assesses the value of a feature from
an application viewpoint as the Age of Information (AoI) used
to generate that feature changes. Consider a given PS feature
i and time value ts ≤ t. If

dp(fi(t, s(ts))) ≤ εp,i (2)

we say that an application’s promptness measure of feature i
(defined by dp(·)) is εp,i-conformant for the given time param-
eters. In this expression, the function dp(·) assesses the quality
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of feature i at time t using the PS state information at time
ts, i.e., s(ts) was used to generate the feature. If, for example,
the importance to an application were the time since a feature
was created, the function dp(·) defines the level of accept-
ability associated with the feature’s age after a time period
t − ts. In general, dp(·) is a nondecreasing function of t − ts.
When a feature’s age expires at some time threshold, dp(·)
may exceed εp,i, indicating the unacceptability of the feature.
In a DT implementation, the state information will typically
incur latencies due to the state synchronization process. A fea-
ture provided by the DT may therefore be a delayed version
that is available from the PS directly. The promptness assesses
the importance of this latency offset to a given application.

Fig. 1 shows the synchronization delay of information from
a PS to its DT. In this example, we assume that data synchro-
nization between the PS and the DT happens periodically every
T seconds. Consider the system state data generated at time ts,
and define τPL as the data transmission delay from the PS to
the DT. If the communication channel capacity between the PS
and the DT is sufficient, such that all the state data generated
within one T interval is delivered to the DT before the end of
the same interval, then the AoI of the state data at the DT is
at most T + τPL. Upon receiving the state data of the PS, the
DT may have to process the data and extract various features
as would be the case at the PS without the DT. The data pro-
cessing may include data cleaning, classification, modeling,
etc. Let Ci be the data processing time for feature i at the DT,
then �ti = T+τPL+Ci is the maximum AoI at the DT for fea-
ture i. The DT is responsible for interacting with applications
on behalf of the PS. Defining τLA,j to be the communication
delay from the DT to application j, then the maximum AoI of
feature i at the application is �ti +τLA,j = T +τPL +Ci +τLA,j,
which is also the upper bound of t − ts. Let �t∗ij be the AoI
requirement of application j for feature i of the given PS, then
�ti + τLA,j ≤ �t∗ij should be satisfied for all j ∈ J , where
J is a set of applications that depend on the DT to obtain
information of feature i of the PS. If a DT is responsible for
interacting with multiple applications on behalf of the PS, the
AoI at the DT should satisfy the requirement of the appli-
cation with the most stringent promptness requirement. That
is, �ti ≤ minj∈J (�t∗ij − τLA,j). Based on this, we can define
�t∗i = minj∈J (�t∗ij − τLA,j) as the AoI threshold of feature i
of the DT for supporting the applications in J .

Different applications may have different tolerance about
the AoI. As an example, when dp(fi(t, s(ts))) is defined as

dp(fi(t, s(ts))) =
{

0, if t − ts ≤ �t∗ij
∞, otherwise

(3)

the feature i information provided by the DT is either accept-
able or unacceptable at application j.

Note that the promptness requirement for a DT is not only
determined by the application requirements but also dependent
on the dynamics of the PS. More specifically, if the evolution
of the system state in the real system is more abrupt and ran-
dom, then the state data should be updated more frequently,
i.e., the update period T should be smaller; meanwhile, the
values of τPL, Ci, and τLA,j should also be smaller in order to
reduce the AoI at the application.

Fig. 1. AoI at DT and application.

Similarity: In contrast to promptness, similarity consid-
ers the quality of features from a functional viewpoint. For
example, given a feature i, if for any ts ≤ t

ds

(
fi(t, s(ts)), f̃i(t, s(ts))

)
≤ εs,i (4)

then εs,i sets the similarity of feature i for the given set
of times. As discussed above, f̃i is the feature provided by
the DT at time t. Note that if the same state information,
i.e., s(ts), is used by the DT and PS, and the mechanism
used to create the feature at the PS and the DT is identi-
cal, then the two terms in the argument of ds will be equal,
and ds(fi(t, s(ts)), f̃i(t, s(ts)) = 0. The reason that they are not
the same may be that the DT uses a “noisy” version of PS
state information or that the feature generation at the DT is
different than it would be at the PS. Note that the similarity
is the highest when εs,i = 0. In this case, the DT provides
identical performance from the application viewpoint.

Suppose for a given application, the required similarity for
feature i is ε∗

s,i, where i ∈ I, and define ε∗
s = [ε∗

s,i, i ∈ I]. The
level of ε∗

s -similarity of a DT can be defined as the fraction
of the features of the PS that have a similarity level of at least
εs,i, or

S
(
ε∗

s

) =
∣∣
∣Ĩ

∣∣
∣

|I| (5)

where Ĩ = {i ∈ I, |(4) holds when εs,i = ε∗
s,i}. Based on this

definition, S(ε∗
s ) = 1 if εs,i ≤ ε∗

s,i and (4) holds for all i ∈ I.
The similarity level as defined in (5) can be further extended

by considering the importance of multiple features to a given
application. For example, if wij represents the weight or impor-
tance of feature i to application j, then the level of ε∗

s -similarity
of the DT to the application can be defined as

Sj
(
ε∗

s

) =
∑

i∈Ĩ wijIi
∑

i∈I wijIi
(6)

where Ii is an indicator function with Ii = 1 if (4) holds when
εs,i = ε∗

s,i and Ii = 0 otherwise. Based on this definition,
the same DT may have different similarity levels for different
applications.

Both higher promptness and higher similarity require more
network resource support, since system states must be more
frequently measured, transmitted and processed, and features
of the PS should be extracted with higher accuracy and lower
delay. In practical implementation, since PSs vary from one
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another in terms of their statuses and conditions, the featured
data required to characterize their status and behaviors are
different. Therefore, the data collection and processing can be
tailored for different PSs and applications to minimize resource
consumption. For example, for static or low-mobility users,
location information can be collected and processed at a low
rate, reducing communication and computing resource con-
sumption. On the other hand, since different types of network
resources jointly affect promptness and similarity, it is possible
to tradeoff the resource usage while maintaining an accept-
able level of promptness and similarity. For example, when
the network is congested, and communications between the PS
and DT experience a longer delay, more computation resources
can be allocated at the DT to reduce the data processing delay.

Composability: Composability is about integrating the DTs
of smaller systems into a DT of a larger system or merging
multiple DTs that reflect different features of the same system
into a new DT [43], [44], [45], [46]. Let K = ∪N

n=1Kn, where
Kn is the nth set of system states. For a practical system, each
Kn can include all states of a subsystem, a subset of the states
of the entire system, or a subset of the states of a subsys-
tem. Integrating DTs may be needed in different scenarios.
Scenario 1: DTs may be created for relatively independent
PSs, which later on become subsystems of a larger system.
Scenario 2: Multiple DTs are created separately to support
different applications, and the system states used by the DTs
are not the same. At some point, it is found that in order to sup-
port an application, a DT should be created to use the system
states that have already been used in the multiple existing DTs.
In both scenarios, the ability of integrating the existing DTs
helps save both time and cost.

A typical example for Scenario 1 is for geographically
distributed PSs, which have components or subsystems in
different geographical areas. It is natural to treat each com-
ponent or subsystem, such as a department in an organization
or a warehouse in a store. As the interdepartment businesses
increase, integrating the department DTs into an organization
DT helps improve the work efficiency. Similarly, by integrating
the DTs of individual warehouses into a DT for the entire store,
the warehouse resources may be better utilized. Another exam-
ple is where multiple manufacturers along the same supply
chain have increasingly more dependence on one another and
want to jointly optimize their resource allocations by merg-
ing their individual DTs into one DT. For Scenario 2, we use
the connected vehicle network as an example. For applica-
tions, such as collision avoidance and road navigation, a DT
(DT 1) can be created by collecting the system states related
to locations, moving speeds and direction, etc., of vehicles.
Another DT (DT 2) can be created to support communication
network resource allocations for entertainment applications,
which require system states related to types of entertainment
applications, time of using the applications, etc. Later on, it
is found that DT 2 may work more efficiently in network
resource allocations if the system states related to vehicle
locations, moving speeds, and directions are also considered.

When integrating multiple existing DTs into a new one, the
mutual interactions or dependency of the corresponding phys-
ical objects should be taken into consideration and redundant

information that is available in multiple existing DTs should
be removed. This requires additional network resources for
both data communication and data processing.

Scalability: Scalability is about the increase in complexity in
building and maintaining a DT when the number of the system
states (i.e., |K|) increases. As a simple example, if the PS
includes N devices, K state types from each device, and each
state type may take V different values, then the total number of
system states is VNK . Therefore, the number of system states
increases exponentially with the number of devices and state
types. The PS size, in terms of the number of components or
types of data to be collected, may increase with time as the
system expands. Given this, one goal in the DT designs is that
the amount of network resources required does not increase
exponentially as the system size increases.

Scalability is also about the quality of the DT when the PS
extends in geographical area. In this case, the communication
quality, e.g., communication delay, tends to deteriorate as the
distance increases. How to maintain good quality DTs in this
case can be a challenging issue.

Reliability: Since a DT works as a replica of its PS, its reli-
ability is important to both its PS and the applications. The
reliability includes both data reliability and operation reliabil-
ity. The data reliability refers to the completeness, accuracy,
and consistency of the data of the PS states available at the
DT, and the operation reliability is about how well the DT can
support the applications.

As discussed in Section III, system features that are offered
by the DT may not exactly reflect that of the original PS
due to a lack of similarity. This can be caused, for exam-
ple, by inaccurate state information transmitted during the
PS-DT synchronization process. An example of this is where
PS state information is compressed before synchronizing with
the DT. Therefore, the level of data reliability largely depends
on the quality and quantity of data transmitted during synchro-
nization. In general, higher data reliability makes it possible
to achieve higher operational reliability. However, achieving
higher data reliability requires more network and computa-
tional resources. The reliability required by the applications
can be used to determine the required level of data reliability
at the DT and plan the network resource allocation.

In practical scenarios, random channel conditions, network
congestion, and unexpected link and/or server failures, can
all affect the data reliability and the operation reliability.
Achieving higher reliability may require additional network
resources, such as backup communication links, servers, etc.
When network resources are limited, there may be a tradeoff
between reliability and promptness/similarity. In this case, the
achieved promptness and/or similarity may have to be reduced
for some features.

Flexibility (Adaptability): Being a replica of its physical
counterpart, a DT should adaptively reflect changes in the PS,
including not only state changes but also hardware and soft-
ware upgrades, changes to the operation modes, etc. This may
result in an adjustment to data collection, e.g., types of the
system states and frequencies at which different types of state
data are sensed. This can change the mathematical modeling,
computer simulations, etc., and further affect the requirements
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on the networking resources. For example, for building a DT
of a school, changing from in-person exams to online exams
at the school may involve changes to data collection, data
processing, and data storage partially because of the signifi-
cant differences between online and in-person proctoring [47],
[48], [49]. Achieving smooth transitions for the DT to adapt to
changes in the PS may require the designers to know possible
future directions of the PS and plan the resource deployment
and allocation accordingly, which can be difficult in prac-
tical applications. In terms of network resource allocations,
two traditional ways for accommodating possible changes are
resource reservation and prioritization. When applied to sup-
porting DTs, the former is always reserving a certain amount
of resources for a given DT, regardless of its current require-
ment. The reserved resources help absorb some changes to
the resource requirements when the PS experiences changes.
However, this can result in significant waste in resource uti-
lization. In contrast, prioritization means that DTs requiring
higher quality are given a higher priority to use the network
resources when the network does not have sufficient resources
to support all DTs, and this is at the price of sacrificing the
performance of DTs with low priorities.

IV. DT PLACEMENT ARCHITECTURES

A DT is a digital replica of its PS. Depending on the struc-
ture of the PS, the application requirements, and the network
resource availability, the DT of a PS can be hosted at a sin-
gle server, distributed among multiple servers, organized in a
primary–secondary architecture, or formed by a cybertwin or
a network of DTs of the individual components/subsystems of
the PS.

A. Centralized DT

In this case, the DT is assigned to and executed on a single
server. When the PS is geographically small, the DT may be
placed at an edge server adjacent to the same network as the
PS. This will help to reduce latencies by minimizing the path
lengths needed for communication. The quality of the DT will
be affected by the conditions within the network and the capac-
ity of the edge server that hosts it. Since the PS and the DT
communicate through the same local-area network, this setting
is especially suitable when the DT interacts solely with its PS,
or it interacts with third-party applications through the same
network. Examples of this type of DTs are described in [50]
for small-size electromechanical products, [51] for small-scale
production lines, and [52] for individual network devices and
servers.

Alternatively, the DT can be located at a remote server,
in which case the communications latency between the PS
and the DT may be much higher. The additional delay helps
the PS to access a more powerful cloud server to host its
DT. This helps reduce the computation time, which can be
prohibitively long for complicated PSs if the DT is hosted
by an edge server. Routing, traffic scheduling, and resource
reservation can be made to minimize the end-to-end communi-
cation delay, such as the machine learning (ML)-based routing

scheme with mobility prediction in [53] and the delay-aware
routing and scheduling algorithm in [54].

B. Distributed DT

In contrast to the centralized DT case, the DT can be
distributed across multiple servers, each hosting the digital
representation of a subset of the PS features. This is a more
suitable arrangement for large scale PSs that have many com-
ponents or subsystems. For example, when building the DT of
a network of connected vehicles, one server could be used to
collect system state data in one region, such as a community
or a city. Based on the collected data, features, such as traffic
density, possibility of traffic accidents, need for car mainte-
nance, etc., can be extracted at the DT by different servers.
Examples of this type of DTs also include the cyber-PS (CPS)
in [55] and the edge computing networks in [56]. In [55], indi-
vidual physical devices have their separated DTs, and in [56],
each end device and edge server are individually twined in the
virtual space.

Implementing the digital representation of the subsystems
or reflecting the subsets of features of the PSs at different
servers helps distribute network loads, which makes it possible
to extract more accurate PS feature information at the DT.
However, this requires the PS to communicate with multiple
servers that host the DT, and may also require the servers to
interact with each other when the features hosted at different
servers have mutual dependencies. The information exchanges
among the servers incur additional delays in the DT operation.

In addition, since the PS has to communicate with multiple
servers that host the DT, quality of the DT is affected by the
communication conditions between the PS and the multiple
servers and the processing capabilities of these servers.

C. Primary-Secondary DT

A special case of the distributed DT implementation is orga-
nizing the DT operation in a hierarchical fashion. A primary
DT component directly interacts and synchronizes with the PS.
The primary DT component also interacts with one or multiple
secondary DT components, which do not interact directly with
the PS. Such a scheme was introduced in [24]. It has the
advantages of a centralized DT implementation for the pri-
mary DT component, while it also provides the flexibility of a
distributed DT implementation for the secondary DT compo-
nents. However, it has the disadvantage of extra latencies due
to the updating between the DT components.

D. Network of DTs or DT Network

As DTs proliferate, multiple DTs may communicate with
each other, i.e., DTs of different PSs may interact on behalf
of their respective PSs, which creates a network of DTs [57],
[58], [59]. As an application, networks of DTs can be used to
develop new network architectures and protocols. In [60], a
cybertwin-based network architecture was proposed to replace
the traditional end-to-end communication model with a cloud-
to-end communication version. The cybertwin is similar to a
DT and is a representation of a physical object, e.g., a per-
son or a thing in the Internet of Things. Cybertwins “serve
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as a communications assistant, network data logger, and dig-
ital asset owner of humans and things” [60]. The proposed
architecture aims to ensure that next-generation networks are
more flexible, scalable, reliable, and secure. In [61], cyber-
twins located at edge servers are used to collect user-level
information, aggregate end user traffic into different service
groups, and map quality of experience at the application
level into the service-level Quality-of-Service (QoS) demands.
This helps achieve fine-grain resource orchestration for vir-
tual networks and enhance QoS provisioning in sliced virtual
networks.

The cybertwin or network of DTs can serve as a centralized
space that collects, stores, and processes global information of
the PS. In [62], a cybertwin is considered for a space-ground
integrated network, where the cybertwin consists of a DT of a
satellite and DTs of base stations (BSs) and vehicles. With the
mutual information exchanges among the DTs of the network
components, all the DTs can obtain the global information
of the network. One example application of the cybertwin
is for individual BSs to make beamforming decisions that
are optimum to the global network. A similar network of
DTs is considered in [63] for an air–ground network. In this
network of DTs, DTs of ground devices within a certain area
are maintained at a central ground server, and a DT of a
drone is maintained by having the drone contact the central
server instead of individual devices in the ground network.
This allows the DT of the drone to efficiently obtain the
global network information. In [64], a DT network is cre-
ated by integrating DTs of individual satellites in a network.
The DT network reproduces the operation state of a satellite
network, predicts the dynamic network topology, and performs
virtual routing at the DT network before assigning it to the
real network. A DT network can also play an important role
in collaborative driving, which requires making time-sensitive
decisions based on status of other vehicles. By creating DTs of
individual vehicles, each vehicle only updates its information
to its own DT. The DTs form a network that supports effi-
cient information exchange among the DTs so that each DT
can make a globally optimum driving decision for its vehi-
cle. This helps reduce frequent information exchanges among
autonomous vehicles and improve reliability and efficiency of
autonomous driving [65].

V. BENEFITS OF USING DTS

Although networking support is a necessary aspect for
implementing DTs and DT-based applications, a network DT,
which is a DT created as a digital replica of a real network,
helps improve network performance in various ways. This sec-
tion starts with discussing the general benefits of using DTs,
then focuses on the benefits of using network DTs.

A. General Applications

PS as an Application: A DT can be used for management,
optimization, and prediction for its own PS. The benefits of
using DTs in this context include the following.

1) With DTs emulating their PSs in dedicated servers, the
design, operation, and maintenance of the PSs can be

simplified, allowing for their real-time monitoring and
control.

2) Through smart analysis of data in DTs, the status of
the PS can be predicted to enable more intelligent
maintenance and avoid potential failures.

Third Party Applications: A DT can interact with applica-
tions on behalf of the PS. A DT may be especially useful
when the PS information is required by multiple applications
and/or when the direct interaction with the PS is costly/noisy.
For example, in 5G networks, both handover and navigation
tasks need to receive location-based information from the end
users. To alleviate duplicated information transmission in wire-
less networks, the user location information can be retrieved
from the DT instead of the PS. Furthermore, in handover man-
agement, considering that end users may have a high level
of mobility and fluctuating channel conditions, making han-
dover decisions based on the PS information may suffer from
the ping-pong effect, which increases the numbers of han-
dovers and reduces the quality of the mobile user’s connection.
When using a DT, user features (e.g., user’s daily routine and
mobility patterns) can be utilized to conduct user trajectory
prediction, which facilitates more efficient handover deci-
sions with reduced ping-pong effect and decreased handover
resource consumption.

The main benefits of using DTs in this context include the
following.

1) When a user has multiple devices (e.g., mobile phones,
tablets, wearable devices, etc.), these devices possess
similar behavior patterns and can be characterized by
the same user DT. On this account, when multiple
devices interact with the same application, the required
information can be retrieved from the user DT only
once, which tremendously mitigates the network traffic
burden.

2) Powered with data processing capabilities, DTs can help
reduce the noise from the data generated at the PS and
filter out unnecessary data. Moreover, instead of utiliz-
ing the tremendous raw data, the user features and/or
behavior patterns can be further extracted in DTs with
reduced data dimension before forwarded to applica-
tions, leading to reduced network traffic load. These
features/behavior patterns also provide better character-
ization of PSs, enabling more efficient, flexible, and
precise resource management with enhanced resource
utilization.

3) DT implementation can be customized for different
applications by constructing different DT components,
each of which is tailored to one or multiple applica-
tions. This helps simplify the PS by outsourcing the
application-related tasks to the DT.

Consider a supplier–distributor–retailer chain as an exam-
ple. The suppliers manufacture goods, which are distributed
by the distributors to the retailers. Customers order the goods
through the retailers. A DT can be created for each retailer,
so that the state of the retailer, such as information of goods
provided from different distributors and information of orders
placed by customers, is updated at the DT periodically. The
state information is then processed at the DT to extract features
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such as the demands of different goods, which assist the
retailer to make decisions about what goods and from which
distributors it should purchase next. In addition, complicated
learning models can be built in the DT so that it can use
the historical data to predict future demands and supplies in
order to optimize its long-term revenue. This is an example of
using the DT to optimize the performance of its own PS (i.e.,
the retailer). Meanwhile, the DTs of the retailers can interact
with different distributors by providing retailing information
of goods from the individual distributors. In such interactions,
the DTs of the retailers can help optimize operations of the
distributors, which are considered as third party applications.
In addition, the individual distributors and suppliers may each
build their own DTs, and the DTs of the suppliers, distribu-
tors, and retailers can be integrated and form a distributed DT
of the full supply chain.

B. DT of Networks

In its initial use cases, a DT was meant to span the entire
life-cycle of a product, from its design to manufacturing and
eventually to its disposal stage [1], [4], [66]. When a DT is
created for a network, it should not only reflect the network
features but also evolve with the real network in terms of
both software and hardware upgrades, until the disposal of
the network. During this process, the DT of a network helps
optimize network operations and management. As an exam-
ple, using DTs can provide the network orchestrator with a
reliable simulation environment, which is especially important
before applying large-scale decisions on the actual physical
network. As a direct use case of building DTs, the virtual
model of a real network can be duplicated and placed inside
routers. This provides the routers with the current states of
the surrounding nodes and helps them make better routing and
forwarding decisions [67]. By analyzing the past and current
work conditions, diagnosing potential issues, predicting the
future performance, and helping make decisions on changes to
network deployment, operations, and other aspects, the DT of a
network not only influences the network operations in real time
but also evolves with the real network throughout its lifetime.
With all the network entities mapped to the cyber space using
DTs, communications and applications can be provided across
the physical and cyber spaces. For example, an end-to-end
connection in the physical space can be replaced with an end-
DT-DT-end connection. Such cross-space services benefit from
the use of DTs and the cross-space resource management [68].

Using the DT of networks is a natural way to achieve soft-
ware defined networks (SDNs). The basic principle of software
defined networking is to decouple the network control and the
data forwarding functions, making the network more suitable
for dynamic computing and storage needs in various applica-
tion scenarios. The network control is directly programmable
and centrally managed through a software-based SDN con-
troller. The central controller has a global view of the network
operation by collecting the status of network devices and other
operational data. With powerful computation power, the con-
troller can run complicated learning algorithms to optimize
routing decisions, balance traffic load, and help the network

adapt to dynamically varying topology, traffic, and propagation
conditions. Although the current SDNs or SDNs with artifi-
cial intelligence also make control decisions based on present
and past collected data, creating a DT of an SDN allows the
network to benefit from the intelligence built in the DT. For
example, possible changes in the network architecture can be
applied first to the DT in order to observe the eventual out-
come caused by these changes. This helps network operators
skip through the transient states and plan the network opera-
tions more effectively. The performance of any new function
models, such as routing strategies or load-balancing criteria,
can be simulated at the DT to examine the performance of such
models based on the possible behaviors of the network compo-
nents. This not only helps predict the network performance but
also diagnoses potential problems. In addition, the prediction
results can be used to influence the network evolvement,
such as software and hardware upgrade, resource deployment,
and resource allocations [69]. In addition, the SDN controller
can work with DTs of individual network elements, such as
network users, user devices, and communication channels, to
optimize the network operations [56], [70], [71], [72].

DT and network slicing are the two key elements that form
the holistic network virtualization for 6G [73]. By creating
DTs of end users, extensive historical and real-time data can be
collected that characterize the service demands and QoS satis-
faction of the users. With the powerful processing capability of
the DTs to emulate complicated network management strate-
gies, adaptive and customizable resource allocations can be
achieved for network slices based on various user and network
conditions.

VI. STAGE-BASED DT IMPLEMENTATIONS

A DT may need to operate on many different levels of
granularity [74] in the temporal, spatial, and functional dimen-
sions. This can be difficult to enforce for large and complicated
systems that have high device heterogeneity, cover a wide geo-
graphical area, and support diverse applications. In this case,
the number of system states needed to represent the system
condition, and the number of features needed to support the
applications may be extremely large. In addition, the timing
constraints imposed on the DT when producing an accurate
reflection of the PS features, or when supporting applica-
tions, may vary from very loose to very tight. The amount
of networking resources required for building DTs of such
PSs can also be prohibitively high. As a result, the straight-
forward implementation of a fully functional DT of a complex
PS operating within a complex interactive environment may
be extremely hard or even impossible. Therefore, incremental
transitional stages of a DT implementation are necessary and
practical, allowing some applications to take advantage of the
(partially functional) DT. Depending on the PS and applica-
tions to be supported, the transition can happen in different
ways. In this section, we first present the general ideas for
stage-based DT implementations, based on which a five-stage
implementation framework is described. The implementation
ideas for two specific PSs, a space–air–ground integrated
network (SAGIN) and a network of connected vehicles, are
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then provided. Finally, the generic implementation framework
is integrated with two existing DT structures.

A. General Ideas

A stage-based DT implementation starts from implementing
a partially functional DT based on the DT features given in
Section II-B and the properties defined in Section III. Multiple
partially functional DTs are integrated to reflect more complete
behavior of the PS and support more applications.

The stage-based implementation of a DT can evolve along
the following paths.

1) In the temporal dimension, the DT implementation
can start from reflecting features with relatively loose
promptness, i.e., larger �t∗i . In this case, the data sensing
and collecting frequency, the PS-DT and DT-application
communication data rates, and/or the data processing
speed at the DT can be relatively lower. This helps
reduce the amount of communication and computation
resources needed to implement the DT.

2) In the functional dimension, the DT implementation can
start from smaller subsets of features and gradually inte-
grate more features, i.e., from smaller |Ĩ| to larger |Ĩ|
until Ĩ = I.

3) In the spatial dimension, DTs can be implemented for
smaller sets of Kn’s, and then integrated gradually, until
the DT based on the full set of K is implemented.

The three implementation dimensions are not independent
of one another, and their combinations also depend on the
application requirements. For example, if a DT of a city is to
be built for infrastructure planning, the designer should first
identify what features of the city are needed (such as energy
consumption per capita, household income, etc.). Based on
the analysis of the required features, the system states can be
incrementally determined; the incremental implementation of
the DT is allowed by a sufficient relaxation of requirements
imposed by the application. Note that, in this particular case,
the functional and spatial dimensions are directly dependent.
Another example is collision avoidance in vehicular networks.
Collision avoidance requires real-time information, such as
the location, moving speed, and moving direction of vehicles
within a limited geographic area. These requirements can be
satisfied by a bare-bones implementation of the DT and, thus,
collision avoidance can be served by the DT during all stages
of its implementation, and not necessarily by only the (final)
fully functional DT implementation.

Several implementation examples are given in Table I. For
the smart city DTs, the system state includes many types of
data from a large number of system components distributed
across large geographical areas. The current implementations
of smart city DTs, such as [75], [76], [77], [78], [79], and [80],
focus on some specific applications, such as energy effi-
ciency [75], [77], infrastructure planning [76], [78], [79], and
disaster management [80], which are all time insensitive. For
supporting these applications, the delay for collecting data
from a large scale system and the time needed to process
the large amount of data from different sources is less of a
concern, compared to the accuracy of the model when it is
used for predicting future state of the city.

TABLE I
DT IMPLEMENTATION EXAMPLES

On the other hand, the DT applications for smart manu-
facturing, such as product design, production planning, fault
diagnosis, and predictive maintenance [50], [51], [81], [82],
[83], [84], [85], are designed for small scale PSs. The DTs
can be positioned close to the PSs, which reduces the data
transmission delay between the PS and the DT. Also, the vol-
ume of data is typically small for small scale PSs, which
leads to reasonably small data processing delays at the DTs.
Therefore, tight synchronization can be achieved between the
DTs and their PSs, which is important to optimize manufactur-
ing operations. Similarly, the DTs used in mobile computation
offloading are also for small-size PSs, such as end devices [52],
[56], [86], [87], [88], BSs, and edge servers [70], [71]. These
DTs are used for supporting computation offloading decisions,
resource allocations, and secure and reliable computation in
the edge networks, which require short delay in making the
decisions.

In the functional dimension, the number of features
extracted from the current smart city DTs is a small portion
of the features that can possibly be extracted due to the com-
plicated nature of the PSs. For the smart manufacturing and
edge computation network examples, the current implementa-
tion examples emphasize extracting features of the PSs that
help improve or optimize the short-term PS operation, while
more features can possibly be extracted in future DT imple-
mentations for similar PSs. For example, in edge computing
networks, the current emphasis is to make better computation
offloading decisions, which involves features of the networks,
such as device mobility, traffic conditions, channel variations,
etc. Additional features, such as server lifetimes, satisfaction
level of end users, etc., may be extracted to help network own-
ers consider changes to resource deployments and long-term
resource allocation policies.

A stage-based implementation of a DT also provides design-
ers with time and opportunities to better understand the PS
and/or application requirements, such as the types of states
needed to accurately represent the system and the features
used by applications.

B. Five-Stage Implementation Framework

Following the ideas in the previous section, we present
one specific framework for the stage-based DT implementa-
tion for PSs that span large geographical areas. In the spatial
dimension, we divide the types of the system states into the
component level, subsystem level, and global level, and use
sets KC, KS, and KG, respectively, to represent the types of
system states at these levels. For example, in a connected
metropolitan vehicular network, the moving speed of a car
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TABLE II
EXAMPLES OF STAGE-BASED DT IMPLEMENTATIONS

is at the component level, while its departure and destination
locations may belong to either a subsystem or at the global
level. At each spatial level, the implementation is divided into
stages that start from a low promptness level for a subset of the
features, and gradually transit to achieving the target prompt-
ness of all features. This framework is given in Table II. It
includes five stages, and is explained as follows.

From the second to the fourth columns, each represents a
level of physical (or spatial) size.

1) The component level represents the lowest spatial size.
Higher promptness should first be achieved at this level,
since the volume of data sensed at the same com-
ponents is relatively small and can be collected and
processed at an edge server with shorter communication
and computation delay.

2) At the subsystem level, a larger volume of data should be
collected and processed as the number of components in
a subsystem increases; furthermore, the mutual depen-
dence of components in the subsystem should also be
reflected in the digital representation. As the size of the
subsystem increases in terms of both the number of com-
ponents and the geographical space, the complexity to
model the system increases. In addition, the larger com-
munication delay and delay variation between individual
components and the DT makes it difficult to achieve a
high level of promptness.

3) The third column represents the entire system that
integrates all the subsystems and components. The com-
plexity for achieving high promptness at this level for a
large system can be prohibitively high.

Each row in Table II represents an implementation stage
that is represented by the level of promptness and similarity
of the DT.

1) In stage 1, DTs do not exist, and there are only PSs at
all levels in the spatial dimension.

2) In stage 2, a certain level of synchronization is achieved
at the component level but the promptness is still below
the target for some or all the features; and there is no
synchronization at the subsystem and global levels in
the spatial dimension. Depending on the volume of data
and the availability of communication bandwidth and
computing resources, this stage may be omitted.

3) In stage 3, the target promptness is achieved for all the
features at the component level; a certain level of syn-
chronization is achieved for some but not all the features

at the subsystem level, and not all features have achieved
the target promptness. There is no synchronization at the
global level.

4) In stage 4, the target promptness is achieved for all
the features at the component and subsystem levels. At
the global level, not all the features have achieved their
target promptness.

5) In stage 5, a fully functional DT is finally implemented.
All features have achieved their target promptness at all
spatial levels.

This stage-based implementation includes system decom-
position and DT integration. Decomposition refers to the
division of the PS into a series of consecutively finer (smaller)
subsystems, all the way down to individual components.
Integration refers to the creation and consecutive integration
into ever larger subsystem-level DTs, starting with individual
component-level DTs, and going all the way up to a fully
functional DT for the full system.

The division of a system (or subsystem) into smaller subsys-
tems can be performed in various ways. Some systems can be
naturally divided into relatively independent subsystems based
on geographical locations or functionalities. For example, a
city can be divided into different communities, a university
consists of multiple campuses, and a company has multiple
departments. On the other hand, the division of some systems
may not be straightforward, especially when the components
in the system are interrelated or coupled in complicated ways.

For every implementation stage of the framework, the
following issues arise.

1) How many component DTs and subsystem DTs should
be created for each PS?

2) Where should the component, subsystem, and global
system DTs be located?

3) How should each (cloud/edge) server allocate commu-
nication, computing, and storage resources for each DT
implementation?

Answering these questions requires solving complicated
network resource allocation problems, if the DTs are supported
by existing network resources. When deploying additional
network resources is an option, such as adding servers or
communication links to the network, answering the above
questions requires solving joint resource deployment and
resource allocation problems. In addition, domain knowledge
related to the PS is often required to build its DT. More dis-
cussions about the DT implementation issues are provided in
Section VIII.

Following the above framework, two implementation exam-
ples are given in the following sections.

C. DT Implementation for Space–Air–Ground Integrated
Network

Consider a SAGIN [90], [91], [92], [93], [94]. In the spa-
tial dimension, the entire system is naturally divided into the
ground, air, and space networks, which form the three top-
level subsystems of the SAGIN. Each of the three spatially
separated networks can be further divided into multiple sub-
networks that form the next-level subsystems. The subsystems
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can be further divided into components, such as BSs, routers,
and user equipment (UE) in the ground network, drones and
balloons in the air network, and satellites in the space network.

Building the DT for the entire SAGIN can start from build-
ing DTs for the individual components. The state at each
component should be synchronized with that at the DT, which
processes the state information and extracts the features of the
component. In addition, profiling the individual components
may also help the system to predict possible malfunctions
and lifetime of the components. Consider a cellular BS as
an example. The state information may include the num-
ber of busy channels, number of associated users, number of
active connections, types of traffic carried by active connec-
tions, transmission power, and data transmission speed to each
user. Based on this information, the DT of the BS can extract
features of the BS, such as whether the BS is overloaded.

The DTs of the components belonging to the same sub-
system are integrated into the DT of the subsystem. For the
ground network, its DT is built by integrating the DTs of the
BSs, UE devices, gateways, and routers. Note that the DT of
the ground network can be located in a different server as
the DTs of the individual components. In this case, additional
communication resources are required for the component DTs
to forward state information to the subsystem DT. For exam-
ple, the DT of a BS can pass information, including possible
user handoffs and co-channel interference conditions to the
DT of the cellular network, which uses the information to
make decisions on channel allocations, handoffs, and traffic
load balancing.

This type of information aggregation is repeated until reach-
ing the highest level DT, which is the DT of the entire system.
At this level, data collected from the entire system can be used
to coordinate network-wide operations, e.g., end-to-end rout-
ing, long-term traffic profile modeling, and network resource
deployment. The system DT can also be utilized to make
strategies about possible system configuration changes, such
as adding or removing some drones in specific areas.

D. DT Implementation for Network of Connected Vehicles

In this section, we consider the case of constructing the
DT for a network of connected vehicles in order to help
facilitate network management and planning. From the tem-
poral dimension, the DT can be created to support network
management functions that require information with differ-
ent time scales [95], [96]. Examples of real-time functions
include collision avoidance and road traffic navigation. This
requires the DT to track real-time locations, moving speeds
and directions for vehicles, etc., which form a subset of the
network states. Data belonging to this subset of the system
state should be transmitted to and processed at the DT with
very low delay, e.g., less than 10 ms, so that the extracted fea-
ture information, such as distances to neighboring vehicles,
can be useful for collision avoidance, assisted driving [97],
[98], and other time-critical applications.

The DT can also be used to prevent road accidents caused by
mechanical or electrical failures [98]. To support this function,
the DT should keep tracking battery levels for electric vehicles,

mechanical conditions of vehicles on roads, etc., which form
a different subset of the network state. In order to extract fea-
tures, such as whether the car brake would be safe for the next
few minutes or how long the battery can keep the car running,
the DT should not only process the current state data but also
the battery energy consumption and other vehicle running data
in the past few minutes or hours.

The DT can also be constructed to reflect behavior of the
network over a longer time period. For example, the DT
stores system state data, including users’ positions and service
requests. After accumulating the data over days or months,
the DT can extract system features, including individual users
travel patterns, usage of various mobile applications among
road users, etc. This allows the DT to effectively predict user
locations and content requirements in social-aware networks
and make optimum decisions on mobile-edge caching [99]. In
vehicular networks, historical data of drivers can be used to
model and predict driver behaviors, based on which optimum
decisions can be made for personalized driving guidance or
insurance pricing [98]. Furthermore, by processing the system
state data over months or years, the DT can extract features
of the system including traffic density, service demand dis-
tribution, and resource utilization, which helps the network
operators to make decisions on the network infrastructure
deployment. In this case, supporting the delay-tolerable func-
tions does not require high data transmission rates or short
data processing times. However, a large storage space and high
computational power are required for storing and processing
the historical system state data.

E. DT Structures

The generic five-stage framework can be integrated with
different design and implementation structures when build-
ing DTs of complicated PSs. Below we introduce two DT
implementation structures: 1) a layered structure [74] and 2) a
modular structure [100].

The concept of “key components” is proposed in [74] for
modeling and building DTs. The key components for a PS
can be defined at different granularity levels to enable differ-
ent applications, and these granularity levels provide a layered
structure for DT implementations. For instance, in a smart city
or intelligent vehicular network, a set of “low-level” key com-
ponents can be defined for building the DTs that are used to
model and predict the mechanical performance of vehicles. A
different set of “high-level” key components can be defined
for building DTs that are used to support Car-as-a-Service.
Building the latter DTs directly on top of the “high-level”
components avoids processing unnecessary “low-level” details,
which helps reduce the implementation complexity of the
“high-level” DTs. This layered structure also allows a sub-
set of the key components at the same or different granularity
levels to be integrated into a DT based on specific services
and applications. When integrating the layered design with
the stage-based framework, key components can be defined
from the spatial dimension. For example, the granularity lev-
els vary from individual physical components and subsystems
to global systems.
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With a modular structure, the DT of a complicated PS can
be broken into smaller parts, each of which can be developed
and improved independently. The modular structure of DTs
in [100] is based on the basic building blocks referred to
as digital maps (DMaps). Each DMap implements a specific
functionality of the DT. Higher level tasks and applications
can be achieved by integrating the related DMaps that are
needed by the tasks or applications. Using such a structure,
different DMaps can be individually developed and updated
without affecting other DMaps. A DMap, once implemented,
can be used in multiple DTs or support different applications.
This structure is used to design the 5G and beyond networks
in [100], where the DMaps are implemented based on sub-
sets of network components or ranges of IP addresses. The
DMap-based modular architecture easily fits the stage-based
framework from the spatial dimension. Starting from stage 2,
new DMap modules can be built incrementally toward achiev-
ing the temporal and functional objectives of the DT in the
respective spatial level of the stage.

Both the layered and modular structures provide flexibility
for building DTs of complicated PSs in an increasing manner.
Meanwhile, both structures require interactions of different
building blocks, i.e., DMaps or key components. Therefore,
defining standardized building blocks and communication
protocols is essential for the composability, scalability, and
adaptation of the DTs.

VII. SUMMARY OF RECENT RESEARCH

For networking-related research on DTs, existing literature
falls into two general categories, the first is creating DTs for
different types of PSs based on available networking support,
and the second is taking advantage of the DTs for improv-
ing the network performance. This section starts from the first
category by summarizing the existing DT solutions in intel-
ligent manufacturing and different prototype implementations
of DT-based smart cities, and then introduces recent work on
applying DTs for network performance improvement. At the
end, combination of ML and DT-related networks is discussed.

A. Intelligent Manufacturing and Cyber–Physical Systems

Since it is first introduced in manufacturing, the DT con-
cept has been gaining substantial attention from manufacturing
companies. One important DT application is building virtual
workshops for intelligent manufacturing. Real-time mutual
interactions between the physical and the virtual systems
are important not only for real-time synchronization between
the two systems but also for continuous evolvement of both
systems. The convergence between the physical and virtual
systems is important for realizing various smart operations in
the manufacturing process, such as automatic control and fault
prediction [5]. In [81], a DT solution is developed for opti-
mizing operations of production lines. A virtual model that
imitates real-world behavior of production lines is built by
using a simulation software model. The virtual model is then
coupled with the real production system through asynchronous
connections that allow the virtual model and real system to
exchange data periodically (e.g., every 10 ms). The DT can

be used to predict the performance of the real system in dif-
ferent scenarios, and the information is used to help improve
the production efficiency. Since the PS is relatively “small” in
the spatial dimension, it is possible to use high-speed commu-
nication links to achieve fast data exchange between the PS
and the DT. The product DTs designed in [50] for electrome-
chanical products and in [51] for a production line are also
for PSs that span small areas so that Ethernet or other high
speed local-area communication links can be used to achieve
real-time PS-DT communications. In addition, the volume of
system state data is also relatively small, given the size of the
PSs, and this leads to relatively short data processing delay at
the DTs. Different from the above manufacturing DTs, the DT
designed in [101] is for energy management in manufacturing
systems. Since the application is not time sensitive, there is
less pressure on real-time data communications and process-
ing. This makes it possible to run the DT for large systems,
where collecting and processing the system state data may be
time consuming.

DTs and CPSs are both important in integrating the cyber
(or virtual) and PSs to achieve smart manufacturing. CPSs are
a new trend in the IoT research community, where PSs act
as sensors collecting real-world data, which go through fur-
ther analysis in the dedicated computation modules, and the
result is fed back to the PSs. Both DT and CPS rely on real-
time sensing at the PS, data processing at the cyber system,
and mutual interactions between the cyber and PSs. However,
CPS emphasizes more on monitoring and controlling functions
of the cyber system on the PS, and DT requires the virtual
system to be an exact replica of the PS and keep evolving
with and influencing the PS. For this reason, DT can be used
not only for real-time optimization and control but also for
error prediction and longer term designs and optimization of
the PS. DT is considered as a seamless integration between the
cyber and physical spaces in [2], where more detailed discus-
sions about the relationship and differences between CPS and
DT are provided. As cyber-systems have become increasingly
cloud-based, DTs can be used as a bridge between the cyber
and PSs, so that the real-time state and feature information
at the DT helps the cyber system to make more accurate
and optimum decisions and support more time-critical appli-
cations [55]. Large scale CPSs and DTs usually suffer from
networking issues, such as poor synchronization between the
cyber (virtual) and PSs due to communication and/or data
processing delay. A common DT platform is needed so that
various simulators, simulation engines, and physical machines
that are used to build the DT components can share data, inter-
work, and support applications using standard interfaces [102].
A common DT platform also provides standard tools for
testing, deploying, managing, updating, and integrating the
DTs.

B. DT-Based Smart Cities

The use of DTs in smart cities has been increasingly popu-
lar for planning infrastructure deployment, anticipating public
problems, assisting communities in need, adjusting govern-
ment policies, etc. Although building a DT to comprehensively
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reflect all aspects of a city is not practical in a short term,
DTs are a critical tool toward smart cities. As such, prototype
DTs have been created for specific applications of smart cities.
Examples of these prototype DTs can be found in [75], [76],
and [103]. The virtual Singapore designed by the Dassault
Systèmes [75] helps achieve more efficient energy consump-
tion by collecting and processing city state data and guiding
operations of the city. The DT-based smart city for Dublin,
Ireland [76] is created for helping the city planning, such as
adding or removing buildings and green spaces, by collecting
information from the citizens and processing the information
at the DT. The Vision Zero [103] program monitors road traffic
conditions, collisions, pedestrian injuries, etc., and makes use
of the information for managing traffic and improving road
safety.

Healthcare is an important type of applications for smart
cities. A DT-based ecosystem is designed in [104] for health-
care and wellbeing. In the proposed DT framework, health-
related data is collected from personal health devices, such
as smart phones; the data is processed and analyzed through
an AI-inference engine; and the results are fed back to the
user for personalized healthcare and wellbeing. The health-
care DT framework is based on the International Organization
for Standardization (ISO)/IEEE 11073 standard, which facil-
itates communications between personal devices and servers
that host the DTs.

The road system is an important part of a city infrastruc-
ture. Implementation of the DT of the roads for a city is
considered in [19], where different road condition data is col-
lected and sent to cloud servers for extracting features of the
road system. The data includes live videos of the road traffic,
GPS data, and environmental measurements. When processed
at the cloud servers, information can be extracted to identify
and track persons and vehicles for various purposes, such as
preventing crimes, solving accident conflicts, or resolving acci-
dent conflicts. DT-assisted road traffic data prediction is used
in [20] for traffic management, where cameras on road cross-
ings are used to collect road traffic, which is then processed to
predict the traffic condition in nearby road crossings. Since the
geographical area considered in this work is relatively limited,
compared to other smart-city DTs, data can be collected and
processed within relatively short time delay. For example, the
traffic prediction in [20] can be performed on hourly basis.

For smart cities, the geographical size of the PS makes
it unlikely to achieve a fully functional DT. Since collecting
system state data in real time is not practical, most applications
supported by the existing smart city DTs have been time-
insensitive. Meanwhile, extracting features needed by these
applications requires processing data from a large number of
places, people, or other components of a city over a long
period of time. The amount of network resources required to
communicate, store, and process the high volume of data is
extremely high. In addition, the DTs for supporting different
applications collect data based on different types of city states,
use different data processing methods, and adopt different sim-
ulation models. This makes it difficult to extend the existing
smart city DTs for supporting other applications. In addition,
building the DT of a city or other large systems requires large

volumes of data in different formats, multiple simulation mod-
els, different data fusion platforms, etc., which may not be
interoperable without consistent guidelines to follow. A T-Cell
framework developed by the digital urban European twins
(DUET) project provides a common environment that allows
models, data, and simulations to dynamically interact in order
to facilitate decision making in DT-based smart cities [18].

C. DTs for Network Performance Improvement

Recent enhancements in the mobile network infrastructure
have facilitated the support for strict performance requirements
and new functions, and brought new intelligent services to
the edge of the networks. Although making the optimal deci-
sions and prediction is challenging due to the dynamic and
heterogeneous nature of the networks, deployment of DTs pro-
vides real-time monitoring of the networks and perception data
for the decision-making module. In [52], [56], [70], and [71],
DT networks are formed for making offloading decisions in
mobile-edge computing (MEC) networks. The DT networks
are created by integrating DTs of different network elements,
such as DTs of individual IoT devices [52], [105], DTs of
individual end devices and edge servers [56], DTs of mobile
users, BSs, and edge servers [70], or DTs of vehicles and
RSUs [95], [96]. The DTs collect real-time state information
of their PSs and extract the information that is needed to make
task offloading decisions for mobile devices. The DT network
in [71] includes a DT for each edge server and a DT for the
entire MEC system. The DT of the MEC system reflects the
interactions in the MEC system, such as offloading decisions
of mobile users.

Deviation often exists between information reflected at a
practical DT and the true information at the PS. This can be
caused by many factors, such as varying network conditions
and limited network resource availability. Such discrepancy
affects the performance of the applications that depend on
DTs to obtain information of real systems. The effects of
this discrepancy are considered in [71] and [106] when mak-
ing decisions for mobile computation offloading. The work
in [107] further considers different factors, including packet
loss during data synchronization between the PS and the
DT and biases in communication, computation, and storage
resources, that cause the information discrepancy, analyzes
the information deviations, and uses the derived deviation
information to make computation offloading decisions and
allocate network resources.

By synchronizing the system state at the physical and the
digital systems, the DT networks enable network providers to
estimate and predict the dynamic changes of the device loca-
tions, traffic demands, communication channels, and resource
availability, and make decisions on computation offloading and
resource allocations. However, maintaining the DTs requires
real-time communications and data processing. The addi-
tional amounts of network resources for hosting the DTs are
often not considered in the existing work on DT networks.
In addition, the amount of network resources for running
the DTs is directly related to the quality of the DTs, such
as the promptness and similarity, which further affects the
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operation reliability of the applications. DT-enabled metaverse
is achieved in [108], where multidimensional optimization,
including communication and computation resources, offload-
ing decisions, caching policies, BS allocation, transmit power,
etc., is performed in order to achieve the low delay requirement
of a metaverse.

DTs have also been used in vehicular networks to help catch
the highly dynamic and unpredictable nature of the network
topology and transmission conditions. DTs are used in an
aerial-assisted vehicular network in [109], where the dynam-
ically changing network topology poses high challenges to
efficient resource allocations. In this work, one DT is main-
tained for the RSUs and another DT is for the vehicles. The
former is to track real-time states of the RSUs, including their
traffic load and available resources; and the latter is to track
the real-time topology of the vehicles and required traffic load.
The DTs are hosted in a UAV, which has a wide coverage and
can communicate with the vehicles and RSUs and update the
information at the DTs in real-time. The DTs are then used
to make intelligent offloading decisions regarding which vehi-
cle should offload its tasks to which RSU. A social-aware
vehicular edge caching network is studied in [99], where a
DT network is implemented at the RSUs and collects network
state information, including vehicle locations, driving status,
and data requirement. The information is then processed at the
RSUs in order to extract features needed to build the vehicu-
lar social model. This helps design cache resource scheduling
schemes that satisfy requirements of the vehicular users and
reduce energy consumption of the RSUs. In [110], DT-enabled
software-defined vehicular network (SDVN) is studied for
improving the routing performance. Different routing schemes
are run at the DT-based virtual network, which keeps refining
the routing methods based on received routing-related reports
from the real vehicular network. The central controller of the
SDVN collects the status of individual vehicles and the roads
and builds a real-time DT of the physical network. In addi-
tion, the controller maintains multiple future virtual SDVNs
based on different predicted states of the vehicles and roads
and adopts the optimum control scheme. Achieving the opti-
mum routing requires accurately predicting the road traffic and
network conditions, which requires collecting system state data
in very small time granularity and processing the data at very
high speed. The high computation load also consumes high
processing energy, which should be taken into consideration
when making the control decisions.

D. DT Combining With ML

ML is one of the most powerful methods to achieve the
intelligence needed for DTs to learn, model, and predict the
behavior of the PSs. For example, based on historical and
real-time data collected from the production lines and other
manufacturing systems, supervised learning is used to estimate
work conditions of the equipment, optimize equipment opera-
tions, predict possible faults, and locate causes of faults [50],
[101]. For healthcare, a convolutional neural network (CNN)
is used in [104] that takes input data collected from health-
care devices worn by the users and classifies health-related

activities of users. In the DT of network function platform
studied in [111], a neural network is trained for the DT to
estimate and predict key performance indicators of the ser-
vice system and optimize CPU resource sharing among virtual
network functions.

DTs have also been combined with ML algorithms to
enhance network management performance in data analyt-
ics and improve decision-making efficiency. In [69], a DT-
empowered Industrial IoT architecture is considered, where
DTs capture the characteristics of industrial devices and the
dynamic changes of the network. Based on knowledge from
DTs, training efficiency of federated learning is improved
under resource constraints. With the aid of reinforcement
learning, DTs can help track the dynamic changes of high
dimensional states of mobile networks and make optimum
decisions for network resource allocations, user scheduling,
and other network operations [52], [89]. In [99], optimum
caching decisions for a vehicular social network are made
through a deep deterministic policy gradient (DDPG) learn-
ing approach. With the assistance of the social-aware DT that
captures the dynamic and long-term changes of the network,
the caching decisions are optimized in the diverse vehicular
networking environments. In [112], a graph neural network
helps build scalable DTs by modeling the intertwined rela-
tionships among multiple network slices that share the same
physical infrastructure. Collaboration of DT and ML meth-
ods has been applied in MEC systems for making better
task offloading decisions [56], [70], [89], [113], [114], [115].
With the support of DTs, complicated ML algorithms can be
run to keep tracking states of the devices and the system
and predict the future states. However, due to the limited
network resources, the state information at the DTs may be
inaccurate, delayed, or incomplete. This should be taken into
consideration in the DT-based ML algorithms.

DT can predict the network behavior by running trained
models based on current and historical data collected from
the real network. This allows the network to proactively
adapt to dynamically changed network conditions. However,
processing the large volume of data to satisfy the require-
ments of real-time applications poses significant challenges
to network resource deployment and management. Some key
design requirements are presented in [116] in order to achieve
a scalable and reliable architecture to build the DT of a 6G
wireless system. Using distributed deep learning is one method
that allows multiple models to be trained at different places
with reduced computation load. However, such locally trained
models should then be integrated, which consumes additional
communication and computation resources.

As one of the distributed learning methods, federated learn-
ing has been used to build DT-empowered communication
networks [52], [89]. In mobile wireless networks, synchroniz-
ing real-time data between mobile user devices and the DTs
that are usually located at edge servers requires a considerable
amount of wireless resources. Using federated learning allows
the DT of a mobile user to learn the user’s behavior through
its communications with other users. This helps reduce the
communication loads between end users and the edge servers,
which is especially helpful when such communication links
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are in poor quality. As a distributed ML algorithm, feder-
ated learning has enabled distributed advanced analysis while
considering privacy protection and data security. However,
designing scalable and efficient federated learning algorithms
is still a challenging research topic [117].

Training practical ML models requires a huge volume of
data. However, there is often a lack of data from the real
network due to data encryption or protection of user pri-
vacy. Instead of using data collected from real networks,
generative adversarial networks (GANs) [118] can be used to
generate synthetic data [100]. In addition, data can be gen-
erated using computer simulation or testbeds. It has been
shown that network models trained using graphical neural
networks (GNNs) can be more scalable. That is, models
trained for small networks are still valid for large networks
or for networks with different configurations or traffic
distributions [119].

VIII. IMPLEMENTATION ISSUES AND OPEN

RESEARCH TOPICS

Despite the great potentials of DTs, there are many chal-
lenges associated with developing and incorporating DTs in
practical applications. In this section, we briefly discuss and
identify some networking-related open issues in DT research
and implementation.

Curse of Dimensionality: By definition, a fully functional
DT should reflect the PS in temporal, spatial, and functional
dimensions from small to large granularities. This means that
in the temporal dimension, a DT is expected to reflect the
features of its PS from very small to very large time scales,
e.g., from microseconds to years; in the spatial dimension,
a DT should be built “from the micro atomic level to the
macro geometrical level” [66]; and in the functional dimen-
sions, a DT should reflect all features of the PS. Thus, a fully
functional DT implementation involves representing the PS
with an extremely large number of state types and collect-
ing and processing a prohibitively high volume of data. This
curse of dimensionality problem in DT implementation [120]
may go beyond the capability of any existing methods and
computing devices. In addition to using modern high speed
CPUs and more efficient big-data technologies, another way
to break the curse of dimensionality is to split the fully func-
tional DT of a given PS into multiple DTs, each of which
reflects a subset of the features and states of the PS in certain
temporal and spatial ranges. The stage-based implementa-
tion described in Section VI is one approach to solving this
problem.

Real-Time Synchronization: Keeping tight synchronization
between the PS and its DT is one of the fundamental require-
ments of high-quality DTs. To achieve this, it is important
to minimize both the communication and computation time.
Data transmission delay can affect the DT quality consid-
erably if PS-DT communications or communications among
multiple DT components of a PS should go through the
Internet. Time-sensitive networking (TSN) [121] and deter-
ministic networking DetNet [122] are protocols that help
achieve bounded end-to-end transmission delay. However,

TSN is a layer-2 protocol that has limited scalability, while
providing ultralow latency end-to-end using DetNet requires
the network infrastructure to support DetNet services. In addi-
tion, complicated control and management technologies are
required in order to provide reliable ultralow end-to-end com-
munication delay based on DetNet and TSN [123], [124],
[125]. However, reliably delivering ultralow end-to-end delay
also depends on more efficient network architecture that facil-
itates efficient network management for routing, addressing,
resource allocation, etc. In addition to communication delay,
computation time in building and maintaining DTs, includ-
ing simulation, modeling, and data processing, can also be
significant. When the amount of network resource is limited,
reducing the computation time may be temporarily achieved
through the stage-based DT implementation.

Optimum Resource Deployment and Management: A DT
should keep tracking accurate real-time status of the PS and
constantly update the features of the system. Implementing and
maintaining DTs requires the support of network resources,
including communication, computing, and caching. For com-
plicated or large-scale PSs, how much each type of the network
resources is needed, where to deploy the resources, and how
to allocate the resources to build and maintain the DTs with
desired quality requires joint heterogeneous resource man-
agement, which is a very challenging issue for large-size
networks [126]. In addition, different applications may require
different features to be extracted from the system states and
have different promptness and similarity requirements. This
will result in the optimization of multiple objectives, some of
which are likely contradictory. Given the limited amount of
network resources, how to coordinate the application require-
ments in the network resource allocations is a complicated
issue.

Standardization: In the last decade, DT technology has been
used in a variety of applications and the use cases are growing
rapidly. However, due to the lack of a standardized proto-
type of DTs, every application is using a definition of the
DT specific to its domain. A standardized protocol is impera-
tively needed for proper usage of DT technology. The ISO
and International Electrotechnical Commission (IEC) have
been developing DT-related standards. The ISO 23247 series
provide the general guidelines for building DTs in manu-
facturing environments. In October 2021, the organization
published ISO 23247-1 [127], which is the first part of the
ISO 23247 series and provides the terms and definitions
related to DTs in manufacturing. Later parts of the series
are expected to provide the reference models and frame-
work views from different perspectives. In particular, the ISO
23247-4 is expected to provide guidelines for information
exchange and protocols from a networking perspective, which
would facilitate the information exchange of DTs built for
different components and subsystems in the same system or
even DTs of different systems. In addition, the ISO/IEC JTC
1/SC 41 [128] is for standardization for developing IoT and
DT-related applications.

Addressing: Addressing is another important issue, espe-
cially in a network of DTs [24], [129]. First of all, the DT
of a given PS should have a unique identity in a network.
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This means that given the identity of the PS, its DT should be
located in the network; and given the identity of a DT in the
network, the identity of its PS should be located. Second, as
a virtual representative of its PS, a DT should be addressable
directly when it is working with third-party applications on
behalf of its PS. That is, communications between the DT of
a given PS and a third-party application should not go through
the PS. This can be difficult unless the information about the
identity mapping between the PS and the DT is available at the
third-party application before the communication starts. As a
transitional step, a third-party application can always commu-
nicate with the PS first, which then directs the application to
its DT. Alternatively, trusted DT mapping servers may be built
to help applications locate the DTs of given PSs. The iden-
tity mapping information can also be cached by intermediate
network devices. However, the communication redirection and
outdated caching information can result in a considerable ini-
tial delay in DT-involved communications and cause security
issues.

Security: The use of DTs poses significant security issues.
With a DT as the replica of the PS, keeping the system safe
requires not only protecting the PS but also the DT and the
connection between them. With DTs being used to interact
with third party applications on behalf of the PS, the DTs
are more exposed to the outside environment than the PS
and, therefore, their security is even more crucial. Any secu-
rity breach to the DTs results in security breach to the PSs.
However, discovering security breach to a DT can be delayed
due to the fact that the DT and the PS are physically apart. In
addition, DTs can influence or control over their PSs, and
keeping DTs from infiltrators and hackers is important to
ensure the PS to work normally.

Specialization: In a large system consisting of multiple sub-
systems, each subsystem can use its own DTs. These DTs can
all be specialized or customized for different applications of
their corresponding subsystems. In this type of implementa-
tion, the central management unit needs to deal with multiple
types of DTs with different structures and has to convert their
outputs to a unified type of data to facilitate the communica-
tion among different DTs. Alternatively, a unified DT structure
can be used in all subsystems to make the inter-DT communi-
cations easier. However, this may not achieve the same quality
of DTs as in the specialized case, since the DTs are crafted
for general usage for all subsystems.

IX. SUMMARY

This article has presented a comprehensive review on the
networking-related research and technological development in
DT implementation. In particular, the existing definitions of
DT with key features and characteristics have been summa-
rized. After that, desired properties of DT implementation
have been discussed, highlighting the relationship between the
quality of DTs and the networking support. Moreover, a stage-
based DT implementation framework has been presented to
demonstrate how DTs can be practically implemented for large
scale and complicated systems. Finally, the existing research
on networking-related DT implementation has been thoroughly

reviewed and the technical challenges and open research issues
have been elaborated.
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