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Abstract—Differential privacy (DP) has gained popularity in truth discovery recently due to its strong privacy guarantee. However, existing

DPmechanisms for streaming data publication are not suitable for truth discovery as they fail to consider the different reliabilities of

individuals, while the DP-based approaches for truth discovery are not suitable for streaming data because they ignore the correlations

between truths over time. Directly applying these existingmethods to streaming crowdsourced data would lead to low accuracy of the

discovered truth. To solve this problem, in this paper, we propose an edge computing based privacy-preserving truth discovery

mechanism, named PrivSTD, for streaming crowdsourced data to realize high accuracy of discovered truth while protecting the privacy of

workers. Specifically, edge servers are introduced between the untrusted cloud server and workers to securely calculate the local truths

and workers’ reliabilities. A truth-dependent budget recycle mechanism is proposed for each edge server to adaptively determine the

perturbed timestamp and allocate the privacy budget according to the changing pattern of local truths. Besides, a reliability-based

perturbationmechanism is proposed to reduce the perturbationmagnitude on the basis of worker’s reliability.We theoretical analyze the

data utility and computation cost of PrivSTD, and prove that PrivSTD can satisfyw-event (�; d)-differential privacy. Extensive experimental

results on synthetic and real-world datasets demonstrate that PrivSTD achieves better utility than the state-of-the-art approaches.

Index Terms—Crowdsourcing, truth discovery, streaming data, differential privacy, edge computing
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1 INTRODUCTION

1.1 Background and Motivation

CROWDSOURCING is a technology of outsourcing tasks to a
group of public workers. It gains its popularity through

providing a flexible, time- and cost-saving way to execute
large amounts of tasks that require human intelligence [1],
[2]. A typical crowdsourcing application involves three enti-
ties: a centralized crowdsourcing platform (or a cloud server,
e.g., Amazon mechanical Turk,1 MicroWorkers,2 and crow-
SPRING3), the task requesters, and the workers. A task
requester that needs information or services releases tasks to

a crowdsourcing platform, and workers who accept tasks
would provide their answers to the platform in exchange for
payments. Then, the task requester chooses truths from the
collected answers. The continuously collected answers are
called streaming data, which has increasing prominences in a
wide range of applications. For example, in trafficmonitoring
applications, traffic information is reported bymultiple users
frequently in real time. In healthcaremonitoring applications,
the health data of patients are continuously recorded. In envi-
ronmental monitoring, temperatures in different places need
to be collected regularly. [3], [4]

Although crowdsourcing provides an easy way to
accomplish tasks, it faces the problem of noisy or conflicted
answers. An intuitive approach for solving the conflicts is
to take the average of numerical data or accept the majority
of categorical data as the truth. However, averaging or
majority voting assumes all the workers are equally reli-
able [5], which may not hold in some cases. To ensure the
authority of the result, the result must be closer to the infor-
mation provided by reliable workers. However, a challenge
comes out that the worker’s reliability is usually unknown
in advance.

In order to solve this challenge, a series of truth discovery
methods [4], [6], [7], [8], [9] have been proposed to estimate
the workers’ reliabilities in the form of weights without any
supervision. Since both worker’s weight and truth are
unknown in prior and can only be inferred from answers,
the weight estimation and truth finding steps are tightly
combined under a simple principle that a worker providing
answers closer to the truths will be assigned higher weight,
and the answers provided by a worker with a higher weight
are closer to the truths.
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While truth discovery provides an effective way for infer-
ring the true answers, it causes privacy concerns of workers,
because the centralized platform (the cloud server) can easily
obtain private information of workers from the answers. For
example, aggregating the medical data from participants
helps discover the effects of new drugs, but it may also leak
their private health conditions. One single recordmay contain
little personal information, but continuously collecting
records and combining with auxiliary information can some-
times identify people uniquely, as mentioned in the field of
privacy-preserving data mining [10], [11], [12], [13]. As a
result, protecting the answers from each worker in truth dis-
covery is very important, especially in the streaming crowd-
sourcing applications, which continuously collect sensitive
data. However, the streaming data also poses significant chal-
lenges in privacy preservation, because the data distribution
of the data stream is usually unknown and constantly changes
during thewhole data collection process.

1.2 Limitations of Prior Arts

In order to protect the privacy of workers, several works
explored privacy-preserving truth discovery mechanisms
by using encryption techniques [12], [13]. Miao et al. [3], [14]
performed weighted aggregation on users’ encrypted data
using homomorphic cryptosystem to protect both users’
data and their reliability scores. References [15], [16], [17],
[18] further improved the bandwidth and computation per-
formance on individual users. However, these approaches
require multiple interactions between servers and users. To
simplify the process, Tang et al. [19] implemented a non-
interactive privacy-preserving truth discovery system with
garbled circuit. Zheng et al. [20] argued that the inferred
truths were private for task requester, thus they proposed
an encrypted confidence-aware truth discovery approach to
protect the sensory data and reliability degrees of users, as
well as the inferred truths of the requester.

Comparing with these encrpytion techniques, differential
privacy (DP) [21], [22], [23] ismorewidely used in data aggre-
gation due to the advantages of low computational cost and
provable privacy protection. However, the traditional DP
mechanisms are not suitable for truth discovery, because they
do not consider the different reliability ofworkers in truth dis-
covery, consequently injecting the maximum noise to each
worker. In order to improve the accuracy of perturbed truths,
several works have integrated DP mechanism into the truth
discovery algorithm. Sun et al. [24] introduced the matrix fac-
torization technology into truth discovery. They added Lap-
lace noise into the loss function ofmatrix factorization instead
of the original answers to reduce the effect of noise on the
aggregation. However, thismethod did not consider different
reliabilities of workers. Li et al. [25] flipped the candidate
answers with a specific probability that was sampled from a
hyper distribution to reduce the perturbation magnitude. But
this method only aims at binary data, and is not suitable for
continuous data that used in ourwork, since the candidates of
continuous data are endless. Then, Li et al. [26] proposed a
similar method for continuous data. They assumed that the
errors of workers follow normal distributions, of which the
variances are sampled from an exponential distribution that
scaled by a hyper parameter. This hyper parameter controls
both the privacy protection degree and the utility of truth

discovery. Following the approach in reference [26], Sun et al.
[27] proposed Paris-TD, a privacy-preserving incentivemech-
anism for truth discovery andXu et al. [28] introduced a verifi-
able and privacy-aware truth discovery protocol that enables
any entity to verify the correctness of aggregated results
returned from the server. Vadavalli et al. [29] used random
disturbance to protect the privacy information in the health-
care database. But it was based on the assumption that the
healthcare database was trusted. While in our work, we think
that the data center (cloud server) is untrusted, and the
answers must be protected before being transmitted to the
cloud server. Moreover, all of these methods were proposed
for one-time truth discovery, while the mechanism we pro-
posed is for the truth discovery of streaming data. Simply
applying the existing works to the streaming data may incur
too much noise, since they did not fully take advantage of the
correlations among truths in the data stream.

Motivated by the above-mentioned problems in the truth
discovery of streaming data, we aim to design a privacy-pre-
serving truth discovery algorithm with w-event DP for the
streaming crowdsourced data, which can simultaneously
take into consideration both the correlations among truths
over time and the characteristic of workers’ reliabilities to
achieve high accuracy of discovered streaming truth while
protecting the privacy of workers. To realize these objectives,
we are still facing several challenges. First, it is challenging to
explore the evolving pattern of truths. The untrusted cloud server
cannot access to the true answers while an individual worker
cannot calculate truth over his own answers. Thus, neither the
cloud server nor a specific worker can obtain the correlations
among truths over time. Second and themost important, since
the truths andworkers’ reliabilities are unknown in prior, how
to reflect the relationships among evolving truths, workers’ reliabil-
ities and noise magnitude is very challenging. Lastly, since the
allocated privacy budget to each data point is also changing
over time, how to realize w-event differential privacy for each par-
ticipant should be carefully investigated.

1.3 Contributions

To overcome these challenges, we propose an edge comput-
ing based Privacy-preserving Streaming data TruthDiscov-
ery algorithm, called PrivSTD, to achieve accurate truth
discovery for streaming data while protecting the privacy of
workers against untrusted cloud server. Specifically, multi-
ple edge servers are introduced to help workers securely
calculate the local truths and workers’ reliabilities. A truth-
dependent budget recycle mechanism is then proposed for
each edge server to adaptively determine the perturbed
timestamp and allocate the privacy budget according to the
evolution of local truths. More importantly, a reliability-
based perturbation mechanism is designed to efficiently
improve the accuracy of estimated truths. In particular,
instead of achieving w-event �-differential privacy, we relax
the privacy constraint of PrivSTD for higher accuracy,
which satisfies w-event (�; d)-differential privacy.

To summarize, this paper makes the following
contributions:

� To the best of our knowledge, this is the first work
exploring privacy-preserving truth discovery over
streaming data. We propose a novel edge computing
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based solution to realize accurate truth discovery
under strong w-event (�; d)-differential privacy protec-
tion by taking into consideration both the different
reliabilities among participants and the correlations
between data points over time.

� We introduce edge servers to help workers securely
estimate local truths and workers’ reliabilities, based
on which the truth dependent budget recycle mecha-
nism and reliability-based perturbation mechanism
are proposed to adaptively allocate privacy budget
and add appropriate noise for each worker based on
evolving truths and reliabilities.

� We theoretical analyze the data utility and computa-
tion cost of PrivSTD and prove that PrivSTD satisfies
w-event (�; d)-DP. The experimental results on both
synthetic datasets and two real-world datasets demon-
strate that PrivSTD outperforms the state-of-the-arts.

The remainder of this paper is organized as follows. Section 2
introduces some preliminaries. The overview of PrivSTD is
presented in Section 3. We detail the design of PrivSTD in
Section 4. Experimental results are provided in Section 5.
Finally, Section 6 draws the conclusions.

2 PRELIMINARIES

This section first introduces the system model of traditional
privacy-preserving truth discovery, and then describes the
definitions of DP and w-event DP as well as the composition
characteristic. The important notations frequently used
throughout the paper are listed in Table 1.

2.1 Truth Discovery

Suppose there are M crowd participants and N tasks in a
crowdsourcing system. Let Xt

i ¼ fxt
i;1; x

t
i;2; . . . ; x

t
i;Ng denote

the answers of worker i at timestamp t, and XXt ¼
fXt

1;X
t
2; . . . ;X

t
Mg denote the answer set of all workers. The

goal of truth discovery is to infer the truth set Zt ¼
fzt1; zt2; . . . ; ztNg from XXt. Worker’s error is the distances
between answers and truths that are denoted as Rt

i ¼
frti;1; rti;2; . . . ; rti;Ng, which are inversely proportional to work-
er’s reliability. It is observed that in truth discovery worker’s
error follows the normal distribution Nð0; ðst

iÞ2Þ [4], [26].
Thus, we can use the standard error deviation st

i to reflect the
worker’s reliability. The higher the worker’s reliability is, the
smaller the error variance will be. The standard error devia-
tion set from all workers is denoted as sst ¼ fst

1; s
t
2; . . . ; s

t
Mg.

Since the cloud server is untrusted, the answers should be
protected before being sent to the cloud server. Thus, each
worker locally perturbs his answer with DP. Let X̂t

i ¼
fx̂t

i;1; x̂
t
i;2; . . . ; x̂

t
i;Ng denote the perturbed answers of worker i,

and X̂̂X
t ¼ fX̂t

1; X̂
t
2; . . . ; X̂

t
Mg denote the perturbed answer set

of all workers. Based on the perturbed answer set X̂̂X
t
, the

cloud server can only infer the perturbed truths, which are
denoted as Ẑt ¼ fẑt1; ẑt2; . . . ; ẑtNg.

Truth discovery [7], [30], [31] is an effective tool for estimat-
ing truths over answers from workers with different reliabil-
ities. Although existing truth discovery algorithms have
different solution processes, they follow the same workflow
that iteratively conducts worker reliability estimation and
truth computation until convergence. Here, we use a typical
truth discovery algorithm, CRH [30], which has been used in

a lot of privacy-preserving truth discovery researches [3],
[14], [15], [16], [17], [18], [19], [20], [24], [25], [26]. Algorithm 1
describes the pseudo-code of truth discovery.

Worker Weight Estimation. CRH initializes the truth with
the average value of answers, then estimates the workers’
weights Wt ¼ fwt

1; w
t
2; . . . ; w

t
Mg based on the current truths.

The basic idea is that the smaller the distance between the
answers and current truth is, the higher the weight of this
worker will be. A worker’s weight is formally defined as

wt
i ¼ �log

� PN
j¼1 dðxt

i;j; z
t
jÞPM

i¼1

PN
j¼1 dðxt

i;j; z
t
jÞ

�
; (1)

where dð�Þ is the function measuring the distance between
answer and truth, xti;j is the answer of worker i to task j at
timestamp t, and ztj is the estimated truth of task j at time-
stamp t.

Truth Computation. In this step, workers’ quality is
assumed to be fixed, and the truth can be inferred through
the weighted averaging strategy. Then, we have

ztj ¼
PM

i¼1 w
t
i � xti;jPM

i¼1 w
t
i

: (2)

This follows the principle that the answer from more reli-
able worker is closer to the truth. The workers’ weights and
truths are iteratively estimated until convergence.

Error Variance. After obtaining the truths, the error varian-
ces ofworkers can be estimated from the following equation.

st
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

ðdti;j � �dtiÞ2
vuut : (3)

where dti;j ¼ dðxt
i;j; z

t
jÞ is the error of worker i on task j, and

TABLE 1
Frequently Used Notations

Notation Description

M, N the number of workers and tasks, respectively

xt
i;j, x̂

t
i;j the answer for task j from worker i at timestamp t

before and after perturbation, respectively

Xt
i , X̂

t
i the set of all answers from worker i at timestamp

t before and after perturbation, respectively

XXt, X̂Xt the set of all answers from all workers at timestamp
t before and after perturbation, respectively

wt
i, ŵ

t
i the estimated weight of worker i at timestamp t

before and after perturbation, respectively

ztj, ẑ
t
j the estimated truth of task j at timestamp t before

and after perturbation, respectively

Zt, Ẑt the set of all estimated truths at timestamp t before
and after perturbation, respectively

st
i the standard deviation of worker i’s answer error

at timestamp t
w the size of sliding window
� the privacy budget

d the probability that a mechanism does not satisfy
DP

t the domain of tasks’ answers
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�dti ¼ 1
N

PN
j¼1 dðxt

i;j; z
t
jÞ is the average error of worker i.

Algorithm 1. Truth Discovery (TD)

Input:Workers’ answersXXt

Output: Estimated truths Zt

1: Initialize truths ztj ¼ 1
M

PM
i¼1 xi;j

2: while Not convergent do
3: Estimate weights with Eq. (1)
4: Estimate truths with Eq. (2)
5: end

2.2 Differential Privacy (DP) [32]

Definition 1 (�-Differential Privacy). If a mechanism A sat-
isfies �-differential privacy (�-DP), for any output O of A and
two neighbor answer vectors Xi;1 and Xi;2 of worker i that dif-
fer at one element, we have

PrfAðXi;1Þ ¼ Og � e� PrfAðXi;2Þ ¼ Og; (4)

where Pr{�} denotes the probability of an event, and � is the
parameter to adjust the privacy protection level. A smaller "
corresponds to stronger privacy protection but more utility
loss. A weaker version of �-DP is ð�; dÞ-DP, which satisfies
�-DP with probability at least 1� d.

Among the mechanisms to achieve differential privacy,
the widely used one is Laplace mechanism.

Definition 2 (Laplace Mechanism). Let f : Xi ! RN , the
Laplace mechanism is defined as

AðXiÞ ¼ fðXiÞþ < LapðDi=�iÞ >N; (5)

where fð�Þ in truth discovery is the identity query, i.e.,
fðXiÞ ¼ Xi. Di ¼ maxjjfðXi;1Þ � fðXi;2Þjj1 ¼ maxjjXi;1 �
Xi;2jj1 is the sensitivity, which equals to t (the domain of
jXij), Lapð�Þ is the Laplace distribution (centered at 0) with
scale �, where Lapðxj�Þ ¼ 1

2� expð� jxj
� Þ.

Note that, in privacy-preserving statistics publishing, fð�Þ
is a statistical query with a sensitivity of 1, which may be
much smaller than that in truth discovery. Thus, its perturba-
tionwould be less than that in truth discovery under the same
privacy protection level, especiallywhen t is very large.

2.3 w-event Differential Privacy

We set the stream prefix of an infinite series of any worker i
at timestamp t as St

i ¼ ðX1
i ; X

2
i ; . . .; X

t
iÞ [33]. We say two

stream prefixes St
i and St0

i are w-neighboring, if (1) for any
k 2 ½0; t� and St

i ½k� 6¼ St0
i ½k�, St

i ½k� and St0
i ½k� are neighboring;

(2) for any k1 < k2, S
t
i ½k1� 6¼ St0

i ½k1� and St
i ½k2� 6¼ St0

i ½k2�, there
are k2 � k1 þ 1 < w.

Definition 3 (ww-event DP [34]). A mechanism A satisfies
w-event �-DP, if for all sets S � Range(A) and all neighboring
stream prefixes St

i and S
t0
i of worker i and all t, it holds that

PrfAðSt
iÞ 2 Sg � e� PrfAðSt0

i Þ 2 Sg: (6)

Similar to �-DP,w-event �-DP can also be relaxed tow-event
ð�; dÞ-DP if Eq. (6) holds with probability at least 1� d. We
simply call both w-event �-DP and ð�; dÞ-DP as w-event DP in

the following. In addition, on the basis of sequential composi-
tion theorem [32], thew-event DPhas the following property.

Theorem 1. Suppose a mechanism AA, which takes the set of
stream prefix St

i of any worker i as input, can be decomposed
into t mechanisms A1; A2; . . .; At, and each At provides
ð�ti; dtiÞ-DP. Then AA satisfies w-event DP if

Xt
k¼t�wþ1

�ki ¼ �;
Xt

k¼t�wþ1

dki ¼ d: (7)

This theorem enables the w-event DP scheme to view �; d
as the total available privacy budget in any sliding window
of size w of any worker and reasonably allocate them to
every timestamp.

3 OVERVIEW OF PRIVSTD

To protect the answers in streaming truth discovery, each
worker perturbs their answers at the local. However, sine
they know neither the changes of truths over time nor the
effects of his/her answers on the truths before uploading
the perturbed answers, they may introduce excessive noise
to satisfy the overstrict DP guarantee, which would result in
low accuracy of aggregated truth.

To improve the accuracy, we propose a novel edge com-
puting based streaming data truth discovery algorithm for
crowdsourcing system, called PrivSTD. It adaptively deter-
mines the perturbed timestamps according to the evolving
pattern of truths and dynamically perturbs the chosen
points on the basis of workers’ reliabilities to realize high
accuracy of discovered truths while protecting the privacy
of workers. To achieve this, we introduce edge servers to
help workers securely estimate local truths and workers’
reliabilities. Fig. 1 shows the framework of PrivSTD, which
mainly consists of three kinds of entities: worker, edge
server and the cloud server.

Worker. As the participants in crowdsourcing tasks,
workers will accept tasks and upload their answers to the
cloud server. We assume that each worker honestly answers
the tasks. To realize high accuracy of discovered truths
while protecting the privacy, they securely interact with the
edge server to determine the perturbation point and privacy
budget. If current timestamp is determined as a perturbed
point, they dynamically perturb the answers on the basis of
their reliabilities and upload the perturbed answers to the

Fig. 1. The framework of PrivSTD.
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cloud server, otherwise they upload the previous perturbed
answers as replacements.

Edge Server. We consider that the edge server is honest-
but-curious, and cannot collude with each other or the
cloud. Its role is to determine the perturbation point and
allocate privacy budget for workers. To realize this goal, it
first samples a fraction of tasks from each worker to
securely estimate local truths, based on which it adaptively
determines the perturbation point and allocates the privacy
budget of next timestamp for all the interacted workers
according to the evolving pattern of truths.

Cloud Server. The cloud server is the crowdsourcing plat-
form, which gathers perturbed answers from workers to cal-
culate global truths. We assume that the cloud server is
untrusted and cannot colludewith edge servers andworkers.

The detail interactions among workers, edge servers, and
cloud server are described as follows:

�1 - �2 : At each timestamp, the edge server first randomly
samples a subset of tasks from each worker to estimate the
local truths. To protect the privacy of workers, the local truths
are calculated on the sampled answers through encrypted
truth discovery, where workers’ answers and weights are
encrypted. The edge server can only obtain the plaintext of
estimated local truth without knowing the workers’ answers
and weights. The specific process of encrypted truth discov-
ery will be introduced in Section 4.1. Note that, it can also be
used to protect the privacy of all answers. However, the
encryption techniques (e.g., homomorphic encryption [3],
garbled circuit [19]) have high computational overhead and
poor scalability (The computation complexity will be ana-
lyzed in Section 4.3). Thus, it is only used on a fraction of tasks
of each worker to estimate the local truths, based on which an
elaborate DP algorithm is further proposed to protect the pri-
vacy of all the users in the truth discovery.

�3 -�4 : Once receiving the estimated local truths, the work-
ers estimate their reliabilities, and perturb their answers with
reliability-based perturbation mechanism (Section 4.2). The
perturbed answers are then sent to the edge servers.

�5 - �6 : Each edge server calculates the perturbed local
truth based on the perturbed answers, and then determines
the perturbation point according to the perturbed local truth
and estimated local truths. If current timestamp is deter-
mined as a perturbed point, the workers interacted with
this edge server upload the perturbed answers to the cloud
server. Otherwise, they upload the previous perturbed
answers as replacements. Note that, different edge servers
may have different perturbation points.

�7 - �8 : After that, the edge server allocates the privacy
budgets of next timestamp for workers with the privacy
budget allocation mechanism, which needs to satisfy the
w-event DP. At last, the cloud server aggregates the per-
turbed answers to estimate global truths.

Note that, the cloud server can also find the global truths
through aggregating the estimated or perturbed local truths
from the edge server, but this method has two limitations:
(1) the global truths calculated on the estimated local truths
may have information loss because most workers’ data is not
counted; and (2) the global truths calculated on the perturbed
local truthsmay have a greater error variance than that on the
perturbed answers, as the former experiences twice truth dis-
covery. Taking into account the two limitations, the cloud

server aggregates the perturbed answers, instead of the local
truths, to estimate global truths.

4 DESIGN OF PRIVSTD

In this section, we first detail the design of PrivSTD and then
theoretically analyze the privacy guarantee, expected error on
truths, and the computation cost of PrivSTD. The object is to
design a privacy-preserving streaming truth discovery frame-
workwith high accuracywhile achievingw-event DP guaran-
tee. The key idea is to leverage the budget recycle mechanism to
explore the evolving pattern of truths to adaptively determine
the perturbed timestamps and allocate privacy budget, and to
utilize the reliability-based perturbation mechanism to perturb the
perturbation points to minimize the total perturbation noise.
The detailed procedure of PrivSTD is shown inAlgorithm 2.

Algorithm 2. PrivSTD Algorithm at Timestamp t

Input: Current answer set XXt, the last perturbed local truth
set Ẑt�1

p , the state set St ¼ fstpgPp¼1, the recycled num-
ber set Kt ¼ fktpgPp¼1, the privacy parameters (�; d), the
sliding window size w, the domain of answers t.

Output: The global perturbed truth set Ẑt, next state set Stþ1,
next recycled number setKtþ1.

1: for edge server p 2 P do
2: if stp 6¼ canceled then
3: �tp ¼ ktp�=w; d

t
p ¼ ktpd=w;where ktp 2 ½1; w�

4: Generate the sampled answers set fxi;jgi2M;j2K
5: // Secure Local Truth Estimation
6: ~Zt

p; ss
t
p ¼ SLTEðUs; fxi;jgi2M;j2KÞ

7: for worker i 2 p do
8: //Reliability-based perturbation

9: Dt
i ¼ F�1

�
2�dtp
2

� ffiffiffi
2

p
st
i, X̂

t

i ¼ Xt
i þ Lap

�
minðDt

i ;tÞ
�tp

�
10: end
11: Ẑt

p ¼ TDðfX̂t
igi2pÞ

12: // Perturbed point determination
13: Ea ¼ jẐt�1

p � ~Zt
pj, Ep ¼ jẐt

p � ~Zt
pj

14: if Ea 	 Ep then
15: Workers upload X̂t

p // t is a perturbed point
16: end
17: else
18: Workers upload X̂t

p ¼ Ẑt�1
p // t is an approxima-

tion point
19: end
20: end
21: else
22: Upload Ẑt

p ¼ Ẑt�1
p

23: end
24: //Privacy budget allocation
25: Stþ1

p ;Ktþ1
p ¼ PBAðSt

p;K
t
p; wÞ

26: end
27: for the cloud server do
28: Ẑt ¼ TDðfX̂t

igi2MÞ //Global truth estimation
29: end

4.1 Budget Recycle Mechanism

In the streaming data truth discovery, we intend to use the
w-event DP to provide privacy guarantee for streaming
data. w-event DP can be realized by combining several DP
mechanisms in many ways as long as they satisfy the com-
position property in Theorem 1. The most widely used
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combination method is the sampling mechanism [33], [34],
[35], which reduces the overall perturbation through only
perturbing answers at the sampled timestamps rather than
at every timestamp.

Inspired by the sampling method in BA mechanism [34],
we propose the budget recycle mechanism to sample a part
of timestamps to conduct perturbation according to the
evolving pattern of truths and allocate appropriate privacy
budgets to workers, to reduce the amount of noise added to
worker’ submitted data, while simultaneously satisfying
w-event DP. We call the sampled timestamps as perturbed
points. To explore the evolving pattern of truths, we intro-
duce edge servers to help workers to securely estimate local
truths. Each edge server independently performs the bud-
get recycle mechanism to sample the perturbed points and
allocate appropriate privacy budgets to workers. The proce-
dure of the budget recycle mechanism can be decomposed
into three steps: secure local truth estimation, perturbed
point determination and privacy budget allocation, which
correspond to�1 -�2 ,�5 -�6 , and�7 , respectively.

4.1.1 Secure Local Truth Estimation

The local truths are estimated using the homomorphic Paillier
encryption, which has been used in lots of works [3], [14],
[17], [20]. Here we briefly introduce the process of encrypted
truth discovery.More details can be found in reference [3].

We assume all the keys are given by a completely trusted
key management center. Initially the key management center
gives two large prime numbers p and q, and then calculates
n ¼ pq, g ¼ nþ 1, � ¼ lcmðp� 1; q � 1Þ. (g, n) are public keys
that are distributed to the sample workers, and � is private
key that is sent to the cloud server. Each worker randomly
samples a subset of tasks for local truth estimation. The cloud
server then initializes the truths for the tasks.

Step 1: Secure Weight Update. Once receiving truths from
the cloud server, each worker i calculates the distances
between his/her sampled answers and truths to obtain dti ¼PK

j¼1 dðxti;j � ztjÞ (for convenience, we omit the superscript t
that stands for timestamp in the following), where K is the
number of sample tasks, and then selects a random value
ri 2 Zn2 to encrypt di as

EðdiÞ ¼ gdiri
n modn2: (8)

After receiving the ciphertexts from all sample workers,
according to the homomorphic property, the edge server
sums all the ciphertexts as

Esum ¼ E

�XM
i¼1

di

�
¼
YM
i¼1

EðdiÞ

¼ g
PM

i¼1
di

�YM
i¼1

ri

�n

modn2;

(9)

Then it delivers the ciphertexts to the cloud server. After
that, the cloud server executes the decryption function to
get the plaintext of distance summations as

sumd ¼ LðE�
sum modn2Þ

Lðg� modn2Þ modn; (10)

where LðxÞ ¼ ðx� 1Þ=n is a function.

The proofs of Eqs. (9) and (10) can be found in refer-
ence [36]. sumd is then sent to the workers for weight update
according to Eq. (1) and further for computing weighted
data for different tasks.

Step 2: Secure Truth Estimation. The workers’ weights and
the weighted data are also encrypted with Eq. (8), and the
ciphertexts are then sent to the edge server for aggregation
calculated by Eq. (9). After that, the edge server transmits
the aggregation to the cloud server for decryption by
Eq. (10). With the plaintexts of summations of weights and
weighted data, the cloud server can easily estimated truths
according to Eq. (2) and broadcasts them to the workers.

Step 1 and Step 2 are iteratively performed until conver-
gence or a given number of iterations is reached. The protocol
of secure local truth estimation is shown in Algorithm 3. Dur-
ing the iteration, the weights are computed on the worker
side, and the answers and weights are protect by encryption.
The untrusted edge server and cloud serve can only obtain
the aggregation. Thus, workers’ privacywill not be disclosed.

Algorithm 3. Secure Local Truth Estimation (SLTE)

Input: Two large prime numbers p and q, n ¼ pq, � ¼ lcmðp�
1; q � 1Þ, a random value h, Sampled workers Us and
corresponding answers fxi;jgi2M;j2K

Output: Estimated local truths ~Zt, standard error deviation
set stst.

1: The cloud server initializes truths Zt

2: while Not convergent do
3: //Secure weight update
4: Each worker calculates dti ¼

PK
j¼1 dðxt

i;j � ztjÞ
5: Each worker encrypts dti with Eq. (8)
6: The edge server sums encrypted di with Eq. (9)
7: The cloud server decrypts the summations with Eq. (10)
8: Each worker estimates weight wt

i with Eq. (1) and calcu-
lates weighted data fwt

i � xt
i;jgKj¼1

9: //Secure truth estimation
10: Each worker encrypts weight and weighted data with

Eq. (8)
11: The edge server respectively sums encrypted weight and

weighted data with Eq. (9)
12: The cloud server decrypts the summations of encrypted

weight and weighted data with Eq. (10)
13: The cloud server estimates truths ~Zt with Eq. (2)
14: end
15: Each worker estimates error deviation st

i with Eq. (3)
16: Return local truths ~Zt, sst

4.1.2 Perturbed Point Determination

The perturbed point is determined by each edge server inde-
pendently, thus the workers at different edge server may
have different perturbed points. For the pth edge server, we
define the approximation error as Ea ¼ jẐt�1

p � ~Zt
pj, and the

perturbation error as Ep ¼ jẐt
p � ~Zt

pj, where Ẑt�1
p is the last

perturbed local truths, Ẑt
p is the current perturbed local truths

calculated on perturbed answers X̂̂X
t

p, and
~Zt
p is the crypto-

estimated local truths. We assume the number of workers
is large enough and ~Zt

p is the unbiased estimation of local
truthZt

p. If the approximation errorEa is no less than the per-
turbation error Ep (i.e., Ea 	 Ep), it means the perturbed
local truths (as well as the perturbed global truths) that
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calculated on X̂̂X
t�1

p will has a larger error than that calculated
on X̂̂X

t

p. To reduce the error, we set timestamp t as a perturbed
point and use X̂̂X

t

p to compute the global truths. Otherwise,
the timestamp t is an approximation point and we calculate

the global truths with X̂̂X
t�1

p . Briefly, the current timestamp
is determined as a perturbed point only when Eq. (11) is
satisfied.

Ea 	 Ep: (11)

Note that, the decision process of a perturbed point will
not reveal private answers, because this decision deter-
mined by approximation error and perturbation error is
computed on truths, which are insensitive. Although truths
have complicated connections with private answers, an
adversary still has difficulty in establishing specific relation-
ship between the decision and the private answer due to the
reliability-based perturbation and weighted aggregation.
While in BA mechanism [34], the decision of a perturbed
point will naturally leak some private information of the
input data, because such decision is directly affected by the
approximation error, which is computed on sensitive data.
Thus BA must split a partial privacy budget to perturb the
approximation error. Under the same total privacy budget,
BA would incur more noise than PrivSTD, as the split pri-
vacy budget in BA is smaller than that in PrivSTD.

At each timpstamp t, Eq. (11) should be judged sepa-
rately on each edge server. Based on the results, we divide
the workers into two categories. The workers in the first cat-
egory belong to the edge servers that satisfy Eq. (11), then
the timestamp t is a perturbed point for workers in the first
category. The remaining workers fall into the second cate-
gory, for which the timestamp t is a non-perturbed point.
Consequently, at each timpstamp t, the cloud server
receives current perturbed answers from workers in the first
category and the last perturbed answers from workers in
the second category. With these perturbed answers, the
cloud server further implements truth discovery algorithm
in Algorithm 1 to obtain the global truths.

4.1.3 Privacy Budget Allocation

The privacy budget allocation is performed on each edge
server under the privacy constraint of w-event DP. Initially,
we uniformly allocates the privacy budget to each time-
stamp, where any worker interacting with edge server p at
any timestamp t has the privacy budgets �tp ¼ ktp�=w and
dtp ¼ ktpd=w, where ktp ¼ 1. However, workers only consume
their privacy budgets at perturbed timestamps. The privacy
budgets at non-perturbed timestamps can be recycled for
the next perturbed timestamp. Thus, after the perturbed
point determination, the privacy budget of the next time-
stamp of each worker should be adaptively adjusted accord-
ing to the result of Eq. (11).

There are four cases to calculate the privacy budget of the
next timestamp as shown in Algorithm 4. Take the edge
server p as a example. When its state is not canceled, (1) if
timestamp t is an approximation point, then ktþ1

p ¼
minfktp þ 1; wg. (2) If timestamp t is a perturbed timestamp
and ktp > 1, which means that the edge server p has
recycled the privacy budgets at previous ktp � 1 timestamps,

its state would be set as canceled until ktp � 1 timestamps
later in order to satisfy the privacy constraint of w-event DP
that the summary of privacy budgets within any w win-
dows cannot exceed � and d (Recall the Theorem 1). When
the state of edge server p is canceled, it first needs to deter-
mine whether its recycle number ktp > 1 or not. (3) If ktp >
1, its state is still canceled and ktp is reduced by 1. (4) If ktp is
1, its state would be set as not canceled.

Algorithm 4. Privacy Budget Allocation (PBA)

Input: the state set St ¼ fstpgPp¼1, the recycled number set
Kt ¼ fktigPp¼1, the sliding window size w

Output:Next state set Stþ1, next recycled number setKtþ1.
1: for each edge server p do
2: if stp 6¼ canceled then
3: if t is an approximation point then
4: ktþ1

p ¼ minfktp þ 1; wg // Case 1
5: end
6: else
7: if ktp > 1 then
8: stþ1

p ¼ canceled // Case 2
9: end
10: end
11: end
12: else
13: if ktp > 1 then
14: ktþ1

p ¼ ktp � 1 // Case 3
15: end
16: if ktp ¼¼ 1 then
17: stþ1

p 6¼ canceled // Case 4
18: end
19: end
20: end
21: Return Stþ1,Ktþ1

4.2 Reliability-Based Perturbation Mechanism

Although the budget recycle mechanism has a similar
sampling method with BA mechanism, they still has a big
difference in perturbation mechanism. BA uses the tradi-
tional Laplace mechanism mentioned in Definition 2 to
protect the privacy of workers. It injects Laplace noise
LapðDt

i=�
t
iÞ to the query function fðXt

iÞ of the ith worker
at timestamp t, where the query function in DP is the
identity query, i.e., fðXt

iÞ ¼ Xt
i , and Dt

i is the sensitivity of
query function fð�Þ, which is defined as the domain of Xt

i .
For all workers, the sensitivity is the maximum domain
of answers and may be very large for the continuous
data. In order to reduce the perturbation noise, we pro-
pose the reliability-based perturbation mechanism to per-
turb the answers of each worker through dynamically
adjusting the query function sensitivity of each worker
according to their reliability.

The sensitivity of the identity query function fð�Þ of the
ith worker at timestamp t is simply named as the sensitivity
of worker i at timestamp t, computed by

Dt
i ¼ maxjXt

i;1 �Xt
i;2j

¼ maxjðXt
i;1 � ZtÞ � ðXt

i;2 � ZtÞj
¼ maxjRt

i;1 �Rt
i;2j;

(12)
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where Xt
i;1 and Xt

i;2 are two neighboring datasets that differ
at one element. Zt is the truth set, and Rt

i;1 and Rt
i;2 are the

error set corresponding toXt
i;1 andXt

i;2.
As we mentioned in Section 2.1, in truth discovery, the

ith worker’s errors Rt
i at timestamp t typically follow a nor-

mal distribution Nð0; ðst
iÞ2Þ, where a smaller variance ðst

iÞ2
represents a higher degree of reliability. Since both Rt

i;1

and Rt
i;2 follow the normal distribution Nð0; ðst

iÞ2Þ, we
have Rt

i;1 �Rt
i;2 ¼ Xt

i;1 �Xt
i;2 
 Nð0; 2ðst

iÞ2Þ. According to
the property of normal distribution, there are

PrðjXt
i;1 �Xt

i;2j < K
ffiffiffi
2

p
st
iÞ ¼ 2FðKÞ � 1; (13)

where Fð�Þ is the distribution function of standard normal
distribution, and K is a variable that controls the range of
sensitivity Dt

i ¼ maxjXt
i;1 �Xt

i;2j. This equation means that
at timestamp t, worker i has the maximum sensitivity
K

ffiffiffi
2

p
st
i with the probability of 2FðKÞ � 1.

In order to reduce the magnitude of Laplace noise, the sen-
sitivity K

ffiffiffi
2

p
st
i should be as small as possible, but smaller K

corresponds to weaker privacy protection due to the smaller
probability 2FðKÞ � 1. To achieve the trade-off between pri-
vacy and utility, we use privacy budget dti, where dti 2 ½0; 1�, to
control K. Specifically, we set 2FðKÞ � 1 ¼ 1� dti, so K ¼
F�1ð2�dt

i
2 Þ. As a result, with the probability of 1� dti theworker

i has themaximum sensitivity

Dt
i ¼ F�1

�
2� dti
2

� ffiffiffi
2

p
st
i: (14)

Dt
i is usually much smaller than the domain of jXt

i j, which
is denoted as t. If Dt

i is higher than domainðjXt
i jÞ, we choose t

as the ith worker’s sensitivity. With the sensitivity Dt
i and pri-

vacy budget �ti, the edge server then injects Laplace noise to
the answers of correspondingworker i, which is given by

X̂
t

i ¼ Xt
i þ Lap

�
minðDt

i; tÞ
�ti

�
: (15)

This method actually relaxes the privacy constraint of
�ti-DP into ð�ti; dtiÞ-DP for higher utility. Moreover, when K
has been determined, it is obvious that a more reliable
worker has a smaller sensitivity Dt

i and a smaller perturba-
tion due to the smaller st

i. Thus, we can realize the goal
of dynamically adding noise on the basis of workers’ reli-
ability to reduce the noise magnitude. Note that, although
we add less perturbation to more reliable workers at a single
perturbation timestamp, we prove that PrivSTD provide
the same w-event ð�; dÞ-DP guarantee for each worker in the
whole stream.

4.3 Analysis

4.3.1 Privacy analysis

Theorem 2. PrivSTD satisfies w-event ð�; dÞ-DP.

Proof. We first prove that the reliability-based perturbation
mechanism on any worker i satisfies ð�t; dtÞ-DP. We omit i
for simplicity in the following proof. As mentioned in the

above, jXt
1 �Xt

2j < F�1ð2�dt

2 Þ ffiffiffi
2

p
st is with the probability

1� dt, and we choose Dt ¼ F�1ð2�dt

2 Þ ffiffiffi
2

p
st as the

sensitivity of Laplace mechanism, so we have

PrfAðXt
1Þ ¼ Og ¼ �t

2Dt exp

�
� �tjXt

1 �Oj
Dt

�

¼ �t

2Dt exp

�
� �tjXt

2 þXt
1 �Xt

2 �Oj
Dt

�

� exp

�
�tjXt

1 �Xt
2j

Dt

�
�t

2Dt exp

�
� �tjXt

2 �Oj
Dt

�

� exp

�
�tjXt

1 �Xt
2j

Dt

�
PrfAðXt

2Þ ¼ Og:

(16)

Since jXt
1 �Xt

2j < Dt is with the probability of 1� dt,

we have expð�
tjXt

1
�Xt

2
j

Dt Þ � e�
t
with the probability of 1� dt.

That means, Eq. (16) satisfies �t-DP with the probability

of 1� dt. Therefore, according to Definition 1, the

reliability-based perturbation mechanism satisfies ð�t; dtÞ-
difference privacy.

As for the budget recycle mechanism, the privacy
budget at every timestamp is either k�=w with kd=w
(k 2 ½1; w�) or zero. For any perturbed point with an allo-
cated budget of k�=w, it recycles the privacy budget in
the previous k� 1 timestamps, and cancels the privacy
budget in the following k� 1 timestamps. Thus, its previ-
ous k� 1 timestamps and following k� 1 timestamps all
have zero allocated privacy budget. As a result, the sum
of budgets of any w successive timestamps satisfies 0 �Pt

k¼t�wþ1 �
k � �. Based on Theorem 1, the budget recycle

mechanism satisfies w-event ð�; dÞ-differential privacy.
The subsequence truth estimation is executed on the

perturbed answers, which would not disclose users’ pri-
vacy. We treat the truth discovery operations as mapping
functions on perturbed answers. According to the post-
processing invariant of DP [32], it also satisfies w-event
ð�; dÞ-DP. Thus, PrivSTD satisfies w-event ð�; dÞ-DP. tu

4.3.2 Utility Analysis

Theorem 3. Assume a streaming answer set XX ¼ fXX1; XX2; . . . ;
XXTg, the streaming truth sets calculated by the cloud server
with and without PrivSTD over the answer set XX are denoted
as ZZ ¼ fZ1; Z2; . . . ; ZTg and Ẑ̂Z ¼ fẐ1; Ẑ2; . . . ; ẐTg, respec-
tively. Given the differential privacy parameters �, d, and slid-
ing window size w, the expectation of the mean absolute error
between ZZ and Ẑ̂Z satisfies

E½MAEðZZ; Ẑ̂ZÞ� �
1

2k� 1

�Xk
a¼1

E

�
a�

w
;
ad

w

�
þ ðk� 1ÞE

�
k�

w
;
kd

w

�
þ
Xk�1

b¼1

bj��jÞ:

where Eða�
w
; ad
w
Þ �

PM

i
0 ¼1

PM

i¼1

�
ðð�siÞ2þð�s

i
0 Þ2Þ

ffiffi
2
p

p
þ
F�1

�
2�ad=w

2

� ffiffi
2

p
�s
i
0

a�=w

�
M2

is the expectation function at a single timestamp that perturbed
with privacy budget a�

w and ad
w . �si and �s

0
i are the average error’s

variances of worker i and i
0
, respectively. k is the average

recycled number of privacy budget for a perturbed point. j��j is
the average change rate of answers.
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Proof. As we analyzed in Section 4.1, workers in each time-
stamp have three statuses: recycling, perturbing and can-
celing. Each perturbing point with privacy budget k�=w
and kd=w must have k� 1 recycling points in the front
and k� 1 canceled points in the behind. In order to sim-
plify the problem, we assume all the workers at the same
timestamp are in the same status.

Perturbing.We first calculate the expectation of error at
a single perturbed timestamp t with privacy budget k�=w
and kd=w, k 2 ½1; w�.

E½MAEðZt; ẐtÞ� ¼ E
1

N

XN
j¼1

jztj � ẑtjj
" #

(17)

¼ E
1

N

XN
j¼1

j
PM

i¼1 w
t
ix

t
i;jPM

i¼1 w
t
i

�
PM

i¼1 ŵ
t
ix̂

t
i;jPM

i¼1 ŵ
t
i

j
" #

(18)

� E

PM
i
0 ¼1

PM
i¼1 ŵ

t
i
0wt

i

�
1
N

PN
j¼1 jxt

i;j � x̂t
i
0
;j
j
�

PM
i
0 ¼1

PM
i¼1 ŵ

t
i
0wt

i

2
664

3
775 (19)

�
PM

i
0 ¼1

PM
i¼1

�
1
N

PN
j¼1 E½jxt

i;j � x̂t
i
0
;j
j�
�

M2
: (20)

where M is the number of total workers and N is the
number of total tasks.

Eq. (20) has been proved in Lemma 4.4 of [26]. We
assume the errors of workers i and i

0
are xt

i;j � ztj 

Nð0; ð�siÞ2Þ and x̂t

i
0
;j
� ztj 
 Nð0; ð�si

0 Þ2Þ, where ð�siÞ2 and
ð�si

0 Þ2 represent the average variances of worker i
and i

0
over all the timestamps, respectively. Then, we

have

1

N

XN
j¼1

E½jxt
i;j � x̂t

i
0
;j
j� ¼ E½jxt

i;j � x̂t
i
0
;j
j�

¼ E½jðxt
i;j � ztjÞ � ðxt

i
0
;j
� ztj þ LapðDt

i
0 =�t

i
0 ÞÞj�

¼ E½jNð0; ð�siÞ2Þ � ðNð0; ð�si
0 Þ2Þ þ LapðDt

i
0 =�t

i
0 ÞÞj�

� ðð�siÞ2 þ ð�si
0 Þ2Þ

ffiffiffi
2

p

r
þ Dt

i
0

�t
i
0
:

(21)

Substitute Eq. (20) with Eqs. (21) and (14), there are

E½MAEðZt; ẐtÞ�

�
PM

i
0 ¼1

PM
i¼1

�
ðð�siÞ2 þ ð�si

0 Þ2Þ
ffiffiffi
2
p

q
þ F�1ð2�kd=w

2 Þ ffiffi2p
�s
i
0

k�=w

�
M2

:

(22)

Obviously, the expectation of error at a single perturbed
point is a function of differential privacy parameters, thus
we use a functionEðk�w ; kdwÞ to denoteE½MAEðZt; ẐtÞ�.

Recycling. Since timestamp t is a perturbed point, it
must have k� 1 approximation points in the front. The
first approximated timestamp t� kþ 1 cannot have a

larger approximation error than Eð �w ; dwÞ, otherwise it
would not have been approximated. The second approxi-
mated timestamp t� kþ 2 must have a smaller approxi-
mation error than Eð2�w ; 2dwÞ. In a similar fashion, the
timestamp t� 1 induces an approximation error smaller

than Eððk�1Þ�
w ; ðk�1Þd

w Þ. The total error in the k� 1 approxi-

mation points must be less than
Pk�1

a¼1 Eða�w ; adwÞ.
Canceling. For the canceled k� 1 timestamps succeed-

ing timestamp t, we directly use the last perturbed
answers to approximate the current answers. In this case,
the approximation error is determined by the change
rate of answers. We assume that the change rate of task j
from worker i is �i;j. Thus the expectation approximation
error at a single point tþ 1 is

E½MAEðZtþ1; ẐtÞ� ¼ E
1

N

XN
j¼1

jztþ1
j � ẑtjj

" #

�
PM

i
0 ¼1

PM
i¼1

�
1
N

PN
j¼1 E

�
jxtþ1

i;j � x̂t
i
0
;j
j
��

M2

¼
PM

i
0 ¼1

PM
i¼1

�
1
N

PN
j¼1 E

�
jxt

i;j þ �i;j � x̂t
i
0
;j
j
��

M2

¼ E
k�

w
;
kd

w

� �
þ
PM

i¼1

PN
j¼1 j�i;jj

MN

¼ E
k�

w
;
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where �� is the average change rate. In a similar fashion,
the expectation error of the canceled point tþ 2 is
Eðk�w ; kdwÞ þ 2j��j, and that in point tþ k� 1 is Eðk�w ; kdwÞ þ
ðk� 1Þj ��j. The total error in the k� 1 canceled points are
ðk� 1ÞEðk�w ; kdwÞ þ

Pk�1
b¼1 bj��j.

Combining the three stages, the average error above
the 2k� 1 timestamps is at most 1

2k�1 ð
Pk

a¼1 Eða�w ; adwÞþ
ðk� 1ÞEðk�w ; kdwÞ þ

Pk�1
b¼1 bj��jÞ. Without loss of generality,

we assume that k is the average recycled number of
privacy budget for a perturbed point, thus the expecta-
tion of mean absolute error of streaming truth set
satisfies

E½MAEðZZ; Ẑ̂ZÞ�

� 1

2k� 1

Xk
a¼1

E
a�

w
;
ad

w

� �
þ ðk� 1ÞE k�

w
;
kd

w

� �
þ
Xk�1

b¼1

bj��j
 !

:

(24)

From the above theoretical analysis, it can be seen
that the error expectation has relationships with the
average change rate of answers �, the privacy parame-
ters � and d, and the sliding window size w. To verify
this, we evaluate these parameters on synthetic data-
sets in Section 5. tu

4.3.3 Computation Cost Analysis

Here, we compare the computation cost of PrivSTD and tradi-
tional homomorphic encryption in reference [17] on the
worker side, edge server, and cloud server, respectively.
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PrivSTD first samples a fraction of tasks from each worker to
securely estimate the local truths, based onwhich an elaborate
DP algorithm is further proposed to perturb all the answers,
while the traditional homomorphic encryption securely esti-
mates the global truths on the whole answers without pertur-
bation. Summary of the comparison results are presented in
Table 2. We use EXP to denote the one exponentiation opera-
tion, MUL to denote one multiplication operation and ADD
to denote an additive operation.We assume there are jpj edge
servers and one cloud server. a is the sampling rate of tasks in
the secure local truth estimation,N is the number of tasks,M
is the number of workers, and Mp is the number of worker
that interactedwith edge server p.

On the worker side, PrivSTD requires each worker i to
encrypt the answers of sampled tasks in the secure local
truth estimation, which needs aN EXP. Note that, we ign-
ore the number of iterations, because it is usually much
smaller than the number of tasks. Then each worker
needs to perturb the answers in the perturbed global
truth estimation, of which the cost of each worker is N
ADD. While for the traditional homomorphic encryption,
it only encrypts all the answers without perturbation,
thus it costs N EXP.

On the edge server, PrivSTD first needs to aggregate the
ciphertexts from interacted workers for each task in the
secure local truth estimation, hence the cost is N �M MUL,
where �Mp is the average number of workers per task at the
edge server p, i.e., �Mp ¼ aMp. Then in the perturbed global
truth estimation, it should calculate the perturbed local
truths and allocate privacy budgets, of which the running
time are linear with the number of answers, i.e., OðNMpÞ,
and OðMpÞ, respectively. While for the traditional homo-
morphic encryption, the computation cost of aggregating
the ciphertexts isNMp MUL.

On the cloud server, both PrivSTD and traditional homo-
morphic encryption decrypt the ciphertexts from edge
server in the secure local truth estimation, which cost jpjN
EXP. In the perturbed global truth estimation, PrivSTD
implements the truth discovery algorithm on all perturbed
answers to estimate the global truths, of which the time
complexity is OðMNÞ, while the traditional homomorphic
encryption estimates global truths on the local truths, thus
its time complexity is OðjpjNÞ.

From the comparison results in Table 2, we can see that
PrivSTD reduces the computation cost on the worker side
from N EXP to aN EXP through sampling. We also show
their scalability on the worker side in Fig. 2. The result
shows that PrivSTD is much more scalable than traditional
homomorphic encryption.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of PrivSTD on
synthetic datasets under different parameter settings and
demonstrate the superiority of PrivSTD by comparing it with
two state-of-the-art approaches on three real-world datasets.

5.1 Datasets and Experiment Setup

Synthetic Datasets. The number of total tasks is set as 100. We
first generate the ground truth of task j by following a sine
function ztj ¼ 10 sin ðvtÞ þ fj, where fj is the initial phase of
task j that sampled from a uniform distribution Uð0; 5Þ, v is
the smooth factor that controls the smooth level of truth,
and t is the timestamp that changes from 1 to 100. Note that,
each v corresponds to a streaming dataset. We simulate 100
workers with different reliabilities ðst

iÞ2 for every time-
stamp, which is randomly sampled from 1 and 3. As men-
tioned early, the error of worker i follows Nð0; ðst

iÞ2Þ. Thus,
we can generate the answers for every worker at every time-
stamp by adding Gaussian noise Nð0; ðst

iÞ2Þ into the corre-
sponding ground truth.

Real-World Datasets. We use two real-world datasets,4

including flight and weather, for performance evaluation,
which are described as follows.

� Flight. We extract the departure information for
1,200 flights from 38 sources every day in December
2011. All the departure information is transformed
into minutes (i.e., 7:00 is transformed into 420), so
the domain of answers is 1,440.

� Weather. The weather data is collected in 30 major
USA cities from 18 websites every 45 minutes on a
day in March 2010. We extract the temperature infor-
mation as answers, of which the maximum value is
74, so the domain is 74.

Experiment Setup. We adopt the CRH [30] algorithm to
iteratively calculate the truths and workers’ weights as
Eqs. (1) and (2). We follow the previous works [4], [37] to
use the Mean Absolution Error (MAE), Root of Mean
Squared Error (RMSE) and Mean Relative Error (MRE) as
the utility metrics. It is worthy to note that the errors are the
distances between calculated perturbed truths and calcu-
lated unperturbed truths, which are defined as follows.

MAEðZ; ẐÞ ¼ 1

T �N

XT
t¼1

XN
j¼1

jẑtj � ztjj; (25)

TABLE 2
Computation Cost Analysis

EXP means one exponentiation operation, MUL denotes a multiplication operation, and ADD means an additive operation. a is the sampling rate of tasks in the
secure local truth estimation, M is the number of workers, N is the number of tasks, Mp is the number of workers that interacted with edge server p, and jpj is
the number of edge servers.

4. http://lunadong.com/fusionDataSets.htm
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RMSEðZ; ẐÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T �N

XT
t¼1

XN
j¼1

ðẑtj � ztjÞ2
vuut ; (26)

MREðZ; ẐÞ ¼ 1

T �N

XT
t¼1

XN
j¼1

jẑtj � ztjj
maxðztj; gÞ

; (27)

where Z and Ẑ are the estimated truth sets without and with
perturbation, respectively. g is a bound to mitigate the effect
of excessively small value. T is the total number of time-
stamps. We execute all experiments 100 times and take the
average results.

Mechanisms for Comparison. In order to verify the perfor-
mance of PrivSTD, we compare it with two benchmarks [34]
and three state-of-the-art approaches. The two benchmarks
are traditional privacy-preserving truth discovery methods
that do not consider the reliabilities of workers. The first is
Uniform, which evenly allocates the privacy budget � to every
timestamp, and injects to answers the same Laplace noise
scaled by � ¼ Dw=�, whereD is the domain of answer andw is
the size of sliding window. The second is Sample, which sam-
ples a portion of timestamps to inject noise. Specifically, we
set the sample rate as 1=w, which means that we only sample
one timestamp in a sliding window to inject noise. Without
loss of generality, we perturb the answers at the tth timestamp
Laplace noise scaled by � ¼ D=� if tmodw ¼ 1.

The three state-of-the-arts are the truth discovery with
matrix factorization based on DP [24] (we call it TD-MF for

simplification), Paris-TD [27], and BA [34], Since TD-MF and
Paris-TD are designed for a one-time dataset, we perform
them at every timestamp and allocate to them the same pri-
vacy budget as Uniform to satisfy w-event different privacy.
The BA mechanism is modified to fit our streaming data
truth discovery scenario, which has the same budge recycle
mechanismwith PrivSTD. But it uses the traditional Laplace
mechanism to perturb answers because it does not consider
workers’ reliability. Note that, the comparison among Uni-
form and Sample is to evaluate the performance of adaptive
privacy budget allocation. The comparison betweenPrivSTD
and BA is to show the effectiveness of the reliability-based
perturbation mechanism, and the comparison of PrivSTD to
TD-MF and Paris-TD is to exhibit the performance of our pri-
vacy-preserving truth discovery framework.

5.2 Experiments on Synthetic Dataset

In this subsection, we evaluate the effects of parameters,
including the smooth level of truth, privacy budget, the
number of the edge servers and the sliding window size, on
the performance of PrivSTD, and the utility-privacy trade-
off on the synthetic datasets.

Effect of Smooth Level. PrivSTD adaptively perturbs answers
according to the evolving pattern of truths in adjacent time-
stamps, which is influenced by the smooth level of truth. In
the synthetic stream dataset, we control the smooth level by
parameterv. The smaller the v is, the smoother the truths are.
We set �=1, d=0.02, the sampling rate of tasks during local
truth estimation a ¼ 0:3, sliding window size w ¼ 10 and the
number of edge servers as 5. The MAEs of truth and answer
under variousv are shown in Fig. 3.

As shown in Fig. 3, we can see that PrivSTD always
achieves the smallest MAE, RMSE and MRE compared to the
two baseline approaches, and the Uniform has the worst per-
formance. This is becauseUniform adds themaximumpertur-
bation to each worker at each timestamp. We also observe
thatUniform is robust to the change of smooth factor v, while
PrivSTD and Sample slightly grow as v increases. The reason
is that Uniform only has perturbation errors, which have no
relationship with v, while PrivSTD and Sample have approxi-
mation errors at the non-perturbedpoints, whichwill increase
if the truths’ evolution becomes steep.

Effect of Privacy Parameters. We then verify the effects of
privacy parameters ð�; dÞ of PrivSTD. We set v ¼ 1, the sam-
pling rate of tasks during local truth estimation a ¼ 0:3, the

Fig. 3. Effect of the smooth factor v on the synthetic dataset.

Fig. 2. Comparison of computation cost on the worker side. The sam-
pling rate a of PrivSTD is set as 0.3.
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sliding window size w ¼ 10 and the number of edge server
as 5, the results under various � and d are shown in Fig. 4,
where d varies from 0.02 to 0.1 with a step of 0.02.

As shown in Fig. 4, we can see that the error of PrivSTD
decreases with the increment of �, as less perturbation is
added for a larger value of �. Another important observation
is that there MAE, RMSE and MRE are almost the same
under different d. This is because that d has little effect on
perturbation comparing with the worker’s reliability
according to Eq. (14). As a result, we can choose a small d to
get a higher privacy protection level.

Effect of Edge Server Number. To evaluate the effect of edge
server number on the performance of PrivSTD, we measure
the errors under the different number of edge servers with
� ¼ 1, d ¼ 0:02, v ¼ 1, the sampling rate of tasks during local

truth estimation a ¼ 0:3, and w ¼ 5. From Fig. 5, it can be
seen that the three metrics increase with the increasing
number of edge servers. This is because when the number
of edge servers increases, the received number of workers
for every edge server decreases. As a result, the estimated
local truths would have larger bias due to the reduced sam-
pled tasks. Thus, the global truths have greater errors. If the
worker number is large enough, the local truths will be
unbiased estimations of global truths.

Effect of Sliding Window Size. Fig. 6 shows the effect of slid-
ing window size w on the performance of PrivSTD. The
experiments are performed under � ¼ 1, d ¼ 0:02, v ¼ 0:1, the
sampling rate of tasks during local truth estimation a ¼ 0:3,
and the number of edge servers as 5. From this figure we
can observe that (1) PrivSTD always has smaller error than

Fig. 4. Effect of privacy parameters (�; d) on synthetic dataset.

Fig. 5. Effect of edge server number on the synthetic dataset.

Fig. 6. Effect of sliding window size w on the synthetic dataset.
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TD-MF, Paris-TD, and BA even when w is very small (e.g.,
w ¼ 1, equivalent to one-time dataset), which demonstrates
the effectiveness of the budget recycle mechanism and the
reliability-based perturbation mechanism. (2) The errors of all
the mechanisms except Sample increase with the increment of
slidingwindow sizew. This is becausewhen total privacy pri-
vacy is fixed, the larger the w, the smaller the privacy budget
allocated to each event due to �=w, and thusmore noisewould
be introduced into data, resulting in the worse utility. It indi-
cates that the privacy level of DP for streaming data is deter-
mined by both sliding window size w and total privacy
budget �. The choice of parameters w and � needs to be bal-
anced according to the trade-off between utility and privacy.
(3) When sliding window size w is sufficiently large, PrivSTD
performs worse than Sample. This is because the perturbation
error of Sample is independent of slidingwindow sizew, while
that of PrivSTD will increase with w due to the decreasing

privacy budget �=w. Although the budget recycle mechanism
and the reliability-based perturbation mechanism of PrivSTD
can reduce the errors to some extent, they cannot cancel out
the excessive errors caused by the initial large random noise
Lapð D

�=wÞ. Nevertheless, it should be noted that, a large sliding
window for w-DP is a very extreme situation, since it would
bring excessive noise and thus invalidate data utility. In gen-
eral cases, PrivSTD can achieve better utility than Sample.

Effect of Privacy Budget. We evaluate the trade-off
between privacy and utility on synthetic dataset as shown
in Fig. 7, where d ¼ 0:01, v ¼ 1, w ¼ 5, the sampling rate of
tasks during local truth estimation a ¼ 0:3, and privacy
budget � varies from 1 to 10. From this figure, we can
observe that (1) a larger privacy budget incurs lower MAE,
RMSE and MRE, which correspond to higher utility but
lower privacy protection level. This observation is in agree-
ment with the pattern of the utility-privacy trade-off.

Fig. 7. Effect of privacy budget � on the synthetic dataset.

Fig. 8. Effect of sliding window size w on real-world datasets.
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(2) TD-MF is robust to large noise, as it adds perturbation
into the loss function of matrix factorization instead of the
original answers. (3) PrivSTD always has the best perfor-
mance compare with other mechanisms.

5.3 Experiments on Real-World Datasets

In the subsection, we evaluate the performances of PrivSTD,
two baseline methods and two state-of-the-art approaches
over two real-world datasets under different privacy budg-
ets and sliding window sizes.

Effect of Sliding Window Size. We vary the sliding window
size and measure the MAE, RMSE and MRE of truth under
the conditions that � ¼ 5, d ¼ 0:02, the sampling rate of tasks
during local truth estimation a ¼ 0:3, and the number of
edge servers is 3. The results are shown in Fig. 8. From the
results of the two datasets, we have the following observa-
tions. First, although the two datasets are different, the
changing trends of the errors of all methods on these data-
sets are almost the same and such trend is also similar to
that on the synthetic dataset. Second, Uniform still has the
largest MAE, since it ignores both the different reliability of
individuals and the correlations between truths over time,
thus it adds the maximum noise to each worker at each
timestamp. Third, Sampling, TD-MF, Paris-TD and BA have
better performance than Uniform because they either sample
appropriate perturbed timestamps to reduce overall noise
or decrease the effect of noise on answers. Last and most
importantly, PrivSTD always performers better than other
methods in terms of the accuracy of truth discovery.

Effect of Privacy Budget. Fig. 9 shows the utility-privacy
trade-off when privacy budget � varies from 1 to 10 under
the conditions that sliding window size w ¼ 10, d ¼ 0:02,

the sampling rate of tasks during local truth estimation a ¼
0:3, and the number of edge servers is 3. This figure shows
the same pattern as Fig. 7, which demonstrates that PrivSTD
is effective in protecting the privacy of streaming truth
discovery.

6 CONCLUSION

In this paper, we have proposed an edge computing based
privacy-preserving streaming data truth discovery mecha-
nism, called PrivSTD, which considers both the evolving pat-
tern of truths and the different reliabilities of workers, to
achieve accurate truth discovery for streaming data while
protecting the privacy of workers in crowdsourcing system.
We introduced multiple edge servers to help workers
securely estimate local truths and workers’ reliabilities, based
on which the budget recycle mechanism and reliability-based
perturbation mechanism are proposed. The budget recycle
mechanism enables PrivSTD to reduce the probability of add-
ing perturbation into streaming answers on the basis of truth
evolution, and the reliability-based perturbation mechanism
further reduces the perturbation magnitude according to
workers’ reliabilities. Theoretical analysis and extensive
experimental results on both synthetic and real-world data-
sets demonstrated that PrivSTD achieves better performance
than the state-of-the-art approaches while still satisfies rigor-
ousw-event (�; d)-DP.

Limitations and Future Works. PrivSTD is quite useful in
preserving the privacy of streaming truth discovery, how-
ever, it still has some limitations.

First, we follow the prior works to assume that each
source has the same degree of reliability on his/her

Fig. 9. Effect of privacy budget � on real-world datasets.
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different observations. Actually, workers may have differ-
ent expertise on different domains. We plan to extend our
work to integrate with the domain-ware truth discovery [38],
[39]. In this case, we need to consider finer-grained privacy
protection and perturbation.

Second, in mobile crowdsourcing, when the amount of
data is very large, edge computing (EC) is an effective technol-
ogy to aggregate and process partial data before they reach
the cloud server. Besides, artificial intelligence (AI) techniques
with edge computing have been considered as powerful tools
for processing big data. We are considering adopting AI tech-
niques for EC-based crowdsourcing system to provide addi-
tional functions, such as extracting the behaviors of physical/
networking resources and users in different times and scenar-
ios, dynamically monitoring and adjusting the configuration
of network resources [40], [41].

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China under Grant 2019YFA0706403, National
Natural Science Foundation of China under Grants
62072472, 61702562, U19A2067, U20A20182 and 61872274,
Natural Science Foundation of Hunan Province, China
under Grant 2020JJ2050, 111 Project under Grant No.
B18059, the Young Elite Scientists Sponsorship Program by
CAST under Grant 2018QNRC001 and the Young Talents
Plan of Hunan Province of China under Grant 2019RS2001.

REFERENCES

[1] R. Buettner, “A systematic literature review of crowdsourcing
research from a human resource management perspective,” in
Proc. 48th Hawaii Int. Conf. Syst. Sci., 2015, pp. 4609–4618.

[2] J. Prpi�c, A. Taeihagh, and J. Melton, “The fundamentals of policy
crowdsourcing,” Policy Internet, vol. 7, no. 3, pp. 340–361, 2015.

[3] C. Miao et al., “Privacy-preserving truth discovery in crowd sens-
ing systems,” ACM Trans. Sensor Netw., vol. 15, no. 1, 2019,
Art. no. 9.

[4] Y. Li et al., “On the discovery of evolving truth,” in Proc. 21th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2015, pp. 675–684.

[5] Y. Li et al., “A survey on truth discovery,” ACM SIGKDD Explora-
tions Newslett., vol. 17, no. 2, pp. 1–16, 2016.

[6] R. W. Ouyang, L. M. Kaplan, A. Toniolo, M. Srivastava, and T. J.
Norman, “Parallel and streaming truth discovery in large-scale
quantitative crowdsourcing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 10, pp. 2984–2997, Oct. 2016.

[7] B. Zhao and J. Han, “A probabilistic model for estimating real-val-
ued truth from conflicting sources,” in Proc. 10th Int. Workshop
Quality Databases, 2012, pp. 1–7.

[8] B. Zhao, B. I. Rubinstein, J. Gemmell, and J. Han, “A Bayesian
approach to discovering truth from conflicting sources for data inte-
gration,” Proc. VLDB Endowment, vol. 5, no. 6, pp. 550–561, 2012.

[9] J. Pasternack and D. Roth, “Knowing what to believe (when you
already know something),” in Proc. 23rd Int. Conf. Comput. Linguis-
tics, 2010, pp. 877–885.

[10] Z. Wang, X. Pang, J. Hu, W. Liu, Q. Wang, Y. Li, and H. Chen,
“When mobile crowdsensing meets privacy,” IEEE Commun.
Mag., vol. 57, no. 9, pp. 72–78, Sep. 2019.

[11] Z. Wang et al., “Personalized privacy-preserving task allocation
for mobile crowdsensing,” IEEE Trans. Mobile Comput., vol. 18,
no. 6, pp. 1330–1341, Jun. 2019.

[12] H. Wu, L. Wang, and G. Xue, “Privacy-aware task allocation
and data aggregation in fog-assisted spatial crowdsourcing,”
IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1, pp. 589–602, First
Quarter 2020.

[13] H. Wu, L. Wang, G. Xue, J. Tang, and D. Yang, “Enabling data
trustworthiness and user privacy in mobile crowdsensing,” ACM
Trans. Netw., vol. 27, no. 6, pp. 2294–2307, 2019.

[14] C. Miao et al., “Cloud-enabled privacy-preserving truth discovery
in crowd sensing systems,” in Proc. 13th ACM Conf. Embedded
Netw. Sensor Syst., 2015, pp. 183–196.

[15] Y. Zheng, H. Duan, X. Yuan, and C.Wang, “Privacy-aware and effi-
cient mobile crowdsensing with truth discovery,” IEEE Trans.
Dependable Secure Comput., vol. 17. no. 1, pp. 121–133, Jan./Feb. 2020.

[16] C. Zhang, L. Zhu, C. Xu, K. Sharif, and X. Liu, “PPTDS: A privacy-
preserving truth discovery scheme in crowd sensing systems,” Inf.
Sci., vol. 484, pp. 183–196, 2019.

[17] C. Zhang, L. Zhu, C. Xu, X. Liu, and K. Sharif, “Reliable and pri-
vacy-preserving truth discovery for mobile crowdsensing sys-
tems,” IEEE Trans. Dependable Secure Comput., early access, May
28, 2019, doi: 10.1109/TDSC.2019.2919517.

[18] C. Zhang, L. Zhu, C. Xu, K. Sharif, X. Du, and M. Guizani, “LPTD:
Achieving lightweight and privacy-preserving truth discovery in
CIoT,” Future Gener. Comput. Syst., vol. 90, pp. 175–184, 2019.

[19] X. Tang, C. Wang, X. Yuan, and Q. Wang, “Non-interactive pri-
vacy-preserving truth discovery in crowd sensing applications,”
in Proc. IEEE Conf. Comput. Commun., 2018, pp. 1988–1996.

[20] Y. Zheng, H. Duan, and C. Wang, “Learning the truth privately
and confidently: Encrypted confidence-aware truth discovery in
mobile crowdsensing,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 10, pp. 2475–2489, Oct. 2018.

[21] T. Wang, N. Li, and S. Jha, “Locally differentially private heavy
hitter identification,” IEEE Trans. Dependable Secure Comput., early
access, Jul. 9, 2019, doi: 10.1109/TDSC.2019.2927695.

[22] M. U. Hassan, M. H. Rehmani, and J. Chen, “Differential privacy
techniques for cyber physical systems: A survey,” IEEE Commun.
Surveys Tuts., vol. 22, no. 1, pp. 746–789, First Quarter 2020.

[23] H. Jiang, J. Pei, D. Yu, J. Yu, B. Gong, and X. Cheng, “Differential
privacy and its applications in social network analysis: A survey,”
2020, arXiv: 2010.02973.

[24] H. Sun, B. Dong, H. W. Wang, T. Yu, and Z. Qin, “Truth inference
on sparse crowdsourcing data with local differential privacy,” in
Proc. IEEE Int. Conf. Big Data, 2018, pp. 488–497.

[25] Y. Li et al., “An efficient two-layer mechanism for privacy-preserv-
ing truth discovery,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2018, pp. 1705–1714.

[26] Y. Li et al., “Towards differentially private truth discovery for
crowd sensing systems,” 2018, arXiv: 1810.04760.

[27] P. Sun, Z. Wang, L. Wu, Y. Feng, and Z. Wang, “Towards person-
alized privacy-preserving incentive for truth discovery in mobile
crowdsensing systems,” IEEE Trans. Mobile Comput., early access,
Jun. 19, 2020, doi: 10.1109/TMC.2020.3003673.

[28] G. Xu et al., “Catch you if you deceive me: Verifiable and privacy-
aware truth discovery in crowdsensing systems,” in Proc. 15th
ACM Asia Conf. Comput. Commun. Secur., 2020, pp. 178–192.

[29] A. Vadavalli and R. Subhashini, “An improved differential pri-
vacy-preserving truth discovery approach in healthcare,” in Proc.
IEEE 10th Annu. Inf. Technol. Electron. Mobile Commun. Conf., 2019,
pp. 1031–1037.

[30] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resolving con-
flicts in heterogeneous data by truth discovery and source reliabil-
ity estimation,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2014, pp. 1187–1198.

[31] Q. Li et al., “A confidence-aware approach for truth discovery on
long-tail data,” Proc. VLDB Endowment, vol. 8, no. 4, pp. 425–436,
2014.

[32] C. Dwork et al., “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3/4,
pp. 211–407, 2014.

[33] Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren, “Real-
time and spatio-temporal crowd-sourced social network data
publishing with differential privacy,” IEEE Trans. Dependable
Secure Comput., vol. 15, no. 4, pp. 591–606, Jul./Aug. 2018.

[34] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias,
“Differentially private event sequences over infinite streams,”
Proc. VLDB Endowment, vol. 7, no. 12, pp. 1155–1166, 2014.

[35] Z. Wang et al., “Privacy-preserving crowd-sourced statistical data
publishing with an untrusted server,” IEEE Trans. Mobile Comput.,
vol. 18, no. 6, pp. 1356–1367, Jun. 2019.

[36] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Int. Conf. Theory Appl. Cryptogr.
Techn., 1999, pp. 223–238.

[37] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng, “Truth inference in
crowdsourcing: Is the problem solved?” Proc. VLDB Endowment,
vol. 10, no. 5, pp. 541–552, 2017.

WANG ETAL.: PRIVACY-PRESERVING STREAMING TRUTH DISCOVERY IN CROWDSOURCINGWITH DIFFERENTIAL PRIVACY 3771

Authorized licensed use limited to: University of Waterloo. Downloaded on November 03,2023 at 14:24:48 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TDSC.2019.2919517
http://dx.doi.org/10.1109/TDSC.2019.2927695
http://dx.doi.org/10.1109/TMC.2020.3003673


[38] F. Ma et al., “FaitCrowd: Fine grained truth discovery for crowd-
sourced data aggregation,” in Proc. 21th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2015, pp. 745–754.

[39] X. Lin and L. Chen, “Domain-aware multi-truth discovery from
conflicting sources,” Proc. VLDB Endowment, vol. 11, no. 5,
pp. 635–647, 2018.

[40] Y. Zhao et al., “Privacy-preserving blockchain-based federated
learning for IoT devices,” IEEE Internet Things J., vol. 8, no. 3,
pp. 1817–1829, Aug. 2020.

[41] Q.-V. Pham et al., “A survey of multi-access edge computing in 5G
and beyond: Fundamentals, technology integration, and state-of-
the-art,” IEEEAccess, vol. 8, pp. 116974–117017, Jun. 2020.

Dan Wang (Student Member, IEEE) received the
BE degree in electronic engineering and the MSc
degree in control science and engineering from
China Agricultural University, China, in 2015 and
2017, respectively. She is currently working
toward the PhD degree at the School of Com-
puter Science and Technology, Central South
University, China. Her research interest focuses
on privacy protection for IoT data.

Ju Ren (Member, IEEE) received the BSc, MSc,
and PhD degrees all in computer science, from
Central South University, China, in 2009, 2012,
and 2016, respectively. During 2013-2015, he
was a visiting PhD student at the Department of
Electrical and Computer Engineering, University
of Waterloo, Canada. Currently, he is a professor
with the School of Computer Science and Engi-
neering, Central South University, China. His
research interests include Internet-of-Things, net-
work computing and edge computing. He cur-

rently serves/has served as an associate editor for the IEEE Transactions
on Vehicular Technology and the Peer-to-Peer Networking and Applica-
tions, a guest editor for the IEEE Wireless Communications, IEEE Trans-
actions on Industrial Informatics and IEEE Network, and a TPCmember of
many international conferences including IEEE INFOCOM’21/20/19/18,
etc. He also served as the general co-chair for IEEE BigDataSE’20, the
TPC co-chair for IEEEBigDataSE’19, a poster co-chair for IEEEMASS’18,
a track co-chair for IEEE/CIC ICCC’19, I-SPAN’18 and IEEE VTC’17 Fall,
and an active reviewer for more than 20 international journals. He received
many best paper awards from IEEE flagship conferences, including IEEE
ICC’19 and IEEE HPCC’19, etc., and the IEEE TCSC Early Career
Researcher Award (2019).

Zhibo Wang (Senior Member, IEEE) received the
BE degree in automation from Zhejiang University,
China, in 2007, and the PhD degree in electrical
engineering and computer science from theUniver-
sity of Tennessee, Knoxville, Tennessee, in 2014.
He is currently a professor with the Institute of
Cyber Science and Technology, College of Com-
puter Science and Technology, Zhejiang University,
China. His currently research interests include AI
security, Internet of Things, network security and
privacy protection. He is amember of ACM.

Xiaoyi Pang received the BE degree in information
security from Wuhan University, China, in 2018.
She is currently working toward the master’s
degree at the School of Cyber Science and Engi-
neering, Wuhan University, China. Her research
interest focuses on privacy protection in mobile
crowdsensing system.

Yaoxue Zhang (Senior Member, IEEE) received
the BSc degree from the Northwest Institute of
Telecommunication Engineering, China, in 1982,
and the PhD degree in computer networking from
Tohoku University, Japan, in 1989. Currently, he
is a professor with the Department of Computer
Science and Technology, Tsinghua University,
China and also a professor with the School of
Computer Science and Engineering, Central
South University, China. His research interests
include computer networking, operating systems,

ubiquitous/pervasive computing, transparent computing, and big data.
He has published more than 200 technical papers in international jour-
nals and conferences, as well as nine monographs and text-books. Cur-
rently, he is serving as the editor-in-chief of the Chinese Journal of
Electronics. He is a fellow of the Chinese Academy of Engineering.

Xuemin (Sherman) Shen (Fellow, IEEE) received
the BSc degree from Dalian Maritime University,
China, in 1982, and the MSc and PhD degrees
from Rutgers University, Newark, New Jersey, in
1987 and 1990, respectively, all in electrical engi-
neering. He is currently a University professor with
the Department of Electrical and Computer Engi-
neering, University of Waterloo, Canada. He was
the associate chair for graduate studies from 2004
to 2008. His research focuses on resource man-
agement in interconnected wireless/wired net-

works, wireless network security, social networks, smart grid, and vehicular
ad hoc and sensor networks. He was a recipient of the Distinguished Per-
formance Award from the Faculty of Engineering, University of Waterloo,
Canada, in 2002 and 2007; the Premiers Research Excellence Award from
the Province of Ontario, in 2003; the Outstanding Performance Award from
the University of Waterloo, Canada, in 2004, 2007, 2010, and 2014; and
the Excellent Graduate Supervision Award, in 2006. He served as the
Technical Program Committee chair/co-chair for IEEE Globecom’16, ACM
MobiHoc’15, IEEE INFOCOM’14, IEEE VTC-Fall’10, the Symposia chair
for IEEE ICC’10, the tutorial chair for IEEE VTC-Spring’11 and IEEE
ICC’08, and the Technical Program Committee chair for IEEE GLOBE-
COM’07. He also serves/has served as the editor-in-chief for the Peer-to-
Peer Networking and Application, the IEEE Internet of Things Journal, IET
Communications, and IEEE Network. He is a registered professional engi-
neer of Ontario, Canada, an Engineering Institute of Canada fellow, a
Canadian Academy of Engineering fellow, a Royal Society of Canada fel-
low, a Chinese Academy of Engineering Foreign fellow and a distinguished
lecturer of the IEEEVehicular Technology andCommunications Societies.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3772 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 10, OCTOBER 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on November 03,2023 at 14:24:48 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


