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A B S T R A C T

Edge computing combining with artificial intelligence (AI) has enabled the timely processing and analysis
of streaming data produced by IoT intelligent applications. However, it causes privacy risk due to the data
exchanges between local devices and untrusted edge servers. The powerful analytical capability of AI further
exacerbates the risks because it can even infer private information from insensitive data. In this paper,
we propose a privacy-preserving IoT streaming data analytical framework based on edge computing, called
PrivStream, to prevent the untrusted edge server from making sensitive inferences from the IoT streaming
data. It utilizes a well-designed deep learning model to filter the sensitive information and combines with
differential privacy to protect against the untrusted edge server. The noise is also injected into the framework
in the training phase to increase the robustness of PrivStream to differential privacy noise. Taking into account
the dynamic and real-time characteristics of streaming data, we realize PrivStream with two types of models
to process data segment with fixed length and variable length, respectively, and implement it on a distributed
streaming platform to achieve real-time streaming data transmission. We theoretically prove that Privstream
satisfies 𝜖-differential privacy and experimentally demonstrate that PrivStream has better performance than
the state-of-the-art and has acceptable computation and storage overheads.
. Introduction

.1. Background and motivation

We are now living in an unprecedented development era of Internet-
f-Things (IoT). The massive IoT data produced by the increasing
umber of IoT devices has fueled the continuous booming of artificial
ntelligence (AI). The popularity of AI in turn promotes the prosperity
f IoT intelligent applications, such as smart healthcare, smart home,
nd smart city. Most of the IoT data are time series (e.g., speech, video,
nd sensor data), which come as streams with huge volumes, requiring
ast analysis of AI to meet the task requirement of the underlying
oT application. The traditional practices that require uploading all
he data to the cloud server before analyzing data would lead to
npredictable latency due to the network bandwidth limitation. An
lternative solution is to leverage edge computing techniques [1,2]
ombining with AI to timely process and analyze the streaming data,
hich motivates the emergence of edge intelligence (EI) [3].
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Y. Zhang), sshen@uwaterloo.ca (X. Shen).

One of the effective methods to realize EI is deep learning at the
edge (DLE), which has shown the benefits of low latency, energy
efficiency, and reduced bandwidth consumption due to the physical
proximity between computing and the data-generation sources. How-
ever, it faces the risk of privacy leakage on account of some data
exchanges between unreliable distributed edge servers and terminal
devices. More seriously, deep learning has the ability to infer private
information from insensitive data. For instance, when an individual
uploads his accelerometer data to the edge server for activity recog-
nition, the untrusted server honestly carries out the target task, but it
is also curious about the private information of the user, thus infers
the user’s private attributes e.g., gender and identity) from the same
data [4]. Therefore, effective defenses are urgently needed to prevent
the untrusted edge server from making sensitive inferences from the
IoT streaming data.
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Fig. 1. Sensitive features filtering.

1.2. Limitations of existing works

The traditional privacy-preserving techniques against untrusted
edge servers, such as encryption [5,6] and differential privacy (DP) [7]
are not suitable for solving this problem. The encryption-based methods
provide a high level of privacy protection but they cannot prevent
sensitive inference. For example, Apthorpe et al. [8] found that the
encrypted network traffic rates of IoT smart home devices can still
reveal potentially sensitive user interactions. DP can prevent sensitive
inference by injecting a lot of noise at the local device, but it would
also destroy the data utility for desire tasks.

Thanks to the advance of feature extraction of deep learning, re-
searchers found that filtering the sensitive information through extract-
ing only the features relevant to useful information is a simple and
effective method to resist sensitive inferences [4,9], as shown in Fig. 1.
Whereas, most of these works are carried out in an edge server or cloud
server with an implicit assumption that the edge/cloud server is trusted,
which may be violated in reality.

To solve this problem, some researchers propose private feature
filters combined with differential privacy [10,11], which use a pre-
trained neural network to filter the private features and then imple-
ment differential privacy to the filtered data. These methods provide
a privacy-preserving inference framework to protect implicit private
information. Nevertheless, most of the existing works target static
batch data. Designing a privacy-preserving inference framework for
streaming data still faces the following challenges:

• Variable length. As we mentioned above, most of the IoT data
are streams, which are time-dependent and may have variable
lengths (for example, linguistic data). The existing works usually
do not consider the context information and are not flexible to
process sequences with variable lengths.

• Streaming processing. IoT data from multi-sources usually have
huge volumes, which need timely processing and analysis. How-
ever, to the best of our knowledge, almost all the
privacy-preserving inference frameworks transfer batch data pe-
riodically. As a result, it is difficult for the existing works to meet
the real-time transmission and fast processing requirements of
streaming data.

• Utility preservation. The DP algorithm protects privacy by in-
jecting noise into data at the local device, which would re-
duce data utility (e.g., inference accuracy). How to mitigate the
utility degradation caused by perturbation while simultaneously
preserving privacy is a big challenge for DP algorithm design.

1.3. Contributions

In this paper, we propose a privacy-preserving IoT streaming data
inference framework based on edge computing, called PrivStream, to
prevent the sensitive inferences on IoT streaming data while enabling
the target inference tasks. Specifically, PrivStream is designed as two
283
Table 1
Frequently used notations.

Notation Description

𝜖 The privacy budget
𝑺 The original streaming data
𝑘𝑛 The 𝑛th sampling point
𝑹 The sampled streaming data
𝑫𝑡 The 𝑡th segment in streaming segment
𝒛𝑡 The feature vector corresponding to 𝑫𝑡
𝒛′

𝑡 The perturbed feature vector
𝑫 ′

𝑡 The reconstructed segment corresponding to 𝑫𝑡
dim(⋅) The dimension function
𝑑 The length of extracted feature
𝑤 The window size
𝑁𝑠 The number of attributes of the input stream
𝐼𝑛 The sampling interval for 𝑘𝑛

parts deployed on the IoT device side and edge side, respectively. At the
IoT device side, we sample the streaming data, utilize the encoder of a
tailored encoder–decoder model to filter the implicit private informa-
tion from the sampled sequences, and perturb the extracted features by
the DP algorithm. The noise is also injected into the framework in the
training phase to increase the robustness of PrivStream to differential
privacy noise. At the edge side, the perturbed features are decoded
into a perturbed sequence, which is then fed to a deep learning model
for the target task inference. PrivStream is implemented on a dis-
tributed streaming platform, Kafka, to achieve real-time streaming data
transmission. To process data segments with fixed length and variable
length, we realize PrivStream with two types of deep learning models,
the multilayer perceptron (MLP) and the recurrent neural network
(RNN), respectively. Our contributions are summarized as follows.

• We propose PrivStream, a privacy-preserving inference frame-
work for IoT streaming data, which can effectively prevent sensi-
tive inferences on IoT streaming data and preserve the data utility
for target inference tasks. It uses a deep learning model to filter
the sensitive information and integrates with Laplace noise at
both training and inference stages to improve the target inference
performance while providing the privacy guarantee. In addition,
it is deployed on a distributed streaming platform to achieve the
goals of real-time transmission and fast streaming processing.

• We realize PrivStream on different deep learning models to com-
pare their performances, including inference accuracy, delay, and
resource consumptions.

• We theoretically prove that PrivStream satisfies 𝜖-DP. We also
execute extensive experiments to evaluate the performances of
the proposed framework.

The remainder of the paper is organized as follows. Section 2 in-
troduces some preliminaries. We present the overview of PrivStream in
Section 3. We detail the design of PrivStream in Section 4. Implementa-
tion is introduced in Section 5. Section 6 exhibits experimental results,
and Section 7 reviews related works. Finally, we draw conclusions in
Section 8.

2. Preliminaries

This section describes the basic knowledge of deep learning, and
the definitions of DP and perturbation mechanism. The frequently
used notations are summarized in Table 1, where the lowercase letters
represent scalars, the lowercase bold letters represent vectors, and the
capital bold letters represent tensors.

2.1. Deep learning

The core insight of Deep learning is staking multiple layers to
extract complex representations from high-dimensional inputs progres-
sively. Two typical deep learning models are multilayer perceptrons
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Fig. 2. Illustration of two typical deep learning models.
(MLPs) and recurrent neural networks (RNNs), which are used to
process data with fixed length and variable length, respectively.

MLP, as shown in Fig. 2(a), consists of the input layer, hidden layer,
and output layer. Each layer is composed of neurons that perform
a nonlinear operation. The input layer receives data and propagates
them to the hidden layer. Then, each hidden layer transforms its inputs
into its outputs through matrix multiplications and nonlinear activation
functions e.g., tanh, ReLU, sigmoid) one by one. The output layer
receives the data from the hidden layer and outputs the final results.

RNN, as shown in Fig. 2(b), is designed specifically for time se-
ries with variable lengths. Unlike the feed-forward neural networks
e.g., MLPs), RNNs loop their layer connections to exhibit temporal
dynamic characteristics of sequences. That means the outputs are not
only controlled by the inputs, but also affected by the previous hidden
states. Long and short term memory network (LSTM) [12] is a variant
of RNN to process very long sequences. The basic neuron in LSTM is
called the memory cell, which includes a cell state 𝑪𝑡, a forget gate 𝒇𝑡,
an input gate 𝒊𝑡, and an output gate 𝒐𝑡. The cell state acts as the memory
of network that carries relevant information throughout the processing
of the sequence, the forget gate decides what is relevant to keep from
prior steps, the input gate decides what information is relevant to add
from the current step, and the output gate determines what the next
hidden state should be. These conceptions can be formulated as

𝑪𝑡 = 𝒇𝑡 ⊙ 𝑪𝑡−1 + 𝒊𝑡 ⊙ �̃�𝑡, (1)

�̃�𝑡 = tanh(𝑾𝒄 ⋅ 𝒉𝑡−1 + 𝑼𝒄 ⋅𝑿𝑡), (2)

𝒇𝑡 = 𝜎(𝑾𝒇 ⋅ 𝒉𝑡−1 + 𝑼𝒇 ⋅𝑿𝑡 + 𝒃𝒇 ), (3)

𝒊𝑡 = 𝜎(𝑾𝒊 ⋅ 𝒉𝑡−1 + 𝑼𝒊 ⋅𝑿𝑡 + 𝒃𝒊), (4)

𝒐𝑡 = 𝜎(𝑾𝒐 ⋅ 𝒉𝑡−1 + 𝑼𝒐 ⋅𝑿𝑡 + 𝒃𝒐), (5)

𝒉𝑡 = tanh(𝑪𝑡)⊙ 𝒐𝑡, (6)

where 𝑪𝑡 is the cell state that controlled by a weighted sum of candidate
cell state at current time step �̃�𝑡 and the cell state at previous step 𝐶𝑡−1,
⊙ denotes the element-wise product, 𝒇𝑡, 𝒊𝑡 and 𝒐𝑡 are respectively the
forget gate, input gate and output gate that controlled by a sigmoid
function 𝜎, 𝑾 and 𝑼 are transformation matrix, 𝒃 is the bias.

Both MLPs and RNNs are trained by back propagation through
minimizing loss. This procedure is usually done by Adam or stochastic
gradient descent (SGD) algorithm and the loss is task-specific, which
can be cross entropy loss for classification tasks or squared loss for
regression problems.
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2.2. Differential privacy

Differential privacy (DP) is first proposed for privacy-preserving
statistics analysis [13]. It can be either applied on a trusted edge
server to provide user-level privacy protection, or at the local device
to provide event-level privacy protection. The formal definition of
𝜖-differential privacy is given as below:

Definition 1 (𝜖-Differential Privacy). A randomized algorithm  sat-
isfies 𝜖-differential privacy, where 𝜖 ≥ 0, if for two neighboring inputs
𝑫1 and 𝑫2 differing in an item, and for any output set 𝑂 ⊆ 𝑅𝑎𝑛𝑔𝑒(),
we have

max
𝑫1 ,𝑫2 ,𝑂

Pr
{

(𝑫1) ∈ 𝑂
}

Pr
{

(𝑫2) ∈ 𝑂
} ≤ 𝑒𝜖 , (7)

where 𝜖 is the privacy budget that trades off the utility and privacy
of the output of algorithm . The notion of the item in the input
is application-specific, which may be a segment in a sequence or one
data in a segment. A larger 𝜖 means better utility but weaker privacy
protection.

A common technique for numeric queries to satisfy 𝜖-differential
privacy is the Laplace mechanism, which is defined as

(𝑫) = 𝑓 (𝑫) +
⟨

𝐿𝑎𝑝
(

𝛥𝑓
𝜖

)⟩𝑑
, (8)

where 𝑓 ∶ 𝑫 → R𝑑 is a deterministic function, 𝛥𝑓 = max ‖𝑓 (𝑫1) −
𝑓 (𝑫2)‖1 is the sensitivity of 𝑓 , which is defined as the maximum
𝐿1 distance between the results of the function of two neighboring
datasets. 𝐿𝑎𝑝(𝛥𝑓∕𝜖) is generated from a zero-mean Laplace distribution
with the probability density function 𝑝(𝑥|𝜆) = 1

2𝜆 𝑒
−|𝑥|∕𝜆, where 𝜆 =

𝛥𝑓∕𝜖.
In addition, DP has an interesting property of post-processing invari-

ant [14], which means that post-processing an output of a differential
privacy algorithm with any complicated operation would not incur any
additional privacy loss.

3. Problem definition and system overview

3.1. Problem definition

We assume the IoT data are collected and analyzed at the untrusted
edge node. The edge node honestly carries out the target tasks, but also
feels curious about the private information of users. Consider a case as
below:
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Fig. 3. The high-level overview of PrivStream.
The accelerometer data from wearable devices or mobile phones are
collected at an edge node for analysis. The target task of the edge server
is to infer the activities of users, such as walking, running, upstairs, and
downstairs. Although the data itself is insensitive, however, due to the
uniqueness of each user’s data, the edge server can still easily infer private
information from data, e.g., age, gender, and identification.

In this case study, we define the useful inference as activity and the
sensitive inference as all the possible inferences except for the useful
inference. Our objective is to prevent sensitive inferences on the IoT
streaming data while enabling useful inference with high accuracy.

3.2. Overview

To prevent the sensitive inference while enabling desired useful in-
ference, we propose a privacy-preserving IoT streaming data inference
framework, PrivStream, as shown in Fig. 3. PrivStream mainly contains
five components: sampling module, encoder, perturbation module, de-
coder, and inference model. The sampling module adaptively samples
the stream to construct input sequences of subsequent modules, the
encoder extracts features from high-dimensional input sequences, the
perturbation module injects differential privacy noise into the extracted
features, the decoder reconstructs the noised features into a noised
sequences. Encoder and decoder work together to filter the implicit
sensitive information in input sequences. The inference model is a deep
learning model used for inferring desired useful information.

We train these models with users’ data in the cloud and inferencing
at the edge. In the training phase as shown in Fig. 3(a), we first use
the sampled sequences and corresponding labels to train an inference
model for the desired useful prediction. Then we froze the param-
eters of the inference model and train the encoder–decoder model.
The encoder–decoder model is trained by minimizing the total losses
utilizing the SGD or Adam algorithm. Specifically, the total losses
include the squared loss between the input of encoder and output of
decoder, and the cross entropy loss between the predicted results of
inference model and ground truths. Through this supervised learning,
the encoder–decoder can efficiently filter the private features and only
preserve the features related to the desired inference task. Besides,
we add perturbations to the media features between encoder and
decoder to increase the robustness of the encoder–decoder model. After
the training, the IoT devices download the sampling, encoder, and
perturbation modules from the cloud server to run them locally, and
the edge server downloads the decoder and inference models.

In the inference phase as shown in Fig. 3(b), the IoT device node ex-
ecutes the sampling, encoder, and perturbation modules, and the edge
node implements the decoder and inference models. It first extracts
features from the sampled sequences using the encoder model and then
perturbs the extracted features with random noise. These processes
provide two layers of protection. On the one hand, transforming the
sequence and filtering the private features protect both the sensitive
data and implicit private attributes embedded in the stream. On the
other hand, adding noise to the extracted features protects them against
untrusted edge nodes. After that, the perturbed features are transmit-
ted to the edge node through a real-time data pipeline. The decoder
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reconstructs the perturbed features into perturbed sequences, which
have the same dimension as the input sequences to adapt the inference
model. Given the perturbed sequences, the edge node can accurately
predict desired tasks utilizing the inference model, but cannot obtain
any sensitive information.

4. Design of PrivStream

In this section, we first describe each module of PrivStream. In
particular, we exhibit the constructions of Encoder–Decoder filter on
two types of deep learning models, MLP and RNN, which process data
segments with fixed length and variable length, respectively. Then, we
theoretically analyze the privacy guarantee.

4.1. Adaptive sampling

Since the streaming data may be real-time and has huge volumes, it
is inefficient to process and analyze all the data. Sampling is an effective
method to reduce the computing burden and reflect the approximate
distribution of streaming data, but it has a problem that how to deter-
mine the sampling frequency when the distribution of streaming data is
unknown. For example, when the data changes gently, a high sampling
frequency would collect too much data that is not necessary, while
when the data changes dramatically, a low sampling frequency would
lead to information loss. To solve this problem, we adaptively sample
the streaming data based on PID control [15], which uses a feedback
error between the current and the last sampling point to affect PID error
and then control the next sampling interval. The detailed process of the
PID controller is introduced in the following.

We denote the streaming data as 𝑺 = {𝒓1, 𝒓2,…}, where each
element 𝒓𝑖 is a vector with dimension 𝑁𝑠. The feedback error at time
𝑘𝑛 is defined as

𝐸𝑘𝑛 = 1
𝑁𝑠

𝑁𝑠
∑

𝑗=1
|𝑟𝑗𝑘𝑛 − 𝑟𝑗𝑘𝑛−1 |, (9)

where 𝑘𝑛 is the current sampling point, and 𝑘𝑛−1 is the last sampling
point.

The feedback error then affects the PID error, which is calculated
as follows.

𝛥𝑒𝑟𝑟 = 𝐾𝑝𝐸𝑘𝑛 +𝐾𝑖

∑𝑛
𝑜=𝑛−𝜋−1 𝐸𝑘𝑜

𝜋
+𝐾𝑑

𝐸𝑘𝑛
𝑘𝑛 − 𝑘𝑛−1

, (10)

where the parameters 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are the scale factors representing
proportional gain, integral gain, and derivative gain, respectively. The
first term in Eq. (10) stands for present error, the second term denotes
the accumulation of past error, and the third term is the prediction of
future error. 𝜋 is how many recent errors are taken for integral error.

An intuitive idea is that, when the data changes rapidly, the PID
error would be large, so the sampling interval should be small. Thus,
the next sampling interval 𝐼 ′ can be calculated by

𝐼 ′ = max{1, 𝐼 + 𝜌(1 − 𝑒
𝛥𝑒𝑟𝑟−𝜂

𝜂 )}, (11)
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Fig. 4. Example of adaptive sampling on IoT streaming data.

here 𝐼 and 𝐼 ′ are the current and next sampling interval, respectively.
and 𝜂 are pre-determined parameters, respectively. It can be seen

rom Eq. (11) that the sampling interval decreases as the PID error 𝛥𝑒𝑟𝑟
increases and vice versa. More details about PID control please refer
to [15,16].

Step 1⃝ in Fig. 4 is an example to illustrate the adaptive sampling
process in 10 timestamps with parameters 𝜌 = 1 and 𝜂 = 3. For the sake
of simplicity, we assume the feedback error is the PID error. Assume
the initial sampling point and sampling interval are 𝑡1 and 𝐼1 = 2,
respectively. 𝑡3 is the next sampling point, and the PID error between
𝑡1 and 𝑡3 is 0. Therefore, the sampling interval is 𝐼2 = max{1, 2+ 1 ⋅ (1 −
𝑒
0−3
3 )} ≈ 2 (we take the integer part). Thus the third sampling point is

𝑡5 and the PID error is 3. Similarly, 𝐼3 = max{1, 2+1 ⋅ (1−𝑒
3−3
3 )} = 2 and

he next sampling point is 𝑡7. However, at the fourth sampling point 𝑡7,
he PID error is 5, as a result, the sampling interval becomes 1 and the
ext sampling point is 𝑡8. Overall, the sampling interval will decrease
f the feedback error exceeds a certain threshold and vice versa.

We denote the sampled points as a new stream 𝑺𝑠𝑎𝑚𝑝 = {𝒓𝑘1 , 𝒓𝑘2 ,…},
where 𝒓𝑘𝑖 ∈ R𝑁𝑠 . For further analysis, we follow the common prac-
tice [17] to partition them into non-overlapping segments 𝑹 =
{𝑫1,𝑫2,…}, as shown in Step 2⃝ and Step 3⃝ in Fig. 4, where 𝑫𝑡 =
{𝒓𝑘𝑤(𝑡−1)

,… , 𝒓𝑘𝑤𝑡−1
} ∈ R𝑤×𝑁𝑠 , 𝑤 is the size of time window. Note that,

every window 𝑫𝑡 is an input sample of the subsequent model.

4.2. Encoder–decoder filter

Since the input sample 𝑫𝑡 usually contains redundant information,
it deservedly can be minimized according to its inherent structure [18].
Based on this fact, a non-trivial idea behind PtivStream is minimizing
the input data to get features that contain only useful information. To
realize this goal, we have to solve two problems: (1) How to minimize
the input data, (2) How to filter the sensitive information.

The Encoder–decoder model [19] is a typical technique to automat-
ically extract features from high-dimensional data by minimizing the
reconstruction error between the input and the reconstructed output.
But it is a type of unsupervised learning model, of which the extracted
features contain both useful and sensitive information. To solve the two
problems mentioned above, we designed a tailored encoder–decoder
filter based on a multilayer perceptron (MLP) in the prior work [20].
However, it is designed for processing data segments with a fixed
length. To adapt the filter for data segments with potential variable
lengths, we also realize it on a recurrent neural network (RNN). The
two types of filters are detailed in the following. Note that, the encoder–
decoder filter is trained offline in the cloud. After training, the encoder
and the decoder are split and deployed on the IoT device side and edge
server for feature extraction and data reconstruction, respectively. The
output of decoder has the same dimension as the input of encoder to
adapt to the interface of the subsequent inference model.
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4.2.1. Encoder–decoder filter based on MLP [20]
A traditional structure of encoder–decoder model [19] based on

MLP is shown in the left of Fig. 5, which consists of Encoder and Decoder
model. The middle layer between Encoder and Decoder are the features
that we aim to extract. As each neuron in MLP stands for a single data,
for each input sample 𝑫𝑡 ∈ R𝑤×𝑁𝑠 , we first flatten 𝑫𝑡 into a column
vector 𝑫𝑡 ∈ R𝑤𝑁𝑠×1. The Encoder maps the input sample 𝑫𝑡 ∈ R𝑤𝑁𝑠×1

nto feature representation 𝒛𝑡 ∈ R𝑑×1, where 𝑑 (𝑑 < 𝑤𝑁𝑠) is the length
of extracted features. Then the Decoder reconstructs the feature vector
into output 𝑫′

𝑡 ∈ R𝑤𝑁𝑠×1. The encoder–decoder model is trained by
minimizing the cost function

min 𝐽0(𝒖, 𝒗) = min
𝑇
∑

𝑡=1
‖𝑫𝑡 −𝑫′

𝑡‖2

= min
𝑇
∑

𝑡=1
‖𝑫𝑡 −𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑫𝑡))‖2, (12)

where 𝑇 is the length of time for streaming data, 𝒖, 𝒗 are the parameters
of Encoder and Decoder, respectively.

However, the feature vector 𝒛𝑡 is related to both useful and sensitive
information. To ensure that 𝒛𝑡 is as relevant to useful information as
possible, we train the encoder–decoder filter combining with a trained
useful inference model in a supervised manner. Specifically, we freeze
the parameters of the trained inference model, and feed it the output
of the Decoder as shown in Fig. 5. Then the cost function of the useful
inference model is added into the cost function of the encoder–decoder
model as follows.
min 𝐽 (𝒖, 𝒗) =min 𝐽0(𝒖, 𝒗)

− 𝜇
𝑇
∑

𝑡=1
𝑦𝑡 log(𝜽𝑇𝑫′

𝑡 − 𝑦𝑡) + 𝜇𝜆 ‖𝜽‖2 ,
(13)

where the first term on the right side is the cost function of a traditional
encoder–decoder model, the second term is the loss function of the
useful inference task, and the third term is the regularization term, 𝜽
is the parameter of the useful inference model, 𝑦𝑡 is the ground truth
of 𝑫𝑡, and 𝜇 is a parameter that controls the trade-off between the
reconstruction loss and the utility penalty.

4.2.2. Encoder–decoder filter based on RNN
As we mentioned above, RNN is more suitable for processing time

series with variable length than MPL, because RNN only needs to add
a time step instead of changing the graph of neural networks. Since the
streaming data can also be regarded as time series, we also design the
RNN-based encoder–decoder filter and inference model, of which the
structures are shown in Fig. 6.

Suppose the sampled stream is segmented by variable-length win-
dows with the maximum length 𝐾. The segment that is shorter than
𝐾 will be padding to the same length, and the padding value is then
masked in RNN. The training of an RNN-based encoder–decoder filter
still begins with training an inference model. The inference model is
a many-to-one structure (the right side in Fig. 6), that is to say, we
feed the segment 𝑫𝑡 = {𝒙𝑡1,𝒙

𝑡
2,… ,𝒙𝑡𝐾} ∈ R𝐾×𝑁𝑠 to the hidden layers

step by step, and get the corresponding output 𝑶𝑡 = {𝒐𝑡1,𝒐
𝑡
2,… ,𝒐𝑡𝐾},

but only the last output 𝒐𝑡𝐾 (if 𝑫𝑡 is not padded) of hidden layer is
mapped by a softmax function to obtain the inference results 𝒑𝑡 =
{𝑝𝑡1, 𝑝

𝑡
2,… , 𝑝𝑡𝑁} (the probabilities of 𝑁 potential categories). Note that,

padding and masking are co-existed for all variable-length segments in
both encoder–decoder filter and inference model. The loss function of
the inference model is cross entropy that can be formulated as

𝐿𝑖 = −
𝑇
∑

𝑡=1

𝑁
∑

𝑛=1
𝑦𝑡𝑛𝑙𝑜𝑔(𝑝

𝑡
𝑛), (14)

where 𝑁 is the total number of categories, and 𝑇 is the length of time
for streaming data. 𝑦𝑡𝑛 ∈ {0, 1} is the true label of the sample, and 𝑝𝑡𝑛

is the prediction probability that the sample belongs to category 𝑛. We
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Fig. 5. The structure of the encoder–decoder filter based on MLP.
Fig. 6. The structure of the encoder–decoder filter and inference model based on RNN.
employ LSTM as the backbone network of the inference model due to
its powerful modeling for a very long sequence. The inference model is
trained by minimizing the 𝐿𝑖 through gradient descent optimization.
After training, the parameters are frozen and used for training the
encoder–decoder model.

Similar to the MLP-based encoder–decoder filter, the RNN-based
encoder–decoder model also consists of two components: the Encoder
which encodes the input sequence into a hidden representation and
the Decoder which reconstructs the input sequence from the hidden
representation. We also realize the filter on an LSTM network, where
the encoder and decoder are presented as follows.

Encoder. The Encoder aims to get the feature vector 𝒛𝑡, which is
the last hidden state 𝒉𝑡𝐾 on the left side of Fig. 6. Formally, given the
input stream {𝑫1,𝑫2,…}, each segment 𝑫𝑡 at timestamp 𝑡 are padded
to the same length 𝐾 and consists of {𝒙𝑡1,𝒙

𝑡
2,… ,𝒙𝑡𝐾} in which 𝒙𝑡𝑘 ∈ R𝑁𝑠

denotes the observations at the 𝑘th time step of 𝑫𝑡. The calculations of
hidden state 𝒉𝑡𝐾 of the last time step are in line with the routine forward
propagation of a many-to-one LSTM model, which is formulated as
follows. Note that, for simplicity, we omit 𝑡 in the following.

𝒉𝑘 = 𝒐𝑘 ⊙ tanh(𝑪𝑘), (15)

𝒛 = 𝒉𝐾 , (16)

where 𝒐𝑘 and 𝑪𝑘 are the output gate and cell state of the 𝑘th step, which
can be calculated by Eq. (1)–(5). The calculations of 𝒉𝑘 are recurrent
until 𝑘 = 𝐾. At last, the hidden state 𝒉𝐾 at time step 𝐾 is employed as
the feature vector 𝒛.

Decoder. We deploy another LSTM model as a decoder, which is
a little different from the encoder model. Specifically, in the Encoder
model, only the hidden state 𝒉 is recurrent, but in the Decoder model,
both the hidden state 𝒉′ and output 𝒙′ are recurrent. Formally, the
reconstructed observation 𝒙′𝑘 at the 𝑘th time step can be modeled as

𝒙′ = 𝑩 ⋅ 𝑔(𝑨 ⋅ 𝒉′ ), (17)
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𝑘 𝑘
where 𝑨,𝑩 are mapping matrices and 𝑔(⋅) is an activation function
(Relu, tanh or softmax). The derivative process of hidden state 𝒉′𝑘,𝑘≠0 is
similar to that of the encoder (Eq. (15)), but note that the candidate cell
state 𝑪𝑘 and three gates {𝒇 ′

𝑘, 𝒊
′
𝑘,𝒐

′
𝑘} are slightly different from Eq.((3)–

(5)), because the variate 𝒙′𝑘 is not from external input but from the
output of the previous time step. For any 𝒗𝑘 ∈ {𝑪𝑘,𝒇 ′

𝑘, 𝒊
′
𝑘,𝒐

′
𝑘}, it can be

modeled as

𝒗𝑘 = 𝑓𝑣(𝑾 ′
𝒗 ⋅ 𝒉′𝑘−1 + 𝑼 ′

𝒗 ⋅ 𝒙
′
𝑘−1 + 𝒃′𝒗). (18)

All the variates are calculated step by step from the initially hidden
state 𝒉′0 and the initial input 𝒙′0, which are respectively specified as the
feature vector and a start symbol e.g., a character in natural language
processing or zero matrix in numeric streaming data) as follows.

𝒉′0 = 𝒛, (19)

𝒙′0 = 𝑠𝑡𝑎𝑟𝑡 𝑠𝑦𝑚𝑏𝑜𝑙. (20)

For an unsupervised encoder–decoder model, the parameters of the
model are optimized by minimizing the reconstruction error between
the reconstructed sequence and the original sequence to guarantee that
they are as close as possible. We use the mean absolute error as the loss
function, which is formulated as

𝐿𝑎 =
𝑇
∑

𝑡=1
( 1
𝐾 (𝑡)

𝐾(𝑡)
∑

𝑘=1
|𝒙

′(𝑡)
𝑘 − 𝒙(𝑡)𝑘 |). (21)

However, this model trained in an unsupervised way cannot effec-
tively filter sensitive information. To extract features that only contain
useful information, we feed the output of RNN-based encoder–decoder
filter to the pre-trained inference model to get the loss 𝐿𝑖 according to
Eq. (14). Therefore, the encoder–decoder filter is trained by minimizing
the weighted sum of loss functions 𝐿𝑎 and 𝐿𝑖:

𝐿 = 𝜇𝐿𝑎 + (1 − 𝜇)𝐿𝑖, (22)

where 𝜇 ∈ [0, 1] is a hyper-parameter that trades off the impact of two
models.
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4.3. Feature perturbation

Although the feature extraction module has provided a protection
layer for private information through extracting features that are spe-
cific to useful inferences, the learned features still have some degree
of correlations with private information. To protect them against the
untrusted edge server, we further apply 𝜖-differential privacy (𝜖-DP)
o the extracted feature vector 𝒛 before sending them to the edge
erver. 𝜖-differential privacy can guarantee that no matter how much
ackground knowledge the edge server has, it cannot restore the input
ample from the perturbed features.

The perturbation mechanism that we adopted is the Laplace mecha-
ism. We take the Encoder model as the query function, and the feature
ector as the query result. The perturbed feature vector can be modeled
s
′ = 𝑓 (𝑫) + ⟨𝐿𝑎𝑝(𝛥𝑓∕𝜖)⟩𝑑 = 𝒛 + ⟨𝐿𝑎𝑝(𝛥𝑓∕𝜖)⟩𝑑 , (23)

where 𝛥𝑓 = max ‖𝑓 (𝑫) − 𝑓 (𝑫′)‖1 is the global sensitivity defined as
the maximum 𝐿1 distance between 𝑓 (𝑫) and 𝑓 (𝑫′), 𝑫 and 𝑫′ are
two neighboring inputs that only differ at one element, and 𝑑 is the
dimension of the feature vector.

The value of global sensitivity 𝛥𝑓 is determined by the output
threshold of Encoder model, which is computed as the maximal domain
of the activation function of the output layer. For example, for the
Sigmoid and tanh functions with finite bounds [0, 1] and [−1, 1],
the global sensitivities are 1 and 2, respectively. However, for the
activation function with infinite bound, for example, the ReLU function
with bound [0,∞), it is difficult to estimate the global sensitivity. To
solve this problem, we clip the output of the Encoder with a threshold.
Specifically, we set the threshold as 𝐵, the encoder output 𝒛 is clipped
into

𝒛 = 𝒛∕max{1,
‖𝒛‖∞
𝐵

}. (24)

It indicates that 𝒛 will be preserved if ‖𝒛‖∞ < 𝐵, otherwise it will be
cut down to 𝐵. Then, the global sensitivity is estimated as 𝐵 for the
Encoder with ReLU activation function. According to normal practice,
the value of 𝐵 is set as the median of ‖𝒛‖∞ over the training [21].

Applying differential privacy in the inference phase can guarantee
that the untrusted edge server cannot acquire any observation in the
input sequence from the features, nevertheless, it would decrease the
data performance (inference accuracy), which has been proved in our
previous work [20]. In order to improve the robustness of PrivStream to
noise, we also add random noise into the feature vector 𝒛 in the training
phase. However, it is difficult to determine how much the random noise
is suitable because the amount of Laplace noise (controlled the privacy
budget 𝜖) added during the inference stage is unknown in advance.
Wang et al. [7] proposed to inject the worse perturbation into the
representation to maximize the deviation from the original data, while
trying to minimize the loss in the training. Such a method, however,
is not suitable for PrivStream, because the perturbations added to the
features 𝒛 have very complex effects on the total losses, which makes
the maximum perturbation difficult to be calculated. Therefore, we
estimate the value of perturbation with qualitative experiments instead
of quantitative analysis. Specifically, we add Laplace noise 𝐿𝑎𝑝(𝐵∕𝛿) to
the features in the training stage. The perturbation degree is controlled
by parameter 𝛿. A smaller 𝛿 corresponds to the worse perturbation. To
found the proper 𝛿, we will evaluate the performances of PrivStream
under different (𝛿, 𝜖) pairs in Section 6.

4.4. Reconstruction and inference

The Decoder model and inference model are deployed on the edge
node. Once the Decoder receives the perturbed feature vector 𝒛′ from
the IoT device node, it would reconstruct the feature vector into the
data that has the same dimension as the input samples of Encoder. The
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reconstructed data are then sent to the inference model for the target
Algorithm 1 The first part of PrivStream on the IoT device node
Require: Original streaming data 𝑺 = {𝒓1, 𝒓2,…}, privacy budget

𝜖,initial sampling interval 𝐼 , :
Ensure: Perturbed feature representations 𝒁 = {𝒛′

1, 𝒛
′

2, ...}
1: Adaptively sampling 𝑺 with Eq. (11) to get 𝑺𝑠𝑎𝑚𝑝
2: Segmenting 𝑺𝑠𝑎𝑚𝑝 to form the input streaming samples 𝑹 =

{𝑫1,𝑫2, ...}
3: for each 𝑫𝑡 ∈ 𝑹 do
4: Extracting features 𝒛𝑡 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑫𝑡)
5: Perturbing features 𝒛′

𝑡 = 𝒛𝑡 + 𝐿𝑎𝑝(𝛥𝑓∕𝜖𝑰)
6: end for
7: Transferring the perturbed features 𝒁 = {𝒛′

1, 𝒛
′

2, ...} to the edge
server

Algorithm 2 The second part of PrivStream on the edge node

Require: Perturbed feature representations 𝒁 =
{

𝒛′

1, 𝒛
′

2, ...
}

Ensure: Target task inference results 𝒀 ∗ = {𝒚∗1 , 𝒚
∗
2 ,…}

1: for each 𝒛′
𝑡 ∈ 𝒁 do

2: Reconstructing data 𝑫 ′
𝑡 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝒛′

𝑡 )
3: Inferring the target task result 𝒚∗𝑡 = 𝑇 𝑎𝑟𝑔𝑒𝑡(𝑫 ′

𝑡 )
4: end for

task inference. Note that, the reconstructed data have been cleaned
and perturbed, which means that, the adversary cannot get any private
information from the reconstructed data, but the inference model can
still get accurate inference results of the target task.

4.5. Algorithms

PrivStream is designed as two parts deployed on the IoT device side
and edge side. The key steps on the two sides are summarized in Alg. 1
and Alg. 2, respectively. At the IoT device side, PrivStream adaptively
samples the streaming data, extracts features to defend sensitive infer-
ence, and perturbs features to prevent from restoring the input sample.
While at the edge node, PrivStream reconstructs the perturbed features
for the target inference task. With the two algorithms, we then prove
that PrivStream satisfies 𝜖-DP.

4.6. Privacy analysis

Theorem 1. For any 𝜖 > 0, PrivStream satisfies 𝜖-DP.

Proof. According to the definition of DP, a mechanism satisfies DP as
long as an adversary cannot distinguish the input from its neighboring
data based on the output of this mechanism. Laplace mechanism is a
well-known perturbation mechanism that satisfies 𝜖-DP, which injects
Laplace noise into the results of the query function. We take the Encoder
of PrivStream as the query function and the feature representation
𝒛𝑡 as the output of Encoder. PrivStream adds Laplace noise into the
features, thus the perturbed features naturally satisfy 𝜖-DP. In addition,
DP has a character of post-processing invariant [14], which means
that post-processing an output of a differentially private algorithm does
not incur any additional loss of privacy. We consider the Decoder and
inference model as the post-processing functions. As a result, the output
of PrivStream still satisfies DP. That ends the proof. □

5. Implementation

In order to realize real-time and reliable streaming data transmis-
sion, we implement PrivStream on a distributed streaming platform.
There are many distributed computing system can process big stream-
ing data in real-time or near real-time, such as Apache Spark [22],
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Table 2
Structure of PrivStream-MLP and PrivStream-RNN. Each function with parameters denotes a layer in the
deep learning model. 𝑤 is the size of time window and 𝑑 is the dimension of extracted features.

PrivStream-MLP

Encoder–Decoder filter Inference model

Encoder

Input (|50 × 12|) Input (50, 12, 1)
Dense (512) Conv2D (50,(1 × 5)); Conv2D (50,(1 × 3))
Dense (𝑑) Dense (50); Pool(1 × 2); Drop(0.2)

Conv2D (40,(1 × 5))

Decoder

Dense (𝑑) Dense (40); Pool (1 × 3); Drop(0.2)
Dense (512) Conv2D (20,(1 × 3)); Drop (0.2)
Output (|50 × 12|) Flatten; Dense (400); Drop (0.2)

Softmax (4)

PrivStream-RNN

Encoder
Input (𝑤, 12) Masking ((50, 12))
LSTM (𝑑) LSTM (50)
LSTM (𝑑) LSTM (50)

Decoder
LSTM (𝑑) Dense (4)
LSTM (𝑑) Softmax (4)
Dense (𝑤,12)
(
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Storm [23], and Kafka [24]. Here we choose Kafka due to its advan-
tages of lightweight, integration, scalability, and high throughput.

Apache Kafka mainly contains three components: producer, con-
sumer and agent. In our work, the producer runs on the IoT
evice, and the consumer runs on the edge server node. Agent is
he core of Kafka, which serves as a bridge between producer and
onsumer, and runs as a cluster on the Kafka server (it can be the
dge server node or another server). Agent is also responsible for
alancing the traffic load. If the consumer cannot draw the streaming
ata that come from producer in time, agent will temporarily store
he stream in the Kafka server in a place called brokers, and blocks
he output of the IoT device. The specific process of streaming data
ransmission is described as follows.

PrivStream first starts the Kafka server and creates a topic on it
sing Kafka API. Then the IoT device node and edge server subscribe
o this topic through a Kafka Producer API and a Consumer API,
espectively. After that, the IoT device begins to run the sampling,
ncoder, and perturbation module to produce the noisy features, which
fterward are published to the topic through a Kafka Producer API.
hereafter, the edge server receives the noisy features from this topic
hrough a Kafka Consumer API and sends these data to the Decoder
or data reconstruction. The reconstructed data are then fed into the
ubsequent inference model to get the desired inference results.

Kafka can integrate with many programming languages. Here we
ive examples based on Python. Python has the Kafka package, and
he Producer and Consumer APIs can be easily implemented by a few
ines of code:

//The Producer API of IoT device
from kafka import KafkaProducer
producer=KafkaProducer ( boo t s t r ap _ s e r ve r s=KAFKA_URI )
producer . send ( top ic=TOPIC , value=Features )

//The Consumer API of edge se rver
from kafka import KafkaConsumer
consumer=KafkaConsumer (TOPIC , boo t s t r ap _ s e r ve r s=KAFKA_URI )
for f e a tu r e s in consumer :
Decoder ( f e a tu r e s )

. Experimental results

In this section, we first clarify the dataset and experiment setup,
hen conduct extensive experiments to evaluate the effects of three
odules (adaptive sampling, encoder–decoder filter, perturbation mod-
le) on the performances of PrivStream. Finally, we test the computa-
ion and storage efficiency of PrivStream on both IoT devices and the
dge node.
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Table 3
Original inference accuracy of three tasks.

Model Phase Activity Gender Identity

PrivStream-MLP Train 0.98 0.99 0.97
Test 0.95 0.97 0.85

PrivStream-RNN Train 0.99 0.99 0.98
Test 0.93 0.97 0.81

6.1. Dataset and experiment setup

Dataset. The dataset we used is MotionSense [4], which contains
24 participants that perform 4 activities in 15 trials: walking, running,
upstairs, and downstairs. The data includes the accelerometer, attitude
and gyroscope data, with a total of 12 attributes (i.e., 𝑁𝑠 = 12), and
the labels include their activities, IDs, genders, ages, and weights. We
randomly divide the trials into train set, validation set, and test set to
60%, 20%, 20%, respectively.

Metrics. We choose activity recognition as our target inference task
useful inference), while identity recognition and gender recognition as
ensitive inferences that we aim to prevent. Privacy metric is defined
s the sensitive inference accuracy, and a lower sensitive inference
ccuracy means higher privacy. The probabilities of random guesses
or identity recognition and gender recognition are 1/24 and 1/2,
espectively. If the sensitive inference accuracies are close to random
uessing, we consider that PrivStream has a high degree of privacy pro-
ection. Date utility is measured from two aspects, including the useful
nference accuracy and the mean absolute error (MAE) between the
econstructed data and original data. Higher useful inference accuracy
nd lower MAE indicate better data utility.
Model structure. Since these data are time-series, they are first

ampled by the sampling module of PrivStream and segmented with
time window to generate the input segments. For the MLP-based

rivStream (we call it PrivStream-MLP), we set the time window size
s 𝑤 = 50, while for the RNN-based PrivStream (we call it PrivStream-
NN), the window size is randomly chosen from 𝑤 ∈ {30, 40, 50}

or each segment. The structures of encoder–decoder filters and infer-
nce models of PrivStream-MLP and PrivStream-RNN are displayed in
able 2.
Configuration. In the experiment, we use Raspberry Pi 3B as our

oT device node, and a laptop equipped with quad-core Intel Core i5
rocessors and 8 GB of RAM as both the Kafka server and edge node.
ll the programs are written with Python and run on Ubuntu 16.04.
Comparison methods. We compare PrivStream with two mecha-

isms to prove the effectiveness of encoder–decoder filter and perturba-
ion. The first is GEN [4], which only filters sensitive features without
erturbation. The other is the baseline method, which only perturbs

he stream without feature extraction. For a fair comparison, the GEN



Information Fusion 80 (2022) 282–294D. Wang et al.

a
f

6

w
a
t
F
a
t
u
t
i
h
p
m
(
5
I
t
i
(
a
p
w

6

t

Fig. 7. Comparison of different sampling intervals.
Fig. 8. Effect of encoder–decoder filter of PrivStream-MLP.
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nd baseline method used in this paper have the same encoder–decoder
ilter and inference model of PrivStream, respectively.

.2. Effect of adaptive sampling

To exhibit the advantage of adaptive sampling, we compare it
ith fixed sampling intervals 5, 50, and 100. Specifically, for the
daptively sampling, the parameters 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 , 𝜌 and 𝜂 of PID con-
rol in Eq. (10)(11) are set as 0.8, 0.05, 0.1, 2, 0.8, respectively.
or the fixed sampling intervals, we first sample the IoT data with
ssigned fixed sample intervals, and then segment sampled data by
ime windows 𝑤 = 50. The dimension of features is 𝑑 = 512. The
seful and sensitive inferences accuracies are shown in Fig. 7. From
his figure, we have the following observations: (1) a lower sampling
nterval corresponds to a higher activity inference accuracy, since they
ave stronger temporal correlations and thus exhibit more accurate
hysical attributes. However, a low sampling interval would generate
ore data samples and thus result in higher system processing delays.

2) Adaptive sampling has similar performance with sampling interval
, but has better performance than sampling intervals 50 and 100.
t means that adaptive sampling is a better choice, especially when
hen data distribution is unknown. (3) Comparing with the original
nference accuracies of three tasks in Table 3, the useful inference
act) accuracy has few decreases, while the sensitive inference (gender
nd identity) accuracies have massive recessions. This phenomenon
roves that PrivStream can effectively protect sensitive information
hile preserving useful information.

.3. Effect of encoder–decoder filter

To evaluate the effect of the encoder–decoder filter, we first analyze
290

he useful and sensitive inference accuracies and the MAEs of the w
outputs of PrivStream-MLP and PrivStream-RNN under various dimen-
sions of features 𝒛 and different perturbation level 𝜖 in Figs. 8 and
9. Then we compare the results to analyze the performances of two
types of models. The 𝑥-axis denotes the privacy budget, and the 𝑦-
xes stand for inference accuracies and MAE, respectively. Note that,
n this evaluation, we only perturb features in the inference phase.
or the PrivStream-MLP, the window size is fixed as 50, while for the
rivStream-RNN, since the data segment is length-variable, the data
egments have three sizes with 30, 40, and 50.

The performance of PrivStream-MLP is shown in Fig. 8. We vary
he extracted feature dimension 𝑑 from 256 to 8, and the results under
ifferent dimensions and privacy budget privacy 𝜖 show that: (1) A
igher privacy budget corresponds to a larger activity accuracy and
ower MAE. This phenomenon is consistent with the properties of DP
n Definition 1. (2) The inference results of gender and identity under
ifferent dimensions and different privacy budgets are close to the
andom guesses (1/2 and 1/24, respectively). This demonstrates that
he sensitive information within the extracted features is low enough.
3) As the feature dimension decreases, the data utility would also go
own, i.e., a lower activity accuracy and higher MAE, because more
nformation is lost. But we also note that MAE has a decrease when
he feature dimension reduces from 256 to 128, which is contrary
o the law. We suspect that the excessive noise introduced by high
imensions has a greater effect on utility than dimension reduction.
ccording to the above analyses, we conclude that the largest feature
imension is not always the best choice. To trade off the utility and
rivacy, PrivStream should choose a proper feature dimension and a
rivacy budget. We set the feature dimension as 128 in the following
xperiments, as it has the best performance than others. For example,

hen 𝜖 = 5, the activity accuracy at 𝑑 = 128 is 0.86, which is close to
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Fig. 9. Effect of encoder–decoder filter of PrivStream-RNN.
Fig. 10. Effect of noisy training of PrivStream-MLP.
Fig. 11. Effect of noisy training of PrivStream-RNN.
u

0

.89 that at 𝑑 = 256, but the MAE at 𝑑 = 128 is 0.65, which is lower
than 0.69 that at 𝑑 = 256.

Fig. 9 exhibits the results of PrivStream-RNN, which have similar
erformances with PrivStreram-MLP, in which the useful inference
ccuracy increases with the increment of privacy budget 𝜖 and fea-
ure dimension 𝑑, while the sensitive inference accuracies are almost
nchanged with them, and the MAE drops sharply as the dimension
ecreases. But we also notice some differences: (1) Under the same
eature dimension and same perturbation level, the useful inference
ccuracy of PrivStream-RNN is higher than PrivStream-MLP. For ex-
mple, when 𝜖 = 1 and 𝑑 = 256, the activity inference accuracy of
rivStream-MLP is 0.52, while that of PirvStream-RNN is 0.88. This
ndicates that PrivStream-RNN is more robust to noise than PrivStream-
LP. (2) The MAE of PrivStream-RNN is much larger than that of

rivStream-MLP. This is because PrivStream-RNN is the serial structure,
hich would cause a larger disorder of data than the parallel structure
f PrivStream-MLP. Even so, the high useful inference accuracy of
rivStream-RNN suggests that PrivStream-RNN is more likely to retain
seful information than the data value.

.4. Effect of noisy training

In order to increase the robustness of PrivStream to perturbation,
e also inject noise that is scaled by privacy budget 𝛿 to the extracted

eatures in the training phase. The inference accuracies and MAE under
ifferent (𝛿, 𝜖) pairs are shown in Figs. 10–11. The feature dimensions
f PrivStream-MLP and PrivStream-RNN are 256 and 512, respectively.
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Comparing with the experiments without noisy training in Figs. 8–9
nder the same feature dimension and privacy budget 𝜖, the most obvi-

ous observation is that, the useful inference accuracy has a great incre-
ment. For example, in Figs. 8–9, the activity accuracies of PrivStream-
MLP (d = 256, 𝜖 = 1) and PrivStream-RNN (d = 512, 𝜖 = 0.2) are
.53 and 0.75, respectively, while that in Figs. 10–11 under (𝛿, 𝜖) =

(1, 1) and (𝛿, 𝜖) = (0.8, 0.2) are 0.86 and 0.93. Another observation is
that the sensitive inference accuracies have no significant changes, but
the MAEs have slight growths, which increase by 0.21 and 11.18 for
PrivStream-MLP and PrivStream-RNN, respectively. Even so, the noisy
training still has a positive effect on the performance of PrivStream
because our primary goal is to preserve the inference accuracy of the
target task.

6.5. Trade-off between privacy and utility

In this subsection, we compare PrivStream-MLP and PrivStream-
RNN with a baseline method and a state-of-the-art algorithm GEN [4].
The privacy budgets 𝛿 in the training phase and the feature dimensions
𝑑 of PrivStream-MLP and PrivStream-RNN are 1, 256 and 0.8, 512,
respectively. From the results shown in Fig. 12, we have the following
observations: (1)when the 𝜖 = 0.1 (a very large perturbation), GEN
has the highest useful inference accuracy, because it does not inject
noise into the features, but as 𝜖 increases to 1 (a typical value in dif-
ferential privacy [16,25]), PrivStream-RNN has the best performance,
and when 𝜖 increases to 3, PirvStream-MLP has the same performance
as GEN. This demonstrates that PrivStream can preserve data utility

while providing greater privacy protection. (2) The baseline method
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Fig. 12. The trade-off between data utility and privacy.
Fig. 13. The latency at IoT device and aggregator (the edge node).
Fig. 14. (a) Storage overhead on IoT device and aggregator (the edge node); (b) CPU consumption of IoT device and aggregator (the edge node) at loading and running stages,
respectively.
has higher sensitive inference accuracies than other methods when
𝜖 > 0.1. This shows that directly adding noise into the stream without
feature filtering cannot prevent sensitive inferences. (3) The MAE of
PrivStream-RNN is much larger than other methods, this suggests that
PrivStream-RNN is appropriate for the situation that the user wants to
hide real data values, while PrivStream-MLP is suitable for preserving
the original data value. But both of them can effectively prevent
sensitive inferences and provide high inference accuracy of the target
task.

6.6. Computation efficiency

The computation efficiency is quantified by the execution time
of PrivStream on both the IoT device side and edge node. Each IoT
device independently carries out the sampling, feature extraction, and
292

perturbation operations, and the perturbed features from all IoT devices
are aggregated on the edge node for reconstruction and the target task
inference. From the results in Fig. 13, we can observe that (1) The
latency on IoT devices are not affected by the number of IoT device
because they are independent of each other. (2) The computation
latency of the aggregator (the edge node) increases with the increment
of the IoT device number. This is because the aggregator needs more
time to process the accumulated data. (3) The delay of PrivStream-RNN
is much larger than PrivStream-MLP, as the runtime of the RNN model
is longer than the MLP model.

6.7. Storage overhead

The storage overhead and CPU consumption of PrivStream are
evaluated in Fig. 14(a) and Fig. 14(b), respectively. From the figures,
we can see that PrivStream-RNN takes up higher storage space in IoT

devices (Raspberry Pi) but lower space in aggregator (the edge node)
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than PrivStream-MLP. In addition, PrivStream-RNN takes up 7.5% and
10.3% CPU cycles of the IoT device and edge node, which are slightly
higher than 3% and 7.5% of PrivStream-MLP. Even so, both of them
are still within an acceptable range.

7. Related work

7.1. EI with differential privacy

EI is a major trend in the era of the Internet of Everything, due
to the powerful ability of AI to quickly analyze the data with huge
volumes generated from surrounding IoT devices. But those data may
contain private information, such as location, health, gender, and so
on. Thus, distributed learning becomes a feasible paradigm, which
jointly trains a model while keeping the training data in the local
devices. Nevertheless, there is still a risk of privacy leakage in the
data exchange between local devices and the untrusted server. To
solve this problem, many studies [21,26,27] have combined DP with
distributed learning. Shokri et al. [28] proposed a system that enables
joint training such that the input data are kept in the local devices
and only the model parameters are shared. The shared parameters
are further protected by differential privacy before being aggregated
in the centralized parameter server. But Abadi et al. [21] found that
the total privacy loss in Ref. [28] would be very large. To reduce
the total privacy loss, they proposed a new differential privacy based
stochastic gradient descent algorithm. In these two works, gradients are
the perturbation object. Besides the gradient perturbation, noise can
also be added to the objective function [29] or the output [30]. For
example, Phan et al. [26] enforced 𝜖-differential privacy by perturbing
the objective functions of the traditional deep auto-encoder. Jayaraman
et al. [31] added noise to the output inside the secure computation after
aggregation, and showed that the noise can be reduced in the multi-
party setting. However, these methods applied differential privacy in
the training stage to prevent EI from learning private information from
the data. They are unable to achieve the goal of PrivStream, which is
to prevent a malicious model from inferring sensitive attributes.

7.2. Defenses against sensitive inference

Sensitive inferences, which mean inferring private attributes from
insensitive public data, have been demonstrated that exist in a variety
of applications, such as recommender systems [32], social media [33–
35], and mobile applications [36,37]. The methods that defend against
those attacks can be roughly divided into three categories.

Correlation-based perturbations, which added perturbations to
the items that are most relevant to the private attributes. For example,
Weinsberg et al. [32] used a logistic regression classifier to learn the
correlations between items and private attributes, and then perturb the
top 𝑘 items with the largest correlations. Chen et al. [38] computed
the correlations based on chi-square statistics. Jia et al. [39] proposed
AttriGuard, which consisted of two phases. It first found a minimum
noise for each attribute value, and then randomly selected one of the
noises to mislead the attacker’s inference. The limitations of these
methods are low utility or high computational overhead.

Feature extraction, which filters sensitive information by extract-
ing features only related to useful information. For example,
Malekzadeh et al. [4,15] propose a framework, called GEN, to filter the
sensitive attributes and simultaneously preserve the useful attributes.
Hamm et al. [9] proposed a minimax filter to filter sensitive informa-
tion. However, most of these works are carried out in an edge server or
cloud server with an implicit assumption that the edge/cloud server is
trusted, which may be violated in reality. To solve this problem, some
works propose to combine feature extraction with differential privacy.

Differential privacy [25,40], which protects a data record by lo-
cally injecting noise to guarantee that the adversary cannot distinguish
this data record from its neighbor by observing the perturbed outputs.
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However, since streaming data has high dimensions, directly applying
differential privacy to the streaming data would incur too much noise
on the private attributes. Fortunately, after the feature extraction, the
dimension of the original data is greatly reduced, and then adding
differential privacy noise can not only protect the privacy from being
leaked, but also effectively retain the data utility. Wang et al. [7]
propose a framework enabling deep learning on mobile devices, which
offloads the network training and complex inference to the cloud
centers, and applies differential privacy at the local neural network to
protect the privacy. Refs. [10,20] offline pre-train an autoencoder, and
then separate the model into encoder and decoder that deployed at the
local and cloud server, respectively. Noise is injected into the output of
encoder at the local side. In this work, we also use feature extraction
and differential privacy However, the difference is that our proposed
framework can process variable-length streaming data and realize real-
time transmission and fast processing, whereas the previous works only
focus on batch data with fixed length.

8. Conclusion

In this paper, we propose a privacy-preserving IoT streaming data
inference framework based on edge computing, called PrivStream, to
prevent sensitive inferences while enabling the accurate target infer-
ence task. We realize PrivStream with MLP model and RNN model
to process data with fixed length and variable length, respectively.
To effectively utilize the computing resources and defense against the
untrusted edge server, PrivStream is separated into two parts that are
deployed on the IoT device side and the edge server, respectively. The
IoT device side carries out the adaptive sampling, feature extraction,
and perturbation operations, which provides two-layer privacy protec-
tion for the streaming data to effectively prevent the untrusted edge
server from inferring any sensitive information of users. The edge server
executes the data reconstruction for the target task inference with
high accuracy. To realize the real-time transmission of streaming data
between IoT devices and the edge server, PrivStream is implemented
on a distributed streaming platform. In order to increase the robustness
of PrivStream to noise, we also inject noise into the framework in the
training phase. We theoretically prove that PrivStream can achieve
𝜖-DP. Extensive experiments demonstrate that PrivStream has better
performance than the state-of-the-art and has acceptable computation
and storage overheads.
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