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Abstract—1In this paper, we investigate a radio access network
(RAN ) slicing problem for Internet of vehicles (IoV) services with
different quality of service (QoS) requirements, in which multiple
logically-isolated slices are constructed on a common roadside
network infrastructure. A dynamic RAN slicing framework is
presented to dynamically allocate radio spectrum and computing
resource, and distribute computation workloads for the slices.
To obtain an optimal RAN slicing policy for accommodating the
spatial-temporal dynamics of vehicle traffic density, we first for-
mulate a constrained RAN slicing problem with the objective to
minimize long-term system cost. This problem cannot be directly
solved by traditional reinforcement learning (RL) algorithms due
to complicated coupled constraints among decisions. Therefore,
we decouple the problem into a resource allocation subprob-
lem and a workload distribution subproblem, and propose a
two-layer constrained RL algorithm, named Resource Allocation
and Workload diStribution (RAWS) to solve them. Specifically,
an outer layer first makes the resource allocation decision via
an RL algorithm, and then an inner layer makes the workload
distribution decision via an optimization subroutine. Extensive
trace-driven simulations show that the RAWS effectively reduces
the system cost while satisfying QoS requirements with a high
probability, as compared with benchmarks.

Index Terms—RAN slicing, constrained reinforcement
learning, vehicular networks, coupled constraint, workload
distribution.

I. INTRODUCTION

ECENT technology advances for vehicular commu-

nication networks have laid a solid foundation for
diverse Internet of vehicles (IoV) services, e.g., autonomous
driving [1], [2]. It is predicted that autonomous vehicles will
represent 25% of the automotive market, which is valued
up to 77 billion US dollars by 2025 [3]. When a vehicle
is on the road, a large number of computation-intensive
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tasks of IoV services are required to be processed. Process-
ing such computation-intensive tasks by vehicles requires
expensive on-board computing facilities and degrades fuel
efficiency [4]. As a remedy to these limitations, a potential
solution is to explore the multi-access edge computing (MEC)
paradigm [5], [6], in which vehicles can offload these com-
putation tasks to computation-powerful roadside radio access
networks (RANs) for prompt processing.

IoV services are diversified with different quality of ser-
vice (QoS) requirements. For example, a delay-sensitive coop-
erative sensing service for autonomous driving has a stringent
delay requirement, e.g., 100 ms [5]; while a resource-hungry
high definition (HD) map creation service is delay-tolerant;
and a mobile video streaming service for vehicle users requires
high throughput [7]. To support these diversified IoV services
with different QoS requirements, the promising RAN slicing
approach for vehicular networks has emerged, which aims at
constructing multiple logically-isolated slices on the roadside
network infrastructure [8].

In the literature, there exist some works investigating RAN
slicing in the context of vehicular networks. Campolo et al.
propose a conceptual RAN slicing framework to support vari-
ous vehicle-to-everything services [9]. Another work presents
a radio spectrum slicing scheme for roadside content caching
services [10]. While the existing works focus on resource
allocation among slices, computation workload distribution
is yet to be considered in the RAN slicing. When base
stations (BSs) are densely deployed along the road, vehicles
are able to access the computing resources and offload their
computation tasks to multiple BSs. Due to spatially uneven
vehicle traffic density, some BSs may be overloaded. Vehicles
in the coverage of the overloaded BSs can offload computation
tasks to other underutilized BSs for better service performance,
i.e., workload distribution. Hence, a comprehensive RAN
slicing policy should jointly consider resource allocation and
workload distribution.

Developing an optimal RAN slicing policy encounters
many challenges. Firstly, the radio spectrum and comput-
ing resource allocation and workload distribution decisions
are coupled. The resource allocation decision determines
the resource availability at BSs, thus affecting the work-
load distribution decision. In turn, the workload distribution
decision yields a new task assignment between vehicles and
BSs, consequently affecting the resource allocation decision.

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 05,2021 at 18:16:38 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-0458-1282
https://orcid.org/0000-0002-5727-2432
https://orcid.org/0000-0002-9694-3294
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0003-0488-511X

WU et al.: DYNAMIC RAN SLICING FOR SERVICE-ORIENTED VEHICULAR NETWORKS via CONSTRAINED LEARNING

Efficient RAN slicing policy depends on the interaction
between workload distribution and resource allocation. Sec-
ondly, IoV services are highly heterogeneous in terms of QoS
requirements, hence RAN slicing is required to satisfy multiple
constraints. Thirdly, since the system operates in the presence
of spatial-temporal dynamics of vehicle traffic density, maxi-
mizing long-term performance requires future information of
vehicle traffic density. However, RAN slicing decisions have
to be made without a priori information. To address the above
challenges, reinforcement learning (RL) is a potential approach
to make proactive decisions via learning traffic dynamics [11].
Directly applying traditional RL algorithms cannot solve the
complicated RAN slicing problem with coupled constraints,
since RL algorithms make the resource allocation and work-
load distribution decisions separately and may violate the
coupled constraints. Hence, a tailored RL algorithm is required
for the RAN slicing problem with coupled constraints.

In this paper, we present a dynamic RAN slicing frame-
work for vehicular networks, in which workload distribution
and resource allocation decisions are made for IoV services
with different QoS requirements. Considering spatial-temporal
variations of vehicle traffic density, RAN slicing is for-
mulated as a stochastic optimization problem to minimize
the long-term overall system cost while satisfying coupled
constraints. To solve the problem, firstly, we decouple the
problem into a resource allocation subproblem and a workload
distribution subproblem. The resource allocation subproblem
aims at minimizing the long-term system cost, which can
be reformulated as a Markov decision process (MDP). The
workload distribution subproblem is further decomposed into
multiple one-shot optimization problems with the objective
of minimizing instantaneous service delay, which are proved
to be convex. Secondly, leveraging the properties of two
subproblems, we propose a two-layer constrained RL algo-
rithm, named Resource Allocation and Workload diStribution
(RAWS). First, the outer layer of the RAWS makes the
resource allocation decision via an RL algorithm, and then
the inner layer makes the workload distribution decision via a
convex optimization subroutine, thereby satisfying the coupled
constraints. Extensive trace-driven simulation results demon-
strate that the RAWS can effectively reduce the overall system
cost, as compared with the state-of-the-art RL benchmarks
including the deep deterministic policy gradient (DDPG) algo-
rithm [12] and the twin delayed DDPG (TD3) algorithm [13].
Particularly, the RAWS can satisfy QoS constraints with a high
probability, even in a heavy traffic scenario.

The main contributions of this paper are summarized as
follows:

o We present a dynamic RAN slicing framework for vehic-
ular networks to support multiple IoV services and bal-
ance BSs’ workloads. We formulate the RAN slicing
as a constrained stochastic optimization problem. The
objective is to dynamically make resource allocation and
workload distribution decisions to minimize the long-term
overall system cost while satisfying coupled constraints
and resource capacity constraints;

e We decouple the constrained stochastic optimization
problem into a resource allocation subproblem and
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a workload distribution subproblem, and propose a
two-layer constrained RL algorithm to solve it. We also
design a softmax-based actor network within the algo-
rithm to generate the resource allocation decision satis-
fying resource capacity constraints that the total amounts
of allocated resources cannot exceed resource capacities

at each BS.
The remainder of this paper is organized as follows. Related

works are reviewed in Section II. The system model, the RAN
slicing framework, and the problem formulation are presented
in Section IIl. The two-layer RAN slicing algorithm is pro-
posed in Section IV. Simulation results are given in Section V.
Finally, Section VI concludes this research work.

II. RELATED WORK

Network slicing can be divided into core network slicing
and RAN slicing. Different from core network slicing which
has been widely investigated, RAN slicing is still in its
infancy, which has garnered much attention from both industry
and academia recently. In the industry, the third generation
partnership project (3GPP) devotes to standardizing RAN
slicing in the fifth generation network [14]. Recent stan-
dardization efforts are discussed in [15]. In addition, several
proof-of-concept RAN slicing systems have been developed,
e.g., Orion [16]. In the academia, there are a number of
research works investigating resource allocation problems in
the RAN slicing. Ye et al. propose a communication resource
slicing scheme for a two-tier cellular network [17], in which
radio spectrum is allocated to a delay-oriented machine-
to-machine service and a throughput-oriented data service.
Xiao et al. study computing resource allocation among slices
in a fog computing framework [18]. Li er al. propose a
hierarchical soft RAN slicing framework to enable resource
sharing among BSs, which can enhance resource multiplexing
gain [19]. Another important line of works focuses on RAN
slicing in vehicular networks. A RAN slicing architecture
is proposed for supporting diverse IoV services in [20],
in which a software defined networking (SDN) controller
jointly orchestrates communication, caching and computing
resources. Within this architecture, a soft RAN slicing frame-
work is proposed in [10] to support multiple roadside caching
services, in which network resources of slices can be oppor-
tunistically reused to enhance resource multiplexing gain. Dif-
ferent from the existing works that focus on resource allocation
among slices, this work deals with the impact of spatially
uneven vehicle traffic density on the system performance.
We propose a workload distribution mechanism for BSs’
workload balance.

Advanced machine learning algorithms have been widely
applied in the network slicing, such as slice resource demand
prediction [21], virtual network function deployment [22], and
traffic flow scheduling [23]. Very recently, RL-based algo-
rithms are applied to deal with complicated resource allocation
problems in RAN slicing [24]. In [25], a deep RL algorithm
is proposed to dynamically deploy virtual network functions
by adjusting computing and storage resources. Xiang et al.
study the problem of content caching and mode selection for
multiple RAN slices, in which an RL algorithm is proposed
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Fig. 1. Dynamic RAN slicing framework for vehicular networks to support
different IoV services.

to address the challenges of time-varying channel and the
unknown content popularity information [26]. Different from
the existing studies, our work focuses on a constrained RAN
slicing problem targeting at satisfying coupled constraints,
which cannot be directly solved by traditional RL algorithms.
We propose a novel two-layer constrained RL algorithm by
leveraging the property of the considered problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first establish the network model under
consideration, and then present a dynamic RAN slicing frame-
work for vehicular networks. Within the framework, we derive
QoS constraints for the considered services. Finally, the overall
system cost model is given to evaluate the performance of a
RAN slicing policy.

A. Network Model

As shown in Fig. 1, we consider an MEC-enabled RAN
along a road segment consisting of N BSs, each with a circular
coverage of radius r. The set of BSs is denoted by . All the
BSs are connected to an SDN controller, which is in charge
of collecting network information and enforcing RAN slicing
decisions. Each BS is equipped with a powerful computing
server. Vehicles traversing the road segment can associate
with a nearby BS and offload their computation tasks to BSs
via wireless communication links. Then, BSs complete the
computation tasks and send results to vehicles.

We adopt a zone-based model to characterize spatially
uneven vehicle traffic density along the road. The considered
road segment is divided into M zones with equal length L,
and BSs can identify these zones according to their locations.
The set of zones is denoted by M. The vehicle density of
these zones is denoted by {pi,p2,...,prm}, and the corre-
sponding average vehicle velocity of these zones is denoted by
{v1,v2,...,vp}. If a highway is considered, the relationship
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between the vehicle velocity and the vehicle density of a zone
can be characterized via the fluid flow mobility model [27],
i.e., Vm = v (1 — pm/Pmaz), Where vy and pr,q. denote the
free flow speed and the maximum vehicle density of the road,
respectively. Based on the availability of BSs, zones can be
categorized into two types: (1) non-overlapped zones M.,
which are covered by a single BS, e.g., Zone 2 in Fig. 1.
Let binary variable ¢, , € {0,1} denote the association
pattern, where c,,, , = 1 indicates that non-overlapped zone m
is associated with BS n. Here, we consider the aggregated
computation workload within each zone, since the RAN slicing
framework operates based on macroscopic vehicle traffic [21].
The workload of zone m can only be distributed to BS n;
and (2) overlapped zones M,, which are covered by multiple
BSs, e.g., Zone 4 in Fig. 1. For the simplicity of analysis,
vehicles in an overlapped zone can only associate with two
nearest BSs. This assumption is reasonable since the channel
condition deteriorates with the increase of connection distance.
The association pattern is indicated by two binary variables,
am,n € {0,1} and by, € {0,1}, where a,,,, = 1 and
bm.ns = 1 denote that zone m is associated with BSs {n,n’}.
The workload of the zone can be distributed to these two
BSs. Let B € RIMeIXK denote the workload distribution
decision. Each element, 3,, ; € [0, 1], represents the fraction
of the workload of service k in zone m that is distributed to
BS n. Correspondingly, the rest workload fraction, 1 — (3, 1,
is distributed to BS n'.

B. Dynamic RAN Slicing Framework

Two types of IoV services, denoted by K = {u,e}, are
considered. Here, K = |K| = 2 represents the number
of the considered services. One is a delay-sensitive service,
denoted by service u, which has the maximum tolerable
delay constraint. Taking the cooperative sensing service for
example, the image captured by on-board cameras can be
processed by BSs along with the sensing data from the
roadside infrastructure. For road safety, the maximum tolerable
delay of the cooperative sensing service is 100-150 ms [4]. The
other service is delay-tolerant, denoted by service e. Taking
the HD map creation service for example, vehicles collect and
upload fresh HD map data, and then BSs detect the changes
from the fresh data and update the HD map [5].

We present a dynamic RAN slicing framework to support
the considered two services,' and mainly consider delay as the
QoS metric of the considered services. As shown in Fig. 1,
two slices are constructed: (1) a delay-sensitive slice, requires
that service delay should be less than the maximum tolerable
delay; and (2) a delay-tolerant slice, requires the stability of the
queuing systems for computation tasks since they are offloaded
and then processed. Detailed QoS constraints are presented for
these two services in Subsection III-C.

The proposed RAN slicing framework operates in a
time-slotted manner after the slices are constructed. Time
is partitioned into multiple slicing windows, indexed by

IThe presented RAN slicing framework can be extended to the case with
multiple delay-sensitive and delay-tolerant services, in which increasing the
number of services is to increase the dimension of decisions.
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t € T =1{1,2,3,...,T}. Within a slicing window, RAN
slicing decisions remain unchanged, and the vehicle traffic
density is assumed to be stationary. In each slicing window,
the SDN controller: (1) obtains the average vehicle density
of all the zones in the current slicing window?; (2) makes
workload distribution and resource allocation decisions; and
(3) evaluates the system performance based on the feedback
from BSs at the end of the slicing window. Specifically,
the resource allocation decision includes the allocation of
radio spectrum and computing resources for slices at all the
BSs. The radio spectrum resource is allocated in a unit of
subcarrier with bandwidth W. Let S}, , and S}, . denote the
number of subcarriers allocated to the delay-sensitive and
delay-tolerant services at BS n, respectively. The computing
resource is allocated in a unit of virtual machine (VM) instance
with central processing unit (CPU) frequency F' [30]. Let wa
and C/, _ denote the number of VM instances allocated to the
delay-sensitive and delay-tolerant services at BS n, respec-
tively. In summary, RAN slicing decisions can be represented
by the following matrices:

S'=(S,reZ":neN kek),
C'=(Chr,eZt neN kek),
B' = (BLx€[0,1]:me M, keK), (1)

where Z* represents the set of positive integers. Due
to spatial-temporal variations of vehicle traffic density,
the resource allocation and workload distribution decisions
should be dynamically made in each slicing window.

C. QoS Constraints of Considered Services

In this subsection, we derive QoS constraints for the
delay-sensitive and delay-tolerant services based on the
queuing theory. A computation task is characterized by a
three-parameter model {&, nx, A\r}, Vk € K [31], where &
denotes the task data size (in bits), 1, denotes the average
task computation intensity (in CPU cycles per task), and
A, denotes the task arrival rate per vehicle. For notation
simplicity, we omit ¢ in 5fn7k, ph, wa, and wa in this
subsection.

1) Delay-Sensitive Service: The service delay consists of
three parts: task offloading delay, task processing delay, and
handover delay, as analyzed in the following.

Firstly, the task offloading delay represents the average
time taken for offloading a task from a vehicle to a BS.
The average transmission rate between BS n and the covered
zones is denoted by R,,. Due to the stochastic wireless channel
condition, the task transmission time from a vehicle to a BS
is assumed to follow an exponential distribution with rate
Sy uwlRn /& [10]. Task arrivals from each vehicle are assumed
to follow a Poisson process [31], and hence the aggregated task
arrivals also follow a Poisson process. The rate of task arrivals
at BS n is X”vU+Zm€MO Wi, m,uBm,u» Which consists of task
arrivals from the non-overlapped zones and overlapped zones.

2The average vehicle density in the current slicing window can be predicted
based on historical vehicle density information with high accuracy [28]. The
vehicle density can be collected via many methods, such as using roadside
loop detectors [29] or on-board global positioning system (GPS) sensors.
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Here, Xnu = EmEMu Cm,n/\ume + EmEMU bm,n/\umea
and Yy = (@mn — bmon) AupmL are constants, where
Awpm L denotes the workload of zone m of service u. The task
offloading process can be modeled as an M/M/1 queue [32],
and hence the average offloading delay at BS n is given by

1

DS ., = .V eN.
’ Sn,uRn/gu - X":U_ZMEMO wmm,uﬁm,u
(2)
Constraint
Sn,u - )A(n,s,u — Rs,u Z wmm,uﬁm,u 2 O,VTL S N (3)

meM,

holds to ensure the stability of the task offloading queue at BS
n, which also indicates radio spectrum allocation decision S, ,,
and workload distribution decision (3, are coupled. In (3),
Ksu = &u/ Ry and Xn s.u = KsuXn,u are constants.

Secondly, the task processing delay represents the average
time of executing a task. The arrived tasks at the BS are placed
in the computing queue until being processed. We assume
the computation intensity per task follows an exponential
distribution [6]. Hence, the departure process is a Poisson
process with rate C,, ,F/n,. Similar to the analysis in the
task offloading delay, the task processing delay at BS n is
given based on the M/M/1 queue theory, i.e.,

1
De, =
o Cn,uF/nu - Xn,u_Zm,EMo wM,n,uﬁm,u

,Vn eN,
4

where constraint

Cn,u - )A(n,c,u — Re,u Z wmm,uﬁm,u 2 O,VTL S N (5)
meM,

holds to ensure the stability of processing queue at BS n.
In (5), ke = Nu/F and Xp ey = KeuXn,u are constants.

Thirdly, the average handover delay experienced by one task
is defined as the ratio between the overall handover delay
and the overall number of generated tasks of a vehicle in a
road segment. The overall handover delay can be computed
as the product of one-time handover delay and the number of
handovers [33]. The number of handovers can be deemed as
the number of BSs. The overall number of generated tasks is
the product of the task arrival rate and the sojourn time that
a vehicle drives through the road segment, which is given by
Au D mem L/vm. Hence, the average handover delay is

DyN
/\“ EmEM L/Um 7

where Dy denotes the one-time handover delay.
With (2), (4) and (6), taking different BSs’ workloads into
account, the average service delay is given by

D} = (6)

D, =i+ Y At 2mem, YmonuBm
h Zme/\/t AupmL

x (D5, + Dy, .) (7

neN

where ZmE M Aupm L denotes the amount of all the zones’
workloads . The service delay in slicing window ¢ should be
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less than the maximum tolerable delay D*", i.e., D, < D
Similar to many existing works [6], [31], [34], we assume
that the downlink latency is negligible in the service delay,
since the data size representing output computation results is
much smaller than that of input computation tasks in various
applications.

2) Delay-Tolerant Service: The QoS constraint of the
delay-tolerant service is to guarantee the queue stability,
thereby avoiding queue overflow. The stability constraints are
applied to the task offloading and task processing queues.

o Stability of task offloading queue: The analysis of
the delay-tolerant service is similar to that of the
delay-sensitive service in (3) based on the queuing theory.
To guarantee the stability of the task offloading queue,
constraint

Sn,e - Xn,s,e - ﬁs,e Z 'me,n,eﬁm,e 2 O7vn S N
meM,

(8)
holds for BS n. In (8), ks, = &c/Rns Xn,s,.e = Ks,eXn,es
Xn,e ZmEMn Cm,nAeme + ZmEMO bm,nAerL,
and Yy, pe = — bm.n) Aepm L are constants.

o Stability of task processing queue: Similar to the analysis
for the delay-sensitive service in (5), the constraint on
the allocated computing resource for the delay-tolerant
service is given by

Cn,e - )A(n,c,e - ﬁc,e Z 'me,n,eﬁm,e 2 O,Vn € N7
meM,

Qm,n

©)

where K¢ = ne/F and Xy ce = KeeXn,e are constants.

D. Overall System Cost Model

The overall system cost is defined to evaluate the perfor-
mance of a RAN slicing policy, which includes operation cost,
slice reconfiguration cost, delay constraint violation cost, and
system revenue in each slicing window.

1) Operation Cost: The operation cost refers to the cost
of allocating subcarriers and VM instances for slices. Let U}
denote the operation cost in slicing window ¢, given by

Ub=>"> (wosSh s+ wocCly) .

neN kek

(10)

In (10), w,,s and w, . represent the unit costs of using a
subcarrier and a VM instance, respectively, which should
be set to be equivalent to account for radio spectrum and
computing resource fairness.

2) Slice Reconfiguration Cost: When vehicle traffic density
varies, the SDN controller may reconfigure slices and adjust
the allocated network resources of slices, which renders the
slice reconfiguration cost. Taking the computing resource
adaption for example, VM adaption in practical systems
(e.g., Docker [35]) involves booting a new VM instance
or resizing an instantiated VM instance, which incurs addi-
tional delay for preparing resources [25] or brings hardware
wear-and-tear [36]. Let U! denote the slice reconfiguration
cost in slicing window ¢, which measures the difference of
resource allocation decisions across two subsequent slicing
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windows, i.e.,

W—ZEX%J%F$A+

neN kek
+
H%JQE—CM}),UD
where function [z — 2!] " = max{z'*! — 2" 0} is applied
to capture the amount of the increased resources at the BS
when transiting from slicing window ¢ to slicing window
t + 1. Note that the cost associated with reducing resource
is omitted, since resource release can be completed quickly
with negligible cost [36]. In (11), w,, and w, . represent
the unit costs of subcarrier and VM instance reconfiguration,
respectively, which should take larger values than that of
resource usage in order to discourage frequent slice reconfig-
uration. Note that the reconfiguration of workload distribution
decision does not incur system cost. This is because workload
distribution decision represents the association pattern between
zones’ workloads and BSs, which does not consume physical
resources.
3) Delay Constraint Violation Cost: The delay constraint
violation cost refers to the penalty once the service delay
exceeds the maximum tolerable delay constraint, i.e.,

Ul = w,1{D}, > D"},

12)
where 1{z} is an indicator function. If event x is true,
1{z} = 1; otherwise, 1{z} = 0. Here, w, denotes the
unit cost for delay constraint violation, which should take an
extremely large value to penalize constraint violation.

4) System Revenue: The system revenue is related to the
achieved service delay, which is given by

Ul =w, [D" —D!]". (13)

Here, w,, > 0 is the unit revenue, which should take a
relatively large value to encourage low-latency services.

With (10)-(13), the overall system cost in slicing window ¢
is given by

Ut=U!+U;+U.-Uy,,.

Remark 1: The slice reconfiguration cost component
belongs to dynamic cost that measures the performance of
RAN slicing decisions across slicing windows, while the rest
of cost components belong to static cost that measures the
performance of RAN slicing decisions in the current slicing
window.

(14)

E. Problem Formulation

Since vehicle traffic density varies spatially and temporally,
minimizing the overall system cost in the long-term while
satisfying QoS constraints is paramount, especially from the
perspective of the network operator. Hence, the dynamic RAN
slicing problem is formulated as follows:

T
1
Py : i E| lim — ) U’
0 {smcrggt},,g TI—IEOTZ

sty Sh, < Sm vneN
ke

(15a)
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Y CLy <O NneN (15b)
ke

St CL €LY VEeK,neN  (150)
0<pl ,<LVke,meM, (15d)

(3),(5),(8),and (9),

where S)® and C)'™* denote the capacity of subcarriers
and VM instances at BS n, respectively. The problem is to
jointly allocate radio spectrum and computing resources, and
distribute zones” workloads to minimize the average long-term
system cost in an online manner. Constraints (15a) and (15b)
are resource capacity constraints, which guarantee that the
total amounts of allocated subcarriers and VM instances for all
the services cannot exceed the capacity at each BS. Constraints
(15c) and (15d) guarantee the feasibility of resource allocation
and workload distribution decisions. Constraints (3), (5), (8)
and (9) ensure the stability of queues for all the services,
which indicates resource allocation and workload distribution
decisions are coupled, i.e., coupled constraints.

Problem P, belongs to stochastic optimization due to
spatial-temporal variations of vehicle density. Due to the lack
of future information, finding a global optimal solution via
optimization methods is very difficult. To approach the optimal
solution, one way is to use RL algorithms. Traditional RL
algorithms can be applied to solve stochastic optimization
problems with simple constraints, in which the space of deci-
sions can be shaped separately according to their constraints.
However, traditional RL algorithms make resource allocation
and workload distribution decisions separately, which may
violate the coupled constraints in problem Pg. To solve the
complicated problem with coupled constraints, we propose a
two-layer constrained RL algorithm.

IV. TWO-LAYER CONSTRAINED RL ALGORITHM

In this section, we first decouple the problem into an
outer-layer resource allocation subproblem and an inner-layer
workload distribution subproblem, and then propose a
two-layer constrained RL algorithm to solve them together.

A. Inner Layer: Workload Distribution Subproblem

The workload distribution subproblem is to minimize the
long-term overall system cost via optimizing workload distri-
bution decisions, i.e.,

lim
T—oo

T
1
P,: min E -y Ut
U Bher T;

s.t. (3),(5),(8),(9),and (15d).

According to the definition of the overall system cost in (14),
workload distribution only impacts the static cost components,
i.e., the delay bound violation cost and the system revenue,
which are independent in each slicing window. Since the
minimum value of the static cost components is achieved with
the minimum service delay, the problem is to minimize the
aggregated independent service delay in each slicing window.
In addition, constraints are independent in each slicing win-
dow. Hence, optimizing long-term optimization problem P;
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can be converted to individually optimizing multiple one-shot
optimization problems, whose objectives are to minimize
instantaneous service delay.

Moreover, each considered service has its own workload
distribution decision variable, which can be optimized indi-
vidually. For the delay-sensitive service, workload distribution
variable 3! = {8}, ,}mem, € RIMI*1 is optimized to
minimize the average service delay in slicing window ¢, which
yields the following one-shot optimization problem:

P, : min D},
. 3t
H

s.t. (3),(5),and (15d).

Theorem 1: One-shot workload distribution problem P ,,

is a convex optimization problem.
Proof: Proof is provided in Appendix VI-A. [ ]

According to Theorem 1, if the feasible region of prob-
lem Py, is non-empty, denoted by F, # (), the optimal
workload distribution decision for the delay-sensitive service
can be directly obtained via convex optimization solvers, such
as CVX [37] and Gurobi [38]. However, the optimization
problem can be infeasible if the allocated resource is insuf-
ficient to satisfy queue stability constraints in (3) and (5).
The infeasibility issue is solved by incorporating a penalty
mechanism in the outer layer algorithm, which is detailed in
Subsection IV-B.

Similarly, for the delay-tolerant service, workload distri-
bution decision 3! = {fB! .}meam, is optimized only to
satisfy the queue stability constraints in (8) and (9). The
corresponding problem, denoted by P; ., is a simplified
case of problem P, ,, which can also be solved by convex
optimization solvers. The feasible region of problem P; . is
denoted by F.. In summary, when the resource allocation
decision is given and optimization problems are solvable,
the optimal workload distribution decision can be directly
made via a convex optimization subroutine.

Computational complexity analysis: In order to use con-
vex optimization solvers, such as CVX, problem P, is
first transformed into a semi-definite programming (SDP)
problem by introducing two sets of auxiliary variables. The
computational complexity of solving the SDP problem by
using the interior-point method is O ( Ny (3N — 1)3"5) [39],
where ;. represents the number of iterations before meeting
the stopping criteria. Here, 3N — 1 is the number of variables
in the transformed SDP problem, which includes workload
distribution variable ﬁ; of dimension N — 1, and auxiliary
variables of dimension 2N.

B. Outer Layer: Resource Allocation Subproblem

The resource allocation subproblem is to allocate radio
spectrum and computing resources with the objective of min-
imizing the average long-term system cost, i.e.,

T
1
min E| lim =Y U!
{St,ct}th |‘T—>OO T tz:;

s.t. (15a), (15b), and (15¢).

(18a)

The preceding problem is to design a resource allocation
policy to minimize long-term system cost while satisfying
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constraints, which falls into the class of MDP with infinite
horizon.

In the following, we reformulate the resource allocation
subproblem as an MDP. Specifically, the SDN controller is
modelled as an agent. In slicing window ¢, given observed
state st, the SDN controller takes resource allocation action at.
Then, the corresponding reward 't is fed back from the envi-
ronment, and the state evolves into new state s'*! according to
state transition probability Pr (s'™!|s, a’) [40]. In the MDP,
the action, state, and reward are defined as follows.

o Action: Corresponding to the optimizing variables in

problem P, the action is the radio spectrum and com-
puting resource allocation decisions, i.e.,

al = {{S;,k}ne/\h {sz,k}ne/\f} .
kEK kEK

Each action element takes a positive integer value in order
to satisfy constraint (15d).

o State: The system performance depends on the vehicle
density of all the zones in the current slicing window
{pt. }mem, and the resource allocation decision in the
previous slicing window. Hence, the state is defined as

19)

ot = {{pfn,}meM, (S5 e {c;,‘;}neN} Q)
’ ke kel

State space is {(R*)M} x {(Z*)KN} x {(Z*)KN},
which is continuous.

o Reward: The following reward is defined to evaluate how
good the action is under a state, i.e.,

r' (s ) = —(UL{FL # 00t wp 3 1{Fi =0} |.
ke
(2D

In (21), wy > 0 is the penalty weight, which should
take an extremely large value. The reward consists of
two terms. The first term is consistent with the objective
function in problem P5, which is achieved when the
workload distribution subproblem for the delay-sensitive
service is feasible. Obviously, the reward is related to
the average service delay in the current slicing window.
The second term, wy Y, -, 1 {Fp = 0}, is the penalty
when the workload distribution subproblems are infeasi-
ble. Once the action (i.e., resource allocation decision) is
determined, the workload distribution decision is made
by solving the workload distribution subproblems in the
inner layer. A poor resource allocation decision renders
the infeasibility of the workload distribution subproblems,
since insufficient network resources trigger the violation
of queue stability constraints. To characterize the system
performance in such a case, a penalty is incurred to
discourage poor resource allocation decisions.

In the MDP setting, a resource allocation policy specifies
how the SDN controller allocates radio spectrum and comput-
ing resources according to the current network information in
each slicing window. Let II denote the set of all the possible
resource allocation policies. Our goal is to find the optimal
resource allocation policy 7* € II that maximizes cumulative
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Fig. 2. An illustration of the RAWS architecture. The actor network
in the outer layer generates the resource allocation decision according to
state s, and the optimization subroutine in the inner layer generates the
workload distribution decision a2 according to state s and resource allocation
decision a.

O(s,a,a, | §) Qs ar,a, | 4")

discounted reward within an infinite horizon of T slicing
windows, i.e.,

T

Z(fy)trt (s',a") |m

s.t. (15a), and (15b),

P'Q: maxE | lim
well T—o0

(22a)

where v € (0,1) denotes the discount factor [40], and (7)*
denotes the t-th power of . The lacking of future informa-
tion on the time-varying vehicle traffic density in vehicular
networks results in the unknown state transition probability.
In addition to the unknown state transition probability, con-
tinuous state space further makes problem P’ unsolvable via
conventional model-based algorithms, such as value iteration
and policy iteration approaches [40]. Hence, a model-free RL
algorithm which does not require state transition probability,
can be applied to obtain an optimal resource allocation policy.
The algorithm design is detailed in Subsection IV-C. Note
that the objective function in problem P, with the cumulative
undiscounted reward can be well approximated by the objec-
tive function in problem P’ with the cumulative discounted
reward, when the discount factor approaches 1 [41], [42].

C. RAWS Algorithm

By leveraging the properties of two subproblems, we pro-
pose a two-layer constrained RL algorithm to solve prob-
lem Py, named RAWS, which is extended from the DDPG
algorithm [12]. The two-layer architecture of RAWS is illus-
trated in Fig. 2. The core idea is that the outer layer and the
inner layer make resource allocation and workload distribution
decisions, respectively. Specifically, the actor network in the
outer layer generates the resource allocation decision based on
the current state, denoted by a;, while the optimization sub-
routine in the inner layer generates the workload distribution
decision based on the current state and the actor network’s
action, denoted by as. In this way, a joint decision (a1, as) is
obtained. The proposed decision making procedure complies
with the properties of two subproblems. Then, a critic network
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Fig. 3. Structure of the softmax-based actor network. Each tuple of three
neurons in the output layer is activated by a softmax activation function, and
the outputs of two of them are considered as the decisions.

evaluates the policy by estimating Q-values and guides the
update of the actor network.

Within the RAWS, we also design a softmax-based actor
network to generate resource allocation decisions satisfying
the resource capacity constraints, whose structure is shown
in Fig. 3. The basic idea is that the output layer of the actor
network adopts the softmax function to activate a (K + 1)-
dimension vector, while only outputting its K elements as the
decision that satisfying the resource capacity constraint. The
softmax activation function can obtain a normalized output
vector, i.e., ZqKZJ{l x; = 1, where {z;},_;, K41 18 the
output vector. Hence, the sum of its K elements satisfies
inequality constraint EZK: 1 ; < 1, which can be scaled up
to resource capacity constraints, e.g., Zkl,{:l Sf,ﬂ e S S

In the following, we elaborate the RAWS in detail, which
is given in Algorithm 1. In the initialization phase, actor
evaluation network p(s|@), and critic evaluation network
Q(s, a1, as|¢) are initialized, where 6 and ¢ denote parameters
of evaluation networks. The corresponding target actor and
critic networks are denoted by 1/(s|6’) and Q’(s, ay,az2|d’),
respectively, whose parameters are 6" and ¢’. The environment
is reset with initialized state s°. The RAWS operates in a
discrete manner, which consists of two phases in each slicing
window.

1. Experience generation (Lines 5-12): The agent’s expe-
rience is represented by a multi-dimensional tuple of the
state transition and feedback reward, i.e., {s', al, ab, rt, st*1},
which is obtained via the following steps. The first step is to
make the decisions. In slicing window ¢, the actor network
makes resource allocation decision af = {S*, C*} with respect
to current state st, i.e.,

al = u(s') + e, (23)

where ¢ = N(0,02) is added Gaussian noise for pol-
icy exploration. Then, the workload distribution decision
al = B! is made with respect to the current state and the
resource allocation decision, by solving optimization problems
{P1k},cc When they are feasible.> The second step is to
store the experience. Once the joint decision is taken, reward

3The feasibility of optimization problems can be obtained via the status of
optimization solvers.
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Algorithm 1 Resource Allocation and Workload Distrib-
ution (RAWS) Algorithm

Input: Vehicle density of all the zones {pfn}me/vt,teT;
Output: Resource allocation and workload distribution
decisions {S¢, C!, B'}c1;
1 Initialization: Initialize critic and actor networks and the
experience replay buffer;

2 for episode =1: N, do

3 | Reset environment and obtain initial state s°;

4 | for slicing window t=1: T do

5 > Experience generation

6 Obtain resource allocation decision af by (23);

7 if {P1 1}, are feasible then

8 Obtain workload distribution decision a} by

solving optimization problems {P1 1}, .

9 end

10 Execute joint decision a’ = (af,a});

11 Observe reward r! and new state s't1;

12 Store transition {s?,a!,ab, rt stT1} in the
experience replay buffer;

13 > Neural network update

14 Sample a random minibatch of transitions from the
experience replay buffer;

15 Update the critic evaluation network via minimzing
the loss function in (24);

16 Update the actor evaluation network via the policy
gradient in (25);

17 Update target networks by (26);

18 | end

19 end

r! is obtained from the environment, and the environment

evolves to new state s'*1. The corresponding transition tuple
{st,al,ab,rt,s'T1} is stored in experience replay buffer B
for training.

2. Neural network update (Lines 13-17): In this phase,
neural networks are updated offline based on the acquired
experience, which is similar to that in DDPG. At the begin-
ning, a mini-batch of N,, transitions are randomly chosen
from the experience replay buffer as training data to update the
parameters of neural networks. The detailed update procedure
is given as follows.

Firstly, the critic evaluation network is updated by minimiz-
ing the loss function L(¢), which is defined as
N,

(yn - Q (Snv a;lv a3|¢))2 :
1

L(¢) = (24)

1
Nm n=
In (24), y™ = ™ + Q' (s",a},al|¢’) is the update target
obtained from the target networks.

Secondly, guided by the critic network, the actor evalu-
ation network is updated via the following policy gradient
(i.e., the gradient of policy’s performance):

N,

| N
Vol & <= Y Va,Q(s,01,02(0) lsi=en Vo (s"[6).
Nem 23 ar=p(s"|6)

(25)
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Fig. 4. Highway vehicle traffic flow trace.

Thirdly, target networks are updated by slowly tracking the
evaluation networks, i.e.,

0 =70+ 1—-1)0,
¢ =19+ (1-1)¢,

where 7 € (0,1) denotes the update ratio of target networks.

Remark 2: Two unique designs are incorporated in the
proposed RAWS algorithm: (1) the RAWS adopts a two-layer
architecture, in which an actor network and an optimization
subroutine are adopted to make joint decisions satisfying
coupled constraints; and (2) the RAWS adopts a softmax-based
actor network to generate resource allocation decisions satis-
fying resource capacity constraints. As such, the RAWS can
reduce the long-term system cost while satisfying constraints.

(26)

V. SIMULATION RESULTS
A. Simulation Setup

The performance of the proposed RAWS algorithm is eval-
vated by simulations based on two real-world vehicle traffic
flow traces: (1) the highway trace, which is collected by
Alberta Transportation.* The dataset records the hourly vehicle
traffic flow on Highway 2A in Canada, over a period of three
weeks from Apr. 2, 2020 to Apr. 22, 2020, as shown in Fig. 4.
The vehicle traffic flow information is converted to vehi-
cle density based on the Lighthill-Whitham-Richards (LWR)
model [43]; and (2) the urban trace, which is collected by
Didi Chuxing GAIA Initiative,” over a period of three weeks
from Oct. 10, 2016 to Oct. 30, 2016. The dataset collects the
trace of taxis that are equipped with GPS devices in urban
areas of Xi’an, China. The vehicle’s location information is
collected every 2-4 seconds, which can be converted to the
average vehicle density information.

For both traces, the duration of a slicing window is set to
one hour. We consider a road segment with a length of 5 km,
which is divided into 25 zones with equal length. Five BSs are
deployed with a separation distance of 1 km, and the coverage
radius of a BS is set to 800 m for service continuity, in order to
cover the road segment. The channel path loss model for vehic-
ular networks is given by PL(dB) = 128.1 + 37.61og;, (d),
where d (in km) denotes the transmission distance between
the vehicle and the BS [44]. The transmission power is set
to 0.5W. The two types of services are considered in the
simulation. For the delay sensitive service, we consider the

4Alberta Transportation: http://www.transportation.alberta.ca/mapping/
SDidi Chuxing: https://gaia.didichuxing.com
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TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
w 10 MHz F 10 GHz
Ae {0.5,1} req/s Au {0.8 — 1.2} req/s
Dth 100 ms Dy 200 ms
Pmaz 120 veh/km vy 120 km/h
Euy&p (0.6, 2) Mbit N> Mo (6, 2) x108 cycles
N 1000 episodes Wo,s, Wo,c 1,1
Wr,s, Wo,c 55 Wy, Wr, W 200, 25, 200
Spax 18 Comax 18
TABLE II
PARAMETERS OF RAWS
Parameters Value Parameters Value
Actor learning rate 10—4 Critic learning rate 10-3
Actor hidden units ~ (128,64) | Critic hidden units (128, 64)
Actor output act. Softmax Hidden layer act. ReLU
Optimizer Adam Replay buffer size 100,000
Policy noise (o) 0.02 Target update ratio 0.005
Discount factor 0.75 Minibatch size 64

cooperative sensing service for autonomous driving, in which
vehicles upload on-board video to BSs. The corresponding
task data size is set to 0.6 Mbit, which is the data size of a
one-second quarter common intermediate format (QCIF) video
with 176 x 144 video resolution, 24.8 K pixels per frame and
25 frames per second [31]. The average computation intensity
is 1,000 cycles/bit. After a task is processed, the result is
fed back to vehicles. Hence, the maximum tolerable delay
of the cooperative sensing service is set to 100 ms for safety
consideration [4]. For the delay-tolerant service, we consider
the HD map creation service. The task data size and average
computation intensity are set to 2 Mbit and 100 cycles/bit,
respectively. The task arrival rate is set to 1 request per sec-
ond unless otherwise specified. The exemplary unit value
setting for the operation cost, the slice reconfiguration cost,
the delay constraint violation cost, and the system revenue
is {1,5,200,25} based on the mentioned principle in Sub-
section III-D. Note that these values can be tuned based
on the preference of the network operator. Important system
parameters are listed in Table I. Parameters of the RAWS are
listed in Table II.

We compare the RAWS with the following benchmarks:

1) The DDPG [12] with decision shaping: The deci-
sion shaping is performed to obtain feasible deci-
sions. The resource allocation decision is shaped to
satisfy the coupled constraints, while keeping the work-
load distribution decision unchanged. Taking the con-
straint in (3) for example, ie, Spu > Xnsu +
Ksu Zme M, Y n,ubBm,u, radio spectrum allocation
decision S, is complemented once it violates the
bound on the right-hand side;

2) The TD3 [13] with decision shaping: Similar to the
DDPG, the TD3 algorithm shapes decisions according
to coupled constraints;

3) The RAWS without workload distribution (RAWS
w.0.): This algorithm is a simplified version of our
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proposed algorithm, in which the workload of an over-
lapped zone is equally distributed to two nearby BSs;
4) Random: This algorithm randomly selects feasible deci-
sions in the decision space.
Note that the softmax-based actor network is applied in all
the learning-based algorithms to satisfy the resource capacity
constraints.

B. Performance Evaluation Over Highway Vehicle Traffic
Flow Trace

The first week’s data is used to train the RAWS, and then
the rest of two weeks’ data is used to evaluate its actual
performance in terms of system cost, service delay, and QoS
constraint violation probability. The measured performance is
averaged over two weeks.

1) Convergence Performance: The convergence perfor-
mance of the RAWS is shown in Fig. 5. Raw simulation points
(e.g., grey curve) are processed by a five-point moving average
to highlight the convergence trend (e.g., red curve). The
number of training episodes represents the number of times
that a algorithm has been trained. Firstly, the overall system
cost with respect to training episodes is shown in Fig. 5(a).
We observe a “bounded" overall system cost behavior of all
the learning-based algorithms, which means that all of them
have converged. More importantly, the RAWS achieves a lower
overall system cost, as compared with all the benchmarks. The
reason is that the RAWS is able to satisfy constraints without
shaping decisions, while the DDPG and TD3 benchmarks
do, thereby degrading the system performance. Secondly,
the delay-sensitive service performance with respect to training
episodes is shown in Fig. 5(b). On the one hand, the delay
constraint violation probability quickly decreases from more
than 20% to approximately 0.6% as the number of training
episodes increases, which is lower than the benchmark. On the
other hand, the red curve shows the average service delay
also converges with respect to training episodes. Overall,
the results indicate a good RAN slicing policy has been learned
via interacting with a dynamic vehicular environment, which
further verifies the convergence property of the RAWS.
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2) System Cost: When the learning-based algorithms are
well-trained, we evaluate the cumulative overall system cost
Zthl U* within one day, as shown in Fig. 6. In the simulation,
one day includes 24 slicing windows for the slicing window
size of one hour. As expected, the RAWS incurs the lowest
cost among all the algorithms. Specifically, the cumulative
system cost incurred by the RAWS is approximately 11.5%
less than that by the best benchmark, which validates its good
performance in reducing system cost. In addition, the result
shows that the performance gain increases with the number of
slicing windows, implying that a high performance gain can
be achieved for a large number of slicing windows.

As shown in Fig. 7(a), the average overall system cost per
day of the different algorithms is compared with respect to
the task arrival rate of the delay-sensitive service. Obviously,
the average system cost increases with the increase of the
task arrival rate, because more tasks consume more network
resources. In addition, as compared with the benchmarks,
performance gain achieved by the RAWS gradually increases
with respect to the task arrival rate. The underlying reason
is that the network resource utilization of the RAWS is
higher than that of the benchmarks, especially in heavy traffic
scenarios (e.g., A, = 1.2). In Fig. 7(b), average operation cost
component with respect to the task arrival rate is evaluated.
We can see that the proposed RAWS algorithm incurs a
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lower operation cost. Specifically, average performance gain
over different task arrival rates is about 13% for A\, = 1,
as compared with the DDPG benchmark.

3) Service Delay: As shown in Fig. 8, the cumulative
distribution functions of the service delay of the different
algorithms are presented. Two important observations can
be obtained from the simulation results. Firstly, the aver-
age service delay of the RAWS is about 70.9 ms, which is
larger than that of the DDPG (56.8 ms) and TD3 (61.8 ms).
The average service delay of the RAWS is closer to the
maximum tolerable delay constraint (100 ms) than those of
the benchmarks, as the network resource is more efficiently
utilized in the RAWS under the constraint. Secondly, all the
learning-based algorithms, including the DDPG, TD3 and
RAWS, can effectively satisfy the service delay constraint.
More importantly, the delay bound violation probability of the
RAWS is very low (0.28%), validating the RAWS can satisfy
the delay constraint with a high probability.

4) QoS Constraint Violation Probability: As listed
in Table III, QoS constraint violation probabilities of different
algorithms are compared for task arrival rates. A QoS
constraint violation event is triggered by either exceeding the
maximum tolerable delay for the delay-sensitive service or
violating queue stability constraints for both services. It can
be seen that the average violation probability of the RAWS
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TABLE III

QOS CONSTRAINT VIOLATION PROBABILITY WITH
DIFFERENT TASK ARRIVAL RATES

Au RAWS | DDPG TD3 RAWS w.o. | Random
0.9 0.28% 1.11% 1.11% 0.56% 31.67%
1.0 0.28% 0.56% | 0.56% 1.67% 35.56%
1.1 0.28% 0.28% | 0.28% 2.22% 38.06%
1.2 0.56% 0.56% 1.11% 3.89% 40.83%
Mean | 0.35% 0.63% | 0.76% 2.08% 36.53%
RAWS w.o., A =1
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Fig. 9. Impact of workload distribution on the overall system cost with
respect to task arrival rate.

over task arrival rates is 0.35%, which is lower than those
of the benchmarks. It is interesting to note that, the RAWS
without workload distribution performs even worse than the
learning-based benchmarks (DDPG and TD3). The workload
distribution mechanism provides more flexibility to the
system. It balances spatially uneven workload among BSs
by distributing vehicles’ workloads from overloaded BSs to
underutilized BSs, thereby reducing QoS constraint violation
probability.

5) Impact of Workload Distribution: As shown in Fig. 9,
the impact of workload distribution in terms of the system
cost is evaluated. The RAWS can effectively reduce the
overall system cost as compared with that without workload
distribution. In addition, the performance gain increases with
the increase of the task arrival rate. For example, when
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Fig. 10. Cumulative system cost and service delay comparison among the different algorithms for A, = 1 over the urban vehicle traffic flow trace.

Ae = 1, the performance gain increases from 15.2% for
Au = 0.8 t0 24.2% for A\, = 1.2. This is because the proposed
algorithm with workload distribution can better utilize network
resources to reduce system cost than that without workload
distribution, especially in a heavy traffic scenario.

C. Performance Evaluation Over Urban Vehicle Traffic Flow
Trace

In addition to the highway vehicle traffic flow trace, we fur-
ther evaluate the performance of the proposed algorithm over
the urban vehicle traffic flow trace, in terms of the cumulative
system cost and service delay. In Fig. 10(a), the cumula-
tive system cost is presented with respect to the slicing
window. Similar to the simulation results over the highway
trace, the proposed RAWS algorithm achieves the minimum
cumulative system cost among all the algorithms. Specifically,
the RAWS reduces the cumulative system cost within one day
by approximately 9.2% as compared with the best bench-
mark algorithm. In Fig. 10(b), the cumulative distribution
functions of the service delay of different algorithms are
compared, which shows that the RAWS algorithm can guar-
antee the service delay constraint (100 ms) with a very high
probability.

VI. CONCLUSION

In this paper, we have presented a dynamic RAN slicing
framework for vehicular networks to support diverse IoV
services with different QoS requirements. We have proposed
the RAWS, a two-layer constrained RL algorithm, to make
the workload distribution and resource allocation decisions.
Trace-driven simulation results have been provided to demon-
strate that the proposed algorithm can effectively reduce the
system cost, especially in the heavy traffic scenario, while sat-
isfying QoS requirements with a high probability. The RAWS
differs from traditional optimization-based methods, with the
ability to adapt to time-varying vehicle traffic density without
future information. In addition to RAN slicing, the design prin-
ciple of the RAWS that integrates optimization and RL can be
applied to other constrained stochastic optimization problems.

For the future work, we will investigate the optimal slicing
window size for RAN slicing. In addition, for the implemen-
tation in large-scale vehicular networks, we will develop a
distributed and low-complexity learning based algorithm.

APPENDIX
A. Proof of Theorem 1

For notation simplicity, we omit ¢ in the proof. With (2),
(4) and (7), the objective function in problem P; , can be
rewritten as

h 1
f(Bmu) = Dy + S
] Z Wn,s,u
e Wn,s,u — Xn,u — Zm,EMO wm,muﬁm,u
Wnoeou Ly
Wncou — Xn,u — Eme/\/to 1/’m,n,uﬁm,u ,
(27)

where wy sy = SpuRn/& and wp ey = CpoF/ny. The
second-order derivative of the objective function is given by

& f(Bm,u)
82ﬁm,u
- 1
ZmeM me)‘“
2w7l737uw72n,n,uﬁmyu

3
neN (Wn,s,u - Xn,u - ZmEMU wm,muﬁm,u)

2
2wn707uwm,n,uﬁm,u

+ 3
(Wn,c,u — Xn,u — ZmEMU 'me,n,uﬁm,u)

(28)

Since ﬁm,u > 0, we have 0? f(ﬁm,u)/82ﬁm,u > 0 when
the stability constraints in (3) and (5) are satisfied. As the
constraints of the problem are linear, Py, is a convex opti-

mization problem [45]. Hence, Theorem 1 is proved.
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