IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

1233

DNA Similarity Search With Access
Control Over Encrypted Cloud Data

Guowen Xu
Hao Ren, Student Member, IEEE, Xiaodong Lin

, Student Member, IEEE, Hongwei Li

, Senior Member, IEEE,
, Fellow, IEEE, and Xuemin Shen"”, Fellow, IEEE

Abstract—DNA similarity search has been widely applied in human genomic studies including DNA marking, genomic sequencing and
genetic disease prediction. Meanwhile, with the explosive growth of data, users are increasingly inclining to store DNA data on the
cloud for saving local cost. However, the high sensitivity of DNA data has forced the government to strictly control its acquisition and
utilization. One potential solution is to encrypt DNA data before outsourcing them to the cloud. Nevertheless, private DNA similarity
query has been an active research issue, state-of-the-art results are still defective in security, functionality, and efficiency. In this article,
we propose EFSS, an efficient and fine-grained similarity search scheme over encrypted DNA data. In specific, first, we design an
approximation algorithm to efficiently calculate the edit distances between two sequences. Second, we put forward a novel Boolean
search strategy to achieve complicated logic queries such as mixed “AND” and “NO” operations on genes. Third, data access control is
also supported in our EFSS through a variant of polynomial based design. Moreover, the K-means clustering algorithm is exploited to
further improve the efficiency of execution. In the end, security analysis and extensive experiments demonstrate the high performance

of EFSS compared with existing schemes.

Index Terms—DNA similarity search, privacy-preserving, fine-grained query, access control

1 INTRODUCTION

NA similarity search has been a rich area of research

with promising medical and healthy applications.
Examples include similar patient query [1], [2], disease pre-
diction [3], [4] and genome sequencing [5]. For example,
genes BRCA1 and BRCA2 have been considered to be closely
related to the risk of breast cancer in individuals. Thus, it
will be gratifying that this disease can be detected and pre-
vented in advance, if we perform DNA similarity detection
between the patient population and the potential disease
population. Currently, in response to the explosive growth
of data (including DNA data), Public Clouds, such as DNA-
nexus and Google Genomics,' have been increasingly
approved and used in outsourced data services due to their
powerful superiority in computing and storage. However,
large scale data storage and processing over raw DNA data
entail security and privacy risks [4], [5], [6]. One real risk is

1. https:/ /cloud.google.com/genomics /

e G. Xu, H. Li, and H. Ren are with the School of Computer Science and
Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China, and also with the Cyberspace Security Research
Center, Peng Cheng Laboratory, Shenzhen 518000, China. E-mail: guowen.
xu@foxmail.com, hongweili@uestc.edu.cn, renhao.uestc@gmail .com.

e X. Lin is with the School of Computer Science, University of Guelph,
Guelph, ON N1G 2W1, Canada. E-mail: xlin@wlu.ca.

o X. Shen is with the Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON N2L 3G1, Canada.

E-mail: sshen@uwaterloo.ca.

Manuscript received 24 Mar. 2019; revised 31 Oct. 2019; accepted 17 Jan. 2020.
Date of publication 23 Jan. 2020; date of current version 7 June 2022.
(Corresponding author: Hongwei Li.)

Recommended for acceptance by F. Douglis.

Digital Object Identifier no. 10.1109/TCC.2020.2968893

4

that the cloud server may abuse and reveal users’ privacy
since it has full data access authority. To address this chal-
lenge, an intuitive approach is to encrypt the whole DNA
data utilizing the conventional encryption method (e.g., AES
[7]) before outsourcing them to the cloud. However, this will
significantly reduce data availability and make it difficult to
perform DNA similarity queries [8], [9].

To address this challenge, many scholars have thrown
themselves into the secure DNA similarity query study and
proposed some remarkable results [10], [11]. For example,
Wang ef al. [8] design a system called GENSETS, a genome-
wide, privacy-preserving system to actualize private DNA
similarity query with high accuracy and efficiency. Based on
the secure multi-party computation, Gilad Asharov ef al. [9]
also propose a DNA similarity query model to address the
problem of high divergence among individual genomes.
Recently, Wang et al. [12] design a secure DNA query scheme
with only one round of communication throughout the que-
rying process, and provide strong security guarantees in
both data privacy and the search pattern. However, these
approaches are only devised from the perspective of effi-
ciency, and most of them require all parties remaining online
during the entire querying process. Moreover, other com-
mon and significant performance indicators, especially data
access control and personalized search requirements (i.e.,
complex logic queries) are rarely taken into account. Obvi-
ously, access control and Boolean queries for genetic data
have been widely used in various medical scenarios. Con-
sider a common scenario where doctors visit the genetic
database of the hospital they work for, doctors in different
departments often only have access to their authorized data.
For example, the attending doctors of breast cancer probably

2168-7161 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0001-8916-6645
https://orcid.org/0000-0001-8916-6645
https://orcid.org/0000-0001-8916-6645
https://orcid.org/0000-0001-8916-6645
https://orcid.org/0000-0001-8916-6645
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
mailto:guowen.xu@foxmail.com
mailto:guowen.xu@foxmail.com
mailto:hongweili@uestc.edu.cn
mailto:renhao.uestc@gmail.com
mailto:xlin@wlu.ca
mailto:sshen@uwaterloo.ca
https://cloud.google.com/genomics/

1234

have not any access rights except breast cancer patient’s
DNA sequences. Besides, sometimes we do not need to
query over entire DNA collections, where specific DNA
sequences controlling particular genetic genes (such as genes
controlling physical characteristics, mammary cancer, diabe-
tes, etc.) should be the focus of our attention. Therefore, it is
meaningful to propose a lightweight similarity search frame-
work over encrypted DNA data, which can efficiently imple-
ment string matching between different DNA sequences
while supporting the functions of data access control and the
Boolean query simultaneously.

However, it is challenging to design a satisfactory solution
that meets the above requirements. First, the length of a long
gene sequence always ranges from hundreds of thousands
to millions of base pairs [8]. This feature makes it possible to
generate huge computation overhead if we directly exploit
traditional techniques (such as keyword-based and string-
matched searchable encryption) to perform DNA sequence
matching under ciphertext. To alleviate this, recent works
[9], [10] have resorted to the protocol of Secure Multiparty
Computing (SMC) to reduce the computation overhead in
the matching process. However, in addition to increasing the
communication overhead of each participant, SMC based
protocol always requires all parties remaining online during
the entire querying process, which greatly limits the robust-
ness of these solutions to sporadic events such as network
delays and device damage. Second, although there have
been some research results on data access control [13], [14],
[15] and Boolean query [16], [17], [18], the heterogeneity of
the application scenarios makes these solutions difficult to
be directly adopted in DNA queries. Moreover, expressive-
ness functionality often leads to lower efficiency since the
strong functional guarantees are never free. Therefore, it is
also an intractable challenge to design a light-weight DNA
similarity search framework that is highly supportive of data
access control and Boolean query.

In this paper, we design EFSS, the first efficient and non-
interactive DNA similarity search framework with data
access control over encrypted cloud data. Specifically, we first
propose an approximation algorithm to compute the edit dis-
tances between two sequences privately. Then, we present an
efficient data access control strategy to manage the permis-
sions of different users. In addition, by executing the custom
query requests, our EFSS is supportive of mixed Boolean
queries. In summary, our contributions can be summarized
as follows:

e We introduce a private approximation algorithm to
convert the edit distance computation problem to the
symmetric set difference size approximation prob-
lem. Through this conversion, each DNA sequence
will be compressed into a set of hash values, which
can significantly reduce the number of elements that
need to be matched under ciphertext.

e We design a novel Boolean search method to achieve
the complicated logic query such as mixed “AND”
and “NO” operations on genes. Moreover, since the
search strategy can avoid unnecessary DNA sequen-
ces matched during the query process, users can also
gain the benefit of receiving accurate results with a
short period.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Cloud server
a \Trapdoor
Encrypted DNA a\ ﬂ
Y SEiuence Iy Search result
AW A |
&V) e

Data owner Secret key Search user

Fig. 1. System model.

e By utilizing a variant of polynomial based design,
EFSS is able to support data access control during
the query process, where each DNA sequence is
accessible to users who are authorized. Besides, we
adopt the K-means clustering algorithm to further
improve the efficiency of our proposed scheme.

e We give a formal security analysis of our proposed
model and stress that our EFSS is secure under
the same-closeness-pattern chosen-plaintext attacks.
Besides, extensive experiments conducted on real-
world data also demonstrate the high efficiency of
our proposals compared with existing schemes.

Different from the conference version [19], we propose
two secure DNA similarity search models (i.e., EFSS_I and
EFSS_II) to elaborate and achieve our purpose in a gradual
way. Then, we put more effort into the analysis of security,
functionality and performance evaluation. Note that EFSS
leaks the “closeness” of queried messages (i.e., Size Pattern
and Access Pattern) to better support efficient DNA similarity
query. An optimal security notion for EFSS would be a natural
relaxation of the standard IND-CPA security definition pro-
hibiting queries that trivially exploit this leakage of closeness.
We call this security as indistinguishability under same-close-
ness-pattern chosen-plaintext attacks (IND-CLS-CPA), which is
adopted in [6], [10], [20]. In the end, we also polish the confer-
ence version to enhance the presentation and readability.

The remainder of this paper is organized as follows. In
Section 2, we outline the system model, threat model and
security requirements. Then, we describe the preliminaries
of the proposed schemes in Section 3, and describe our EFSS
in Section 4. Later, we carry out security analysis and perfor-
mance evaluation in Sections 5 and 6, respectively. The
related works are presented in Section 7. Finally, in Section §,
we conclude this paper.

2 SYSTEM MODEL,THREAT MODEL, AND
SECURITY REQUIREMENTS

2.1 System Model
As shown in Fig. 1, we consider three entities that are not
colluding with each other in our system.

e Data owner: The data owner is usually considered to be
organizations such as hospitals and Biopharmaceuti-
cal companies. Its primary task is to encrypt the raw
DNA sequences before outsourcing them. Besides, to
improve the search efficiency, each ciphertext is linked

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: DNA SIMILARITY SEARCH WITH ACCESS CONTROL OVER ENCRYPTED CLOUD DATA

with an index. Then, the data owner submits both the
encrypted DNA data and encrypted indexes to the
cloud, as well as shares the secret key (used to generate
the secure index) to the authorized users.

e The cloud server: The main responsibility of the cloud
server is to store encrypted data and execute users’
search requests in the ciphertext environment. Once
the execution is completed, the encrypted results
will be returned to authorized users.

e Search user: After receiving the secret key, the search
user generates the trapdoors (i.e., the encrypted
search request) and uploads them to the cloud server
for obtaining the query results.

Note that in our scenario, the data owner only sends the
key (independent of the key used to encrypt the raw DNA
sequences) used to generate the encrypted index to the
search user, since this is sufficient for achieving the function
of secure DNA similarity query. Therefore, the data owner’s
raw DNA sequences will not be disclosed to any unautho-
rized entity in our model. On the other hand, due to the
one-way property of encrypted index/trapdoor (analyzed
in Section 5), the cloud server is impossible to recover the
contents of indexes/trapdoors of other entities, even if it
can impersonate a legitimate search user.

2.2 Threat Model and Security Requirements

The cloud server is considered to be “honest-but-curious”
[10], [21], [22], which means that the cloud server strictly fol-
lows the pre-defined protocols such as querying, storage,
computation, and other requests [23], [24]. However, it will
also use the existing knowledge to infer the behavior of
search user, and try to compromise the privacy of both the
data owner and search users. Concretely, in our threat
model, the cloud server can access the encrypted DNA
data, indexes, and trapdoors, as well as require search users
to generate new encrypted indexes/trapdoors to get extra
information. However, it cannot do anything that violates
the established protocols.

Besides, same as schemes [10], [21], [22], to concentrate on
the topic of similarity search, we do not consider the secure
key distribution between the data owner and search user,
which can be addressed by utilizing traditional cryptogra-
phy primitives such as secure multi-party computation [25],
[26] and authentication technology [27], [28]. Interested read-
ers can refer to literatures [29], [30], [31] for more details.

Based on the threat model, we define the security require-
ments as follows.

o Confidentiality of DNA sequence: Data owner’s DNA
data are usually outsourced to the cloud server before
being utilized. Taking privacy issues into account,
these data should be encrypted ahead and not leaked
to anyone except the data owner and authorized
search users.

e Privacy protection of index and trapdoor: Index and
trapdoor are generated for querying conveniently.
However, the leakage of index/trapdoor privacy has
been shown to bring risks for adversaries to compro-
mise user data privacy [32], [33]. Therefore, the pri-
vacy of the trapdoor and index should be protected
well.

1235
TABLE 1
Notations
Symbol Description
Ref = R = (ryry - - - r7), denotes the public
Ref reference genome, where r;(i = 1,2--- 7))
represents a element of Ref (i.e., “A”, “T”, “C” or
//G//).
A A raw DNA sequence (i = 1,2--- N).
~ A; = (Ai1, A, . . ., Ais), denotes the blocked Aj;,
A, where A4;,,(m = 1,2,...s) represents the mth
subsequence of A;.
Al = (AL, AL, .. AL, ... AL), denotes the set of
Al editing operations of A;, where A represents
i the set of editing operations of the mth
subsequence A;,.
Q a query request, i.e., a DNA sequence generated
from the search user.
Hi (1) Hj, (1) = {-1,1}, where H is a hash function and
hr hr denotes the secret key. u is a element belonged
to a given set of editing operations.
dpr The sum of all Hy (i), u € Aj.
dy The sum of all Hy, (i), € A4,,.
p IAQ = (dA;71 , dA;-g , dAZn . ’dAZ)' denotes the
A encrypted index of A; in our EFSS_I, where j
represents the jth iteration.
Y . . .
7 TQ, = (d,Q/l], dQ;,, dQ% e, dQ;J), denotes the
TQ/ trapdoor of Q in our EFSS_I, where j represents
the jth iteration.
7 The encrypted index of A; in our EFSS_II, where j
Ai represents the jth iteration.
T The trapdoor of Q in our EFSS_II, where j
Q represents the jth iteration.

e Unlinkability of trapdoors: Unlinkability of trapdoors,
means that if a DNA sequence is queried frequently,
whose trapdoors should be indistinguishable since
the cloud server can utilize the relationship between
trapdoors to further infer the contents of user's DNA
data. Thus, given a query request, a security-critical
model should guarantee the indistinguishability of
all generated trapdoors.

3 PRELIMINARIES

As we all know, to determine the similarity between two
DNA sequences, the most common metric is to calculate the
edit distances between the two sequences. In this section,
we design an approximation algorithm that can calculate
the edit distances between two sequences privately. It is
also the building block of our proposed scheme.

3.1 Notations
For easy reference, we first list some notations which will be
used frequently in this paper. As shown in Table 1.

3.2 Approximation Algorithm for Edit Distance
It is well known that the distribution of DNA sequences
is subject to a special way [34]. Specifically, for any two

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

1236

A=GTTGGA /A" ={(1,sub, G), (5, sub, G),
(6, sub, A)}

~
~
Ref =ATTGCC Y
- s
[
B" ={(1,sub, G), (4, sub, C), I
B=GTTCGA (5, sub, G), (6, sub, A)}

Fig. 2. Symmetric set difference between sets A’ and B'.

| Diff(A” ,B") [=?

irrelevant people, (1) more than 99.5 percent of their DNA
sequences are identical. (2) much (>95%) of their edits
take place in the non-contiguous positions. (3) most (about
80-90 percent) edit between two DNA sequences are substi-
tutions. Based on this, we introduce an approximation algo-
rithm (called Approx) to calculate the edit distances between
two sequences approximately. In general, Approx consists of
two algorithms, i.e., Approx_Init and Approx_Ed.

Approx_Init (Ref,A) — (A’). Assume that every party
agrees on a public reference genome (called Ref=R =
(rirg---r7)). Then, every raw DNA sequence will be con-
verted to a set of editing operations (i.e., the records of mini-
mum edits to convert the sequence Ref into this sequence).
For example, assume Ref = ATTGCC, given a DNA sequence
A = GTTGGA, the records of minimum edits from Ref to
A can be denoted as A’ = {(1, sub,), (5, sub, G), (6, sub, A) },
where sub denotes the substitution operation. Based on the
distribution of DNA sequences, it is clear that this conversion
is fast since the DNA sequences of any two people are very
similar. In this paper, we exploit the well-known Wagner-
Fischer Algorithm [35] to fulfil above conversion (Please see
the Appendix for more technical details, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCC.2020.2968893).

Approx_Ed (A',B’) — (Diff(A’,B’)). Given two editing
operations set A’ and B’, the algorithm Approx_Ed(A’,B’)
outputs the symmetric set difference between sets A’ and B’,
ie, Diff(A’,B'). As shown in Fig. 2, there are three sequen-
ces Ref = ATIGCC,A = GITGGA, and B = GITCGA. By
involving the Wagner-Fischer algorithm [35], A and B will
be converted into the set of editing operations denoted
as A’ = {(1, sub, @), (5, sub, G), (6, sub, A)}, B = {(1, sub, G),
(4, sub, C), (5, sub, G), (6, sub, A)}, respectively. Then, taking
the symbol Diff(A’,B") = (A’ —B)U(B'—A’) to denote

TABLE 2
Accuracy of Approximation Algorithm

Proportions Le_sequences' Nu_tests> Relative error
80.65% 80,000 1,000 0.25%
99.46% 80,000 1,000 0.5%
100% 80,000 1,000 1%
78.65% 60,000 1,000 0.25%
96.46% 60,000 1,000 0.5%
100% 60,000 1,000 1%
77.65% 40,000 1,000 0.25%
95.46% 40,000 1,000 0.5%
100% 40,000 1,000 1%

'The length of DNA sequences.
?The number of tests.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

= A" ={Hbhr{(1,sub,G)}, |_ repsar @) fe
A G"ITGGA,,.'—O (5, sub,G)), | DifffA" ,B") [=7
{(

H_h
H hr{ (6, sub, A)}..}
!
Ref= ATTGCC...

| [B" ={Hhr{(1,subG)}, i B
H_hr { (4, sub, C)} [Diff(A" B)f% ¢
H_hr { (5, sub,G)},
lml-' H h: { (6, ::b. A) L.} Introduced in
- Section 4.3

Fig. 3. Compute symmetric set difference privately.

the symmetric set difference between sets A’ and B/, we
have |Diff(A’,B')| = |A'| 4+ |B/| — 2|B' N A’| = 1. It is exactly
the same as the edit distances between A and B. The main
reason for implementing this approximation is that genes
are subject to the above distribution, so that each DNA
sequences can be easily converted into the set of editing
operations. However, this approximation algorithm also
brings about small errors. For example, assume Ref =
ATTGCCCGA,A = GTIGGATAA, and B = GTTCGATGA.
Then, A and B will be transformed as A’ = {(1, sub, G),
(4,ins, C), (5,del, 1), (6, sub, A), (7, sub, T}, B' = {(1, sub, G),
(5, sub, G), (6,sub, A),(7,sub,T), (8,sub, A)} respectively.
We have |Diff(A’,B’)| =4, which is different from the
actual edit distances (the actual value is 2). To understand
the accuracy of the above approximation algorithm more
intuitively, we calculate the edit distance between two gene
sequences randomly selected from the 1,000 Genomes proj-
ect [34], where we use the standard dynamic programming
algorithm [35] to complete 9,000 tests of sequence matching.
As shown in Table 2, Approx shows that at least 95.46 per-
cent test sequences exhibit an error rate of less than 5 per-
cent. Besides, since gene edits between long sequences tend
to occur more at non-adjacent locations, Approx shows supe-
rior accuracy for longer DNA sequences. In the Section 4.1,
we will give a formal accuracy analysis to discuss how to
bound the error rate of this estimation.

3.3 Computing Symmetric Set Difference Privately
In this section, we design a secure algorithm to calculate the
symmetry difference between two sequences privately. As
shown in Fig. 3, unlike Section 3.2, we first block sequences
A, B and Ref, each of which represents a DNA fragment that
controls a particular gene. Specifically, assume A, B, and Ref
areblocked as A = (A}, Ay, A;..., A,),B= (B, B, B;...,B,)
and R = (R;,Ry,R; ..., R)) respectively, where A;, B; and
R, represents corresponding subsequence. For example,
given a DNA sequence A = GTTGGATAA, it can be blocked
into A = (GTT,GGA, TAA) = (A, Ay, A3). Then, similar to
Section 3.2, each A; and B; will be converted into a subset of
editing operations denoted as A; and B separately. Thus, A
and B can ultimately be expressed as A’ = (A}, A,, A, --- A)
andB' = (B, B,,B,---B)).

Next, we take A as an example to introduce the details of
our secure approximation algorithm. Specifically, for each
element u in A’, it will be compressed into {—1,1} by a
binary hash function Hj, : U—{—1,1}, where hr is the
secret key selected by the data owner, and U denotes the
universe of all set elements. Then, due to the randomness of
hash function, for any element u, u; and w, belong to set
A’, we have E[Hj(n) =0, E[H} (n)] =1, and E,, 4,

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TCC.2020.2968893
http://doi.ieeecomputersociety.org/10.1109/TCC.2020.2968893

XU ETAL.: DNA SIMILARITY SEARCH WITH ACCESS CONTROL OVER ENCRYPTED CLOUD DATA

[Hp (1) Hir (12)] = E[Hpr (1)) - E[Hpr(122)] = 0. Based on
these, we use dy/ to denote the sum of all Hy,(u), € A/,
and the following equation is established.

{(gm)

i= /AEAZ

=E 22 > Hue(w) Hue (1!

i=1 //.EA; &/L/EA;

dZAr =

[sxmul

i=1 //.EAII

+ F Z H}w,r(M)H’M'(/’LI)

ueA’,&,ueA’ &hAj

—ZE[ZH,,T } —;IA;,

,uEA

(Square decomposition)

(1)

where |A’| denotes the number of the elements in the subset
A Similarly, we have

E[d})] = Z |B)]. 2)

Known
dar — dg = Z Z Hhr(“) - Z Z Hhr(ru“)
i=1 /LEA; i=1 /LEB;
= Z (Z H}w(/" Z Hhr)
=1 \ ped -8, neB,—A;
(3
We have
El(da — dg)?] = (> Hi(w)
i=1 [I.EA;fB;

+ Z H}w (M Z Hhr Ml Z Hhr M? :|

neB - A, 1 EA—B, r€B;— A
S
2SS mw|+EY 3 Hm]—z-o
i= //,EA B =1 ueBzfA;
:Z(|A B)| + B, 4| -2-0)
= Ilef(B)|.

)

Hence, according to the Eqn. (4), for any two DNA
sequences, we can approximate their edit distances by pri-
vately calculating the symmetry difference of their set of
editing operations.

4 PROPOSED SCHEMES

In this section, we describe the technical detail of EFSS.
In order to illustrate our scheme in a gradual way, we first
give a basic model called EFSS_I, which can perform secure
similarity queries on outsourced DNA data. Then, we

1237

propose EFSS_II to implement the functions of hybrid Bool-
ean queries and data access control. Finally, by using the K-
means clustering algorithm, we update our EFSS _II to fur-
ther improve the efficiency.

4.1 EFSS_I

The basic model is shown in Fig. 4. It consists of four parts:
Initialization, Index generation, Trapdoor generation and
Query. The data owner first needs to pre-process all DNA
sequences to be outsourced. This operation converts each
DNA sequence into its corresponding set of editing opera-
tions. Then, the data owner will generate an encrypted
index for each DNA sequence, and send the index along
with the encrypted raw data to the cloud server. During the
query phase, the search user also needs to raise secure
query requests (i.e., trapdoors) to the cloud server. Finally,
the cloud server matches all the indexes associated with the
trapdoor in the ciphertext environment, and returns the
matching results to the user.

Correctness. We take Dl, i ={1,2} as an example to ana-
lyze the correctness of our EFSS_I. Specifically, based on the
Chebyshev’s Large Number Theorem (CLN Theorem), we
have

—

_ Zj:l Dy _ Zj:l D,

D, — D,
1 2 k‘]C
1< . .
_ - J J J J
_k;(IA’l T4~ Ty)
1 - J J J 2 1 J 2 J
=2 (B~ By (”/“) o (Imlk)) -,

<.
Il
_

(5 -18) - (1~ 73)

[(dA,Z - dQ,)Q ~ (dag - dQ/)z] (LN Theorem)

I
w"‘
-

<.
Il
_

&

l\D\H [\D\H (]

> [Difr(A,, Q) = Diff (A1, Q)] (Based on Ban.(4)).

1

-
Il

Therefore, if D; > Dy = S2=% | Diff(AL, Q)| > 3070 |Diff
(A, @Q))), it shows that the DNA sequence A is closer to Q.

Accuracy. As shown in Fig. 4, we use the CLN Theorem to
estimate the expectation of (dAr - er) i € {1,2}, which
will incur some error in the accuracy of the final match. We
present a formal analysis to show how to bound the error
rate of this estimation.

For ease of presentation, we take A} and Q' as an exam-
ple. Spec1f1cally, for 1 <m <s, we defme dim = E|(d A =
dy)’] = |Diff(A,,,Q,,)|. Then, we have "

E(X)=E [(dA/ dQ,)Z}:E

mff (dA;m —dg,)1

m=1

3
I

dim
1

m
m=s

Var(X;) = Var[(dA; - dQ/) } Z Var(dA, _ d/Q,,,)Q'

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

1238 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Implementation process of EFSS_I
e Initialization :
— Data owner: pre-process all DNA data before being outsourced. That is, convert each DNA sequence A; into its corresponding set
of editing operations A{, where A! is represented as A} = (A}, A},,--- A} ,--- AL), (i=1,2---N,m =1,2---5). For the i-th DNA
sequence, A]_ denotes the set of editing operations of the m-th subsequence.
e Index generation :
For each set A{, the data owner repeats the following operations k times:
— At j-th time, randomly select a hash function H o U — {—1,1}, where r; is the secret key, and U denotes the universe of all set
elements.
— Convert each element ;1 € A{ into a single integer Hy; (1) € {—1,1}.
—For1<m < s, caleulated,,; = 35 Hr(p)
T mEAL,

— Send the encrypted index of A; as IA, = (d 5 A/J ’dA” RN

d ,/;) to the cloud server, and all the secret keys (used to generate the
secure index) to the authorized search user. “
e Trapdoor generation :
Search user:
— Preprocessing: For a query request, i.e.,, a DNA sequence Q that needs to be matched, generate the set of its editing operations Q’,
where Q' is represented as Q' = (’1Q7-~,Q s, QL), (m=1,2--5).
The search user repeats the following operations k times:
— At j-th time, convert each element p € Q' into a single integer H; (1) € {—1,1}.
— For 1 <m < s, calculate dQ(j = > Hr(p).
g

— Send the trapdoor (i.e., the encrypted search request) as Té, =(d
e Query :

The cloud server: ‘ '

— Receiving all the messages of I-J , and T2,,(i=1,2,---N,j=1,2,--- k). Otherwise, abort.

Qi dQ/zj R inf'ﬁ e ,dQ/sj) to the cloud server.

— For 1 < j < k, modify T Q to TQ = (dQll7'7dQ;j7dQ/j e ,dQ,Sj, 1).
— For 1 <i < N, modify A{toI. (d 55 A,J,dA,] 7"',dA/._777%(HIA,||2 2)
.) k _
— Calculate D! = Ii Téi’ and D; # Then, sort the D; from large to small.

— Return the top results to the authorized search user.

Fig. 4. Detailed description of the EFSS_I.

Further, we have Therefore, we can get
[(doy)4] Var(X;) = Var Z dA/ — ;” ZlVar dA/ — de)
4 j=s
2
—el ¥ Bw- Y BW] | :ZE[dA/ _dQ,)]_Z (4, dgy,)?]
MEAZm lm MEQm Azm m= m=1
= Z(Bdtzm - d”" - d?m)
where r denotes a secret key Let A,, denote those elements Z: 1
in Diff(A, Q.), and H (1) denotg the hash/valuf for each Z (2d2, — 2d;,).
w € A, Then, we have E[(H()] = E[(H,(1))"] = 1. By n=1
utilizing the Multinomial theorem, the above formula can
be rewritten as below. Thus, we define E [i| = Ei Z (A dey)] =¢, and
o - mis (Zdz)
\ Var[X;] = Var[} Py k(dA,j - dQ,j)Z] < 42’”*}{ m) _ o, Using the
Chebyshev inequality, for any positive number ¢, let k = 4%,
E SN HW- Y Hiw ©
MEA;m 4’1 MEQ Azm we have
[! Pr{X;—¢| >} <1
=Bl > Hnw
N < Therefore, we can control the error rate of our approximate
—E Z (H ()" +6 Z H ()2 H. (11)? algorithm by adjusting the cycle times k adaptively, which
v weA T Ay T means that the more cycles, the higher accuracy our approx-
_ 9 imate algorithm will acquire.
=B D () +3(D ()" | = > ()
L MGZAIH I-LGZAW, MGZAIH, 4.2 EFSS_"

The main contribution of EFSS 1 is to fulfill the DNA simi-
larity search among encrypted DNA sequences. However,
= 33, — 2d;n.. in reality, different users may have different data access
authorities to each DNA sequence. For example, the attending

= d’im + 3(d2 - dim)

m

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: DNA SIMILARITY SEARCH WITH ACCESS CONTROL OVER ENCRYPTED CLOUD DATA

1239

e Initialization :

of editing operations A{, where A/ is represented as Af = (A},

e Index generation :

matrices M1, Maj.

i

to the authorized search user.
e Trapdoor generation :
Search user:
Q' is represented as Q' = (Q', Q5+, Qpyy -+
corresponding dummy noise added by search user.

The search user repeats the following operations & times:
— At j-th time, for 1 < m < s, if Q/, C QN, then dQ

~ Caleulate Q7 = (dgys. -+ dus 1 1%, Vigs V)

=1 -1 Q
both D-ZQ (m) and D& (m) are randomly chosen by the search user.

e Query :
The cloud server:

— sk_ DI —
— Calculate D; = % and sort the D; from large to small.

—If |D;| — D < 0, save D;. Otherwise abort it.
— Return the top K results to the authorized search user.

Implementation process of EFSS_II

— Data owner: pre-process all DNA data before being outsourced. That is, convert each DNA sequence A; into its corresponding set
A/
sequence, A} denotes the set of editing operations of the m-th subsequence.
— Modify Af to A; = {Al, Bio, - - - Biw, Vi0, - - - iy}, Where By and 74, | = {0,1,---w}, p = {0,1,-- -9} represent the corresponding
coefficient of f;(x) and the dummy noise added by data owner, respectively.

For each set A;, the data owner repeats the following operations k times:
— At j-th time, randomly select a hash function H S U — {—1,1}, where r; is the secret key, and U denotes the universe of all set

elements.
— Convert each element ;1 € A{ into a single integer H,, (1) € {—1,1}.
— For 1 < m < s, calculate d,y; = > Hrj (1)

T peAl,

— Calculate A;” = (dA,_Ji, —%(dA/_Ji)rﬂ s d s =5 (d)2, Bios - Biw, Yios Yig)-
i i Ais) is ey
—For1 <m < (2s +w + v + 2), compute A;’ (7r5)CJ (m)) = A/ (m).
— Randomly select a (2s + w + 1) + 2) dimensional binary vector S, and two (2s 4+ w + % + 2) x (2s + w + 9 4 2) dimensional invertible
7 1 —/ 7 17 _—
—Forl <m < (25 +w+¢ +2),if Sj(m) = 0, then D, _(m) = D} (m) = Ay’ (). Otherwise D (m) + D (m) = A7 (m), where
both Df;i (m) and Df;/ (m) are randomly chosen by the data owner.

— Send the encrypted index as I A = {My; Df;. , Mo, Di;/ } to the cloud server, and all the secret keys (used to generate the secure index)

— Preprocessing: For a query request, i.e,, a DNA sequence Q that needs to be matched, generate the set of its editing operations Q. There
7QIS)! (m: 1?28)
— Modify Q" to Q = {Q’,n°,--- 7,7}, - -7&) }, where 7 represents the role of current search user, and v, p = {0, 1,- - -9} denotes the

o= (0,0). Otherwise, calculate dQ% =(EZQ/ Hy; (1), 1).
HEQT,

—For1 <m < (2s +w + v + 2), compute @,(wskj (m)) = Q7 (m).
~For1<m < (25 +w++2),if §;(m) = 1, then D{3(m) = DJ, (m) = Qi (m). Otherwise D/ (m) + D (m) = Qi (m), where

— Send the trapdoor (i.e., the encrypted search request) Té2 ={M fleg, M;leg/} to the cloud server.

— Receiving all the messages of Ik and Té, (i=1,2,---N,j=1,2,-- k). Otherwise, abort.
— For each I, and and Té, calculate D{ = If,_\ -Té, where 1 < j < k.

A

im> "’

CAL),(i=1,2---N,m =1,2---5). For the i-th DNA

’

i

Fig. 5. Detailed description of the EFSS_II.

doctors of breast cancer probably have not any access rights
except breast cancer patient’s DNA sequences. Besides,
sometimes we do not need to query over entire DNA
collections, where specific DNA sequences controlling par-
ticular genetic genes (such as genes controlling physical
characteristics, mammary cancer, diabetes, etc.) should be
the focus of our attention. What’s more, EFSS I cannot
guarantee the unlinkability of trapdoors since the query
frequencies are leaked to the cloud server. As a result, the
cloud server can easily observe the relationship of trap-
doors and grab the search user’s query histories, which
may threaten the confidentiality of users” DNA data. Based
on the situation above, in this section, we propose EFSS 11,
an enhanced model to achieve Boolean query and data
access control over encrypted cloud data with a higher
security level.

EFSS 11 is shown in Fig. 5. Concretely, we leverage fol-
lowing methods to realize the proposed functions and secu-
rity requirements.

4.2.1

As shown in Fig. 4, in the jth iteration of EFSS_ I, the
encrypted index of A; is generated as I, = (d i Ay d i

i il 72 im
,d). It may give a chance to the cloud server deducing

Variant of Secure kNN Computation

the relationship between reference genome Ref and A;.
Specifically, based on the public Ref, the cloud server can
easily get the similarity between Ref and A; by computing
E [di,i} =i |A) ;|- For example, if E [di;] =0, the cloud
server can almost assert that Ref = A;, thus it can further
obtain the content of A;.

To address this problem, in our EFSS_II, we adopt a vari-
ant of secure kNN computation [36] to solve above problem.
Concretely, in our EFSS_II, we first define a pseudorandom
permutation function m as follows.

7 {0’ 1}* x {0’ 1}25+w+¢/+2 _ {07 1}28+a)+l//+2.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

1240

Then, as shown in Index generation and Trapdoor generation,
A and Q’ will be permutated as Aij/(ﬂskj (m)) = A (m) and
Q l(n 5, (m)) = Q’(m), respectively, where S;; is the secret
key in the jth iteration. Next, a (25 + w + ¥ + 2) dimensional
binary vector Sjand two (2s + w + ¥ +2) x (2s + w + ¥ + 2)
invertible matrices MM, ;, M>; will be adopted to further random-
ize Aij, and Q’ ' In this way, the cloud server cannot obtain
any additional information among the encrypted indexes/
trapdoors because of the random connection of ciphertexts.

4.2.2 Achieving Fine-Grain Query

In our EFSS_II, each DNA sequence A; is divided into fixed
sub-blocks, each of which represents a DNA fragment that
controls a specific gene. It will facilitate the Boolean query
over encrypted cloud data. More concretely, we assume that
set QN (which is a subset of all gene types) contains those
types of genes that are not considered in current query. As
shown in Trapdoor generation, at jth iteration, if Q! C oN,
deyi will be set as (0, 0). Otherwise, dei = (Xpeq, Hry(n),1).
By doing so, when the cloud server executes the operation (i.
e I f&i : Té) over encrypted DNA sequences, every DNA frag-
ment belonged to QN will be filtered out, since we have
d i X (d -1 i)?) = 0 (shown in the next subsec-

i(2m)

A’j)
i(2m—1)
tion). Hence, the Boolean query such as mixed “AND” and

“NQO” operations on genes can be achieved.

4.2.3 Data Access Control

As discussed in Section 4.2, different users may have differ-
ent access rights to DNA sequences. Without loss of gener-
ality, assume there are a total of R roles in our EFSS_II,

where R = (81,62, ...,8,). Then, for each DNA sequence A;,
we define a role polynomial as below.
Jj=o]
fi(z) = (x—8ij) =) By, (5)
select 8;;€R 7=0

where f;(x) is the role polynomial, and §;;, j = (1,2,...)
denotes a role of A;. Here we use ¢, to represent the degree
of fi(z), which satisfies g;; = 0 when (¢; < j <).

Further, we assume that set R = (81, 6s,...,5,) is subject
to the following conditions.

m=2s

8 > D > max{ Z(Kii(m)@(m))‘}

m=1
(i=1,2,...N,j=1,2,...kym=1,2,...25) (6)
J=9—-1

D> 8;+2D < 8,,(9=2,3,...0).
=1
Next, we introduce how EFSS II achieves the data access

control under the encrypted environment.
As shown in Fig. 5, we have

D] = I}, - Ty = {My;Dy_, My; Dy} - { My} Doy, My ' Dy }

+ Zﬁzln + Zylp ypa

=0

m=2s

=Z@w

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

where the dummy noises selected in our model obey a nor-
mal distribution with mean and variance as (0,6%). 6 is a
small positive number.

Case 1. if a search user can access data A;, this means that
the user’s role n € R is a root of f;(z). Then, we have

I,‘” B.n' = 0. Since each dummy noise is selected from the
normal distribution (0,6%), we have FE [Zp 0 Yip ¥yl =0.
Therefore, following equation is established.

D — 21 D;
' k

m=2s

S (A(m) - ©/(m)) + 0+ 0

m=1

m=s d 1 d 2 d
Z A;](Qm—]) T 5 (A;‘7(2m)) . Q:Z’ ’

~E[1}, - T}

=L (7

=F

m=1

According to the
%(dA”) -d o |}, we have \D | — D < 0, which satlsfles the
restr1ét10ns m Query process. Moreover, dQ,] (d i ,

m i(2m—1)

d A = 0 is established for each @’ belonged to QN,
m g

(Zm)
hence the mixed “AND” and “NO” operations on genes is

also completed.

The correctness of EFSS II can be easily derived from
EFSS 1 because the results returned by the two models are
consistent. At this point, our EFSS_II enables the functions of
Boolean query and data access control over encrypted cloud
data.

Case 2. if a search user cannot access data A;, this means
that the user’s role n € R is not a root of f;(z). Based on the
Eqn. (7), we have

k j
D — > i1 D
! k

—E [Tis(x

- l=w
/(m) - Q’(m)) + Zﬂﬂ’ll +0].
m=1 =0

definition D > maxq [>.7"~7(d AT

m=1

~E[1}, - T))]

Reviewing the constraints in the Eqn. (6), we know that
8 > D > max{‘zzz (A (m) - QY (m)) }, and Zﬁle
2D < 8, for any g=(2,3,...w). Then, we have |> =0

Ban'| > 82 — 8 > 2D. Therefore, the following equation is
established.

D] - D~

[mf@f'(m) Q/(m))

m=1

]E[zgi ~Té” -D

l=w
+> ,32'1771}
=0

l=w m=2s . -
Bun'| — | Y (Ai(m) - Q’(m))‘ -D
=0 m=1
> (|62 —=81]) =D —D

> 0.

Therefore, a will be aborted since this search user does not
meet our pre-defined data access mechanism.

Summary of the Case 1 and Case 2, we can assure that EFS-
S_II can achieve all the functions and the security require-
ments we claim.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: DNA SIMILARITY SEARCH WITH ACCESS CONTROL OVER ENCRYPTED CLOUD DATA

4.3 Enhanced Scheme
As the description on EFSS I and EFSS_II, each DNA
sequence A; is compressed into its corresponding set of edit-
ing operations A;. This conversion can efficiently reduce the
number of elements to be matched in the querying process.
However, each encrypted index still needs to be performed
inner product operations (i.e., I} T’) with the trapdoor,
which leads to high computatronal overheads To address
this problem, we update EFSS_II to EFSS_II (ES) by utilizing
K-means clustering algorithm to further improve the effi-
ciency. Specifically, in Initialization process, the data owner
first uses the K-means clustering algorithm to divide all
DNA sequences into K classes and generates the corre-
sponding encrypted indexes for all DNA sequences and K
cluster centers. Next, in Query process, given a threshold t
(selected by the search user), the cloud server first computes
1. - T] to find those cluster centers satisfying Diff |(/<L ,
)| 5 t, wherex;,7 = (1,2, ... K) is a cluster center, and «;’ is
the set of its editing operations. Then, only those encrypted
indexes belonged to selected centers will be further com-
puted in the following querying. In this way, a large number
of unrelated DNA sequences will be filtered out, which sig-
nificantly reduces the ciphertext matching time. Since the K-
means clustering algorithm can be easily applied to our EFS-
S_II, for the sake of simplicity, there we only give a K-means
clustering algorithm as an example (Please see Algorithm 1
in Appendix, available in the online supplemental material)
to describe how to find the K classes over encrypted DNA
data.

5 SECURITY DEFINITIONS AND ANALYSIS

In this section, we will analyze the security of our EFSS_II. As
shown in Section 2.2, the security requirements of our
schemes are confidentiality of DNA sequence data, privacy
protection of index and trapdoor, and the unlinkability of
trapdoors. Concretely, the raw DNA sequences have been
encrypted by encryption-before-outsourcing methods [37],
[38], which have been widely recognized to be secure. There-
fore, in this section, we mainly focus on the security features
of index and trapdoor, and discuss the privacy protection of
both of them in detail.

Before discussing the security of our proposed scheme,
we first introduce some notions used in the proof process.

e History: History contains a set {) of raw DNA sequen-
ces, an index set I constructed based on (), and a set
of queries G=(Q;,Q,,...Q;) sent to the cloud
server. They are denoted as a tuple H = (Q, I, G).

o View: View is the encrypted data of H. Specifically,
given the secret key sk = (r}, S, My, My, Si;) at jth
iteration, the view of H can be described as V(H) =
(Encsk(Q), Encg(Ig), Encs(G)), where FEncg.(Iq)
and Encg(G) represent the encrypted indexes and
trapdoors respectively.

e Trace of history: The trace of history Trace(H) denotes
the information captured by the cloud server, such as
the search and access patten leaked from querying
process. Concretely, Trace(H) can be represented
as Trace(H) = (Trace(Q,), Trace(Qy), ..., Trace(Qy,)),
where Trace(Q;), s = (1,2, ... k) indicates the similarity

1241

score between encrypted index I, (i =1,2,...
and trapdoor T, .

Based on the notions illustrated in above, we divide the
privacy of index, trapdoor, and the unlinkability of trap-
doors into two classes named Index Privacy and Trapdoor Pri-
vacy. Both of them will be analyzed with the definition of
indistinguishability under same-closeness-pattern chosen-
plaintext attacks (IND-CLS-CPA).

)

5.1 Formal Security Definitions

1) Index Privacy: Informally, in our EFSS _II, the index pri-
vacy under IND-CLS-CPA means that given two datasets
{Cy,C1} C{Ajli=1,2--- N}, aP.P.T adversary A can access
both the secure index and trapdoor generation algorithm
under certain constraints. However, adversary A cannot
distinguish the two datasets Cy and C;.

Definition 1 (IND-CLS-CPA Index Privacy). Let [] =
(KeyGen, GenIndex, GenTrapdoor, Query) be a probabilis-
tic EFSS_II scheme based on security parameter X\, we design
a security game between an adversary A and a challenger B:

Initial: Adversary A submits two datasets Cy and C;
with the same number of records to the challenger B,
where Cyp = {A{,, A, .- Ay, }, and Aj is the set of edit-
ing operations of a DNA sequence Ag;.

Setup: Challenger B runs the keygen(1') to acquire
secret key sk = (r;,S;, Myj, Maj, Si;)(j=1,2,...,k) and
keeps it privately.

Phase 1: Adversary A can select a number of requests
and send them to the challenger B. These requests include
the following types:

o GenIndex Request: On the jth Genlndex request,
adversary A generates a dataset C} = {A |, A},
A’} and submits it to the challenger B,

where Al = (A Al A Al), m= (1,

2,...,8). For each A’. the challenger B uses

the secret key r; to encrypt it as d, =

jam/
1777/

D ue . H, (1) Then, A); will be rewritten as

1
2 2
AL = (g @ P = (8,

j.i1?

2s
Bjios - Biiws yj_’io,...ij). For m=1 to m=
o+l Y+l

2s+w+y+2. Aj, will be permuted using
secret key Sy, ie, Aji(ms, (m)) = Al(m).
Next, the challenger B exploits the secret key
consisted of a (2s+w+ ¥ +2) dimensional
binary vector S; and two (2s+w+ ¥+ 2)x
2s+w+y+2) mvertrble matrices M, My; to
further encrypt AJL Finally, the challenger B
answers this request with encrypted index as
IC']-r — Genlndew(rj7 Sk]', Sj7 M1j7 Afgj, C;)

o GenTrapdoor Request: On the jth GenTrapdoor
request, adversary A selects a plaintext request
Q; = (Qj1,Qj2, Qjoms -+, Qjss 1}, M- 0F5 V00 Vit

..7;y) and a set QN, where Q}\I denotes those
types of genes that adversary A does not want to

query on the jth request. Both of them will be sent
to challenger B. For each Q;,,,, (m =1,2,...5), if

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

1242

Qjm € QfY, challenger B sets dg,,, = (0,0). Other-
wise, dq;,, = (3 ,eq,,, Hr;(1), 1), where r; indicates
the secret key on the jth hash function. Then

Q; will be rewritten as Q) = dg;,:dq;y,---dg;
ng?,n},...n;.“,y‘,.,o,y‘,.J?...yj,w). Challenger B will
o+l Y+l

further permute Q' with the secret key Sy, i.e.,
Q(ms,,;(m)) = Q)(m) for m =1 to m = 2s+ w+
¥ + 2. Next, the challenger Bexploits the secret
key consisted of a (2s+Y + U + 1) dimensional
binary vector S; and two (2s+ o+ ¢ +2)x
2s+w+v+2) 1nvert1ble matrices M1] s My; I to
further encrypt Q Finally, the challenger B
answers this request with encrypted trapdoor
Tg; < GenTrapdoor(r],Skj,S],]WlJ , Q’jl,Qj).

Please note that both C}; and Q; are subjected to

1) Trace(Qo) = Trace(Q:1) = - - - Trace(Qy), for every
Q,,j = (1,2,...k) submitted in GenTrapdoor request
phase.

2 (G-CyU(CG -G ¢

Challenge: with Cy and C selected in Initial, challenger B
throws a coin to decide a variable b € {0,1}, and returns
ICb — GenIndex(rb, Skb7 Sb, Mlb7 Mzb, Cb) to the adversary A.

Phase 2: In this phase, a number of indexes and trapdoors
generation requests can be also adaptively selected by
adversary A and be submitted to the challenger B, but these
requests should also subject to the constraint conditions in
Phase 1.

Guess: Adversary A takes a guess ' of b.

There [| will be considered secure against same- closeness-
pattern chosen-plaintext attacks if for any P.P.T adversary A
in the game above, it at most has a negligible advantage

Adv |1|_IID CLS—CPA—Index 1/\ |p7" _ b] _%! S negl()\),

where negl(\) denotes a negligible probability with parame-
ter \.

2) Trapdoor Privacy: Similarly, the trapdoor privacy under
IND-CLS-CPA means that given two query requests Q, and
Q,, a P.P.T adversary A can access both the secure index
and trapdoor generation algorithm under certain constraints.
However, adversary A cannot distinguish the two query
requests Qg and Q.

Definition 2 (IND-CLS-CPA Trapdoor Privacy). Let [[=
(KeyGen, GenIndex, GenTrapdoor, Query) be a probabilis-
tic EFSS_II scheme based on security parameter \, we design
a security game between an adversary A and a challenger B:

Initial: Adversary A submits two query requests Q,
and Q; with same dimensions to challenger B, where
Qi = (Qi,h Qi,?a Qi,mv ey Qi,s7 '7?7 nzla e ’7?7 yg‘lv]/4727 cee y;{,x//)/
= (0,1).

Setup: Challenger B runs the keygen(1') to create
secret key sk = (7‘]', Sj7 Aflj,]\/fzj, Sk])(] = 1, 2, ey k) and
keeps it privately.

Phase 1: Adversary A can select a number of requests
sent to the challenge B, and these requests include the
following types:

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

o Genlndex Request: On the jth Genlndex request,

adversary A generates a dataset C; = {A],,

A’,;,... A’} and submits it to the challenger B,
whereA/ = (A Aoy Al Al i), m = (1,2,
., 8). For each A, , the Challenger B uses

the secret key r; to encrypt it as d, =

7 im

>ouex He(n). Then, A’ will be rewritten
jyam 1 2) 1)
as A;/I = <d14j.i17 — 5 (dgj,il) Sy di“j,is’ — 5 (d;ljzs) N

23;9]-,,;0, . --,3]',7@7 Viios- - - ij). For m=1tom=
w+1 Y+l

25+ + ¢ + 2. A7, will be permuted by utilizing
secret key Sy, ie., Ajl(ﬂgk (m)) = A,(m). Next,
the challenger B exploits the secret key consisted
of a (2s+ o+ ¢ +2) dimensional binary vector
S; and two (2s+w+ VY +2)x (2s+ w0+ Y +2)
1nvert1ble matrices Mj, My; to further encrypt
A] ;- Finally, the challenger B answers this request
with encrypted index as I¢; < Genlndex(r;, Skj,
Sjs Myj, Maj, Cj)-

o GenTrapdoor Request: On the jth GenTrapdoor
request, adversary A selects a plaintext request
Q= (Qj1,Qj2, Qjms -+, Qjss M5 My - 15 V505 Vit

..v;y) and a set QN, where Q}\I denotes those
types of genes that adversary A does not want to
query on the jth request. Both of them will be sent
to challenger B. For each Q;,,,, (m=1,2,...5), if
Qjm € Q%\I, challenger B sets dg,,, = (0,0), other-
wise, dg,,, = (ZueQ o Hr (1), 1), where 7; indi-
cates the secret key on the jth hash function. Then

Qj will be rewritten as Qj =\ dg;1:dq;s,-- ;.-
2s
n?,n}, on7, J/j,o»)/j,1»~~~1/j,¢>- Challenger B will
w+1 1//+1

further permute Q by pseudorandom permuta-
tion with the secret key S, ie, Q] (ws,(m)) =
Q/(m) for m = 1tom = 2s + @ + ¢ + 2. Next, the
challenger Bexploits the secret key consisted of a
(2s+Y + U + 1) dimensional binary vector S; and
two 2s+w+yY+2)x 2s+o+ ¢+ 2) invertible
matrices M;;', M, ! to further encrypt Q7. Finally,
the challenger B answers this request with
encrypted trapdoor TQ/ — GenTrapdoor(r;, Sy;,
Sy My, Myl Q))-

Please note that both C; and Q/; are subjected to

1) Trace(Qo) = Trace(Qq), for all Cj
GenlIndex request phase.
2) Q¢ {Qo,Q1}.
Challenge: with Qo and @ selected in Initial, challenger B
throws a coin to decide a variable b € {0,1}, and returns
TQb — Gen]ndex(rb, Sip, Sy, My, Moy, Qb) to the adversary A.

Phase 2: In this phase, a number of indexes and trapdoors
generation requests can be also adaptively selected by
adversary A and be submitted to the challenger B, but these
requests should also be subjected to the constraint condi-
tions in Phase 1 as well.

Guess: The adversary A takes a guess b” of b.

submitted in

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: DNA SIMILARITY SEARCH WITH ACCESS CONTROL OVER ENCRYPTED CLOUD DATA

There] [will be considered secure against same-closeness-
pattern chosen-plaintext attacks if for any P.P.T adversary A
in the game above, it at most has a negligible advantage

Adv IND—CLS—CPA—Trapdoor 1,\

HA }pr[b/ =] —

1| < negl(N),

where negl(\) denotes a negligible probability with parame-
ter \.

5.2 Security Analysis

Theorem 1. Our EFSS_II is IND-CLS-CPA index secure under
the game of Definition 1.

Proof. The P.P.T adversary A can access the secure index
generation algorithm to get plaintext - ciphertext pairs
(C;-,IC]_,). However, if A does not know the secret key

sk = (r}, S}, My, My;, S;) on jth Genlndex request, the

split process of A/ (shown in Fig. 5) is transparent to
adversary A, and he needs to reconstruct the two random

(28 + @ + ¥ + 2)-dimensional vectors Dj and D . How-

ever, these two vectors will be further encrypted as

My, JDQ and M, JD A respectively, where M;; and My; are

also two (2s+w+ 1// +2) x (25 + o + ¥ + 2)-dimensional

unknown matrices to adversary A. Thus, there are a total of

22s+w+ Y+ 2)|A J| unknown variables in Dj and DA ,

and 2(2s + w + ¥ + 2) unknown variables in Mlj and]\[2]

Therefore, it is very hard for adversary A to restore the

matrixes M;; and My;. Although some research results [37],

[39] can address this problem partly by linear analysis,

instead of restoring the matrixes M;; and M,;. However, it

is unrealistic to find (2s + w + ¥ + 2) linear independent
equations in our scheme since more than 99.5 percent of
the DNA sequences between any two irrelevant people
are identical [8]. Moreover, even an attacker can recover
the two vectors Dg and D{A , and obtain the value of
dAU’ = ZueA, Hyp(n (u)for 1 <m < s, hestill cannot get any

information about the contents of Al due to the one-way
property of hash function. Therefore, our EFSS 1II is IND-

CLS-CPA index secure under the game of Definition 1. O

Theorem 2. Our EFSS_II is IND-CLS-CPA trapdoor secure
under the game of Definition 2.

Proof. Because the trapdoor is generated in the same way
compared with encrypted index, the security analysis of
trapdoor privacy under IND-CLS-CPA can be achieved
by a similar way. For simplicity, here we omit the specific
proof process. O

Unlinkability of Trapdoor. To demonstrate the unlinkability of
Trapdoors, here we estimate the probabilities of collision
occurrence between two trapdoors.
~As discussed in Section 4.2, the trapdoor is made up of
Ty ={M ,DQ, M, JD’ }. Specifically, given a query request
Qj, each element of it will be first mapped into {-1,1}
through the hash function. For convenience, we assume that
there are a total of 2° possible mapped results. Next, a pseu-
dorandom permutation function w is also used to permute
the position of each element in Q’ It also has (2s + w+ ¥ +
2) possible replaced positions. Besides, assume the size of

1243

each dummy noise added in Q; is ¢ bits, there are w2? possi-
ble options for dummy noise. Next, as shown in Fig. 5, we
use a (2s + w + ¥ + 2) dimensional binary vector S; to split
the vector Q/, where Q-jl(m) will be split into two random
values (i.e., Dg (m) and Dg(m)) when S;(m) = 0. Thus,
assume the number of ‘0’ in S; is v, and each dimension of
Dé(m) and Dg (m)) is ¢ bits, there are a total of 2" possible
values for split process. Note that ¢, v and ¢ are selected inde-
pendently to each other. Therefore, for any two trapdoors,
we can calculate that the probability of them are identical as
follows.

1
20 (2s+w+ Y +2) w22
B 1

(25 +Y U 1) @2otete”

P =
(®)

Therefore, if we select a lager ¢, v and ¢, we can ensure the
higher security.

6 PERFORMANCE EVALUATION

In this section, we conduct experiments to evaluate the perfor-
mance of our proposed schemes. The experimental configura-
tion is as follows: All the experiments are compiled in the
Python language with version 3.7.4, where each user (i.e., the
data owner or search user) is simulated by one HP i7 8550u
notebook, which has one 1.8GHZ CPU, 8G flash memory,
256SSD and 500G mechanical hard disk, and assigned with
64-bit Windows 10 operating system. The “ Cloud ” is simu-
lated with two Lenovo servers which have 2 Intel(R) Xeon(R)
E5-26202.10GHZ CPU, 64 GB RAM, 512SSD, 4 TB mechanical
hard disk and runs on the Ubuntu 18.04 operating system.
The Wagner-Fischer algorithm [35] is adopted to convert each
raw DNA sequence into its set of editing operations. The
secret key in each round j, ie., the (2s + ® + ¥ + 2) dimen-
sional binary vector S; and two (2s + w + ¥ +2) x (25 + @ +
¥ + 2) dimensional invertible matrices M,;, M»j, are gener-
ated under the guidance of the standard secure kNN compu-
tation [36]. The 2-wise universal hash function H,,,j in each
round j is selected from murmurhash64 [40], which can be
used to customize a hash function with a fixed range of val-
ues. In addition, the pseudorandom permutation function
used in our model is replaced by the classic algorithm Fisher-
Yates-shuffle [41].

We select data in batches from the publicly available
1,000 Genomes Project [34]. Specifically, to demonstrate
the matching accuracy of our protocol under different
genomic sequences, we choose genomic sequences
on five distinct chromosomes, i.e., Chromosome 2
(133019901C133020615) (contain 1,888 genes), Chromosomes
3 (75785026-75788496)(contain 1,469 genes), Chromosome 21
(9907190C9909277) (contain 357 genes), Chromosome 22
(22720578C22722138)(contain 545 genes), and Chromosome
Y (10027986-10029907) (contain 86 genes). As mentioned
before, every raw DNA sequence will be converted to its set
of editing operations and stored in a VCF (Variation Call For-
mat) file. Please note that we unify all the files to a fixed size
and make each file contain the same length of DNA. It will be
beneficial to the implementation of the entire program. For
more persuasive, the state-of-the-art works [8], [9], [12] are

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

1244

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

TABLE 3
Comparison of Functionality With Existing Models

Function
Literature

Matching Threat model Access control Boolean query Interaction Data type
[33] Similarity Honest-but-curious No No Non-interactive Textual
[32] Similarity Honest-but-curious (two-servers) No No Interactive Textual
[9] Similarity Honest No No Interactive Genetic
[8], [11] Similarity Honest-but-curious No No Interactive Genetic
[10] Similarity Honest-but-curious (two-servers) No No Interactive Genetic
[12] Similarity Honest-but-curious No No Non-interactive Genetic
[22], [23] Similarity Honest-but-curious No No Non-interactive Textual
[13], [30] Exact Honest-but-curious Yes No Non-interactive Textual
[31] Exact Honest-but-curious No Yes Non-interactive Textual
[17] Exact Honest-but-curious Yes Yes Non-interactive Textual
[18] Exact Honest-but-curious No Yes Non-interactive Textual
Our model Similarity Honest-but-curious Yes Yes Non-interactive Genetic

also exploited to compare the performance (i.e., computation
and communication costs) with our EFSS. These works are
very similar to ours, as they also focus on DNA data and are
committed to designing efficient similarity queries among
gene sequences in the ciphertext environment.

6.1 Functionality

We first compare the functionality of our model with state-of-
the-art works. As shown in Table 3, keyword/string matching
in the ciphertext is not an emerging research field, and many
privacy-preserving approaches have been designed and
applied to different scenarios. However, we can see that exist-
ing models (such as [8], [9], [11]) for genomic data always
require multiple interactions between the user and the server.
This is mainly due to the nature of the length of the genome
sequence. As introduced before, the length of a gene sequence
always ranges from hundreds of thousands to millions of
base pairs [8]. To speed up the matching between DNA
sequences in ciphertext, an alternative is to outsource most
ciphertext computing operations to two non-collusive servers
[11] or to perform matching with the assistance of users pro-
viding decryption services [8], [9]. However, in real-world
applications, it is difficult to ensure that the two service pro-
viders do not collude, even if the two entities belong to
completely different operators [29], [42]. On the other hand,
SMC based works [8], [9] requires all parties remaining online
during the entire querying process, which significantly limits
the robustness of these solutions to sporadic events such as
network delays and device damage. Scheme [12] breaks the
defects of [8], [9] in communication. However, it uses the tra-
ditional predicate encryption scheme [43] based on bilinear
mapping during the string matching process, which inevita-
bly leads to high computation and communication overheads.
On the other hand, to our best knowledge, existing solutions
for genomic data are unable to support the requirements of
Boolean queries and data access control. Although there have
been some research results on data access control [13], [30]
and Boolean query [17], [18], [31] in the field of text-based
ciphertext searching, as explained before, it will incur huge
computation cost if we directly exploit them to perform
privately DNA sequence matching. Moreover, the heteroge-
neity of the application scenarios also makes these solutions
difficult to be adopted in DNA queries. Compared with these
schemes, our EFSS is non-interactive, and can efficiently

support mixed Boolean queries as well as data access control
over encrypted DNA data. We first design a private approxi-
mation algorithm to convert the edit distance computation
problem to the symmetric set difference size approximation
problem, which can significantly reduce the number of ele-
ments that need to be matched under ciphertext. Then, we
design a novel Boolean search method to achieve the compli-
cated logic query such as mixed “AND” and “NO” operations
on genes. Moreover, since the search strategy can avoid
unnecessary DNA sequences matched during the query pro-
cess, users can also gain the benefit of receiving accurate
results with a short period. In the end, by utilizing a variant of
polynomial based design, EFSS is able to support data access
control during the query process, where each DNA sequence
is accessible to users who are authorized.

6.2 Accuracy
In this section, we analyze the query accuracy of our EFSS. It
is worth noting that EFSS_II is the improvement of EFSS I,
which is an extension of its functionality without affecting
the accuracy of EFSS_I. For the sake of simplicity, here we
only take EFSS_II as an example. As discussed in Section 4.1,
we exploit the CLN Theorem to estimate the expectation of
(dpar — dQ/)2,i € {1, 2}, which inevitably introduces errors in
the matching process. To a certain extent, it harms the accu-
racy of the final returned results. We have given a formal the-
oretical analysis to show that this error can be mitigated by
increasing the cycle times k. To verify our argument, we
choose genomic sequences on five distinct chromosomes
from the publicly available 1,000 Genomes Project [34]. The
specific characteristics of the selected datasets are shown in
Table 4. We can observe that each chromosome contains at
least hundreds of genes, which constitutes a DNA sequence
based on tens of millions of base pairs. However, for differ-
ent individuals, the variability between two genomic
sequences belonged to the same type of chromosome is very
small (<6.16%). This verifies that most of the genome
sequences between different people are the same, which is
also the prerequisite for the smooth execution of our approxi-
mation algorithm (refer to Section 3.2). Then, we outsource
the ciphertexts of selected datasets to the cloud and ask it to
return top-K closest results for a given search sequence.

As shown in Table 5, EFSS _II is able to return fairly cor-
rect results under the different datasets. Although EFSS_II

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: DNA SIMILARITY SEARCH WITH ACCESS CONTROL OVER ENCRYPTED CLOUD DATA

1245

TABLE 4
Characteristics of the Selected Datasets

Maracterlstlc Number of genes Length ~ Ave-A! Max.-A? Variability ®

Chromosome 2 1,888
Chromosome 3 1,469
Chromosome 21 357
Chromosome 22 545
Chromosome Y 86

242193529 4070479.48 1119381856 < 4.63%
198295559 6351472.95 12214371.05 < 6.16%
47347896 612550.29 1225100.58 < 2.59%
48674127 93007.89 186015.77 <0.39%
59363566 892280.06 1978785.53 < 3.31%

! Ave.-/\ denotes the average of all edit distances between two genomic sequence in the dataset.
2 Max.-/\ denotes the maximal edit distances between two genomic sequence in the dataset.
3 Variability is the ratio of the maximum edit distance to the length of the chromosome in the current database.

inevitably returns a small number of erroneous results as
the value of K (i.e., the top-KC closest results to the search
sequence) increases, it still shows excellent performance in
accuracy (>90%). Besides, as analyzed in Section 4.1, the
query accuracy can be improved by adjusting the number
of the cycle times k, which means that increasing the num-
ber of cycle times k is beneficial to the accuracy. Of course,
this is at the expense of additional computation and com-
munication overhead (analyzed in Sections 6.3 and 6.4). On
the other hand, we can see that EFSS_II shows a higher
accuracy on chromosomes 21 and 22 than on chromosomes
2 and 3. This is because the chromosomes 21 and 22 have a
lower variability rate than those of the other two types of
chromosomes, which helps our approximation algorithm to
perform better under these datasets.

6.3 Communication Overhead

We now discuss the communication overhead of our pro-
posed schemes, i.e., EFSS I, EFSS Il and EFSS_II(ES). Besides,
the state-of-the-art works [8], [9], [12] are also analyzed in this
part to present more visibility. These works are very similar
to ours, as they also focus on DNA data and are committed to
designing efficient similarity queries among gene sequences
in the ciphertext environment.

TABLE 5
Accuracy of EFSS_II

Dataset k K=1 K=3 K=5 K=17
5 96.48% 93.35% 91.18% 90.43%
Chromosome2 10 97.33% 96.57% 94.23% 92.64%
15 9847% 97.34% 95.40% 95.01%
5 9627% 94.03% 90.86% 90.13%
Chromosome3 10 97.38% 96.59% 94.73% 93.17%
15 9849% 97.19% 94.93% 95.17%
5 99.46% 9634% 95.12% 94.33%
Chromosome 21 10 100% 99.74% 98.32% 97.15%
15 100% 100% 99.73% 98.37%
5 9957% 96.39% 95.07% 94.68%
Chromosome 22 10 100% 99.49% 98.20% 97.67%
15 100% 100% 99.81% 98.50%
5 99.18% 96.21% 95.36% 94.01%
ChromosomeY 10 9938% 99.17% 98.81% 96.63%
15 9947% 99.25% 98.97% 97.16%

6.3.1 Theoretical Analysis

The theoretical analysis results are shown in Table 6. For
the convenience of the description, we first divide the
communication overhead of non-interactive schemes @.e.,
EFSS 1, EFSS 11, EFSS_II(ES) and [12]) into three parts (i.e.,
Index generation, Trapdoor generation and Query), and
then discuss the cost of each part in detail. Conversely, for
interactive protocols [8] and [9], since the generated over-
head stems from the inseparable multiple interactions
between the server and the search user, we only summarize
their total communication overhead.

Specifically, in the phase of Index generation, for EFSS 1,
the data owner needs to send encrypted index of A; as
Ii, = (dA;Jl’dA’127dA’Jn7""dA’f) to the cloud server, where
J e [1,k] and i € [1, N]. Assume that the size of each d A (i.e.,
the sum of all Hy,(u),n € A}, at jth iteration) is o bits, the
total size of the encrypted index for N genome genes is
N x k x (s x a) bits. For EFSS_II, since each encrypted 1ndex
sent to the cloud server is formed as Iy = {My;D,,,
M2,D } where M, My; are two (25 +w+ ¥ +2) x (25 +
o+ + 2) dimensional invertible matrices, the total cost for
N genome genes are 2N x k x (2s + o + ¢ + 2) x « bits. Dif-
ferent from EFSS_II, EFSS_II(ES) requires the data owner to
divide all DNA sequences into K classes, and generates the
corresponding encrypted indexes for N genome genes and
K cluster centers. Therefore, the total ciphertext size is 2k x
(N + K) x (2s +w+ ¥+ 2) x « bits. For work [12], given a
DNA sequence A; with length 7, it first adopts the suffix tree
structure to represent the DNA sequence, which will pro-
duce TZ+U subsequences for A;. Then, it needs to generate
four c1phertexts (assume that the size of each ciphertext is
also « bits) for each subsequence and sends it to the server.
Thus, this process requires a total of 4N x o x T(TZH bits to
be transmitted for N genome genes. In the phase of
Trapdoor generation, for EFSS I, given a query request, i.e.,
a genome gene Q, the search user needs to send the trapdoor
(i.e., the encrypted search request) as T2, = (dede de

. d Q/j) to the cloud server. Thus, the total size of the trap-
door is k x (s x a) bits. Since the trapdoor generated by
EFSS_II and EFSS II(ES) are consistent, that is, sending
Té = {Ml]-DjQ/,]VIQJ-DJ(;} to the server for a given query
request Q, the cost of both EFSS II and EFSS _II(ES) are
2k x (2s 4+ o + ¥ + 2) x « bits. For work [12], given a query
request Q, the search user needs to generate (—5— <T+1) +2)
ciphertexts and submits them to the cloud, where T<TQH>

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

1246

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

TABLE 6
Comparison of Communication Overhead (Bits)

Communication Overhead

Model

Index generation Trapdoor generation Query
EFSS_1 N xkx(sxa) kx (sxa) K xa
EFSS 11 2N x kX 2s+tw+v¥+2)Xa 2kx 2s+w+ v +2)xa Kxa
EFSS_II (ES) 2kx (N+K)Xx 2s+0+¢¥+2)xa 2k'><(23+w+1//+2)><oz Kxa
[12] AN X a x T(T“> (T(TH) +2) x K xax T(T;l)
[8] (N xtxa)+ N(GC|+ 2)x + (K x @)
[9] (Nx [xa)+ N xF(|GC|+2)a+ (K x a)

ciphertexts are for matching under encrypted domain, and
the other two c1phertexts are for verification. As a result, this
require a total of (TZxh TH) + 2) x « bits to be transmitted. In the
Query phase, since all EFSS_ I, EFSS_II and EFSS_II(ES) are
required to return K closest results, the communication over-
head incurred in this process is K x «. For work [12], since
each query sequence is divided into (T“ subsequences, the
server needs to return I x # results for all subsequen-
ces, which produces a total cost of K x o x TU;I) bits.

Next, we analyze the communication cost of works [8]
and [9]. As described before, both [8] and [9] resort to multi-
ple interactions between the server and the user to support
string matching between DNA sequences under ciphertext.
To achieve this, garbled circuits GC [28] is exploited to pro-
vide secure interaction. For simplicity, we assume that the
size of the garbled circuit constructed in [8] and [9] is |GC|
bits. For work [8], the size of each encrypted DNA sequence
is T x « bits, where t denotes the number of hash functions
used to generate encrypted DNA sequences. Thus, the total
communication overhead required for N sequences is
(N x txa) bits. In the query process, for each pair of
sequences, the server and each user need to interact once to
obtain the edit distance between the two sequences. To
return KC closest results, a total of N(|GC| + 2)a + (K x «) bits
of data need to be transmitted between the server and the
user. Therefore, the total communication overhead required
for [8]is (IV x x) + N(|GC| + 2)ex + (K x o) bits. Work [9]
also divides each DNA sequence into multiple subsequences
before performing matching in the ciphertext. Assume that
each DNA sequence is divided into F subsequences, the
data owner needs to upload (N X F x «) bits of ciphertext to
the server for N genome genes. In query process, to return £
closest results, a total of N x [(|GC| + 2)« bits of data need to
be transmitted between the server and the user. Hence, the
total communication overhead required for [9] is (Nx F x
o) + N x F(|GC| + 2)a + (K x «) bits.

6.3.2 Experimental Results

We conduct experiments to further demonstrate the commu-
nication overhead of our EFSS. From the above analysis, we
are convinced that the communication complexity of EFSS
(i.e., EFSS_I, EFSS_II, EFSS_II(ES)) is mainly related to the
number of genomes N in the dataset and the number of
cycles k in the execution process. Without loss of generality,
the dataset used in experiments is selected from batches in

chromosome 21 which contains 700 independent genomes.
Each genome has a length of 47347896 and contains 357 dif-
ferent gene sequences. As before, we also divide the scheme
into three parts (i.e., Index generation, Trapdoor generation
and Query) and discuss the communication overhead of
each part separately.

Index generation. The communication cost in the phase
of Index generation is shown in Fig. 6. We can observe that
the amount of data generated by EFSS increases linearly
with the number of genomes/cycles in the system. Com-
pared with EFSS I, EFSS Il increases the dimensions of each
encrypted index from s to (2s + w + ¥ + 2) for supporting
the functions of Boolean query and data access control (the
number of users’ role/dummy noises are respectively set as
20 and 10 in our experiments), which inevitably incurs addi-
tional communication overhead. Similarly, different from
EFSS_11I, EFSS_II(ES) requires the data owner to divide all
DNA sequences into K classes, and sends the additional K
cluster centers to the cloud in addition the encrypted indexes
for N genome genes. Therefore, compared with EFSS I and
EFSS 11, EFSS_II(ES) requires more communication resour-
ces to submit all encrypted indexes to the cloud.

Trapdoor generation. Given a query request, ie. a
genome gene Q, we can see that the cost of generating a single
trapdoor of Q is mainly related to the number of & (shown in
Table 6). Fig. 7 presents the communication cost of generating
a single trapdoor as the number of cycle times k increases.
Similar to the previous, since EFSS_II increases the dimen-
sions of the trapdoor from s to (2s + w + ¥ + 2), the size of
the trapdoor generated by EFSS_II is slightly larger than the
one EFSS I generated. Also, since the trapdoor generated by

M 600
= 200 [EMEFSS_|
EEFSS_lI
[CIEFSS_IES

BEFSS_|
BEFSS_Il
CIEFSS_II(ES)

T500

Total transmitted data(MB)

0
100 200 300 400 500 600
Number of genomes

10 12 14 16 18 20
Number of cycle times

(@) (b)

Fig. 6. Communication overhead for building all encrypted indexes.
(a) For the different number of genomes with the same number of cycle
times, k = 10. (b) For the different number of cycle times with the same
number of genomes, N = 100.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: DNA SIMILARITY SEARCH WITH ACCESS CONTROL OVER ENCRYPTED CLOUD DATA

BEFSS |
EEFSS_II
800 " EFss NI(ES)

Total transmitted data(KB)
[<2}
o
o

10 12 14 16 18 20
Number of cycle times

Fig. 7. Communication overhead for building a trapdoor.

EFSS _II and EFSS _II(ES) are consistent, the communication
overhead generated by these two schemes is the same.

Query. Table 6 shows that the communication overhead
of the EFSS_I, EFSS_II and EFSS_II(ES) is only related to the
number of returned results X during the query phase. Fig. 8
presents the communication cost as the number of returned
results K increases. Due to the consistency of the communi-
cation complexity of the three schemes, we can see that the
cost of them is the same.

Comparison with existing approaches. To demonstrate
the efficiency of our EFSS, we also conduct experiments to
compare EFSS with the existing approaches [8], [12] and [9].
For impartiality, all comparative experiments were done in
the same experimental environment, i.e., each user is simu-
lated by one HP i7 8550u notebook, which has one 1.8 GHZ
CPU, 8 G flash memory, 256SSD, and 500 G mechanical hard
disk, and assigned with 64-bit Windows 10 operating system.
The “Cloud” is simulated with two Lenovo servers which
have 2 Intel(R) Xeon(R) E5-2620 2.10 GHZ CPU, 64 GB RAM,
512SSD, 4 TB mechanical hard disk and runs on the Ubuntu
18.04 operating system. The dataset used in experiments is
also selected from batches in chromosome 21, which contains
700 independent genomes. Each genome has a length of
47347896 and contains 357 different gene sequences. For
work [12], we adopt the cryptographic primitive of predicate
encryption [43] and Java Pairing Based Cryptography
Library (jPBC) [44] to implement its proposed scheme, which
is also the same as the configuration used in work [12]. Please
note that since we use Python language to implement all the
simulation experiments in this paper, we made a little modifi-
cation of implementing work [12], that is, using the JPype [45]

1247

-
a

BEFSS |
EEFSS_lI
[JEFSS_II(ES)

-—

Total transmitted data(KB)
o
)

o

10 12 14 16 18 20
Number of returned results

Fig. 8. Communication overhead for returning K results.

combined with Python to call the package of jPBC. For work
[8], the implementation is constructed by exploiting the gar-
bled circuit protocol designed by [46] and the oblivious trans-
fer (OT) with OT extension [47] (consistent with the
configuration in [8]). In addition, for impartiality, the 4-wise
universal hash function used in [8] is also selected from mur-
murhash64 [40]. The implementation of [9] is built under the
Secure Computation API library (SCAPI) [26], where the
adopted techniques (i.e., the Yao with free-XOR technique
[25] and the OT extension [27]) are consistent with [9].

As shown in Table 7, we can observe that our EFSS shows
superior performance in communication overhead com-
pared to [8], [12] and [9]. This is mainly due to the following
reasons: For work [12], given a DNA sequence A; with length

T, it first adopts @ subsequences to represent A;, and
then sends a total of 4N x @ ciphertexts to the cloud.
This will generate huge communication overhead for the
long genomic sequence (the length of each genome is
47347896 in our experiments). Besides, as illustrated in
Table 6, compared with EFSS, [12] is required to generate
more ciphertexts in the phases of both Trapdoor generation
and Query. This inevitably incurs additional communication
costs. Both [8] and [9] resort to garbled circuits GC [28] to sup-
port string matching between DNA sequences under cipher-
text. However, given a query sequence Q, the GC protocol
will be called N and N x [times in [8] and [9], respectively.
We know that the GC is always large even for building a sim-
ple function. For example, in our experiments, the average
number of gates in the circuit is 3149350. This is very large
and requires huge communication cost to perform string
matching between Q and N DNA sequences. Different from

TABLE 7
Comparison of Communication Overhead With Different Number of Genome Sequences

ws N=100 N=200 N=30 N=400 N=500 N =600
lterature

EFSS_1 21.78(MB) 43.57(MB) 65.36(MB) 87.15(MB) 108.95(MB) 130.73(MB)
EFSS_II 90.82(MB) 181.64(MB) 272.05(MB) 363.28(MB) 454.10(MB) 544.92(MB)
EFSS_II(ES) 99.9(MB) 190.72(MB) 281.54(MB) 372.36(MB) 463.18(MB) 554(MB)
[12] 28.23(GB) 56.47(GB) 84.69(GB)" 112.89(GB)" 142.10(GB)" 169.32(GB)"
(8] 242.3(MB) 484.6(MB) 726.9(MB) 969.2(MB) 1.183(GB) 1.419(GB)
[9] 1.781(GB) 3.562(GB) 5.343(GB) 7.125(GB) 8.906(GB) 10.68(GB)

*Since recording the amount of data generated in work [12] is extremely time consuming, the communication cost with symbol x

is extrapolated based on the complexity shown in Table 6.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

1248 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022
TABLE 8
Comparison of Computation Overhead
Computation Overhead
Model X .
Index generation Trapdoor generation Query

EFSS_I NE(HT + (T —1)D) k(HT + (T —1)D) N(kP + kD + M)
EFSS_II Nk(HT + (T —1)D+ (s —)M+ E(HT + (T —1)D+ 2s+ o+ ¥ +2)L + 2P) N(kP + kD + M)

(2s+w+y+2)L+2P)
EFSS_II (N+K)k(HT + (T —1)D+ (s —)M+ k(HT + (T —1)D+ 2s+ o+ +2)L +2P) (kP + kD + M)

(2s+o+ ¢y +2)L+2P)
[12] ANT(T + 1)(2Mp + (11 + o + 15 +74)Ep) 2T (T + 1)(Mp + (r5 + 16 + 77 + 15)E01) WT(T) g,
[8] Nt(HT + Og) + NtD + NM

[91

NF Oy,

“Work [9] has other types of operations, such as blocking the DNA sequence used for the query, and comparing operations between strings to find the top K
results. However, these operations can be considered negligible relative to performing garbled circuits.

[8], [12] and [9], our EFSS does not require multiple interac-
tions between the server and the user. Moreover, we design
a private approximation algorithm to convert the edit dis-
tance computation problem between two sequences to the
symmetric set difference size approximation problem, which
can significantly reduce the number of elements that need to
be matched under ciphertext. Based on this, for each DNA
sequence Aj, we just require the data owner to send k
encrypted indexes to the cloud, where a constant & (such as
k =10) is enough to provide a good query accuracy(shown in
Section 6.2). Therefore, compared with works [8], [12] and
[9], our EFSS shows superior performance in communication
overhead.

6.4 Computation Overhead

In this section, we discuss the computation overhead of
EFSS, ie., EFSS I, EFSS II and EFSS_II(ES). Similarly, the
state-of-the-art works [8], [9], [12] are also analyzed in this
part to present more comparability.

6.4.1 Theoretical Analysis

The theoretical analysis results are shown in Table 8.
We also divide the cost of non-interactive schemes (i.e.,
EFSS_1, EFSS_II, EFSS_II(ES) and [12]) into three parts (i.e.,
Index generation, Trapdoor generation and Query), and
then discuss the cost of each part in detail. Conversely, for
interactive protocols [8] and [9], we only summarize their
total communication overhead. To facilitate the description
of the various types of operations involved in EFSS, we use
the symbol H to represent a hash operation. One addition
and multiplication operations are represented by D and M,
respectively. Besides, the symbol P is used to represent an
inner product operation of a matrix and a vector, and L is a
pseudo-random permutation. For [12], we use £p to repre-
sent an exponential operation under group P, and M, rep-
resents a multiplication operation under group R. Besides,
we use Br to represent a bilinear map under the group 7.
For [8] and [9], we use Ogc to indicate a garbled circuit pro-
tocol called between the server and a user.

Specifically, in the phase of Index generation, for EFSS 1,
given the editing operations A; of a DNA sequence A;, the
data owner first converts each element y € A] into a single
integer H,,(1) € {—1,1}, and then calculates the sum of all

Hp (), n € Al . This total requires Nk(H7) hash opera-
tions and Nk(7 — 1)D additions. For EFSS I, given a set of
editing operations A{ with length of 7, the data owner
requires H7 hash operations to convert each element
i € Aj into a single integer H, (1) € {—1,1}. Then, the data
owner needs (7 — 1)D additions to calculate d ;; for every

m € [1, s]. Different from EFSS_I, EFSS_II requirég (2s+ o+
¥ + 2)L pseudo-random permutations to change the posi-
tion of each element, and resorts to 2P inner products
between the vector and the matrix to obtain the encrypted
index I] . Therefore, the total number of mathematical oper-
ations for N sequencesis (N +K)k(HT+ (T —1)D+ (s — 1)
M+ (25 + o+ + 2)L + 2P). The computation cost of EFS-
S_II(ES) in the phase of Index generation is similar to EFS-
S_II. Compared to EFSS_II, EFSS_II(ES) requires the data
owner to divide all DNA sequences into K classes and gen-
erate encrypted indexes for the K cluster centers. Therefore,
it needs extra computation overhead to complete this process
(shown in Table 8). For work [12], given a DNA sequence A;
with length 7, it first adopts the suffix tree structure torepre-
sent the DNA sequence, which will produce —5— TH) subse-
quences for A;. Then, it needs to generate four Clphertexts
for each subsequence. Thus, this process requires a total
of 2NT(T +1)(2Mpg + (r1 + ro + r3 + r4)Ep) mathematical
operations for N sequences, where r; to r4 are the random
values selected by the data owner.

In the phase of Trapdoor generation, for EFSS I, given a
query request, i.e.,, a genome gene Q, the search user
requires k(H7) hash operations to convert each element
n € Q' into a single integer H,, (1) € {—1,1},and k(T — 1)D
additions to generate the trapdoor. Since the trapdoor gen-
erated by EFSS_II and EFSS_II(ES) are consistent, as shown
in Table 8, the cost of the two schemes is k(HT + (7 —

1)D + (2s + w+ ¢ + 2)L + 2P). For work [12], given a query
request Q, the search user needs to generate (—5— (TH) +2)
ciphertexts, where 7+ ciphertexts are for matchmg under
encrypted domain, and the other two ciphertexts are for
verification. Thus, this total requires 27 (7 + 1)(Mpg + (5 +
r¢ + r7 + 15)En) mathematical operations for N sequences,
where 75 to 73 are the random values selected by the data
owner. In the Query phase, For EFSS I and EFSS _II, the
total mathematical operations are N (kP + kD + M) for exe-
cuting similarity query between Q and N DNA sequences.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: DNA SIMILARITY SEARCH WITH ACCESS CONTROL OVER ENCRYPTED CLOUD DATA

EFSS_|
~—EFSS_| —_ -
2250 T Eree 70| —EFss_n
€ EFSS_Il (ES) £ EFSS_ll (ES)
E200 = "o 60
o (]
E £
=150 = 50
o =]
£ <40
€ 100 H
3
30
& 5 ©
20
100 200 300 400 500 600 700 10 12 14 16 18 20 22

Number of genomes Number of cycle times

(a) (b)

Fig. 9. Time for generating all encrypted indexes. (a) For the different
number of genomes with the same number of cycle times, k= 10. (b) For
the different number of cycle times with the same number of genomes,
N =100.

However, for EFSS_II(ES), given a threshold t (selected by
the search user), the cloud server first finds those cluster cen-
ters satisfying Diff|(«;',Q’)| < t, where «;,i = (1,2,... K) is
a cluster center, and «;’ is the set of its editing operations.
Then, only those encrypted indexes belonged to selected cen-
ters will be further computed in the following querying.
Therefore, the average of total mathematical operations is
X (kP + kD + M). For work [12], each query sequence is
divided into @ subsequences. The server needs 3 bilinear
map operations under a group 7' to generate the ciphertext
of each subsequence, which requires a total of WBT
bilinear map operations. Both [8] and [9] resort to garbled cir-
cuits GC to support string matching between DNA sequences
under ciphertext. For work [8], the data owner first requires
NTHT hash operations to generate encrypted ciphertexts for
N sequence. In the query process, for each pair of sequences,
the server and user need to interact once to obtain the edit
distance between them. To return K closest results, the total
of mathematical operations is Nt(Ogc) + NtD + NM. Work
[9] also divides each DNA sequence into / subsequences
before performing matching in the ciphertext and needs gar-
bled circuits GC to perform string matching for each pair of
sequences. Thus, the total of mathematical operations is
NI Ogc. Please note that work [9] has other types of opera-
tions, such as blocking the DNA sequence used for the query,
and comparing operations between strings to find the top K
results. However, these operations can be considered negli-
gible relative to performing garbled circuits.

6.4.2 Experimental Results

We also conduct experiments to demonstrate the computa-
tion overhead of our EFSS. From the above analysis, we can
infer that the computation complexity of EFSS (i.e., EFSS I,
EFSS_II, EFSS_II(ES)) is mainly related to the number of
genomes N in the dataset and the number of cycles % in the
execution process. Without loss of generality, the dataset
used in experiments is also selected from batches in chromo-
some 21, which contains 700 independent genomes. Each
genome has a length of 47347896 and contains 357 different
gene sequences. As before, we also divide the scheme into
three parts (i.e. Index generation, Trapdoor generation and
Query) and discuss the computation overhead of each part
separately.

Index generation. The computation cost in the phase of
Index generation is shown in Fig. 9. We can observe that the
cost of EFSS (i.e., EFSS I, EFSS II and EFSS II(ES)) increases

1249

——EFSS_| ‘
—_ ——EFSS_II
L20 EFSS_II (ES)
[
E
it
015
£
f=
5
10

10 12 14 16 18 20 22
Number of cycle times

Fig. 10. Computation overhead for building a trapdoor.

linearly with the number of genomes/cycles in the system.
Compared to EFSS 1, since EFSS_II increases the dimensions
of each encrypted index from s to (2s + w + ¥ + 2) (the num-
ber of users’ role w and dummy noises ¥ are set as 20 and 10
in our experiments), it inevitably incurs additional commu-
nication overhead. Similarly, different from EFSS_II, EFSS_II
(ES) requires the data owner to divide all DNA sequences
into K classes, and generates additional encrypted indexes
for the K cluster centers. Thus, with the increase in the num-
ber of genomes/cycle times, the running time of EFSS_II(ES)
is slightly higher than the other two schemes.

Trapdoor generation. Given a query request, ie. a
genome gene Q, we can see that the cost of generating the
trapdoor of Q is mainly related to the number of & (shown in
Table 8). Fig. 10 shows the running time of generating a sin-
gle trapdoor as the number of cycle times & increases. Similar
to the previous, since EFSS_II increases the dimensions of
the trapdoor from s to (2s+ w+ ¥ + 2), it requires more
mathematical operations compared with EFSS_I generated.
Also, since the trapdoor generated by EFSS_II and EFSS _II
(ES) are consistent, the cost generated by these two schemes
is the same.

Query. Figs. 11a and 11b show that the running time of
EFSS with different number of genomes/cycles. We already
know that the computation complexity of EFSS_Iand EFSS 11
is the same (i.e., N(kP + kD + M)) from Table 8. However,
since EFSS_II increases both the dimensions of the trapdoor
and encrypted index from s to (25 + w + ¥ + 2), it requires to
perform more inner product operations between the vector
and the matrix, thereby obtaining the closest matching DNA
sequences. On the other hand, we can observe that the run-
ning time of EFSS_II(ES) is far less than both EFSS_I and EFS-
S_II. One of the major reasons is the K-means clustering
algorithm utilized in the query process. As described in
Section 4.3, by calling the K-means clustering algorithm, the
cloud server first computes I, ,Zl - T} to find those cluster cen-
ters satisfying Diff|(x;/,Q’)| < t, where «;,i = (1,2,...K) is
a cluster center, and «;’ is the set of its editing operations.
Then, only those encrypted indexes belonged to selected cen-
ters will be further computed in our following querying,
which can enormously decrease the matched number among
indexes and trapdoors.

Besides, Fig. 11c shows that EFSS_II(ES) still maintains a
significant advantage in computation cost even comparing
with the works [8], [9], [12] (called GENSETS, PPPM and
PPSP, respectively). This is mainly due to the following rea-
sons: For work [12], each query sequence is divided into

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

1250

20 6
——EFSS_I —~—EFSS_I
— ——EFSS_II Z5f [EFSS_N
L5 EFSS_II (ES) 2 EFSS_II (ES)
[} (]
£ £*
= =
210 23
£ £
£ €2
S 5 F
@ @,
0 0
100 200 300 400 500 600 700 10 12 14 16 18 20 22

Number of genomes Number of cycle times

@ (b)

100

EEFSS_I (s)

©
o

(=2
o

Running time
Y
o

N
o

0
100 200 300 400 500 600 700
Number of genomes

(©
Fig. 11. Time for query. (a) For the different number of genomes with the
same number of cycle times, k= 10. (b) For the different number of cycle

times with the same number of genomes, N = 100. (c) For the different
number of users with the same number of cycle times k£ = 10.

@ subsequences. The server needs 3 bilinear map opera-
tions under a group 7 to generate the ciphertext of each sub-
sequence, which will generate huge computation overhead
(a total of w Br bilinear map operations) for a long geno-
mic sequence. Both [8] and [9] resort to garbled circuits GC
[28] to support string matching between DNA sequences
under ciphertext. However, given a query sequence Q, the
GC protocol will be called Nt and Nf times in [8] and [9],
respectively. We know that the GC is always large even for
building a simple function. This is very large and requires
huge computation cost to perform string matching between
Q and N DNA sequences. Different from [8], [12] and [9],
our EFSS design a private approximation algorithm to con-
vert the edit distance computation problem between two
sequences to the symmetric set difference size approxima-
tion problem, which can significantly reduce the number of
elements that need to be matched under ciphertext. Based on
this, we update EFSS_II to EFSS_II (ES) by utilizing K-means
clustering algorithm to further improve the efficiency. There-
fore, compared with works [8], [12] and [9], our EFSS shows
superior performance in computation overhead.

7 RELATED WORKS

DNA similarity search over encrypted genetic data is usually
deemed to have two different ways. The first model assumes
each party only has its data and every party works together to
complete a specific query task. Secure multi-party computa-
tion is always applied to this scenario. The second way is the
secure outsourcing of computation model. In this model, all of
the genetic data will be encrypted and outsourced to a semi-
trusted party (such as cloud), and the query tasks are mainly
executed by the cloud server privately. Specifically, Atallah
et al. [48] proposed a privacy-preserving protocol to compute
the edit distances between two DNA sequences. Later, to
alleviate the computational overhead of [48], Jha et al.[11]

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

also designed a secure query model to improve the computa-
tion efficiency. However, due to the cumbersome interaction
between multiple participants, both of them incur huge com-
munication and computing overhead. Wang ef al. [49]
designed a distributed framework to achieve privately genetic
computing according to the different sensitivity levels. How-
ever, with the latest research results, the conception of what
genes are insensitive is still an uncertain problem. Recently,
Wang et al. [8] proposed a similar patient query system called
GENSETS, which can achieve unprecedentedly high effi-
ciency and precision of DNA similarity query. However, mul-
tiple interactions between users may significantly restrict the
system’s applied scope. Also, user’s access rights and fine-
grained queries such as mixed “AND” and "NO” operations
on genes were not taken into account in their work. Gilad
Asharov et al. [9] also designed an efficient approximation
algorithm to compute the edit distances between sequences
even with high divergence among individual genomes.
Unfortunately, similar to [8], it was also only from the perspec-
tive of efficiency to devise the whole scheme. Lu et al. [50] pro-
posed a secure outsourcing scheme called GWAS, which
aimed to discover the relationships between gene mutations
and some diseases by utilizing statistical information of genes.
Chase et al. [51] proposed a DNA string matching algorithm
exploiting symmetric searchable encryption. However, due to
the defect of the deterministic encryption algorithm, the
search pattern in their protocol was revealed to the cloud
server. Besides, the function of the fuzzy DNA sequence query
was not supported in their proposed model. Wang et al. [12]
proposed a DNA sequence match scheme over encrypted
cloud data, which only required one round of communication
compared with previous protocols. However, their model sac-
rificed huge communication costs because of miscellaneous
ciphertext processing based on the bilinear group. In general,
most existing models are only devised from the perspective of
efficiency. Moreover, other common and significant perfor-
mance indicators, especially data access control and personal-
ized search requirements (i.e., complex logic queries) are
rarely taken into account. In this paper, we design an Efficient
and Fine-grained Similarity Search (EFSS) scheme which ena-
bles retrieving resemble DNA sequences over encrypted
cloud data. Specifically, we first propose an approximation
algorithm to compute the edit distances between two sequen-
ces privately. Then, we present an efficient data access control
strategy to manage the permissions of different users. In addi-
tion, by executing the custom query requests, our EFSS is sup-
portive of mixed Boolean queries.

8 CONCLUSION

In this paper, we have proposed an efficient DNA similarity
search scheme (EFSS) which enables fine-grained query and
data access control over encrypted cloud data. In order to
illustrate our purpose in a gradual way, we have proposed
two secure DNA similarity model (i.e., EFSS_I and EFSS_II).
We have given a formal and comprehensive analysis for error
rate, data privacy and performance evaluation. For the future
work, we intend to improve the accuracy and efficiency of
our proposed schemes utilizing index formed tree structure.
Besides, large-scale data updating such as data deletion, data
insertion will be also considered in our future research.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: DNA SIMILARITY SEARCH WITH ACCESS CONTROL OVER ENCRYPTED CLOUD DATA

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Pro-
gram of China under Grants 2017YFB0802300 and
2017YFB0802000, the National Natural Science Foundation of
China under Grants 61972454, 61802051, 61772121, 61728102,
and 61472065, the Peng Cheng Laboratory Project of Guang-
dong Province PCL2018KP004, the Guangxi Key Laboratory
of Cryptography and Information Security under Grant
GCIS201804.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

H. I. E. Ozercan, “Realizing the potential of blockchain technolo-
gies in genomics,” Genome Res., vol. 28, no. 9, pp. 1255-1263,
2018.

M. Tao, K. Ota, M. Dong, and Z. Qian, “AccessAuth: Capacity-aware
security access authentication in federated-IoT-enabled V2G
networks,” J. Parallel Distrib. Comput., vol. 118, pp. 107-117,2018.

W. Sun, N. Zhang, W. Lou, and T. Hou, “When gene meets cloud:
Enabling scalable and efficient range query on encrypted genomic
data,” in Proc. IEEE Conf. Comput. Commun., 2017, pp. 37-46.

O. Choudhury et al., “Enforcing human subject regulations using
blockchain and smart contracts,” Blockchain Healthcare Today, 2018.
[Online]. Available: https://doi.org/10.30953 /bhty.v1.10

J. Wu, M. Dong, K. Ota, J. Li, and Z. Guan, “Big data analysis-
based secure cluster management for optimized control plane in
software-defined networks,” IEEE Trans. Netw. Service Manage.,
vol. 15, no. 1, pp. 27-38, Mar. 2018.

G.Xu, H.Li, Y. Dai, K. Yang, and X. Lin, “Enabling efficient and geo-
metric range query with access control over encrypted spatial data,”
IEEE Trans. Inf. Forensics Security, vol. 14, no. 4, pp. 870-885, Apr.
2019.

G. Xu, H. Lj, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and
verifiable federated learning,” IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 911-926, 2020.

X. Wang, Y. Huang, Y. Zhao, H. Tang, X. Wang, and D. Bu,
“Efficient genome-wide, privacy-preserving similar patient query
based on private edit distance,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur., 2015, pp. 492-503.

G. Asharov, S. Halevi, Y. Lindell, and T. Rabin, “Privacy-preserving
search of similar patients in genomic data,” Proc. Privacy Enhancing
Technol., vol. 2018, no. 4, pp. 104-124, 2018.

K. Cheng, Y. Hou, and L. Wang, “Secure similar sequence query
on outsourced genomic data,” in Proc. Asia Conf. Comput. Commun.
Secur., 2018, pp. 237-251.

M. S. R. Mahdi, M. Z. Hasan, and N. Mohammed, “Secure
sequence similarity search on encrypted genomic data,” in Proc.
IEEE/ACM Int. Conf. Connected Health: Appl. Syst. Eng. Technol.,
2017, pp. 205-213.

B. Wang, W. Song, W. Lou, and Y. T. Hou, “Privacy-preserving pat-
tern matching over encrypted genetic data in cloud computing,” in
Proc. IEEE Conf. Comput. Commun., 2017, pp. 1-9.

Y. Miao, R. Deng, X. Liu, K.-K. R. Choo, H. Wu, and H. Li, “Multi-
authority attribute-based keyword search over encrypted cloud
data,” IEEE Trans. Dependable Secure Comput., to be published,
doi: 10.1109/TDSC.2019.2935044.

G. Xu, H. Li, H. Ren, K. Yang, and R. H. Deng, “Data security issues
in deep learning: Attacks, countermeasures and opportunities,”
IEEE Commun. Mag., vol. 57, no. 11, pp. 116-122, Nov. 2019.

G. Xu, H. Li, C. Tan, D. Liu, Y. Dai, and K. Yang, “Achieving effi-
cient and privacy-preserving truth discovery in crowd sensing
systems,” Comput. Secur., vol. 69, pp. 114-126, 2017.

H.Li Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. Shen, “Enabling
fine-grained multi-keyword search supporting classified sub-dictio-
naries over encrypted cloud data,” IEEE Trans. Dependable Secure
Comput., vol. 13, no. 3, pp. 312-325, May/Jun. 2016.

K. He, J. Guo, J. Weng, J. Weng, J. K. Liu, and X. Yi, “Attribute-
based hybrid boolean keyword search over outsourced encrypted
data,” IEEE Trans. Dependable Secure Comput., to be published, doi:
10.1109/TDSC.2018.2864186.

S. Jiang, X. Zhu, L. Guo, and J. Liu, “Publicly verifiable boolean
query over outsourced encrypted data,” IEEE Trans. Cloud Comput.,
vol. 7, no. 3, pp. 799-813, Third Quarter 2019.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

1251

H. Li, G. Xu, Q. Tang, X. Lin, and X. Shen, “Enabling efficient and
fine-grained dna similarity search with access control over
encrypted cloud data,” in Proc. Int. Conf. Wireless Algorithms Syst.
Appl., 2018, pp. 236-248.

M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and
privacy-enhanced federated learning for industrial artificial
intelligence,” IEEE Trans. Ind. Informat., to be published, doi:
10.1109/TI1.2019.2945367.

H. Ren, H. Li, Y. Dai, K. Yang, and X. Lin, “Querying in Internet of
Things with privacy preserving: Challenges, solutions and oppor-
tunities,” IEEE Netw., vol. 32, no. 6, pp. 144-151, Nov./Dec. 2018.
Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient
multi-keyword fuzzy search over encrypted outsourced data with
accuracy improvement,” IEEE Trans. Inf. Forensics Security, vol. 11,
no. 12, pp. 2706-2716, Dec. 2016.

J. Chen et al., “ELIMFS: achieving efficient, leakage-resilient, and
multi-keyword fuzzy search on encrypted cloud data,” IEEE Trans.
Services Comput., to be published, doi: 10.1109/TSC.2017.2765323.

G. Xu, H. Lj, S. Liu, M. Wen, and R. Lu, “Efficient and privacy-
preserving truth discovery in mobile crowd sensing systems,”
IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3854-3865, Apr. 2019.
V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free
XOR gates and applications,” in Proc. Int. Colloquium Automata
Lang. Program., 2008, pp. 486—498.

Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell, “SCAPI: The
secure computation application programming interface,” IACR
Cryptol. EPrint Archive, vol. 2012, 2012, Art. no. 629.

G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2013, pp. 535-548.
P. Mohassel, M. Rosulek, and Y. Zhang, “Fast and secure three-
party computation: The garbled circuit approach,” in Proc. 22nd
ACM SIGSAC Conf. Comput. Commun. Secur., 2015, pp. 591-602.

Z. Zhang et al., “Achieving privacy-friendly storage and secure
statistics for smart meter data on outsourced clouds,” IEEE Trans.
Cloud Comput., vol. 7, no. 3, pp. 638-649, Third Quarter 2019.

J. Li, X. Lin, Y. Zhang, and J. Han, “KSF-OABE: Outsourced attri-
bute-based encryption with keyword search function for cloud
storage,” IEEE Trans. Services Comput., vol. 10, no. 5, pp. 715-725,
Sep./Oct. 2017.

P. Xu, S. Tang, P. Xu, Q. Wu, H. Hu, and W. Susilo, “Practical
multi-keyword and boolean search over encrypted E-mail in
cloud server,” IEEE Trans. Services Comput., to be published, doi:
10.1109/TSC.2019.2903502.

M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity
search over encrypted data,” in Proc. IEEE 28th Int. Conf. Data
Eng., 2012, pp. 1156-1167.

M. Strizhov and I. Ray, “Multi-keyword similarity search over
encrypted cloud data,” in Proc. IFIP Int. Inf. Secur. Conf., 2014,
pp- 52-65.

IGSR and the 1000 genomes project, “International genome sam-
ple resource,” 2018. Accessed: Mar. 2018. [Online]. Available:
http://www.internationalgenome.org/

W.]J. Masek and M. S. Paterson, “A faster algorithm computing
string edit distances,” J. Comput. Syst. Sci., vol. 20, no. 1, pp. 18-31,
1980.

W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, “Secure
kNN computation on encrypted databases,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2009, pp. 139-152.

H. Li, D. Liu, Y. Dai, and T. H. Luan, “Engineering searchable
encryption of mobile cloud networks: When QoE meets QoP,”
IEEE Wireless Commun., vol. 22, no. 4, pp. 74-80, Aug. 2015.

H. Li, Y. Yang, Y. Dai, and Y. Xiang, “Achieving secure and effi-
cient dynamic searchable symmetric encryption over medical
cloud data,” IEEE Trans. Cloud Comput., to be published, doi:
10.1109/TCC.2017.2769645.

H. Li, D. Liu, Y. Dai, T. H. Luan, and X. Shen, “Enabling efficient
multi-keyword ranked search over encrypted mobile cloud data
through blind storage,” IEEE Trans. Emerg. Topics Comput., vol. 3,
no. 1, pp. 127-138, Mar. 2015.

F. Yamaguchi and H. Nishi, “Hardware-based hash functions for
network applications,” in Proc. 19th IEEE Int. Conf. Netw., 2013,
pp- 1-6.

M. Ahmad, P. M. Khan, and M. Z. Ansari, “A simple and efficient
key-dependent S-box design using fisher-yates shuffle technique,”
in Proc. Int. Conf. Secur. Comput. Netw. Distrib. Syst., 2014, pp. 540-550.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.30953/bhty.v1.10
http://dx.doi.org/10.1109/TDSC.2019.2935044
http://dx.doi.org/10.1109/TDSC.2018.2864186
http://dx.doi.org/10.1109/TII.2019.2945367
http://dx.doi.org/10.1109/TSC.2017.2765323
http://dx.doi.org/10.1109/TSC.2019.2903502
http://www.internationalgenome.org/
http://dx.doi.org/10.1109/TCC.2017.2769645

1252

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

L. Kuang, L. T. Yang, J. Feng, and M. Dong, “Secure tensor decom-
position using fully homomorphic encryption scheme,” IEEE Trans.
Cloud Comput., vol. 6, no. 3, pp. 868-878, Third Quarter 2018.

J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” in Proc.
Annu. Int. Conf. Theory Appl. Cryptographic Techn., 2008, pp. 146-162.
A. De Caro and V. Iovino, “jPBC: Java pairing based cryptography,”
in Proc. IEEE Symp. Comput. Commun., 2011, pp. 850-855.

“JPype, Java to python integration,” 2013. [Online]. Available:
http://jpype.sourceforge.net/

S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,”
in Proc. Annu. Int. Conf. Theory Appl. Cryptographic Techn., 2015,
pp- 220-250.

Y. Ishai, . Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in Proc. Annu. Int. Cryptology Conf., 2003,
pp. 145-161.

M. J. Atallah and J. Li, “Secure outsourcing of sequence
comparisons,” Int.]. Inf. Secur., vol. 4, no. 4, pp. 277-287, 2005.

R. Wang, X. F. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong,
“Privacy-preserving genomic computation through program spe-
cialization,” in Proc. 16th ACM Conf. Comput. Commun. Secur.,
2009, pp. 338-347.

W.Luy, Y. Yamada, and J. Sakuma, “Efficient secure outsourcing of
genome-wide association studies,” in Proc. IEEE Security Privacy
Workshops, 2015, pp. 3-6.

M. Chase and E. Shen, “Substring-searchable symmetric encryption,”
Proc. Privacy Enhancing Technol., vol. 2015, no. 2, pp. 263-281,
2015.

Guowen Xu (Student Member, |IEEE) received
the BS degree in information and computing sci-
ence from the Anhui University of Architecture
(AUA), Hefei, China, in 2014. Currently, he is
working toward the PhD degree in the School of
Computer Science and Engineering, University of
Electronic Science and Technology of China
(UESTC), China. His research interests include
cryptography, searchable encryption, and the pri-
vacy-preserving deep learning.

Hongwei Li (Senior Member, IEEE) is currently the
head and a professor with the Department of Infor-
mation Security, School of Computer Science and
Engineering, University of Electronic Science and
Technology of China, China. His research interests
include network security and applied cryptography.
He serves as an associate editor of the IEEE Inter-
net of Things Journal, and the Peer-to-Peer Net-
working and Applications, the guest editor of the
IEEE Network and the IEEE Internet of Things
Journal. He is a distinguished lecturer of the IEEE
Vehicular Technology Society.

‘,'

/b

-

Hao Ren (Student Member, IEEE) received the BS
degree from the School of Information Science and
Technology, Chengdu University of Technology
(CDUT), Chengdu, China, in 2014. Currently, he is
working toward the PhD degree in the School of
Computer Science and Engineering, University of
Electronic Science and Technology of China
(UESTC), China. His research interests include
cryptography, searchable encryption, and security
and privacy of outsourcing data.

Xiaodong Lin (Fellow, IEEE) is currently an asso-
ciate professor with the School of Computer Sci-
ence, University of Guelph, Canada. His research
interests include wireless network security, applied
cryptography, computer forensics, software secu-
rity, and wireless networking and mobile com-
puting. He was a recipient of the Outstanding
Achievement in Graduate Studies Award from the
University of Waterloo, Waterloo, Canada.

Xuemin (Sherman) Shen (Fellow, IEEE) received
the PhD degree from Rutgers University, Camden,
New Jersey, in 1990. He is a professor with the
Department of Electrical and Computer Engineer-
ing, University of Waterloo, Canada. His research
include resource management in interconnected
wireless/wired networks, wireless network security,
social networks, smart grid, and vehicular ad hoc
and sensor networks. He serves as the editor-in-
chief for the IEEE Internet of Things Journal, the
Peer-to-Peer Networking and Application, and the

IET Communications; a founding area editor for the IEEE Transactions on
Wireless Communications. He is a registered professional engineer of
Ontario, Canada, an engineering institute of Canada fellow, a Canadian
academy of engineering fellow, a Royal Society of Canada fellow, and a dis-
tinguished lecturer of the IEEE Vehicular Technology Society and Commu-

nications Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore. Restrictions apply.

http://jpype.sourceforge.net/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

