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Abstract—DNA similarity search has been widely applied in human genomic studies including DNA marking, genomic sequencing and

genetic disease prediction. Meanwhile, with the explosive growth of data, users are increasingly inclining to store DNA data on the

cloud for saving local cost. However, the high sensitivity of DNA data has forced the government to strictly control its acquisition and

utilization. One potential solution is to encrypt DNA data before outsourcing them to the cloud. Nevertheless, private DNA similarity

query has been an active research issue, state-of-the-art results are still defective in security, functionality, and efficiency. In this article,

we propose EFSS, an efficient and fine-grained similarity search scheme over encrypted DNA data. In specific, first, we design an

approximation algorithm to efficiently calculate the edit distances between two sequences. Second, we put forward a novel Boolean

search strategy to achieve complicated logic queries such as mixed “AND” and “NO” operations on genes. Third, data access control is

also supported in our EFSS through a variant of polynomial based design. Moreover, the K-means clustering algorithm is exploited to

further improve the efficiency of execution. In the end, security analysis and extensive experiments demonstrate the high performance

of EFSS compared with existing schemes.

Index Terms—DNA similarity search, privacy-preserving, fine-grained query, access control

Ç

1 INTRODUCTION

DNA similarity search has been a rich area of research
with promising medical and healthy applications.

Examples include similar patient query [1], [2], disease pre-
diction [3], [4] and genome sequencing [5]. For example,
genes BRCA1 and BRCA2 have been considered to be closely
related to the risk of breast cancer in individuals. Thus, it
will be gratifying that this disease can be detected and pre-
vented in advance, if we perform DNA similarity detection
between the patient population and the potential disease
population. Currently, in response to the explosive growth
of data (including DNA data), Public Clouds, such as DNA-
nexus and Google Genomics,1 have been increasingly
approved and used in outsourced data services due to their
powerful superiority in computing and storage. However,
large scale data storage and processing over raw DNA data
entail security and privacy risks [4], [5], [6]. One real risk is

that the cloud server may abuse and reveal users’ privacy
since it has full data access authority. To address this chal-
lenge, an intuitive approach is to encrypt the whole DNA
data utilizing the conventional encryption method (e.g., AES
[7]) before outsourcing them to the cloud. However, this will
significantly reduce data availability and make it difficult to
performDNA similarity queries [8], [9].

To address this challenge, many scholars have thrown
themselves into the secure DNA similarity query study and
proposed some remarkable results [10], [11]. For example,
Wang et al. [8] design a system called GENSETS, a genome-
wide, privacy-preserving system to actualize private DNA
similarity query with high accuracy and efficiency. Based on
the secure multi-party computation, Gilad Asharov et al. [9]
also propose a DNA similarity query model to address the
problem of high divergence among individual genomes.
Recently,Wang et al. [12] design a secure DNAquery scheme
with only one round of communication throughout the que-
rying process, and provide strong security guarantees in
both data privacy and the search pattern. However, these
approaches are only devised from the perspective of effi-
ciency, andmost of them require all parties remaining online
during the entire querying process. Moreover, other com-
mon and significant performance indicators, especially data
access control and personalized search requirements (i.e.,
complex logic queries) are rarely taken into account. Obvi-
ously, access control and Boolean queries for genetic data
have been widely used in various medical scenarios. Con-
sider a common scenario where doctors visit the genetic
database of the hospital they work for, doctors in different
departments often only have access to their authorized data.
For example, the attending doctors of breast cancer probably
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have not any access rights except breast cancer patient’s
DNA sequences. Besides, sometimes we do not need to
query over entire DNA collections, where specific DNA
sequences controlling particular genetic genes (such as genes
controlling physical characteristics, mammary cancer, diabe-
tes, etc.) should be the focus of our attention. Therefore, it is
meaningful to propose a lightweight similarity search frame-
work over encrypted DNAdata, which can efficiently imple-
ment string matching between different DNA sequences
while supporting the functions of data access control and the
Boolean query simultaneously.

However, it is challenging to design a satisfactory solution
that meets the above requirements. First, the length of a long
gene sequence always ranges from hundreds of thousands
to millions of base pairs [8]. This feature makes it possible to
generate huge computation overhead if we directly exploit
traditional techniques (such as keyword-based and string-
matched searchable encryption) to perform DNA sequence
matching under ciphertext. To alleviate this, recent works
[9], [10] have resorted to the protocol of Secure Multiparty
Computing (SMC) to reduce the computation overhead in
thematching process. However, in addition to increasing the
communication overhead of each participant, SMC based
protocol always requires all parties remaining online during
the entire querying process, which greatly limits the robust-
ness of these solutions to sporadic events such as network
delays and device damage. Second, although there have
been some research results on data access control [13], [14],
[15] and Boolean query [16], [17], [18], the heterogeneity of
the application scenarios makes these solutions difficult to
be directly adopted in DNA queries. Moreover, expressive-
ness functionality often leads to lower efficiency since the
strong functional guarantees are never free. Therefore, it is
also an intractable challenge to design a light-weight DNA
similarity search framework that is highly supportive of data
access control and Boolean query.

In this paper, we design EFSS, the first efficient and non-
interactive DNA similarity search framework with data
access control over encrypted clouddata. Specifically,we first
propose an approximation algorithm to compute the edit dis-
tances between two sequences privately. Then, we present an
efficient data access control strategy to manage the permis-
sions of different users. In addition, by executing the custom
query requests, our EFSS is supportive of mixed Boolean
queries. In summary, our contributions can be summarized
as follows:

� We introduce a private approximation algorithm to
convert the edit distance computation problem to the
symmetric set difference size approximation prob-
lem. Through this conversion, each DNA sequence
will be compressed into a set of hash values, which
can significantly reduce the number of elements that
need to bematched under ciphertext.

� We design a novel Boolean search method to achieve
the complicated logic query such as mixed “AND”
and “NO” operations on genes. Moreover, since the
search strategy can avoid unnecessary DNA sequen-
ces matched during the query process, users can also
gain the benefit of receiving accurate results with a
short period.

� By utilizing a variant of polynomial based design,
EFSS is able to support data access control during
the query process, where each DNA sequence is
accessible to users who are authorized. Besides, we
adopt the K-means clustering algorithm to further
improve the efficiency of our proposed scheme.

� We give a formal security analysis of our proposed
model and stress that our EFSS is secure under
the same-closeness-pattern chosen-plaintext attacks.
Besides, extensive experiments conducted on real-
world data also demonstrate the high efficiency of
our proposals comparedwith existing schemes.

Different from the conference version [19], we propose
two secure DNA similarity search models (i.e., EFSS_I and
EFSS_II) to elaborate and achieve our purpose in a gradual
way. Then, we put more effort into the analysis of security,
functionality and performance evaluation. Note that EFSS
leaks the “closeness” of queried messages (i.e., Size Pattern
and Access Pattern) to better support efficient DNA similarity
query. An optimal security notion for EFSSwould be a natural
relaxation of the standard IND-CPA security definition pro-
hibiting queries that trivially exploit this leakage of closeness.
We call this security as indistinguishability under same-close-
ness-pattern chosen-plaintext attacks (IND-CLS-CPA), which is
adopted in [6], [10], [20]. In the end, we also polish the confer-
ence version to enhance the presentation and readability.

The remainder of this paper is organized as follows. In
Section 2, we outline the system model, threat model and
security requirements. Then, we describe the preliminaries
of the proposed schemes in Section 3, and describe our EFSS
in Section 4. Later, we carry out security analysis and perfor-
mance evaluation in Sections 5 and 6, respectively. The
related works are presented in Section 7. Finally, in Section 8,
we conclude this paper.

2 SYSTEM MODEL,THREAT MODEL, AND
SECURITY REQUIREMENTS

2.1 System Model

As shown in Fig. 1, we consider three entities that are not
colluding with each other in our system.

� Data owner: The data owner is usually considered to be
organizations such as hospitals and Biopharmaceuti-
cal companies. Its primary task is to encrypt the raw
DNA sequences before outsourcing them. Besides, to
improve the search efficiency, each ciphertext is linked

Fig. 1. System model.
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with an index. Then, the data owner submits both the
encrypted DNA data and encrypted indexes to the
cloud, aswell as shares the secret key (used to generate
the secure index) to the authorized users.

� The cloud server: The main responsibility of the cloud
server is to store encrypted data and execute users’
search requests in the ciphertext environment. Once
the execution is completed, the encrypted results
will be returned to authorized users.

� Search user: After receiving the secret key, the search
user generates the trapdoors (i.e., the encrypted
search request) and uploads them to the cloud server
for obtaining the query results.

Note that in our scenario, the data owner only sends the
key (independent of the key used to encrypt the raw DNA
sequences) used to generate the encrypted index to the
search user, since this is sufficient for achieving the function
of secure DNA similarity query. Therefore, the data owner’s
raw DNA sequences will not be disclosed to any unautho-
rized entity in our model. On the other hand, due to the
one-way property of encrypted index/trapdoor (analyzed
in Section 5), the cloud server is impossible to recover the
contents of indexes/trapdoors of other entities, even if it
can impersonate a legitimate search user.

2.2 Threat Model and Security Requirements

The cloud server is considered to be “honest-but-curious”
[10], [21], [22], which means that the cloud server strictly fol-
lows the pre-defined protocols such as querying, storage,
computation, and other requests [23], [24]. However, it will
also use the existing knowledge to infer the behavior of
search user, and try to compromise the privacy of both the
data owner and search users. Concretely, in our threat
model, the cloud server can access the encrypted DNA
data, indexes, and trapdoors, as well as require search users
to generate new encrypted indexes/trapdoors to get extra
information. However, it cannot do anything that violates
the established protocols.

Besides, same as schemes [10], [21], [22], to concentrate on
the topic of similarity search, we do not consider the secure
key distribution between the data owner and search user,
which can be addressed by utilizing traditional cryptogra-
phy primitives such as secure multi-party computation [25],
[26] and authentication technology [27], [28]. Interested read-
ers can refer to literatures [29], [30], [31] for more details.

Based on the threat model, we define the security require-
ments as follows.

� Confidentiality of DNA sequence: Data owner’s DNA
data are usually outsourced to the cloud server before
being utilized. Taking privacy issues into account,
these data should be encrypted ahead and not leaked
to anyone except the data owner and authorized
search users.

� Privacy protection of index and trapdoor: Index and
trapdoor are generated for querying conveniently.
However, the leakage of index/trapdoor privacy has
been shown to bring risks for adversaries to compro-
mise user data privacy [32], [33]. Therefore, the pri-
vacy of the trapdoor and index should be protected
well.

� Unlinkability of trapdoors: Unlinkability of trapdoors,
means that if a DNA sequence is queried frequently,
whose trapdoors should be indistinguishable since
the cloud server can utilize the relationship between
trapdoors to further infer the contents of user’s DNA
data. Thus, given a query request, a security-critical
model should guarantee the indistinguishability of
all generated trapdoors.

3 PRELIMINARIES

As we all know, to determine the similarity between two
DNA sequences, the most common metric is to calculate the
edit distances between the two sequences. In this section,
we design an approximation algorithm that can calculate
the edit distances between two sequences privately. It is
also the building block of our proposed scheme.

3.1 Notations

For easy reference, we first list some notations which will be
used frequently in this paper. As shown in Table 1.

3.2 Approximation Algorithm for Edit Distance

It is well known that the distribution of DNA sequences
is subject to a special way [34]. Specifically, for any two

TABLE 1
Notations

Symbol Description

Ref
Ref = R ¼ ðr1r2 � � � rT Þ, denotes the public
reference genome,where riði ¼ 1; 2 � � � T Þ
represents a element ofRef (i.e., “A”, “T”, “C” or
“G”).

Ai A raw DNA sequence ði ¼ 1; 2 � � �NÞ.

~Ai

~Ai ¼ ðAi1; Ai2; . . . ; AisÞ, denotes the blocked Ai,
where Aimðm ¼ 1; 2; . . . sÞ represents themth
subsequence of Ai.

A0i

A0i ¼ ðA0i1; A0i2; . . .A0im; . . .A0isÞ, denotes the set of
editing operations of Ai, where A0im represents
the set of editing operations of the mth
subsequence Aim.

Q a query request, i.e., a DNA sequence generated
from the search user.

HhrðmÞ HhrðmÞ ¼ f�1; 1g, whereH is a hash function and
hr denotes the secret key. m is a element belonged
to a given set of editing operations.

dA0
i

The sum of allHhrðmÞ;m 2 A0i.

dA0
im

The sum of allHhrðmÞ;m 2 A0im.

Ij
A0
i

Ij
A0
i
¼ ðd

A
0j
i1
; d

A
0j
i2
; d

A
0j
im
; . . . ; d

A
0j
is
Þ, denotes the

encrypted index of Ai in our EFSS_I, where j
represents the jth iteration.

Tj
Q0

Tj
Q0 ¼ ðdQ0j

1
; d

Q
0j
2
; d

Q
0j
m
; . . . ; d

Q
0j
s
Þ, denotes the

trapdoor ofQ in our EFSS_I, where j represents
the jth iteration.

IjAi

The encrypted index of Ai in our EFSS_II, where j
represents the jth iteration.

Tj
Q

The trapdoor ofQ in our EFSS_II, where j
represents the jth iteration.

XU ETAL.: DNA SIMILARITY SEARCHWITH ACCESS CONTROLOVER ENCRYPTED CLOUD DATA 1235

Authorized licensed use limited to: University of Waterloo. Downloaded on July 14,2022 at 01:57:23 UTC from IEEE Xplore.  Restrictions apply. 



irrelevant people, (1) more than 99.5 percent of their DNA
sequences are identical. (2) much (�95%) of their edits
take place in the non-contiguous positions. (3) most (about
80–90 percent) edit between two DNA sequences are substi-
tutions. Based on this, we introduce an approximation algo-
rithm (called Approx) to calculate the edit distances between
two sequences approximately. In general, Approx consists of
two algorithms, i.e., Approx_Init and Approx_Ed.

Approx_Init ðRef;AÞ ! ðA0Þ. Assume that every party
agrees on a public reference genome (called Ref¼ R ¼
ðr1r2 � � � rT Þ). Then, every raw DNA sequence will be con-
verted to a set of editing operations (i.e., the records of mini-
mum edits to convert the sequence Ref into this sequence).
For example, assumeRef ¼ ATTGCC, given aDNA sequence
A ¼ GTTGGA, the records of minimum edits from Ref to
A can be denoted as A0 ¼ fð1; sub;GÞ; ð5; sub;GÞ; ð6; sub;AÞg,
where sub denotes the substitution operation. Based on the
distribution of DNA sequences, it is clear that this conversion
is fast since the DNA sequences of any two people are very
similar. In this paper, we exploit the well-known Wagner-
Fischer Algorithm [35] to fulfil above conversion (Please see
the Appendix for more technical details, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCC.2020.2968893).

Approx_Ed ðA0;B0Þ ! ðDiffðA0;B0ÞÞ. Given two editing
operations set A0 and B0, the algorithm Approx_EdðA0;B0Þ
outputs the symmetric set difference between setsA0 and B0,
i.e., DiffðA0;B0Þ. As shown in Fig. 2, there are three sequen-
ces Ref ¼ ATTGCC;A ¼ GTTGGA; and B ¼ GTTCGA. By
involving the Wagner-Fischer algorithm [35], A and B will
be converted into the set of editing operations denoted
as A0 ¼ fð1; sub;GÞ; ð5; sub;GÞ; ð6; sub;AÞg; B0 ¼ fð1; sub;GÞ;
ð4; sub; CÞ; ð5; sub;GÞ; ð6; sub; AÞg, respectively. Then, taking
the symbol DiffðA0;B0Þ ¼ ðA0 � B0Þ [ ðB0 �A0Þ to denote

the symmetric set difference between sets A0 and B0, we
have jDiffðA0;B0Þj ¼ jA0j þ jB0j � 2jB0 \A0j ¼ 1. It is exactly
the same as the edit distances between A and B. The main
reason for implementing this approximation is that genes
are subject to the above distribution, so that each DNA
sequences can be easily converted into the set of editing
operations. However, this approximation algorithm also
brings about small errors. For example, assume Ref ¼
ATTGCCCGA;A ¼ GTTGGATAA; and B ¼ GTTCGATGA.
Then, A and B will be transformed as A0 ¼ fð1; sub;GÞ;
ð4; ins; CÞ; ð5; del; 1Þ; ð6; sub; AÞ; ð7; sub; T Þg; B0 ¼ fð1; sub;GÞ;
ð5; sub;GÞ; ð6; sub;AÞ; ð7; sub; T Þ; ð8; sub;AÞg respectively.
We have jDiffðA0;B0Þj ¼ 4, which is different from the
actual edit distances (the actual value is 2). To understand
the accuracy of the above approximation algorithm more
intuitively, we calculate the edit distance between two gene
sequences randomly selected from the 1,000 Genomes proj-
ect [34], where we use the standard dynamic programming
algorithm [35] to complete 9,000 tests of sequence matching.
As shown in Table 2, Approx shows that at least 95.46 per-
cent test sequences exhibit an error rate of less than 5 per-
cent. Besides, since gene edits between long sequences tend
to occur more at non-adjacent locations, Approx shows supe-
rior accuracy for longer DNA sequences. In the Section 4.1,
we will give a formal accuracy analysis to discuss how to
bound the error rate of this estimation.

3.3 Computing Symmetric Set Difference Privately

In this section, we design a secure algorithm to calculate the
symmetry difference between two sequences privately. As
shown in Fig. 3, unlike Section 3.2, we first block sequences
A, B and Ref, each of which represents a DNA fragment that
controls a particular gene. Specifically, assumeA, B, and Ref
are blocked as ~A ¼ ðA1; A2; Ai . . . ; AsÞ, ~B ¼ ðB1; B2; Bi . . . ; BsÞ
and ~R ¼ ðR1; R2; Ri . . . ; RsÞ respectively, where Ai;Bi and
Ri represents corresponding subsequence. For example,
given a DNA sequenceA ¼GTTGGATAA, it can be blocked
into ~A ¼ ðGTT;GGA; TAAÞ ¼ ðA1; A2; A3Þ. Then, similar to
Section 3.2, each Ai and Bi will be converted into a subset of
editing operations denoted as A

0
i and B

0
i separately. Thus, A

and B can ultimately be expressed as A0 ¼ ðA01; A
0
2; A

0
i � � �A

0
sÞ

andB0 ¼ ðB01; B
0
2; B

0
i � � �B

0
sÞ.

Next, we take A0 as an example to introduce the details of
our secure approximation algorithm. Specifically, for each
element m in A0, it will be compressed into f�1; 1g by a
binary hash function Hhr : U�!f�1; 1g, where hr is the
secret key selected by the data owner, and U denotes the
universe of all set elements. Then, due to the randomness of
hash function, for any element m, m1 and m2 belong to set
A0, we have E½HhrðmÞ� ¼ 0, E½H2

hrðmÞ� ¼ 1, and Em1 6¼m2

TABLE 2
Accuracy of Approximation Algorithm

Proportions Le_sequences 1 Nu_tests 2 Relative error

80.65% 80,000 1,000 0.25%
99.46% 80,000 1,000 0.5%
100% 80,000 1,000 1%
78.65% 60,000 1,000 0.25%
96.46% 60,000 1,000 0.5%
100% 60,000 1,000 1%
77.65% 40,000 1,000 0.25%
95.46% 40,000 1,000 0.5%
100% 40,000 1,000 1%

1The length of DNA sequences.
2The number of tests.

Fig. 3. Compute symmetric set difference privately.

Fig. 2. Symmetric set difference between sets A0 and B0.
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½Hhrðm1ÞHhrðm2Þ� ¼ E½Hhrðm1Þ� � E½Hhrðm2Þ� ¼ 0. Based on
these, we use dA0 to denote the sum of all HhrðmÞ;m 2 A0,
and the following equation is established.

E½d2A0 � ¼ E

" Xs
i¼1

X
m2A0

i

HhrðmÞ
!2#

¼ E

"
2
Xs
i¼1

X
m2A0

i
&m02A0

i

HhrðmÞHhrðm0Þ
#
þ E

"Xs
i¼1

X
m2A0

i

H2
hrðmÞ

#

þ E

" X
m2A0

k
&m02A0

j
&k 6¼j

HhrðmÞHhrðm0Þ
#
ðSquare decompositionÞ

¼
Xs
i¼1

E

" X
m2A0

i

H2
hrðmÞ

#
¼
Xs
i¼1
jA0ij;

(1)

where jA0ij denotes the number of the elements in the subset
A
0
i. Similarly, we have

E½d2B0 � ¼
Xs
i¼1
jB0ij: (2)

Known

dA0 � dB0 ¼
Xs
i¼1

X
m2A0

i

HhrðmÞ �
Xs
i¼1

X
m2B0

i

HhrðmÞ

¼
Xs
i¼1

 X
m2A0

i
�B0

i

HhrðmÞ �
X

m2B0
i
�A0

i

HhrðmÞ
!
:

(3)
We have

E½ðdA0 � dB0 Þ2� ¼ E

"Xs
i¼1

 X
m2A0

i
�B0

i

H2
hrðmÞ

þ
X

m2B0
i
�A0

i

H2
hrðmÞ � 2

X
m12A

0
i
�B0

i

Hhrðm1Þ
X

m22B
0
i
�A0

i

Hhrðm2Þ
#

¼ E

"Xs
i¼1

X
m2A0

i
�B0

i

H2
hrðmÞ

#
þ E

"Xs
i¼1

X
m2B0

i
�A0

i

H2
hrðmÞ

#
� 2 � 0

¼
Xs
i¼1

�
jA0i �B

0
ij þ jB

0
i �A

0
ij � 2 � 0

�
¼
Xs
i¼1
jDiffðA0i; B

0
iÞj:

(4)

Hence, according to the Eqn. (4), for any two DNA
sequences, we can approximate their edit distances by pri-
vately calculating the symmetry difference of their set of
editing operations.

4 PROPOSED SCHEMES

In this section, we describe the technical detail of EFSS.
In order to illustrate our scheme in a gradual way, we first
give a basic model called EFSS_I, which can perform secure
similarity queries on outsourced DNA data. Then, we

propose EFSS_II to implement the functions of hybrid Bool-
ean queries and data access control. Finally, by using the K-
means clustering algorithm, we update our EFSS_II to fur-
ther improve the efficiency.

4.1 EFSS_I

The basic model is shown in Fig. 4. It consists of four parts:
Initialization, Index generation, Trapdoor generation and
Query. The data owner first needs to pre-process all DNA
sequences to be outsourced. This operation converts each
DNA sequence into its corresponding set of editing opera-
tions. Then, the data owner will generate an encrypted
index for each DNA sequence, and send the index along
with the encrypted raw data to the cloud server. During the
query phase, the search user also needs to raise secure
query requests (i.e., trapdoors) to the cloud server. Finally,
the cloud server matches all the indexes associated with the
trapdoor in the ciphertext environment, and returns the
matching results to the user.

Correctness. We take cDi; i ¼ f1; 2g as an example to ana-
lyze the correctness of our EFSS_I. Specifically, based on the
Chebyshev’s Large Number Theorem (CLN Theorem), we
have

cD1 � cD2 ¼
Pk

j¼1 D
j
1

k
�
Pk

j¼1 D
j
2

k

¼ 1

k

Xk
j¼1

�
Ij~A0

1

� Tj
~Q0
� Ij~A0

1

� Tj
~Q0

�
¼ 1

k

Xk
j¼1

�
Ij
A0
1
� Ij

A0
2
;� 1

2

�
jjIj

A0
1
jj2
�2
þ 1

2

�
jjIj

A0
2
jj2
�2�
� Tj

~Q0

¼ 1

2k

Xk
j¼1

h�
Ij
A0
2
� Tj

Q0

�2
�
�
Ij
A0
1
� Tj

Q0

�2i
¼ 1

2
E
h�

dA0
2
� dQ0

�2
�
�
dA0

1
� dQ0

�2i�
CLN Theorem

�
¼ 1

2

Xi¼s
i¼1

h
DiffðA02i; Q0iÞ �DiffðA01i; Q0iÞ

i
ðBased on Eqn:ð4ÞÞ:

Therefore, if cD1 > cD2 )
Pi¼s

i¼1 jDiffðA02i; Q0iÞj >
Pi¼s

i¼1 jDiff
ðA01i; Q0iÞj, it shows that the DNA sequence A1 is closer toQ.

Accuracy. As shown in Fig. 4, we use the CLN Theorem to
estimate the expectation of ðdA0

i
� dQ0 Þ2; i 2 f1; 2g, which

will incur some error in the accuracy of the final match. We
present a formal analysis to show how to bound the error
rate of this estimation.

For ease of presentation, we take A0i and Q0 as an exam-
ple. Specifically, for 1 � m � s, we define dim ¼ E½ðdA0

im
�

dQ0mÞ
2� ¼ jDiffðA0im;Q0mÞj. Then, we have

EðXiÞ ¼ E
h
ðdA0

i
� dQ0 Þ2

i
¼ E

"Xm¼s
m¼1

�
dA0

im
� dQ0m

�2#

¼
Xm¼s
m¼1

dim

VarðXiÞ ¼ Var
h�

dA0
i
� dQ0

�2i
¼
Xm¼s
m¼1

Var
�
dA0

im
� d0Qm

�2
:
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Further, we have

E
h�

d0Aim
� dQ0m

�4i
¼ E

" X
m2A0

im
�Q0m

HrðmÞ �
X

m2Q0m�A0im

HrðmÞ
!4#

;

where r denotes a secret key. Let Dm denote those elements
in DiffðA0im;Q0mÞ, and H

0
rðmÞ denote the hash value for each

m 2 Dm. Then, we have E½ðH 0
rðmÞÞ

2� = E½ðH 0
rðmÞÞ

4� ¼ 1. By
utilizing the Multinomial theorem, the above formula can
be rewritten as below.

E

" X
m2A0

im
�Q0m

HrðmÞ �
X

m2Q0m�A0im

HrðmÞ
!4#

¼ E

" X
m2Dm

H
0
rðmÞ

!4#

¼ E

" X
m2Dm

ðH 0
rðmÞÞ

4 þ 6
X

m2Dm&m1 6¼m2

H
0
rðm1Þ2H

0
rðm2Þ2

#

¼ E

" X
m2Dm

ðH 0
rðmÞÞ

4 þ 3

 X
m2Dm

ðH 0
rðmÞÞ

2

!2

�
X
m2Dm

ðH 0
rðmÞÞ

4

#
¼ dim þ 3ðd2im � dimÞ
¼ 3d2im � 2dim:

Therefore, we can get

VarðXiÞ ¼ Var
Xm¼s
m¼1
ðdA0

im
� dQ0mÞ

2

" #
¼
Xm¼s
m¼1

VarðdA0
im
� dQ0mÞ

2

¼
Xj¼s
m¼1

E ðdA0
im
� dQ0mÞ

4
h i

�
Xj¼s
m¼1

E ðdA0
im
� dQ0mÞ

2
h i2

¼
Xm¼s
m¼1
ð3d2im � 2dim � d2imÞ

¼
Xm¼s
m¼1
ð2d2im � 2dimÞ:

Thus, we define E½cXi� = E½1k
Pj¼k

j¼1ðdA0
i
j � d

Q0jÞ
2� ¼ z, and

Var½cXi� = Var½1k
Pj¼k

j¼1ðdA0
i
j � dQ0jÞ

2� �
Pm¼s

m¼1ð2d
2
im
Þ

k ¼ v. Using the

Chebyshev inequality, for any positive number �, let k ¼ 6v
ð�Þ2

,

we have

PrfjcXi � zj � �g � 1
6 :

Therefore, we can control the error rate of our approximate

algorithm by adjusting the cycle times k adaptively, which

means that the more cycles, the higher accuracy our approx-
imate algorithm will acquire.

4.2 EFSS_II

The main contribution of EFSS_I is to fulfill the DNA simi-
larity search among encrypted DNA sequences. However,
in reality, different users may have different data access
authorities to eachDNA sequence. For example, the attending

Fig. 4. Detailed description of the EFSS_I.
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doctors of breast cancer probably have not any access rights
except breast cancer patient’s DNA sequences. Besides,
sometimes we do not need to query over entire DNA
collections, where specific DNA sequences controlling par-
ticular genetic genes (such as genes controlling physical
characteristics, mammary cancer, diabetes, etc.) should be
the focus of our attention. What’s more, EFSS_I cannot
guarantee the unlinkability of trapdoors since the query
frequencies are leaked to the cloud server. As a result, the
cloud server can easily observe the relationship of trap-
doors and grab the search user’s query histories, which
may threaten the confidentiality of users’ DNA data. Based
on the situation above, in this section, we propose EFSS_II,
an enhanced model to achieve Boolean query and data
access control over encrypted cloud data with a higher
security level.

EFSS_II is shown in Fig. 5. Concretely, we leverage fol-
lowing methods to realize the proposed functions and secu-
rity requirements.

4.2.1 Variant of Secure kNN Computation

As shown in Fig. 4, in the jth iteration of EFSS_I, the
encrypted index of Ai is generated as Ij

A0
i
¼ ðd

A
0j
i1
; d

A
0j
i2
; d

A
0j
im
;

. . . ; d
A
0j
is
Þ. It may give a chance to the cloud server deducing

the relationship between reference genome Ref and Ai.
Specifically, based on the public Ref, the cloud server can
easily get the similarity between Ref and Ai by computing
E½d2

A0
i
� ¼

Ps
j¼1 jA

0
ijj. For example, if E½d2

A0
i
� ¼ 0, the cloud

server can almost assert that Ref ¼ Ai, thus it can further
obtain the content of Ai.

To address this problem, in our EFSS_II, we adopt a vari-
ant of secure kNN computation [36] to solve above problem.
Concretely, in our EFSS_II, we first define a pseudorandom
permutation function p as follows.

p : f0; 1g� 	 f0; 1g2sþvþcþ2 ! f0; 1g2sþvþcþ2:

Fig. 5. Detailed description of the EFSS_II.
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Then, as shown in Index generation andTrapdoor generation,fAi
j and eQj will be permutated as fAi

j0ðpSkjðmÞÞ ¼ fAi
jðmÞ andfQj 0ðpSkjðmÞÞ ¼ eQjðmÞ, respectively, where Skj is the secret

key in the jth iteration. Next, a ð2sþ vþ cþ 2Þ dimensional

binary vector Sj and two ð2sþ vþ cþ 2Þ 	 ð2sþ vþ cþ 2Þ
invertiblematricesM1j;M2j will be adopted to further random-

ize fAi
j0 and fQj0. In this way, the cloud server cannot obtain

any additional information among the encrypted indexes/

trapdoors because of the random connection of ciphertexts.

4.2.2 Achieving Fine-Grain Query

In our EFSS_II, each DNA sequence Ai is divided into fixed
sub-blocks, each of which represents a DNA fragment that
controls a specific gene. It will facilitate the Boolean query
over encrypted cloud data. More concretely, we assume that
set QN (which is a subset of all gene types) contains those
types of genes that are not considered in current query. As
shown in Trapdoor generation, at jth iteration, if Q0m 
 QN,
d
Q
0j
m
will be set as (0, 0). Otherwise, d

Q
0j
m
¼ ð
P

m2Q0m HrjðmÞ; 1Þ.
By doing so, when the cloud server executes the operation (i.

e, IjAi
� Tj

Q) over encrypted DNA sequences, every DNA frag-

ment belonged to QN will be filtered out, since we have
d
Q
0j
m
	 ðd

A
0j
ið2m�1Þ

;� 1
2 ðdA0j

ið2mÞ
Þ2Þ ¼ 0 (shown in the next subsec-

tion). Hence, the Boolean query such as mixed “AND” and
“NO” operations on genes can be achieved.

4.2.3 Data Access Control

As discussed in Section 4.2, different users may have differ-
ent access rights to DNA sequences. Without loss of gener-
ality, assume there are a total of R roles in our EFSS_II,
where R ¼ ðd1; d2; . . . ; dvÞ. Then, for each DNA sequence Ai,
we define a role polynomial as below.

fiðxÞ ¼
Y

select dij2R
ðx� dijÞ ¼

Xj¼v
j¼0

bijx
j; (5)

where fiðxÞ is the role polynomial, and dij, j ¼ ð1; 2; . . .vÞ
denotes a role of Ai. Here we use fi to represent the degree
of fiðxÞ, which satisfies bij ¼ 0when ðfi < j � vÞ.

Further, we assume that set R ¼ ðd1; d2; . . . ; dvÞ is subject
to the following conditions.

d1 > D > max
Xm¼2s
m¼1
ðfAi

jðmÞ � eQjðmÞÞ
�����

�����
( )

ði ¼ 1; 2; . . .N; j ¼ 1; 2; . . . k;m ¼ 1; 2; . . . 2sÞXj¼g�1
j¼1

dj þ 2D < dg; ðg ¼ 2; 3; . . .vÞ:

(6)

Next, we introduce how EFSS_II achieves the data access
control under the encrypted environment.

As shown in Fig. 5, we have

Dj
i ¼ IjAi

� Tj
Q ¼ fM1jD

j0
Ai
;M2jD

j00
Ai
g � fM�1

1j D
j0
Q;M

�1
2j D

j00
Qg

¼ Dj0
Ai
�Dj0

Q þDj00
Ai
�Dj00

Q ¼
fAi

j0 � fQj 0 ¼ fAi
j � eQj

¼
Xm¼2s
m¼1
ðfAi

jðmÞ � eQjðmÞÞ þ
Xl¼v
l¼0

bilh
l þ
Xr¼f
r¼0

gir � g 0r;

where the dummy noises selected in our model obey a nor-
mal distribution with mean and variance as ð0; u2Þ. u2 is a
small positive number.

Case 1. if a search user can access data Ai, this means that
the user’s role h 2 R is a root of fiðxÞ. Then, we havePl¼v

l¼0 bilh
l ¼ 0. Since each dummy noise is selected from the

normal distribution ð0; u2Þ, we have E½
Pr¼f

r¼0 gir � g 0r� ¼ 0.
Therefore, following equation is established.

cDi ¼
Pk

j¼1 D
j
i

k
� E IjAi

� Tj
Q

h i
¼ E

Xm¼2s
m¼1
ðfAi

jðmÞ � eQjðmÞÞ þ 0þ 0

" #

¼ E
Xm¼s
m¼1

 
d
A
0j
ið2m�1Þ

;� 1

2

�
d
A
0j
ið2mÞ

�2!
� d

Q
0j
m

" #
:

(7)

According to the definition D > max
Pm¼s

m¼1ðdA0j
im
;�

�����
1
2 ðdA0j

im
Þ2Þ � d

Q
0j
m
jg, we have jcDij �D < 0, which satisfies the

restrictions in Query process. Moreover, d
Q
0j
m
	 ðd

A
0j
ið2m�1Þ

;

� 1
2 ðdA0j

ið2mÞ
Þ2Þ ¼ 0 is established for each Q0m belonged toQN,

hence the mixed “AND” and “NO” operations on genes is

also completed.
The correctness of EFSS_II can be easily derived from

EFSS_I because the results returned by the two models are
consistent. At this point, our EFSS_II enables the functions of
Boolean query and data access control over encrypted cloud
data.

Case 2. if a search user cannot access data Ai, this means
that the user’s role h 2 R is not a root of fiðxÞ. Based on the
Eqn. (7), we have

cDi ¼
Pk

j¼1 D
j
i

k
� E IjAi

� Tj
Q

h i
¼ E

Xm¼2s
m¼1
ðfAi

jðmÞ � eQjðmÞÞ þ
Xl¼v
l¼0

bilh
l þ 0

" #
:

Reviewing the constraints in the Eqn. (6), we know that

d1 > D > max
Pm¼2s

m¼1 ðfAi
jðmÞ � eQjðmÞÞ

��� ���n o
, and

Pj¼g�1
j¼1 djþ

2D < dg for any g ¼ ð2; 3; . . .vÞ. Then, we have j
Pl¼v

l¼0
bilh

lj � d2 � d1 > 2D. Therefore, the following equation is

established.

jcDij �D � E IjAi
� Tj

Q

h i��� ����D

¼
Xm¼2s
m¼1
ðfAi

jðmÞ � eQjðmÞÞ þ
Xl¼v
l¼0

bilh
l

" #�����
������D

>
Xl¼v
l¼0

bilh
l

�����
������ Xm¼2s

m¼1
ðfAi

jðmÞ � eQjðmÞÞ
�����

������D

> ðjd2 � d1jÞ �D�D

> 0:

Therefore, cDi will be aborted since this search user does not
meet our pre-defined data access mechanism.

Summary of the Case 1 and Case 2, we can assure that EFS-
S_II can achieve all the functions and the security require-
mentswe claim.
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4.3 Enhanced Scheme

As the description on EFSS_I and EFSS_II, each DNA
sequenceAi is compressed into its corresponding set of edit-
ing operations A0i. This conversion can efficiently reduce the
number of elements to be matched in the querying process.
However, each encrypted index still needs to be performed
inner product operations (i.e., IjAi

� Tj
Q) with the trapdoor,

which leads to high computational overheads. To address
this problem, we update EFSS_II to EFSS_II (ES) by utilizing
K-means clustering algorithm to further improve the effi-
ciency. Specifically, in Initialization process, the data owner
first uses the K-means clustering algorithm to divide all
DNA sequences into K classes and generates the corre-
sponding encrypted indexes for all DNA sequences and K
cluster centers. Next, in Query process, given a threshold t
(selected by the search user), the cloud server first computes
Ijki � T

j
Q to find those cluster centers satisfying Diff jðki0;

Q0Þj � t, where ki; i ¼ ð1; 2; . . .KÞ is a cluster center, and ki
0 is

the set of its editing operations. Then, only those encrypted
indexes belonged to selected centers will be further com-
puted in the following querying. In this way, a large number
of unrelated DNA sequences will be filtered out, which sig-
nificantly reduces the ciphertext matching time. Since the K-
means clustering algorithm can be easily applied to our EFS-
S_II, for the sake of simplicity, there we only give a K-means
clustering algorithm as an example (Please see Algorithm 1
in Appendix, available in the online supplemental material)
to describe how to find the K classes over encrypted DNA
data.

5 SECURITY DEFINITIONS AND ANALYSIS

In this section, wewill analyze the security of our EFSS_II. As
shown in Section 2.2, the security requirements of our
schemes are confidentiality of DNA sequence data, privacy
protection of index and trapdoor, and the unlinkability of
trapdoors. Concretely, the raw DNA sequences have been
encrypted by encryption-before-outsourcing methods [37],
[38], which have been widely recognized to be secure. There-
fore, in this section, we mainly focus on the security features
of index and trapdoor, and discuss the privacy protection of
both of them in detail.

Before discussing the security of our proposed scheme,
we first introduce some notions used in the proof process.

� History: History contains a setV of raw DNA sequen-
ces, an index set IV constructed based on V, and a set
of queries GG ¼ ðQ1;Q2; . . .QkÞ sent to the cloud
server. They are denoted as a tupleH ¼ ðV; IV;GGÞ.

� View: View is the encrypted data of H. Specifically,
given the secret key sksk ¼ ðrj; Sj;M1j;M2j; SkjÞ at jth
iteration, the view of H can be described as V ðHÞ ¼
ðEncskskðVÞ; EncskskðIVÞ; EncskskðGGÞÞ, where EncskskðIVÞ
and EncskskðGGÞ represent the encrypted indexes and
trapdoors respectively.

� Trace of history: The trace of history TraceðHÞ denotes
the information captured by the cloud server, such as
the search and access patten leaked from querying
process. Concretely, TraceðHÞ can be represented
as TraceðHÞ ¼ ðTraceðQ1Þ; TraceðQ2Þ; . . . ; TraceðQkÞÞ,
where TraceðQsÞ; s ¼ ð1; 2; . . . kÞ indicates the similarity

score between encrypted index IAi
ði ¼ 1; 2; . . . ;NÞ

and trapdoor TQs
.

Based on the notions illustrated in above, we divide the
privacy of index, trapdoor, and the unlinkability of trap-
doors into two classes named Index Privacy and Trapdoor Pri-
vacy. Both of them will be analyzed with the definition of
indistinguishability under same-closeness-pattern chosen-
plaintext attacks (IND-CLS-CPA).

5.1 Formal Security Definitions

1) Index Privacy: Informally, in our EFSS II, the index pri-
vacy under IND-CLS-CPA means that given two datasets
fC0C0; C1C1g 
 fA0iji ¼ 1; 2 � � �Ng, a P.P.T adversaryA can access
both the secure index and trapdoor generation algorithm
under certain constraints. However, adversary A cannot
distinguish the two datasetsC0C0 andC1C1.

Definition 1 (IND-CLS-CPA Index Privacy). Let
Q
¼

ðKeyGen;GenIndex;GenTrapdoor;QueryÞ be a probabilis-
tic EFSS II scheme based on security parameter �, we design
a security game between an adversary A and a challenger B:

Initial: Adversary A submits two datasets C0C0 and C1C1

with the same number of records to the challenger B,
where C0C0 ¼ fA00;1;A00;i; . . .A00;ng, and A00;i is the set of edit-
ing operations of a DNA sequence A0;i.

Setup: Challenger B runs the keygenð1�Þ to acquire
secret key sksk ¼ ðrj; Sj;M1j;M2j; SkjÞðj ¼ 1; 2; . . . ; kÞ and
keeps it privately.

Phase 1: Adversary A can select a number of requests
and send them to the challenger B. These requests include
the following types:

� GenIndex Request: On the jth GenIndex request,
adversary A generates a dataset C0jC

0
j ¼ fA0j;1;A0j;i;

. . .A0j;ng and submits it to the challenger B,

where A0j;i ¼ ðA0j;i1; A0j;i2; A0j;im; . . . ; A0j;isÞ; m ¼ ð1;
2; . . . ; sÞ. For each A0j;im, the challenger B uses
the secret key rj to encrypt it as d0Aj;im

¼P
m2A0

j;im
HrjðmÞ. Then, A0j;i will be rewritten as

A00j;i ¼
�
d0Aj;i1

; � 1

2
ðd0Aj;i1

Þ2 ; . . . ; d0Aj;is
;� 1

2
ðd0Aj;is

Þ2 ;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2s

bj;i0; . . .bj;iv;|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
vþ1

gj;i0; . . . gj;ic|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
cþ1

�
. For m ¼ 1 to m ¼

2sþ vþ cþ 2. A00j;i will be permuted using
secret key Skj, i.e., gAj;iðpSkjðmÞÞ ¼ A00j;iðmÞ.
Next, the challenger B exploits the secret key
consisted of a ð2sþ vþ cþ 2Þ dimensional
binary vector Sj and two ð2sþ vþ cþ 2Þ	
ð2sþ vþ cþ 2Þ invertible matrices M1j;M2j to
further encrypt gAj;i. Finally, the challenger B
answers this request with encrypted index as
ICj0ICj0  GenIndexðrj; Skj; Sj;M1j; M2j; C

0
jC
0
jÞ.

� GenTrapdoor Request: On the jth GenTrapdoor
request, adversary A selects a plaintext request

Qj ¼ ðQj;1; Qj;2; Qj;m; . . . ; Qj;s; h
0
j ; h

1
j ; . . . h

v
j ; gj;0; gj;1;

. . . gj;cÞ and a set QN
j , where QN

j denotes those

types of genes that adversary A does not want to
query on the jth request. Both of them will be sent
to challenger B. For each Qj;m, ðm ¼ 1; 2; . . . sÞ, if
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Qj;m 2 QN
j , challenger B sets dQj;m

¼ ð0; 0Þ. Other-
wise, dQj;m

¼ ð
P

m2Qj;m
HrjðmÞ; 1Þ, where rj indicates

the secret key on the jth hash function. Then

Qj will be rewritten as Q0j ¼
�
dQj;1

; dQj;2
; . . . dQj;s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2s

;

h0j ; h
1
j ; . . . h

v
j|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

vþ1

; gj;0; gj;1; . . . gj;c|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
cþ1

�
. Challenger B will

further permute Q0j with the secret key Skj, i.e.,
Q00j ðpSkjðmÞÞ ¼ Q0jðmÞ for m ¼ 1 to m ¼ 2sþ vþ
cþ 2. Next, the challenger Bexploits the secret
key consisted of a ð2sþ Y þ U þ 1Þ dimensional
binary vector Sj and two ð2sþ vþ cþ 2Þ	
ð2sþ vþ cþ 2Þ invertible matrices M�1

1j ;M
�1
2j to

further encrypt Q00j . Finally, the challenger B
answers this request with encrypted trapdoor
TQj
 GenTrapdoorðrj; Skj; Sj;M

�1
1j ;M

�1
2j ; QjÞ.

Please note that both C0jC
0
j andQj are subjected to

1) TraceðQ0Q0Þ ¼ TraceðQ1Q1Þ ¼ � � �TraceðQkQkÞ, for every
Qj; j ¼ ð1; 2; . . . kÞ submitted in GenTrapdoor request
phase.

2) ðC0C0 � C1C1Þ
S
ðC1C1 � C0C0Þ =2 C0jC

0
j.

Challenge: with C0C0 and C1C1 selected in Initial, challenger B
throws a coin to decide a variable b 2 f0; 1g, and returns
ICb
ICb
 GenIndexðrb; Skb; Sb;M1b;M2b; CbCbÞ to the adversary A.
Phase 2: In this phase, a number of indexes and trapdoors

generation requests can be also adaptively selected by
adversary A and be submitted to the challenger B, but these
requests should also subject to the constraint conditions in
Phase 1.

Guess: Adversary A takes a guess b0 of b.
There

Q
will be considered secure against same- closeness-

pattern chosen-plaintext attacks if for any P.P.T adversary A
in the game above, it atmost has a negligible advantage

AdvIND�CLS�CPA�IndexQ
;A

ð1�Þ ¼ pr½b0 ¼ b� � 1
2

�� �� � neglð�Þ;

where neglð�Þ denotes a negligible probability with parame-
ter �.

2) Trapdoor Privacy: Similarly, the trapdoor privacy under
IND-CLS-CPA means that given two query requests Q0 and
Q1, a P.P.T adversary A can access both the secure index
and trapdoor generation algorithm under certain constraints.
However, adversary A cannot distinguish the two query
requestsQ0 andQ1.

Definition 2 (IND-CLS-CPA Trapdoor Privacy). Let
Q
¼

ðKeyGen;GenIndex;GenTrapdoor;QueryÞ be a probabilis-
tic EFSS II scheme based on security parameter �, we design
a security game between an adversary A and a challenger B:

Initial: Adversary A submits two query requests Q0

and Q1 with same dimensions to challenger B, where
Qi ¼ ðQi;1; Qi;2; Qi;m; . . . ; Qi;s; h

0
i ; h

1
i ; . . . h

v
i ; g

0
i;1; g

0
i;2; . . . g

0
i;cÞ,

i ¼ ð0; 1Þ.
Setup: Challenger B runs the keygenð1�Þ to create

secret key sksk ¼ ðrj; Sj;M1j;M2j; SkjÞðj ¼ 1; 2; . . . ; kÞ and
keeps it privately.

Phase 1: Adversary A can select a number of requests
sent to the challenge B, and these requests include the
following types:

� GenIndex Request: On the jth GenIndex request,
adversary A generates a dataset CjCj ¼ fA0j;1;
A0j;i; . . .A

0
j;ng and submits it to the challenger B,

where A0j;i ¼ ðA0j;i1; A0j;i2; A0j;im; . . . ; A0j;isÞ; m ¼ ð1; 2;
. . . ; sÞ. For each A0j;im, the challenger B uses
the secret key rj to encrypt it as d0Aj;im

¼P
m2A0

j;im
HrjðmÞ. Then, A0j;i will be rewritten

as A00j;i ¼
�
d0Aj;i1

;� 1

2
ðd0Aj;i1

Þ2; . . . ; d0Aj;is
;� 1

2
ðd0Aj;is

Þ2;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2sbj;i0; . . .bj;iv;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

vþ1

gj;i0; . . . gj;ic|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
cþ1

�
. For m ¼ 1 to m ¼

2sþ vþ cþ 2. A00j;i will be permuted by utilizing

secret key Skj, i.e., gAj;iðpSkjðmÞÞ ¼ A00j;iðmÞ. Next,
the challenger B exploits the secret key consisted
of a ð2sþ vþ cþ 2Þ dimensional binary vector
Sj and two ð2sþ vþ cþ 2Þ 	 ð2sþ vþ cþ 2Þ
invertible matrices M1j;M2j to further encryptgAj;i. Finally, the challenger B answers this request
with encrypted index as ICj

ICj
 GenIndexðrj; Skj;

Sj;M1j;M2j; CjCjÞ.
� GenTrapdoor Request: On the jth GenTrapdoor

request, adversary A selects a plaintext request
Q0j ¼ ðQj;1; Qj;2; Qj;m; . . . ; Qj;s; h

0
j ; h

1
j ; . . . h

v
j ; gj;0; gj;1;

. . . gj;cÞ and a set QN
j , where QN

j denotes those

types of genes that adversary A does not want to
query on the jth request. Both of them will be sent
to challenger B. For each Qj;m, ðm ¼ 1; 2; . . . sÞ, if
Qj;m 2 QN

j , challenger B sets dQj;m
¼ ð0; 0Þ, other-

wise, dQj;m
¼ ð
P

m2Qj;m
HrjðmÞ; 1Þ, where rj indi-

cates the secret key on the jth hash function. Then

Q0j will be rewritten as Q00j ¼
�
dQj;1

; dQj;2
; . . . dQj;s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2s

;

h0j ; h
1
j ; . . . h

v
j|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

vþ1

; gj;0; gj;1; . . . gj;c|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
cþ1

�
. Challenger B will

further permute Q00j by pseudorandom permuta-
tion with the secret key Skj, i.e., Q

000
j ðpSkjðmÞÞ ¼

Q00j ðmÞ for m ¼ 1 to m ¼ 2sþ vþ cþ 2. Next, the
challenger Bexploits the secret key consisted of a
ð2sþ Y þ U þ 1Þ dimensional binary vector Sj and
two ð2sþ vþ cþ 2Þ 	 ð2sþ vþ cþ 2Þ invertible
matrices M�1

1j ;M
�1
2j to further encryptQ00j . Finally,

the challenger B answers this request with
encrypted trapdoor TQ0

j
 GenTrapdoorðrj; Skj;

Sj;M
�1
1j ;M

�1
2j ; QjÞ.

Please note that both CjCj andQ0j are subjected to

1) TraceðQ0Q0Þ ¼ TraceðQ1Q1Þ, for all CjCj submitted in
GenIndex request phase.

2) Q0j =2 fQ0Q0; Q1Q1g.
Challenge: with Q0Q0 and Q1Q1 selected in Initial, challenger B

throws a coin to decide a variable b 2 f0; 1g, and returns
TQb
TQb
 GenIndexðrb; Skb; Sb;M1b;M2b; QbQbÞ to the adversary A.

Phase 2: In this phase, a number of indexes and trapdoors
generation requests can be also adaptively selected by
adversary A and be submitted to the challenger B, but these
requests should also be subjected to the constraint condi-
tions in Phase 1 as well.

Guess: The adversary A takes a guess b’ of b.
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There
Q

will be considered secure against same-closeness-
pattern chosen-plaintext attacks if for any P.P.T adversary A
in the game above, it atmost has a negligible advantage

AdvIND�CLS�CPA�TrapdoorQ
;A

ð1�Þ ¼ pr½b0 ¼ b� � 1
2

�� �� � neglð�Þ;

where neglð�Þ denotes a negligible probability with parame-
ter �.

5.2 Security Analysis

Theorem 1. Our EFSS_II is IND-CLS-CPA index secure under
the game of Definition 1.

Proof. The P.P.T adversary A can access the secure index
generation algorithm to get plaintext - ciphertext pairs
ðC0jC0j; ICj0ICj0 Þ. However, if A does not know the secret key
sksk ¼ ðrj; Sj;M1j;M2j; SkjÞ on jth GenIndex request, the

split process of fAi
j (shown in Fig. 5) is transparent to

adversary A, and he needs to reconstruct the two random

ð2sþ vþ cþ 2Þ-dimensional vectors Dj0
Ai

and Dj0
Ai
. How-

ever, these two vectors will be further encrypted as

M1jD
j0
Ai

and M2jD
j00
Ai
, respectively, where M1j and M2j are

also two ð2sþ vþ cþ 2Þ 	 ð2sþ vþ cþ 2Þ-dimensional

unknownmatrices to adversary A. Thus, there are a total of

2ð2sþ vþ cþ 2ÞjfAi
jj unknown variables inDj0

Ai
and Dj00

Ai
,

and 2ð2sþ vþ cþ 2Þ2 unknown variables inM1j andM2j.

Therefore, it is very hard for adversary A to restore the

matrixesM1j andM2j. Although some research results [37],

[39] can address this problem partly by linear analysis,

instead of restoring the matrixesM1j and M2j. However, it

is unrealistic to find ð2sþ vþ cþ 2Þ linear independent

equations in our scheme since more than 99.5 percent of

the DNA sequences between any two irrelevant people
are identical [8]. Moreover, even an attacker can recover

the two vectors Dj0
Ai

and Dj0
Ai
, and obtain the value of

d
A
0j
im
¼
P

m2A0
im
HrjðmÞ for 1 � m � s, he still cannot get any

information about the contents of A0im due to the one-way

property of hash function. Therefore, our EFSS_II is IND-

CLS-CPA index secure under the game ofDefinition 1. tu

Theorem 2. Our EFSS_II is IND-CLS-CPA trapdoor secure
under the game of Definition 2.

Proof. Because the trapdoor is generated in the same way
compared with encrypted index, the security analysis of
trapdoor privacy under IND-CLS-CPA can be achieved
by a similar way. For simplicity, here we omit the specific
proof process. tu

Unlinkability of Trapdoor. To demonstrate the unlinkability of
Trapdoors, here we estimate the probabilities of collision
occurrence between two trapdoors.

As discussed in Section 4.2, the trapdoor is made up of
Tj
Q ¼ fM1jD

j0
Q;M2jD

j00
Qg. Specifically, given a query request

Qj, each element of it will be first mapped into f�1; 1g
through the hash function. For convenience, we assume that
there are a total of 2s possible mapped results. Next, a pseu-
dorandom permutation function p is also used to permute
the position of each element in Qj0. It also has ð2sþ vþ cþ
2Þ possible replaced positions. Besides, assume the size of

each dummy noise added inQ0j is ’ bits, there are v2’ possi-

ble options for dummy noise. Next, as shown in Fig. 5, we
use a ð2sþ vþ cþ 2Þ dimensional binary vector Sj to split

the vector fQj0, where fQj0ðmÞ will be split into two random

values (i.e., Dj0
QðmÞ and Dj00

Q ðmÞ ) when SjðmÞ ¼ 0. Thus,
assume the number of ‘0’ in Sj is n, and each dimension of

Dj0
QðmÞ and Dj00

Q ðmÞ) is i bits, there are a total of 2in possible
values for split process. Note that ’, n and i are selected inde-
pendently to each other. Therefore, for any two trapdoors,
we can calculate that the probability of them are identical as
follows.

P1 ¼
1

2s � ð2sþ vþ cþ 2Þ! � v2’ � 2in

¼ 1

ð2sþ Y þ U þ 1Þ! � v2sþ’þin :
(8)

Therefore, if we select a lager ’, n and i, we can ensure the
higher security.

6 PERFORMANCE EVALUATION

In this section,we conduct experiments to evaluate the perfor-
mance of our proposed schemes. The experimental configura-
tion is as follows: All the experiments are compiled in the
Python language with version 3.7.4, where each user (i.e., the
data owner or search user) is simulated by one HP i7 8550u
notebook, which has one 1.8GHZ CPU, 8G flash memory,
256SSD and 500G mechanical hard disk, and assigned with
64-bit Windows 10 operating system. The “ Cloud ” is simu-
lated with two Lenovo servers which have 2 Intel(R) Xeon(R)
E5-2620 2.10GHZCPU, 64GBRAM, 512SSD, 4 TBmechanical
hard disk and runs on the Ubuntu 18.04 operating system.
TheWagner-Fischer algorithm [35] is adopted to convert each
raw DNA sequence into its set of editing operations. The
secret key in each round j, i.e., the ð2sþ vþ cþ 2Þ dimen-
sional binary vector Sj and two ð2sþ vþ cþ 2Þ 	 ð2sþ v þ
cþ 2Þ dimensional invertible matrices M1j;M2j, are gener-
ated under the guidance of the standard secure kNN compu-
tation [36]. The 2-wise universal hash function Hrj in each
round j is selected from murmurhash64 [40], which can be
used to customize a hash function with a fixed range of val-
ues. In addition, the pseudorandom permutation function p

used in our model is replaced by the classic algorithm Fisher-
Yates-shuffle [41].

We select data in batches from the publicly available
1,000 Genomes Project [34]. Specifically, to demonstrate
the matching accuracy of our protocol under different
genomic sequences, we choose genomic sequences
on five distinct chromosomes, i.e., Chromosome 2
(133019901C133020615) (contain 1,888 genes), Chromosomes
3 (75785026-75788496)(contain 1,469 genes), Chromosome 21
(9907190C9909277) (contain 357 genes), Chromosome 22
(22720578C22722138)(contain 545 genes), and Chromosome
Y (10027986-10029907) (contain 86 genes). As mentioned
before, every raw DNA sequence will be converted to its set
of editing operations and stored in a VCF (Variation Call For-
mat) file. Please note that we unify all the files to a fixed size
andmake each file contain the same length of DNA. It will be
beneficial to the implementation of the entire program. For
more persuasive, the state-of-the-art works [8], [9], [12] are
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also exploited to compare the performance (i.e., computation
and communication costs) with our EFSS. These works are
very similar to ours, as they also focus on DNA data and are
committed to designing efficient similarity queries among
gene sequences in the ciphertext environment.

6.1 Functionality

We first compare the functionality of our model with state-of-
the-art works. As shown inTable 3, keyword/stringmatching
in the ciphertext is not an emerging research field, and many
privacy-preserving approaches have been designed and
applied to different scenarios. However, we can see that exist-
ing models (such as [8], [9], [11]) for genomic data always
require multiple interactions between the user and the server.
This is mainly due to the nature of the length of the genome
sequence. As introduced before, the length of a gene sequence
always ranges from hundreds of thousands to millions of
base pairs [8]. To speed up the matching between DNA
sequences in ciphertext, an alternative is to outsource most
ciphertext computing operations to two non-collusive servers
[11] or to perform matching with the assistance of users pro-
viding decryption services [8], [9]. However, in real-world
applications, it is difficult to ensure that the two service pro-
viders do not collude, even if the two entities belong to
completely different operators [29], [42]. On the other hand,
SMC basedworks [8], [9] requires all parties remaining online
during the entire querying process, which significantly limits
the robustness of these solutions to sporadic events such as
network delays and device damage. Scheme [12] breaks the
defects of [8], [9] in communication. However, it uses the tra-
ditional predicate encryption scheme [43] based on bilinear
mapping during the string matching process, which inevita-
bly leads to high computation and communication overheads.
On the other hand, to our best knowledge, existing solutions
for genomic data are unable to support the requirements of
Boolean queries and data access control. Although there have
been some research results on data access control [13], [30]
and Boolean query [17], [18], [31] in the field of text-based
ciphertext searching, as explained before, it will incur huge
computation cost if we directly exploit them to perform
privately DNA sequence matching. Moreover, the heteroge-
neity of the application scenarios also makes these solutions
difficult to be adopted in DNA queries. Compared with these
schemes, our EFSS is non-interactive, and can efficiently

support mixed Boolean queries as well as data access control
over encrypted DNA data. We first design a private approxi-
mation algorithm to convert the edit distance computation
problem to the symmetric set difference size approximation
problem, which can significantly reduce the number of ele-
ments that need to be matched under ciphertext. Then, we
design a novel Boolean search method to achieve the compli-
cated logic query such asmixed “AND” and “NO” operations
on genes. Moreover, since the search strategy can avoid
unnecessary DNA sequences matched during the query pro-
cess, users can also gain the benefit of receiving accurate
results with a short period. In the end, by utilizing a variant of
polynomial based design, EFSS is able to support data access
control during the query process, where each DNA sequence
is accessible to users who are authorized.

6.2 Accuracy

In this section, we analyze the query accuracy of our EFSS. It
is worth noting that EFSS_II is the improvement of EFSS_I,
which is an extension of its functionality without affecting
the accuracy of EFSS_I. For the sake of simplicity, here we
only take EFSS_II as an example. As discussed in Section 4.1,
we exploit the CLN Theorem to estimate the expectation of
ðdA0

i
� dQ0 Þ2; i 2 f1; 2g, which inevitably introduces errors in

the matching process. To a certain extent, it harms the accu-
racy of the final returned results.We have given a formal the-
oretical analysis to show that this error can be mitigated by
increasing the cycle times k. To verify our argument, we
choose genomic sequences on five distinct chromosomes
from the publicly available 1,000 Genomes Project [34]. The
specific characteristics of the selected datasets are shown in
Table 4. We can observe that each chromosome contains at
least hundreds of genes, which constitutes a DNA sequence
based on tens of millions of base pairs. However, for differ-
ent individuals, the variability between two genomic
sequences belonged to the same type of chromosome is very
small (�6:16%). This verifies that most of the genome
sequences between different people are the same, which is
also the prerequisite for the smooth execution of our approxi-
mation algorithm (refer to Section 3.2). Then, we outsource
the ciphertexts of selected datasets to the cloud and ask it to
return top-K closest results for a given search sequence.

As shown in Table 5, EFSS_II is able to return fairly cor-
rect results under the different datasets. Although EFSS_II

TABLE 3
Comparison of Functionality With Existing Models

Function
Literature Matching Threat model Access control Boolean query Interaction Data type

[33] Similarity Honest-but-curious No No Non-interactive Textual
[32] Similarity Honest-but-curious (two-servers) No No Interactive Textual
[9] Similarity Honest No No Interactive Genetic
[8], [11] Similarity Honest-but-curious No No Interactive Genetic
[10] Similarity Honest-but-curious (two-servers) No No Interactive Genetic
[12] Similarity Honest-but-curious No No Non-interactive Genetic
[22], [23] Similarity Honest-but-curious No No Non-interactive Textual
[13], [30] Exact Honest-but-curious Yes No Non-interactive Textual
[31] Exact Honest-but-curious No Yes Non-interactive Textual
[17] Exact Honest-but-curious Yes Yes Non-interactive Textual
[18] Exact Honest-but-curious No Yes Non-interactive Textual
Our model Similarity Honest-but-curious Yes Yes Non-interactive Genetic
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inevitably returns a small number of erroneous results as
the value of K (i.e., the top-K closest results to the search
sequence) increases, it still shows excellent performance in
accuracy (�90%). Besides, as analyzed in Section 4.1, the
query accuracy can be improved by adjusting the number
of the cycle times k, which means that increasing the num-
ber of cycle times k is beneficial to the accuracy. Of course,
this is at the expense of additional computation and com-
munication overhead (analyzed in Sections 6.3 and 6.4). On
the other hand, we can see that EFSS_II shows a higher
accuracy on chromosomes 21 and 22 than on chromosomes
2 and 3. This is because the chromosomes 21 and 22 have a
lower variability rate than those of the other two types of
chromosomes, which helps our approximation algorithm to
perform better under these datasets.

6.3 Communication Overhead

We now discuss the communication overhead of our pro-
posed schemes, i.e., EFSS_I, EFSS_II and EFSS_II(ES). Besides,
the state-of-the-art works [8], [9], [12] are also analyzed in this
part to present more visibility. These works are very similar
to ours, as they also focus on DNA data and are committed to
designing efficient similarity queries among gene sequences
in the ciphertext environment.

6.3.1 Theoretical Analysis

The theoretical analysis results are shown in Table 6. For
the convenience of the description, we first divide the
communication overhead of non-interactive schemes (i.e.,
EFSS_I, EFSS_II, EFSS_II(ES) and [12]) into three parts (i.e.,
Index generation, Trapdoor generation and Query), and
then discuss the cost of each part in detail. Conversely, for
interactive protocols [8] and [9], since the generated over-
head stems from the inseparable multiple interactions
between the server and the search user, we only summarize
their total communication overhead.

Specifically, in the phase of Index generation, for EFSS_I,
the data owner needs to send encrypted index of Ai as
Ij
A0
i
¼ ðd

A
0j
i1
; d

A
0j
i2
; d

A
0j
im
; . . . ; d

A
0j
is
Þ to the cloud server, where

j 2 ½1; k� and i 2 ½1; N �. Assume that the size of each d
A
0j
im

(i.e.,

the sum of all HhrðmÞ;m 2 A0im at jth iteration) is a bits, the
total size of the encrypted index for N genome genes is
N 	 k	 ðs	 aÞ bits. For EFSS_II, since each encrypted index
sent to the cloud server is formed as IjAi

¼ fM1jD
j0
Ai
;

M2jD
j00
Ai
g, where M1j;M2j are two ð2sþ vþ cþ 2Þ 	 ð2s þ

vþ cþ 2Þ dimensional invertible matrices, the total cost for
N genome genes are 2N 	 k	 ð2sþ vþ cþ 2Þ 	 a bits. Dif-
ferent from EFSS_II, EFSS_II(ES) requires the data owner to
divide all DNA sequences into K classes, and generates the
corresponding encrypted indexes for N genome genes and
K cluster centers. Therefore, the total ciphertext size is 2k 	
ðN þKÞ 	 ð2sþ vþ cþ 2Þ 	 a bits. For work [12], given a
DNA sequenceAi with length T , it first adopts the suffix tree
structure to represent the DNA sequence, which will pro-
duce T ðT þ1Þ2 subsequences for Ai. Then, it needs to generate
four ciphertexts (assume that the size of each ciphertext is
also a bits) for each subsequence and sends it to the server.
Thus, this process requires a total of 4N 	 a	 T ðT þ1Þ2 bits to
be transmitted for N genome genes. In the phase of
Trapdoor generation, for EFSS_I, given a query request, i.e.,
a genome geneQ, the search user needs to send the trapdoor
(i.e., the encrypted search request) as Tj

Q0 ¼ ðdQ0j
1
; d

Q
0j
2
; d

Q
0j
m
;

. . . ; d
Q
0j
s
Þ to the cloud server. Thus, the total size of the trap-

door is k	 ðs	 aÞ bits. Since the trapdoor generated by
EFSS_II and EFSS_II(ES) are consistent, that is, sending

Tj
Q ¼ fM1jD

j0
Q;M2jD

j00
Qg to the server for a given query

request Q, the cost of both EFSS_II and EFSS_II(ES) are

2k	 ð2sþ vþ cþ 2Þ 	 a bits. For work [12], given a query

request Q, the search user needs to generate ðT ðT þ1Þ2 þ 2Þ
ciphertexts and submits them to the cloud, where T ðT þ1Þ2

TABLE 4
Characteristics of the Selected Datasets

Characteristic
Dataset Number of genes Length Ave.-4 1 Max.-4 2 Variability 3

Chromosome 2 1,888 242193529 4070479.48 11193818.56 � 4:63%
Chromosome 3 1,469 198295559 6351472.95 12214371.05 � 6:16%
Chromosome 21 357 47347896 612550.29 1225100.58 � 2:59%
Chromosome 22 545 48674127 93007.89 186015.77 � 0:39%
Chromosome Y 86 59363566 892280.06 1978785.53 � 3:34%

1 Ave.-4 denotes the average of all edit distances between two genomic sequence in the dataset.
2 Max.-4 denotes the maximal edit distances between two genomic sequence in the dataset.
3 Variability is the ratio of the maximum edit distance to the length of the chromosome in the current database.

TABLE 5
Accuracy of EFSS_II

Dataset k K ¼ 1 K ¼ 3 K ¼ 5 K ¼ 7

Chromosome 2
5 96.48% 93.35% 91.18% 90.43%
10 97.33% 96.57% 94.23% 92.64%
15 98.47% 97.34% 95.40% 95.01%

Chromosome 3
5 96.27% 94.03% 90.86% 90.13%
10 97.38% 96.59% 94.73% 93.17%
15 98.49% 97.19% 94.93% 95.17%

Chromosome 21
5 99.46% 96.34% 95.12% 94.33%
10 100% 99.74% 98.32% 97.15%
15 100% 100% 99.73% 98.37%

Chromosome 22
5 99.57% 96.39% 95.07% 94.68%
10 100% 99.49% 98.20% 97.67%
15 100% 100% 99.81% 98.50%

Chromosome Y
5 99.18% 96.21% 95.36% 94.01%
10 99.38% 99.17% 98.81% 96.63%
15 99.47% 99.25% 98.97% 97.16%
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ciphertexts are for matching under encrypted domain, and
the other two ciphertexts are for verification. As a result, this
require a total of ðT ðT þ1Þ2 þ 2Þ 	 a bits to be transmitted. In the
Query phase, since all EFSS_ I, EFSS_II and EFSS_II(ES) are
required to returnK closest results, the communication over-
head incurred in this process is K	 a. For work [12], since
each query sequence is divided into T ðT þ1Þ2 subsequences, the
server needs to return K	 T ðT þ1Þ2 results for all subsequen-
ces, which produces a total cost ofK	 a	 T ðT þ1Þ2 bits.

Next, we analyze the communication cost of works [8]
and [9]. As described before, both [8] and [9] resort to multi-
ple interactions between the server and the user to support
string matching between DNA sequences under ciphertext.
To achieve this, garbled circuits GC [28] is exploited to pro-
vide secure interaction. For simplicity, we assume that the
size of the garbled circuit constructed in [8] and [9] is jGCj
bits. For work [8], the size of each encrypted DNA sequence
is t 	 a bits, where t denotes the number of hash functions
used to generate encrypted DNA sequences. Thus, the total
communication overhead required for N sequences is
ðN 	 t 	 aÞ bits. In the query process, for each pair of
sequences, the server and each user need to interact once to
obtain the edit distance between the two sequences. To
return K closest results, a total ofNðjGCj þ 2Þaþ ðK 	 aÞ bits
of data need to be transmitted between the server and the
user. Therefore, the total communication overhead required
for [8] is ðN 	 t 	 aÞ þNðjGCj þ 2Þaþ ðK 	 aÞ bits. Work [9]
also divides each DNA sequence into multiple subsequences
before performing matching in the ciphertext. Assume that
each DNA sequence is divided into ô subsequences, the
data owner needs to upload ðN 	ô	 aÞ bits of ciphertext to
the server forN genome genes. In query process, to return K
closest results, a total ofN 	ôðjGCj þ 2Þa bits of data need to
be transmitted between the server and the user. Hence, the
total communication overhead required for [9] is ðN	 ô	
aÞ þN 	ôðjGCj þ 2Þaþ ðK 	 aÞ bits.

6.3.2 Experimental Results

We conduct experiments to further demonstrate the commu-
nication overhead of our EFSS. From the above analysis, we
are convinced that the communication complexity of EFSS
(i.e., EFSS_I, EFSS_II, EFSS_II(ES)) is mainly related to the
number of genomes N in the dataset and the number of
cycles k in the execution process. Without loss of generality,
the dataset used in experiments is selected from batches in

chromosome 21 which contains 700 independent genomes.
Each genome has a length of 47347896 and contains 357 dif-
ferent gene sequences. As before, we also divide the scheme
into three parts (i.e.,Index generation, Trapdoor generation
and Query) and discuss the communication overhead of
each part separately.

Index generation: The communication cost in the phase
of Index generation is shown in Fig. 6. We can observe that
the amount of data generated by EFSS increases linearly
with the number of genomes/cycles in the system. Com-
pared with EFSS_I, EFSS_II increases the dimensions of each
encrypted index from s to ð2sþ vþ cþ 2Þ for supporting
the functions of Boolean query and data access control (the
number of users’ role/dummy noises are respectively set as
20 and 10 in our experiments), which inevitably incurs addi-
tional communication overhead. Similarly, different from
EFSS_II, EFSS_II(ES) requires the data owner to divide all
DNA sequences into K classes, and sends the additional K
cluster centers to the cloud in addition the encrypted indexes
for N genome genes. Therefore, compared with EFSS_I and
EFSS_II, EFSS_II(ES) requires more communication resour-
ces to submit all encrypted indexes to the cloud.

Trapdoor generation. Given a query request, i.e., a
genome geneQ, we can see that the cost of generating a single
trapdoor ofQ is mainly related to the number of k (shown in
Table 6). Fig. 7 presents the communication cost of generating
a single trapdoor as the number of cycle times k increases.
Similar to the previous, since EFSS_II increases the dimen-
sions of the trapdoor from s to ð2sþ vþ cþ 2Þ, the size of
the trapdoor generated by EFSS_II is slightly larger than the
one EFSS_I generated. Also, since the trapdoor generated by

TABLE 6
Comparison of Communication Overhead (Bits)

Model
Communication Overhead

Index generation Trapdoor generation Query

EFSS_I N 	 k	 ðs	 aÞ k	 ðs	 aÞ K 	 a

EFSS_II 2N 	 k	 ð2sþ vþ cþ 2Þ 	 a 2k	 ð2sþ vþ cþ 2Þ 	 a K	 a

EFSS_II (ES) 2k	 ðN þKÞ 	 ð2sþ vþ cþ 2Þ 	 a 2k	 ð2sþ vþ cþ 2Þ 	 a K	 a

[12] 4N 	 a	 T ðT þ1Þ2 ðT ðT þ1Þ2 þ 2Þ 	 a K	 a	 T ðT þ1Þ2

[8] ðN 	 t 	 aÞ þNðjGCj þ 2Þaþ ðK 	 aÞ

[9] ðN 	ô	 aÞ þN 	ôðjGCj þ 2Þaþ ðK 	 aÞ

Fig. 6. Communication overhead for building all encrypted indexes.
(a) For the different number of genomes with the same number of cycle
times, k = 10. (b) For the different number of cycle times with the same
number of genomes, N ¼ 100.
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EFSS_II and EFSS_II(ES) are consistent, the communication
overhead generated by these two schemes is the same.

Query. Table 6 shows that the communication overhead
of the EFSS_I, EFSS_II and EFSS_II(ES) is only related to the
number of returned results K during the query phase. Fig. 8
presents the communication cost as the number of returned
results K increases. Due to the consistency of the communi-
cation complexity of the three schemes, we can see that the
cost of them is the same.

Comparison with existing approaches. To demonstrate
the efficiency of our EFSS, we also conduct experiments to
compare EFSS with the existing approaches [8], [12] and [9].
For impartiality, all comparative experiments were done in
the same experimental environment, i.e., each user is simu-
lated by one HP i7 8550u notebook, which has one 1.8 GHZ
CPU, 8 G flash memory, 256SSD, and 500 G mechanical hard
disk, and assignedwith 64-bitWindows 10 operating system.
The “Cloud” is simulated with two Lenovo servers which
have 2 Intel(R) Xeon(R) E5-2620 2.10 GHZ CPU, 64 GB RAM,
512SSD, 4 TB mechanical hard disk and runs on the Ubuntu
18.04 operating system. The dataset used in experiments is
also selected from batches in chromosome 21, which contains
700 independent genomes. Each genome has a length of
47347896 and contains 357 different gene sequences. For
work [12], we adopt the cryptographic primitive of predicate
encryption [43] and Java Pairing Based Cryptography
Library (jPBC) [44] to implement its proposed scheme, which
is also the same as the configuration used inwork [12]. Please
note that since we use Python language to implement all the
simulation experiments in this paper, wemade a littlemodifi-
cation of implementingwork [12], that is, using the JPype [45]

combined with Python to call the package of jPBC. For work
[8], the implementation is constructed by exploiting the gar-
bled circuit protocol designed by [46] and the oblivious trans-
fer (OT) with OT extension [47] (consistent with the
configuration in [8]). In addition, for impartiality, the 4-wise
universal hash function used in [8] is also selected from mur-
murhash64 [40]. The implementation of [9] is built under the
Secure Computation API library (SCAPI) [26], where the
adopted techniques (i.e., the Yao with free-XOR technique
[25] and the OT extension [27]) are consistentwith [9].

As shown in Table 7, we can observe that our EFSS shows
superior performance in communication overhead com-
pared to [8], [12] and [9]. This is mainly due to the following
reasons: Forwork [12], given a DNA sequenceAi with length

T , it first adopts T ðT þ1Þ2 subsequences to represent Ai, and

then sends a total of 4N 	 T ðT þ1Þ2 ciphertexts to the cloud.
This will generate huge communication overhead for the
long genomic sequence (the length of each genome is
47347896 in our experiments). Besides, as illustrated in
Table 6, compared with EFSS, [12] is required to generate
more ciphertexts in the phases of both Trapdoor generation
andQuery. This inevitably incurs additional communication
costs. Both [8] and [9] resort to garbled circuits GC [28] to sup-
port string matching between DNA sequences under cipher-
text. However, given a query sequence Q, the GC protocol
will be calledN andN 	ô times in [8] and [9], respectively.
We know that the GC is always large even for building a sim-
ple function. For example, in our experiments, the average
number of gates in the circuit is 3149350. This is very large
and requires huge communication cost to perform string
matching betweenQ and N DNA sequences. Different from

Fig. 8. Communication overhead for returning K results.

TABLE 7
Comparison of Communication Overhead With Different Number of Genome Sequences

Genomes
Literature

N ¼ 100 N ¼ 200 N ¼ 300 N ¼ 400 N ¼ 500 N ¼ 600

EFSS_I 21:78ðMBÞ 43:57ðMBÞ 65:36ðMBÞ 87:15ðMBÞ 108:95ðMBÞ 130:73ðMBÞ
EFSS_II 90:82ðMBÞ 181:64ðMBÞ 272:05ðMBÞ 363:28ðMBÞ 454:10ðMBÞ 544:92ðMBÞ
EFSS_II(ES) 99:9ðMBÞ 190:72ðMBÞ 281:54ðMBÞ 372:36ðMBÞ 463:18ðMBÞ 554ðMBÞ
[12] 28:23ðGBÞ 56:47ðGBÞ 84:69ðGBÞ� 112:89ðGBÞ� 142:10ðGBÞ� 169:32ðGBÞ�
[8] 242:3ðMBÞ 484:6ðMBÞ 726:9ðMBÞ 969:2ðMBÞ 1:183ðGBÞ 1:419ðGBÞ
[9] 1:781ðGBÞ 3:562ðGBÞ 5:343ðGBÞ 7:125ðGBÞ 8:906ðGBÞ 10:68ðGBÞ
�Since recording the amount of data generated in work [12] is extremely time consuming, the communication cost with symbol �
is extrapolated based on the complexity shown in Table 6.

Fig. 7. Communication overhead for building a trapdoor.
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[8], [12] and [9], our EFSS does not require multiple interac-
tions between the server and the user. Moreover, we design
a private approximation algorithm to convert the edit dis-
tance computation problem between two sequences to the
symmetric set difference size approximation problem, which
can significantly reduce the number of elements that need to
be matched under ciphertext. Based on this, for each DNA
sequence Ai, we just require the data owner to send k
encrypted indexes to the cloud, where a constant k (such as
k = 10) is enough to provide a good query accuracy(shown in
Section 6.2). Therefore, compared with works [8], [12] and
[9], our EFSS shows superior performance in communication
overhead.

6.4 Computation Overhead

In this section, we discuss the computation overhead of
EFSS, i.e., EFSS_I, EFSS_II and EFSS_II(ES). Similarly, the
state-of-the-art works [8], [9], [12] are also analyzed in this
part to present more comparability.

6.4.1 Theoretical Analysis

The theoretical analysis results are shown in Table 8.
We also divide the cost of non-interactive schemes (i.e.,
EFSS_I, EFSS_II, EFSS_II(ES) and [12]) into three parts (i.e.,
Index generation, Trapdoor generation and Query), and
then discuss the cost of each part in detail. Conversely, for
interactive protocols [8] and [9], we only summarize their
total communication overhead. To facilitate the description
of the various types of operations involved in EFSS, we use
the symbol H to represent a hash operation. One addition
and multiplication operations are represented by D andM,
respectively. Besides, the symbol P is used to represent an
inner product operation of a matrix and a vector, and L is a
pseudo-random permutation. For [12], we use EP to repre-
sent an exponential operation under group P , andMR rep-
resents a multiplication operation under group R. Besides,
we use BT to represent a bilinear map under the group T .
For [8] and [9], we use OGC to indicate a garbled circuit pro-
tocol called between the server and a user.

Specifically, in the phase of Index generation, for EFSS_I,
given the editing operations A0i of a DNA sequence Ai, the
data owner first converts each element m 2 A0i into a single
integer HrjðmÞ 2 f�1; 1g, and then calculates the sum of all

HhrðmÞ;m 2 A0im. This total requires NkðHT Þ hash opera-
tions and NkðT � 1ÞD additions. For EFSS_II, given a set of
editing operations A0i with length of T , the data owner
requires HT hash operations to convert each element
m 2 A0i into a single integer HrjðmÞ 2 f�1; 1g. Then, the data
owner needs ðT � 1ÞD additions to calculate d

A
0j
im

for every

m 2 ½1; s�. Different from EFSS_I, EFSS_II requires ð2sþ v þ
cþ 2ÞL pseudo-random permutations to change the posi-
tion of each element, and resorts to 2P inner products
between the vector and the matrix to obtain the encrypted
index IjAi

. Therefore, the total number of mathematical oper-
ations forN sequences is ðN þKÞkðHT þ ðT � 1ÞD þ ðs� 1Þ
Mþ ð2sþ vþ cþ 2ÞL þ 2PÞ. The computation cost of EFS-
S_II(ES) in the phase of Index generation is similar to EFS-
S_II. Compared to EFSS_II, EFSS_II(ES) requires the data
owner to divide all DNA sequences into K classes and gen-
erate encrypted indexes for the K cluster centers. Therefore,
it needs extra computation overhead to complete this process
(shown in Table 8). For work [12], given a DNA sequence Ai

with length T , it first adopts the suffix tree structure to repre-
sent the DNA sequence, which will produce T ðT þ1Þ2 subse-
quences for Ai. Then, it needs to generate four ciphertexts
for each subsequence. Thus, this process requires a total
of 2NT ðT þ 1Þð2MR þ ðr1 þ r2 þ r3 þ r4ÞEP Þ mathematical
operations for N sequences, where r1 to r4 are the random
values selected by the data owner.

In the phase of Trapdoor generation, for EFSS_I, given a
query request, i.e., a genome gene Q, the search user
requires kðHT Þ hash operations to convert each element
m 2 Q0 into a single integer HrjðmÞ 2 f�1; 1g, and kðT � 1ÞD
additions to generate the trapdoor. Since the trapdoor gen-
erated by EFSS_II and EFSS_II(ES) are consistent, as shown
in Table 8, the cost of the two schemes is kðHT þ ðT �
1ÞD þ ð2sþ vþ cþ 2ÞL þ 2PÞ. For work [12], given a query

request Q, the search user needs to generate ðT ðT þ1Þ2 þ 2Þ
ciphertexts, where T ðT þ1Þ2 ciphertexts are for matching under
encrypted domain, and the other two ciphertexts are for
verification. Thus, this total requires 2T ðT þ 1ÞðMR þ ðr5 þ
r6 þ r7 þ r8ÞEMÞ mathematical operations for N sequences,
where r5 to r8 are the random values selected by the data
owner. In the Query phase, For EFSS_I and EFSS_II, the
total mathematical operations are NðkP þ kDþMÞ for exe-
cuting similarity query between Q and N DNA sequences.

TABLE 8
Comparison of Computation Overhead

Model
Computation Overhead

Index generation Trapdoor generation Query

EFSS_I NkðHT þ ðT � 1ÞDÞ kðHT þ ðT � 1ÞDÞ NðkP þ kDþMÞ
EFSS_II NkðHT þ ðT � 1ÞD þ ðs� 1ÞMþ

ð2sþ vþ cþ 2ÞL þ 2PÞ
kðHT þ ðT � 1ÞD þ ð2sþ vþ cþ 2ÞL þ 2PÞ NðkP þ kDþMÞ

EFSS_II ðN þKÞkðHT þ ðT � 1ÞD þ ðs� 1ÞMþ
ð2sþ vþ cþ 2ÞL þ 2PÞ

kðHT þ ðT � 1ÞD þ ð2sþ vþ cþ 2ÞL þ 2PÞ 2N
K ðkP þ kDþMÞ

[12] 2NT ðT þ 1Þð2MR þ ðr1 þ r2 þ r3 þ r4ÞEP Þ 2T ðT þ 1ÞðMR þ ðr5 þ r6 þ r7 þ r8ÞEMÞ 3NT ðT þ1Þ
2 BT

[8] NtðHT þ OGCÞ þNtDþNM
[9] NôO�GC
�Work [9] has other types of operations, such as blocking the DNA sequence used for the query, and comparing operations between strings to find the top K
results. However, these operations can be considered negligible relative to performing garbled circuits.
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However, for EFSS_II(ES), given a threshold t (selected by
the search user), the cloud server first finds those cluster cen-
ters satisfying Diff jðki0;Q0Þj � t, where ki; i ¼ ð1; 2; . . .KÞ is
a cluster center, and ki

0 is the set of its editing operations.
Then, only those encrypted indexes belonged to selected cen-
ters will be further computed in the following querying.
Therefore, the average of total mathematical operations is
2N
K ðkP þ kDþMÞ. For work [12], each query sequence is

divided into T ðT þ1Þ2 subsequences. The server needs 3 bilinear
map operations under a group T to generate the ciphertext

of each subsequence, which requires a total of 3T ðT þ1Þ
2 BT

bilinearmap operations. Both [8] and [9] resort to garbled cir-
cuits GC to support string matching between DNA sequences
under ciphertext. For work [8], the data owner first requires
NtHT hash operations to generate encrypted ciphertexts for
N sequence. In the query process, for each pair of sequences,
the server and user need to interact once to obtain the edit
distance between them. To return K closest results, the total
of mathematical operations isNtðOGCÞ þNtDþNM. Work
[9] also divides each DNA sequence into ô subsequences
before performing matching in the ciphertext and needs gar-
bled circuits GC to perform string matching for each pair of
sequences. Thus, the total of mathematical operations is
NôOGC. Please note that work [9] has other types of opera-
tions, such as blocking theDNA sequence used for the query,
and comparing operations between strings to find the top K
results. However, these operations can be considered negli-
gible relative to performing garbled circuits.

6.4.2 Experimental Results

We also conduct experiments to demonstrate the computa-
tion overhead of our EFSS. From the above analysis, we can
infer that the computation complexity of EFSS (i.e., EFSS_I,
EFSS_II, EFSS_II(ES)) is mainly related to the number of
genomes N in the dataset and the number of cycles k in the
execution process. Without loss of generality, the dataset
used in experiments is also selected from batches in chromo-
some 21, which contains 700 independent genomes. Each
genome has a length of 47347896 and contains 357 different
gene sequences. As before, we also divide the scheme into
three parts (i.e.,Index generation, Trapdoor generation and
Query) and discuss the computation overhead of each part
separately.

Index generation: The computation cost in the phase of
Index generation is shown in Fig. 9. We can observe that the
cost of EFSS (i.e., EFSS_I, EFSS_II and EFSS_II(ES)) increases

linearly with the number of genomes/cycles in the system.
Compared to EFSS_I, since EFSS_II increases the dimensions
of each encrypted index from s to ð2sþ vþ cþ 2Þ (the num-
ber of users’ role v and dummy noises c are set as 20 and 10
in our experiments), it inevitably incurs additional commu-
nication overhead. Similarly, different from EFSS_II, EFSS_II
(ES) requires the data owner to divide all DNA sequences
into K classes, and generates additional encrypted indexes
for theK cluster centers. Thus, with the increase in the num-
ber of genomes/cycle times, the running time of EFSS_II(ES)
is slightly higher than the other two schemes.

Trapdoor generation. Given a query request, i.e., a
genome gene Q, we can see that the cost of generating the
trapdoor ofQ is mainly related to the number of k (shown in
Table 8). Fig. 10 shows the running time of generating a sin-
gle trapdoor as the number of cycle times k increases. Similar
to the previous, since EFSS_II increases the dimensions of
the trapdoor from s to ð2sþ vþ cþ 2Þ, it requires more
mathematical operations compared with EFSS_I generated.
Also, since the trapdoor generated by EFSS_II and EFSS_II
(ES) are consistent, the cost generated by these two schemes
is the same.

Query. Figs. 11a and 11b show that the running time of
EFSS with different number of genomes/cycles. We already
know that the computation complexity of EFSS_I and EFSS_II
is the same (i.e., NðkP þ kDþMÞ) from Table 8. However,
since EFSS_II increases both the dimensions of the trapdoor
and encrypted index from s to ð2sþ vþ cþ 2Þ, it requires to
perform more inner product operations between the vector
and the matrix, thereby obtaining the closest matching DNA
sequences. On the other hand, we can observe that the run-
ning time of EFSS_II(ES) is far less than both EFSS_I and EFS-
S_II. One of the major reasons is the K-means clustering
algorithm utilized in the query process. As described in
Section 4.3, by calling the K-means clustering algorithm, the
cloud server first computes Ijki � T

j
Q to find those cluster cen-

ters satisfying Diff jðki0;Q0Þj � t, where ki; i ¼ ð1; 2; . . .KÞ is
a cluster center, and ki

0 is the set of its editing operations.
Then, only those encrypted indexes belonged to selected cen-
ters will be further computed in our following querying,
which can enormously decrease the matched number among
indexes and trapdoors.

Besides, Fig. 11c shows that EFSS_II(ES) still maintains a
significant advantage in computation cost even comparing
with the works [8], [9], [12] (called GENSETS, PPPM and
PPSP, respectively). This is mainly due to the following rea-
sons: For work [12], each query sequence is divided into

Fig. 9. Time for generating all encrypted indexes. (a) For the different
number of genomes with the same number of cycle times, k = 10. (b) For
the different number of cycle times with the same number of genomes,
N ¼ 100. Fig. 10. Computation overhead for building a trapdoor.
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T ðT þ1Þ
2 subsequences. The server needs 3 bilinear map opera-

tions under a group T to generate the ciphertext of each sub-
sequence, which will generate huge computation overhead
(a total of 3T ðT þ1Þ2 BT bilinearmap operations) for a long geno-
mic sequence. Both [8] and [9] resort to garbled circuits GC

[28] to support string matching between DNA sequences
under ciphertext. However, given a query sequence Q, the
GC protocol will be called Nt and Nô times in [8] and [9],
respectively. We know that the GC is always large even for
building a simple function. This is very large and requires
huge computation cost to perform string matching between
Q and N DNA sequences. Different from [8], [12] and [9],
our EFSS design a private approximation algorithm to con-
vert the edit distance computation problem between two
sequences to the symmetric set difference size approxima-
tion problem, which can significantly reduce the number of
elements that need to be matched under ciphertext. Based on
this, we update EFSS_II to EFSS_II (ES) by utilizing K-means
clustering algorithm to further improve the efficiency. There-
fore, compared with works [8], [12] and [9], our EFSS shows
superior performance in computation overhead.

7 RELATED WORKS

DNA similarity search over encrypted genetic data is usually
deemed to have two different ways. The first model assumes
each party only has its data and every party works together to
complete a specific query task. Secure multi-party computa-
tion is always applied to this scenario. The second way is the
secure outsourcing of computationmodel. In thismodel, all of
the genetic data will be encrypted and outsourced to a semi-
trusted party (such as cloud), and the query tasks are mainly
executed by the cloud server privately. Specifically, Atallah
et al. [48] proposed a privacy-preserving protocol to compute
the edit distances between two DNA sequences. Later, to
alleviate the computational overhead of [48], Jha et al.[11]

also designed a secure query model to improve the computa-
tion efficiency. However, due to the cumbersome interaction
between multiple participants, both of them incur huge com-
munication and computing overhead. Wang et al. [49]
designed a distributed framework to achieve privately genetic
computing according to the different sensitivity levels. How-
ever, with the latest research results, the conception of what
genes are insensitive is still an uncertain problem. Recently,
Wang et al. [8] proposed a similar patient query system called
GENSETS, which can achieve unprecedentedly high effi-
ciency and precision of DNA similarity query. However, mul-
tiple interactions between users may significantly restrict the
system’s applied scope. Also, user’s access rights and fine-
grained queries such as mixed ”AND” and ”NO” operations
on genes were not taken into account in their work. Gilad
Asharov et al. [9] also designed an efficient approximation
algorithm to compute the edit distances between sequences
even with high divergence among individual genomes.
Unfortunately, similar to [8], itwas also only from the perspec-
tive of efficiency to devise the whole scheme. Lu et al. [50] pro-
posed a secure outsourcing scheme called GWAS, which
aimed to discover the relationships between gene mutations
and some diseases by utilizing statistical information of genes.
Chase et al. [51] proposed a DNA string matching algorithm
exploiting symmetric searchable encryption. However, due to
the defect of the deterministic encryption algorithm, the
search pattern in their protocol was revealed to the cloud
server. Besides, the function of the fuzzyDNA sequence query
was not supported in their proposed model. Wang et al. [12]
proposed a DNA sequence match scheme over encrypted
cloud data, which only required one round of communication
comparedwith previous protocols. However, their model sac-
rificed huge communication costs because of miscellaneous
ciphertext processing based on the bilinear group. In general,
most existing models are only devised from the perspective of
efficiency. Moreover, other common and significant perfor-
mance indicators, especially data access control and personal-
ized search requirements (i.e., complex logic queries) are
rarely taken into account. In this paper, we design an Efficient
and Fine-grained Similarity Search (EFSS) scheme which ena-
bles retrieving resemble DNA sequences over encrypted
cloud data. Specifically, we first propose an approximation
algorithm to compute the edit distances between two sequen-
ces privately. Then, we present an efficient data access control
strategy tomanage the permissions of different users. In addi-
tion, by executing the custom query requests, our EFSS is sup-
portive ofmixed Boolean queries.

8 CONCLUSION

In this paper, we have proposed an efficient DNA similarity
search scheme (EFSS) which enables fine-grained query and
data access control over encrypted cloud data. In order to
illustrate our purpose in a gradual way, we have proposed
two secure DNA similarity model (i.e., EFSS_I and EFSS_II).
We have given a formal and comprehensive analysis for error
rate, data privacy and performance evaluation. For the future
work, we intend to improve the accuracy and efficiency of
our proposed schemes utilizing index formed tree structure.
Besides, large-scale data updating such as data deletion, data
insertionwill be also considered in our future research.

Fig. 11. Time for query. (a) For the different number of genomes with the
same number of cycle times, k = 10. (b) For the different number of cycle
times with the same number of genomes, N ¼ 100. (c) For the different
number of users with the same number of cycle times k = 10.
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